1
|
Padarti A, Abou-Fadel J, Zhang J. Resurgence of phosphotyrosine binding domains: Structural and functional properties essential for understanding disease pathogenesis. Biochim Biophys Acta Gen Subj 2021; 1865:129977. [PMID: 34391832 DOI: 10.1016/j.bbagen.2021.129977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Phosphotyrosine Binding (PTB) Domains, usually found on scaffold proteins, are pervasive in many cellular signaling pathways. These domains are the second-largest family of phosphotyrosine recognition domains and since their initial discovery, dozens of PTB domains have been structurally determined. SCOPE OF REVIEW Due to its signature sequence flexibility, PTB domains can bind to a large variety of ligands including phospholipids. PTB peptide binding is divided into classical binding (canonical NPXY motifs) and non-classical binding (all other motifs). The first atypical PTB domain was discovered in cerebral cavernous malformation 2 (CCM2) protein, while only one third in size of the typical PTB domain, it remains functionally equivalent. MAJOR CONCLUSIONS PTB domains are involved in numerous signaling processes including embryogenesis, neurogenesis, and angiogenesis, while dysfunction is linked to major disorders including diabetes, hypercholesterolemia, Alzheimer's disease, and strokes. PTB domains may also be essential in infectious processes, currently responsible for the global pandemic in which viral cellular entry is suspected to be mediated through PTB and NPXY interactions. GENERAL SIGNIFICANCE We summarize the structural and functional updates in the PTB domain over the last 20 years in hopes of resurging interest and further analyzing the importance of this versatile domain.
Collapse
Affiliation(s)
- Akhil Padarti
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, 5001 El Paso Drive, El Paso, TX 79905, USA
| | - Johnathan Abou-Fadel
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, 5001 El Paso Drive, El Paso, TX 79905, USA
| | - Jun Zhang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, 5001 El Paso Drive, El Paso, TX 79905, USA.
| |
Collapse
|
2
|
Abstract
The Src Homology 2 (SH2) domain is the prototypical protein interaction module that lies at the heart of phosphotyrosine signaling. Since its serendipitous discovery, there has been a tremendous advancement in technologies and an array of techniques available for studying SH2 domains and phosphotyrosine signaling. In this chapter, we provide a glimpse of the history of SH2 domains and describe many of the tools and techniques that have been developed along the way and discuss future directions for SH2 domain studies. We highlight the gist of each chapter in this volume in the context of: the structural biology and phosphotyrosine binding; characterizing SH2 specificity and generating prediction models; systems biology and proteomics; SH2 domains in signal transduction; and SH2 domains in disease, diagnostics, and therapeutics. Many of the individual chapters provide an in-depth approach that will allow scientists to interrogate the function and role of SH2 domains.
Collapse
Affiliation(s)
- Bernard A Liu
- Broad Institute of Harvard and MIT, 415 Main St., 5175 JJ, Cambridge, MA, 02142, USA.
| | - Kazuya Machida
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, 400 Farmington Ave., Farmington, CT, 06030, USA.
