1
|
Grinstein E, Shan Y, Karawajew L, Snijders PJF, Meijer CJLM, Royer HD, Wernet P. Cell cycle-controlled interaction of nucleolin with the retinoblastoma protein and cancerous cell transformation. J Biol Chem 2006; 281:22223-22235. [PMID: 16698799 DOI: 10.1074/jbc.m513335200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Retinoblastoma protein (Rb) is a multifunctional tumor suppressor, frequently inactivated in certain types of human cancer. Nucleolin is an abundant multifunctional phosphoprotein of proliferating and cancerous cells, recently identified as cell cycle-regulated transcription activator, controlling expression of human papillomavirus type 18 (HPV18) oncogenes in cervical cancer. Here we find that nucleolin is associated with Rb in intact cells in the G1 phase of the cell cycle, and the complex formation is mediated by the growth-inhibitory domain of Rb. Association with Rb inhibits the DNA binding function of nucleolin and in consequence the interaction of nucleolin with the HPV18 enhancer, resulting in Rb-mediated repression of the HPV18 oncogenes. The intracellular distribution of nucleolin in epithelial cells is Rb-dependent, and an altered nucleolin localization in human cancerous tissues results from a loss of Rb. Our findings suggest that deregulated nucleolin activity due to a loss of Rb contributes to tumor development in malignant diseases, thus providing further insights into the molecular network for the Rb-mediated tumor suppression.
Collapse
Affiliation(s)
- Edgar Grinstein
- Institute of Transplantation Diagnostics and Cellular Therapeutics, Heinrich Heine University Medical Center, 40225 Düsseldorf, Germany.
| | - Ying Shan
- Max-Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; Institute of Molecular Pharmacology, 13125 Berlin, Germany
| | - Leonid Karawajew
- Robert-Rossle-Clinic at the HELIOS Klinikum Berlin-Buch, Charite Medical School, 13125 Berlin, Germany
| | - Peter J F Snijders
- Department of Pathology, Vrije Universiteit Medical Center, 1007 MB Amsterdam, The Netherlands
| | - Chris J L M Meijer
- Department of Pathology, Vrije Universiteit Medical Center, 1007 MB Amsterdam, The Netherlands
| | - Hans-Dieter Royer
- Max-Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; Center for Advanced European Studies, 53175 Bonn, Germany
| | - Peter Wernet
- Institute of Transplantation Diagnostics and Cellular Therapeutics, Heinrich Heine University Medical Center, 40225 Düsseldorf, Germany
| |
Collapse
|
2
|
Guo Y, Chen Y, Ito H, Watanabe A, Ge X, Kodama T, Aburatani H. Identification and characterization of lin-28 homolog B (LIN28B) in human hepatocellular carcinoma. Gene 2006; 384:51-61. [PMID: 16971064 DOI: 10.1016/j.gene.2006.07.011] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 06/29/2006] [Accepted: 07/06/2006] [Indexed: 11/17/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. Several studies have identified signature gene sets that may be useful as potential diagnostic tools by global microarray analysis. Here we report the cloning and characterization of a novel gene, lin-28 homolog B (LIN28B), which is overexpressed in hepatocellular carcinoma. The heterochronic gene lin-28 is a key regulator of developmental timing in the nematode Caenorhabditis elegans. Similar with lin-28 proteins, LIN28B conserves a cold shock domain and a pair of CCHC zinc finger domains. Phylogenetic analysis suggests that they might arise as a result of duplication from an ancestral gene. Overexpression of LIN28B was noted in most HCC cell lines and clinical samples. By western blot analysis using a polyclonal antibody against LIN28B, a short LIN28B isoform was also identified in non-tumor liver tissue and fetal liver. Although predominantly localized in the cytoplasm, we found that LIN28B protein shows cell cycle-dependent nuclear translocation in Huh7 cells. Induced expression of exogenous LIN28B in a tet-off cell line promoted cancer cell proliferation. Interestingly, the segment of the unusually long 3'UTR of LIN28B contains complementary sites to let-7 microRNA of mammals. And our studies provided indirect evidence that LIN28B is a possibly natural target for let-7 mediated regulation. These findings strongly implicate a critical role of LIN28B during development and tumorigenesis and suggest a possible novel mechanism.