| |
Collapse
|
3
|
Tang N, Lyu D, Liu T, Chen F, Jing S, Hao T, Liu S. Different Effects of p52SHC1 and p52SHC3 on the Cell Cycle of Neurons and Neural Stem Cells. J Cell Physiol 2015; 231:172-80. [DOI: 10.1002/jcp.25069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 04/27/2015] [Accepted: 06/05/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Ning Tang
- State Key Laboratory of Proteomics and; Department of Neurobiology; Institute of Basic Medical Sciences; Beijing P. R. China
- Reproductive Medicine Center; Jinan Military General Hospital; Jinan P. R. China
| | - Dan Lyu
- State Key Laboratory of Proteomics and; Department of Neurobiology; Institute of Basic Medical Sciences; Beijing P. R. China
- Dan Lyu is currently working in Department of Pain Management; Tianjin First Center Hospital; Tianjin P. R. China
| | - Tao Liu
- State Key Laboratory of Proteomics and; Department of Neurobiology; Institute of Basic Medical Sciences; Beijing P. R. China
| | - Fangjin Chen
- State Key Laboratory of Proteomics and; Department of Neurobiology; Institute of Basic Medical Sciences; Beijing P. R. China
| | - Shuqian Jing
- State Key Laboratory of Proteomics and; Department of Neurobiology; Institute of Basic Medical Sciences; Beijing P. R. China
| | - Tianyu Hao
- Reproductive Medicine Center; Jinan Military General Hospital; Jinan P. R. China
| | - Shaojun Liu
- State Key Laboratory of Proteomics and; Department of Neurobiology; Institute of Basic Medical Sciences; Beijing P. R. China
| |
Collapse
|
4
|
Yang SNY, Takeda AAS, Fontes MRM, Harris JM, Jans DA, Kobe B. Probing the specificity of binding to the major nuclear localization sequence-binding site of importin-alpha using oriented peptide library screening. J Biol Chem 2010; 285:19935-46. [PMID: 20406804 DOI: 10.1074/jbc.m109.079574] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Importin-alpha is the nuclear import receptor that recognizes the classic monopartite and bipartite nuclear localization sequences (cNLSs), which contain one or two clusters of basic amino acids, respectively. Different importin-alpha paralogs in a single organism are specific for distinct repertoires of cargos. Structural studies revealed that monopartite cNLSs and the C-terminal basic clusters of the bipartite cNLSs bind to the same site on importin-alpha, termed the major cNLS-binding site. We used an oriented peptide library approach with five degenerate positions to probe the specificity of the major cNLS-binding site in importin-alpha. We identified the sequences KKKRR, KKKRK, and KKRKK as the optimal sequences for binding to this site for mouse importin-alpha2, human importin-alpha1, and human importin-alpha5, respectively. The crystal structure of mouse importin-alpha2 with its optimal peptide confirmed the expected binding mode resembling the binding of simian virus 40 large tumor-antigen cNLS. Binding assays confirmed that the peptides containing these sequences bound to the corresponding proteins with low nanomolar affinities. Nuclear import assays showed that the sequences acted as functional cNLSs, with specificity for particular importin-alphas. This is the first time that structural information has been linked to an oriented peptide library screening approach for importin-alpha; the results will contribute to understanding of the sequence determinants of cNLSs, and may help identify as yet unidentified cNLSs in novel proteins.
Collapse
Affiliation(s)
- Sundy N Y Yang
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Centre for Infectious Disease Research, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | |
Collapse
|
5
|
Csiszár A. Structural and functional diversity of adaptor proteins involved in tyrosine kinase signalling. Bioessays 2006; 28:465-79. [PMID: 16615089 DOI: 10.1002/bies.20411] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adaptors are proteins of multi-modular structure without enzymatic activity. Their capacity to organise large, temporary protein complexes by linking proteins together in a regulated and selective fashion makes them of outstanding importance in the establishment and maintenance of specificity and efficiency in all known signal transduction pathways. This review focuses on the structural and functional characterisation of adaptors involved in tyrosine kinase (TK) signalling. TK-linked adaptors can be distinguished by their domain composition and binding specificities. However, such structural classifications have proven inadequate as indicators of functional roles. A better way to understand the logic of signalling networks might be to look at functional aspects of adaptor proteins such as signalling specificity, negative versus positive contribution to signal propagation, or their position in the signalling hierarchy. All of these functions are dynamic, suggesting that adaptors have important regulatory roles rather than acting only as stable linkers in signal transduction.
Collapse
|
6
|
Miyake I, Hakomori Y, Misu Y, Nakadate H, Matsuura N, Sakamoto M, Sakai R. Domain-specific function of ShcC docking protein in neuroblastoma cells. Oncogene 2005; 24:3206-15. [PMID: 15735675 DOI: 10.1038/sj.onc.1208523] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
ShcC is a family member of the Shc docking proteins that possess two different phosphotyrosine-binding motifs and conduct signals as Grb2-binding substrates of various receptor tyrosine kinases. We have recently shown that some neuroblastoma cell lines, such as NB-39-nu cells, express a protein complex of hyperphosphorylated ShcC and anaplastic lymphoma kinase (ALK), which is self-activated by gene amplification. Here, we demonstrate that the expression of a mutant ShcC lacking Grb2-binding sites, 3YF-ShcC, significantly impaired the survival, differentiation and motility of NB-39-nu cells by blocking the ERK and Akt pathways. On the other hand, cells overexpressing ShcC or 3YF-ShcC, but not a mutant ShcC that lacks SH2, showed decreased anchorage independency and in vivo tumorigenicity, suggesting a novel ShcC-specific suppressive effect through its SH2 domain on cell transformation. Notably, overexpression of ShcC suppressed the sustained phosphorylation of Src family kinase after cell detachment, which might be independent of phosphorylation of Grb2-binding site. It was indicated that the Src/Fyn-Cas pathway is modulated as a target of these suppressive effects by ShcC. Reciprocal change of ShcC expression and phosphorylation observed in malignant neuroblastoma cell lines might be explained by these phosphotyrosine-dependent and -independent functions of ShcC.