Collapse
Affiliation(s)
- Yingqiu Guo
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | | | | | | | | | | | | |
Collapse
|
3
|
Holm PS, Lage H, Bergmann S, Jürchott K, Glockzin G, Bernshausen A, Mantwill K, Ladhoff A, Wichert A, Mymryk JS, Ritter T, Dietel M, Gänsbacher B, Royer HD. Multidrug-resistant cancer cells facilitate E1-independent adenoviral replication: impact for cancer gene therapy. Cancer Res 2004; 64:322-8. [PMID: 14729641 DOI: 10.1158/0008-5472.can-0482-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Resistance to chemotherapy is responsible for a failure of current treatment regimens in cancer patients. We have reported previously that the Y-box protein YB-1 regulates expression of the P-glycoprotein gene mdr1, which plays a major role in the development of a multidrug resistant-tumor phenotype. YB-1 predicts drug resistance and patient outcome in breast cancer. Thus, YB-1 is a promising target for new therapeutic approaches to defeat multidrug resistance. In drug-resistant cancer cells and in adenovirus-infected cells YB-1 is found in the nucleus. Nuclear accumulation of YB-1 in adenovirus-infected cells is a function of the E1 region, and we have shown that YB-1 facilitates adenovirus replication. Here we report that E1A-deleted or mutant adenovirus vectors, such as Ad312 and Ad520, replicate efficiently in multidrug-resistant (MDR) cancer cells and induce an adenovirus cytopathic effect resulting in host cell lysis. Thus, replication-defective adenoviruses are a previously unrecognized vector system for a selective elimination of MDR cancer cells. Our work forms the basis for the development of novel oncolytic adenovirus vectors for the treatment of MDR malignant diseases in the clinical setting.
Collapse
Affiliation(s)
- Per S Holm
- Institut für Experimentelle Onkologie und Therapieforschung, Technische Universität München, Klinikum Rechts der Isar, München, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Grinstein E, Wernet P, Snijders PJF, Rösl F, Weinert I, Jia W, Kraft R, Schewe C, Schwabe M, Hauptmann S, Dietel M, Meijer CJLM, Royer HD. Nucleolin as activator of human papillomavirus type 18 oncogene transcription in cervical cancer. J Exp Med 2002; 196:1067-78. [PMID: 12391018 PMCID: PMC2194043 DOI: 10.1084/jem.20011053] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2001] [Revised: 08/26/2002] [Accepted: 09/16/2002] [Indexed: 11/25/2022] Open
Abstract
High risk human papillomaviruses (HPVs) are central to the development of cervical cancer and the deregulated expression of high risk HPV oncogenes is a critical event in this process. Here, we find that the cell protein nucleolin binds in a sequence-specific manner to the HPV18 enhancer. The DNA binding activity of nucleolin is primarily S phase specific, much like the transcription of the E6 and E7 oncoproteins of HPV18 in cervical cancer cells. Antisense inactivation of nucleolin blocks E6 and E7 oncogene transcription and selectively decreases HPV18(+) cervical cancer cell growth. Furthermore, nucleolin controls the chromatin structure of the HPV18 enhancer. In contrast, HPV16 oncogene transcription and proliferation rates of HPV16(+) SiHa cervical cancer cells are independent of nucleolin activity. Moreover, nucleolin expression is altered in HPV18(+) precancerous and cancerous tissue from the cervix uteri. Whereas nucleolin was homogeneously distributed in the nuclei of normal epithelial cells, it showed a speckled nuclear phenotype in HPV18(+) carcinomas. Thus, the host cell protein nucleolin is directly linked to HPV18-induced cervical carcinogenesis.
Collapse
Affiliation(s)
- Edgar Grinstein
- Institut für Transplantationsdiagnostik und Zelltherapeutika, Heinrich-Heine Universität Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Holm PS, Bergmann S, Jurchott K, Lage H, Brand K, Ladhoff A, Mantwill K, Curiel DT, Dobbelstein M, Dietel M, Gansbacher B, Royer HD. YB-1 relocates to the nucleus in adenovirus-infected cells and facilitates viral replication by inducing E2 gene expression through the E2 late promoter. J Biol Chem 2002; 277:10427-34. [PMID: 11788582 DOI: 10.1074/jbc.m106955200] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The adenovirus early proteins E1A and E1B-55kDa are key regulators of viral DNA replication, and it was thought that targeting of p53 by E1B-55kDa is essential for this process. Here we have identified a previously unrecognized function of E1B for adenovirus replication. We found that E1B-55kDa is involved in targeting the transcription factor YB-1 to the nuclei of adenovirus type 5-infected cells where it is associated with viral inclusion bodies believed to be sites of viral transcription and replication. We show that YB-1 facilitates E2 gene expression through the E2 late promoter thus controlling E2 gene activity at later stages of infection. The role of YB-1 for adenovirus replication was demonstrated with an E1-minus adenovirus vector containing a YB-1 transgene. In infected cells, AdYB-1 efficiently replicated and produced infectious progeny particles. Thus, adenovirus E1B-55kDa protein and the host cell factor YB-1 act jointly to facilitate adenovirus replication in the late phase of infection.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Adenoviridae/genetics
- Adenoviridae/metabolism
- Adenovirus E2 Proteins/genetics
- Antigens, Bacterial
- Bacterial Proteins/metabolism
- Blotting, Northern
- Blotting, Southern
- Blotting, Western
- CCAAT-Enhancer-Binding Proteins/metabolism
- Cell Line
- Cell Nucleus/metabolism
- DNA, Complementary/metabolism
- DNA-Binding Proteins
- Gene Expression Regulation
- HeLa Cells
- Humans
- Microscopy, Confocal
- Microscopy, Electron
- Microscopy, Fluorescence
- NFI Transcription Factors
- Nuclear Proteins
- Promoter Regions, Genetic
- Protein Binding
- Transcription Factors
- Transgenes
- Virus Replication
- Y-Box-Binding Protein 1
Collapse
Affiliation(s)
- Per S Holm
- Institut für Experimentelle Onkologie und Therapieforschung, Technische Universität München, Klinikum Rechts der Isar, München 81675, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Grinstein E, Jundt F, Weinert I, Wernet P, Royer HD. Sp1 as G1 cell cycle phase specific transcription factor in epithelial cells. Oncogene 2002; 21:1485-92. [PMID: 11896576 DOI: 10.1038/sj.onc.1205211] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2001] [Revised: 11/19/2001] [Accepted: 11/28/2001] [Indexed: 11/08/2022]
Abstract
Sp1 binding sites have been identified in enhancer/promoter regions of several growth and cell cycle regulated genes, and it has been shown that Sp1 is increasingly phosphorylated in G1 phase of the cell cycle. Interactions of Sp1 with proteins involved in control of cell cycle and tumor formation have been reported. Here we show that expression of Sp1 protein predominates in the G1 phase of the cell cycle in epithelial cells. This is achieved by proteasome-dependent degradation. Inhibition of endogeneous Sp1 activity by a dominant-negative Sp1 mutant was associated with a cell cycle arrest in G1 phase, a strongly reduced expression of cyclin D1, the EGF-receptor and increased levels of p27Kip1. We have thus identified Sp1 as an important regulator of the cell cycle in G1 phase.
Collapse
Affiliation(s)
- Edgar Grinstein
- Institut für Transplantationsdiagnostik und Zelltherapeutika, Heinrich Heine Universität Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany.
| | | | | | | | | |
Collapse
|
7
|
Bargou RC, Jürchott K, Wagener C, Bergmann S, Metzner S, Bommert K, Mapara MY, Winzer KJ, Dietel M, Dörken B, Royer HD. Nuclear localization and increased levels of transcription factor YB-1 in primary human breast cancers are associated with intrinsic MDR1 gene expression. Nat Med 1997; 3:447-50. [PMID: 9095180 DOI: 10.1038/nm0497-447] [Citation(s) in RCA: 330] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Breast cancers are either primarily resistant to chemotherapy (intrinsic resistance), or respond to chemotherapy but later recur with a multidrug-resistant phenotype because of overexpression of the multidrug transporter P-glycoprotein. The MDR1 gene encoding P-glycoprotein may be transcriptionally regulated by a Y-box transcription factor. We now report that, in multidrug-resistant MCF-7 breast cancer cells, nuclear localization of YB-1 is associated with MDR-1 gene expression. In drug-sensitive MCF-7 cells, however, YB-1 was localized to the cytoplasm. Regulated overexpression of YB-1 in drug-sensitive diploid breast epithelial cells induced MDR-1 gene expression and multidrug resistance. In 27 out of 27 untreated primary breast cancers, YB-1 protein was expressed in the cytoplasm although it was undetectable in normal breast tissue of these patients. In a subgroup of tumors (9/27), however, YB-1 was also localized to the nucleus and, in these cases, high levels of P-glycoprotein were present. These results show that in a subset of untreated primary breast cancers, nuclear localization of YB-1 protein is associated with intrinsic multidrug resistance. Our data show that YB-1 has an important role in controlling MDR1 gene transcription and this finding provides a basis for the analysis of molecular mechanisms responsible for intrinsic multidrug resistance in human breast cancer.
Collapse
Affiliation(s)
- R C Bargou
- Humboldt Universität zu Berlin, Universitätsklinikum Rudolf Virchow, Robert-Rössle Klinik, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|