Collapse
Affiliation(s)
- Izumi Miyake
- Growth Factor Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | | | | | | | | | | | | |
Collapse
|
7
|
Uhlik MT, Temple B, Bencharit S, Kimple AJ, Siderovski DP, Johnson GL. Structural and evolutionary division of phosphotyrosine binding (PTB) domains. J Mol Biol 2005; 345:1-20. [PMID: 15567406 DOI: 10.1016/j.jmb.2004.10.038] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Revised: 10/13/2004] [Accepted: 10/13/2004] [Indexed: 11/21/2022]
Abstract
Proteins encoding phosphotyrosine binding (PTB) domains function as adaptors or scaffolds to organize the signaling complexes involved in wide-ranging physiological processes including neural development, immunity, tissue homeostasis and cell growth. There are more than 200 proteins in eukaryotes and nearly 60 human proteins having PTB domains. Six PTB domain encoded proteins have been found to have mutations that contribute to inherited human diseases including familial stroke, hypercholesteremia, coronary artery disease, Alzheimer's disease and diabetes, demonstrating the importance of PTB scaffold proteins in organizing critical signaling complexes. PTB domains bind both peptides and headgroups of phosphatidylinositides, utilizing two distinct binding motifs to mediate spatial organization and localization within cells. The structure of PTB domains confers specificity for binding peptides having a NPXY motif with differing requirements for phosphorylation of the tyrosine within this recognition sequence. In this review, we use structural, evolutionary and functional analysis to divide PTB domains into three groups represented by phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like and phosphotyrosine-independent Dab-like PTBs, with the Dab-like PTB domains representing nearly 75% of proteins encoding PTB domains. In addition, we further define the binding characteristics of the cognate ligands for each group of PTB domains. The signaling complexes organized by PTB domain encoded proteins are largely unknown and represents an important challenge in systems biology for the future.
Collapse
Affiliation(s)
- Mark T Uhlik
- Department of Pharmacology and University of North Carolina School of Medicine, 1108 Mary Ellen Jones Building, Campus Box 7365, Chapel Hill, NC 27599-7365, USA
| | | | | | | | | | | |
Collapse
|
8
|
Miyake I, Hakomori Y, Shinohara A, Gamou T, Saito M, Iwamatsu A, Sakai R. Activation of anaplastic lymphoma kinase is responsible for hyperphosphorylation of ShcC in neuroblastoma cell lines. Oncogene 2002; 21:5823-34. [PMID: 12185581 DOI: 10.1038/sj.onc.1205735] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2002] [Revised: 05/14/2002] [Accepted: 06/07/2002] [Indexed: 01/26/2023]
Abstract
Shc family of docking proteins, ShcA, ShcB and ShcC, play roles in cellular signal transduction by binding to phosphotyrosine residues of various activated receptor tyrosine kinases. Both ShcB and ShcC proteins are selectively expressed in the neural system of adult mouse tissues. In most of neuroblastoma cells, obvious tyrosine phosphorylation of ShcC was observed, whereas expression of ShcB was considerably low. Phosphoproteins associated with hyperphosphorylated ShcC were purified from neuroblastoma cell lines, and identified by mass-spectrometry. Anaplastic lymphoma kinase (ALK), which turned out to be one of these phosphoproteins, was constitutively activated and associated with the PTB domain of ShcC in three neuroblastoma cells. In vitro kinase assay revealed that ShcC is a potent substrate of the activated ALK kinase. The ALK gene locus was significantly amplified in both of these cell lines, suggesting that gene amplification leads to constitutive activation of the ALK kinase, which results in hyperphosphorylation of ShcC. Constitutive activation of ALK appeared to interfere with signals from other receptor tyrosine kinases. ALK-ShcC signal activation, possibly caused by co-amplification with the N-myc gene, might give additional effects on malignant tumor progression of neuroblastoma.
Collapse
Affiliation(s)
- Izumi Miyake
- Cancer Signal Transduction Project, National Cancer Center Research Institute, 5-1-1 Tsukuji, Chuo-ku, Tokyo 104-0045, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Liu HY, Meakin SO. ShcB and ShcC activation by the Trk family of receptor tyrosine kinases. J Biol Chem 2002; 277:26046-56. [PMID: 12006576 DOI: 10.1074/jbc.m111659200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Activation of the neurotrophin Trk receptors is a key process in the survival and development of the nervous system. The signaling adapters ShcB and ShcC, but not ShcA, are thought to be the primary Shc adaptor proteins in neurons as both are highly expressed in both the developing and adult nervous system. Although a previous study suggested that ShcB and ShcC do not strongly interact with the Trk receptors (1), we find that ShcB and ShcC bind the Trk receptors in a phosphotyrosine-dependent manner via their N-terminal phosphotyrosine binding domain at Tyr(499) (TrkA) and Tyr(515) (TrkB), they are tyrosine-phosphorylated in response to neurotrophin stimulation, and they enhance the activation of mitogen-activated protein kinase in Trk-expressing cells. Moreover, neurotrophin treatment of primary cortical neurons stimulates ShcB/ShcC-Trk interaction and the tyrosine phosphorylation of ShcB/ShcC, indicating that they are bona fide targets of the Trk receptors in vivo. Interestingly, two proteins (pp60 and pp75) co-immunoprecipitate with ShcB and ShcC in response to neurotrophin stimulation in primary cortical neurons, suggesting a potential role of these unknown targets in neurotrophin signaling. Collectively, these results demonstrate that ShcB and ShcC, and their co-immunoprecipitating proteins, are activated by the Trk receptors in primary neurons.
Collapse
Affiliation(s)
- Hui-Yu Liu
- Laboratory of Neural Signaling, Cell Biology Group, John P. Robarts Research Institute, London, Ontario N6A 5K8, Canada
| | | |
Collapse
|
10
|
Nakamura T, Komiya M, Gotoh N, Koizumi S, Shibuya M, Mori N. Discrimination between phosphotyrosine-mediated signaling properties of conventional and neuronal Shc adapter molecules. Oncogene 2002; 21:22-31. [PMID: 11791173 DOI: 10.1038/sj.onc.1205019] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2001] [Revised: 09/24/2001] [Accepted: 10/01/2001] [Indexed: 11/08/2022]
Abstract
The phosphotyrosine (pTyr) adapter Shc/ShcA is a major connector in various tyrosine kinase signalings following a variety of stimulation such as growth factor/neurotrophin, as well as in those following calcium influx and integrin activation. As in other tissues, Shc has been implicated in neuronal signalings; however, recent evidence suggests that N-Shc/ShcC and Sck/ShcB would take over most of the roles of Shc in mature central neurons, and switching phenomena between Shc and N-Shc expression were observed in several neuronal paradigms. Little is, however, known as to the signal-output differences between Shc and N-Shc. Here we determined the efficacy of Shc and N-Shc toward Erk activation in NGF-treated PC12 cells, and found that N-Shc transduced Grb2/Sos/Ras-dependent Erk activation less efficiently than Shc. This was mainly because N-Shc has only one high-affinity Grb2-binding site, whereas Shc has two such sites. Phosphopeptide mapping revealed that N-Shc has novel tyrosine-phosphorylation sites at Y259/Y260 and Y286; in vivo-phosphorylation of these tyrosines was demonstrated by site-specific anti-pTyr antibodies. Phosphorylated Y286 bound to several proteins, of which one was Crk. The pY221/pY222 site, corresponding to one of the Grb2-binding sites of Shc, also preferentially bound to Crk. The phosphorylation-dependent interaction between N-Shc and Crk was demonstrated in vitro and in vivo. These results indicate that N-Shc has specific features of signal-output, and further suggest that the switching between Shc and N-Shc during neural development and regeneration would lead to differentiation of downstream signalings.
Collapse
Affiliation(s)
- Takeshi Nakamura
- Department of Molecular Genetics, National Institute for Longevity Sciences, Oobu, Aichi 474-8522, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Songyang Z, Liu D. Peptide library screening for determination of SH2 or phosphotyrosine-binding domain sequences. Methods Enzymol 2001; 332:183-95. [PMID: 11305095 DOI: 10.1016/s0076-6879(01)32201-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- Z Songyang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
12
|
Kasanov J, Pirozzi G, Uveges AJ, Kay BK. Characterizing Class I WW domains defines key specificity determinants and generates mutant domains with novel specificities. CHEMISTRY & BIOLOGY 2001; 8:231-41. [PMID: 11306348 DOI: 10.1016/s1074-5521(01)00005-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
INTRODUCTION WW domains are small protein interaction modules found in a wide range of eukaryotic signaling and structural proteins. Five classes of WW domains have been annotated to date, where each class is largely defined by the type of peptide ligand selected, rather than by similarities within WW domains. Class I WW domains bind Pro-Pro-Xxx-Tyr containing ligands, and it would be of interest to determine residues within the domains that determine this specificity. RESULTS Fourteen WW domains selected Leu/Pro-Pro-Xxx-Tyr containing peptides ligands via phage display and were thus designated as Class 1 WW domains. These domains include those present in human YAP (hYAP) and WWP3, as well as those found in ubiquitin protein ligases of the Nedd4 family, including mouse Nedd4 (mNedd4), WWP1, WWP2 and Rsp5. Comparing the primary structures of these WW domains highlighted a set of highly conserved residues, in addition to those originally noted to occur within WW domains. Substitutions at two of these conserved positions completely inhibited ligand binding, whereas substitution at a non-conserved position did not. Moreover, mutant WW domains containing substitutions at conserved positions bound novel peptide ligands. CONCLUSIONS Class I WW domains contain a highly conserved set of residues that are important in selecting Pro-Xxx-Tyr containing peptide ligands. The presence of these residues within an uncharacterized WW domain can be used to predict its ability to bind Pro-Xxx-Tyr containing peptide ligands.
Collapse
Affiliation(s)
- J Kasanov
- Department of Biology, University of North Carolina, Chapel Hill 27599-3280, USA
| | | | | | | |
Collapse
|
13
|
Sakai R, Henderson JT, O'Bryan JP, Elia AJ, Saxton TM, Pawson T. The mammalian ShcB and ShcC phosphotyrosine docking proteins function in the maturation of sensory and sympathetic neurons. Neuron 2000; 28:819-33. [PMID: 11163269 DOI: 10.1016/s0896-6273(00)00156-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Shc proteins possess SH2 and PTB domains and serve a scaffolding function in signaling by a variety of receptor tyrosine kinases. There are three known mammalian Shc genes, of which ShcB and ShcC are primarily expressed in the nervous system. We have generated null mutations in ShcB and ShcC and have obtained mice lacking either ShcB or ShcC or both gene products. ShcB-deficient animals exhibit a loss of peptidergic and nonpeptidergic nociceptive sensory neurons, which is not enhanced by additional loss of ShcC. Mice lacking both ShcB and ShcC exhibit a significant loss of neurons within the superior cervical ganglia, which is not observed in either mutant alone. The results indicate that these Shc family members possess both unique and overlapping functions in regulating neural development and suggest physiological roles for ShcB/ShcC in TrkA signaling.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport
- Animals
- COS Cells
- Cell Differentiation/genetics
- Cells, Cultured
- Cloning, Molecular
- Gene Targeting
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Knockout
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neurons, Afferent/cytology
- Neurons, Afferent/metabolism
- Neuropeptides
- Organ Specificity
- Phosphotyrosine/metabolism
- Proteins/genetics
- Sequence Homology, Amino Acid
- Shc Signaling Adaptor Proteins
- Signal Transduction
- Src Homology 2 Domain-Containing, Transforming Protein 1
- Src Homology 2 Domain-Containing, Transforming Protein 2
- Src Homology 2 Domain-Containing, Transforming Protein 3
- Sympathetic Nervous System/cytology
- Sympathetic Nervous System/metabolism
- src Homology Domains/genetics
Collapse
Affiliation(s)
- R Sakai
- Program in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, M5G 1X5, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
14
|
de L A Fernandes ML, Saad MJ, Velloso LA. Insulin induces tyrosine phosphorylation of the insulin receptor and SHC, and SHC/GRB2 association in cerebellum but not in forebrain cortex of rats. Brain Res 1999; 826:74-82. [PMID: 10216198 DOI: 10.1016/s0006-8993(99)01118-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A growth-related branch of the insulin-signaling pathway was studied in the forebrain cortex and cerebellum of Wistar rats. Anesthetized rats received a bolus injection of saline or insulin through the cava vein after which fragments of cerebellum and forebrain cortex were excised and immediately homogenized. Insulin receptor and p46SHCA phosphorylation, and p46SHCA/GRB2 association were detected by immunoprecipitation and blotting with specific antibodies. Insulin stimulated the rapid phosphorylation of its receptor in cerebellum, followed by p46SHCA phosphorylation and GRB2 recruitment. The optimal insulin dose for the induction of p46SHCA/GRB2 binding was 60 microg, and time-course experiments showed that maximum phosphorylation/binding occurred 2-3 min after stimulation. Although insulin receptors and SHC were present in forebrain cortex, there was no increase in their phosphorylation, nor was there any recruitment of GRB2 following stimulation with insulin. Thus, although elements involved in the early intracellular response to insulin are present in the central nervous system, differences in their activation/regulation may account for the functional roles of insulin in these tissues.
Collapse
Affiliation(s)
- M L de L A Fernandes
- Pedro Ernesto University Hospital, Department of Internal Medicine, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | |
Collapse
|
15
|
O'Bryan JP, Lambert QT, Der CJ. The src homology 2 and phosphotyrosine binding domains of the ShcC adaptor protein function as inhibitors of mitogenic signaling by the epidermal growth factor receptor. J Biol Chem 1998; 273:20431-7. [PMID: 9685397 DOI: 10.1074/jbc.273.32.20431] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Upon ligand activation, the epidermal growth factor receptor (EGFR) becomes tyrosine-phosphorylated, thereby recruiting intracellular signaling proteins such as Shc. EGFR binding of Shc proteins results in their tyrosine phosphorylation and subsequent activation of the Ras and Erk pathways. Shc interaction with activated receptor tyrosine kinases is mediated by two distinct phosphotyrosine interaction domains, an NH2-terminal phosphotyrosine binding (PTB) domain and a COOH-terminal Src homology 2 (SH2) domain. The relative importance of these two domains for EGFR binding was examined by determining if expression of the isolated SH2 or PTB domain of ShcC would inhibit EGFR signaling. The SH2 domain potently inhibited numerous aspects of EGFR signaling including activation of Erk2 and the Elk-1 transcription factor as well as EGFR-dependent transformation. Furthermore, the SH2 domain inhibited focus formation by the Neu oncoprotein, another EGFR family member. Surprisingly, inhibition of the EGFR by the SH2 domain did not involve stable association with the receptor. In contrast, the PTB domain associated quite well with the receptor yet had little effect on EGFR signaling. Although the EGFR cytoplasmic tail contains consensus binding sites for the PTB and SH2 domains of ShcC, and both domains of ShcC interact with the receptor in vitro, the SH2 domain is more potent for inhibiting receptor function in vivo. However, inhibition is not due to stable association with the receptor, suggesting that the SH2 domain is binding to a heretofore unknown protein(s) necessary for proper EGFR function.
Collapse
Affiliation(s)
- J P O'Bryan
- Department of Pharmacology, CB 7365, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | |
Collapse
|
16
|
Tanabe K, Kiryu-Seo S, Nakamura T, Mori N, Tsujino H, Ochi T, Kiyama H. Alternative expression of Shc family members in nerve-injured motoneurons. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 53:291-6. [PMID: 9473699 DOI: 10.1016/s0169-328x(97)00264-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Expression of Shc family protein (Shc/ShcA, SCK/ShcB and N-Shc/ShcC) and Grb2 mRNAs in the hypoglossal motoneurons after axotomy was examined by in situ hybridization. In normal hypoglossal motor neurons, N-Shc mRNA was expressed predominantly, whereas the Shc mRNA level is very low. Rat hypoglossal nerve injury reversed the expressions of these two molecules in hypoglossal motoneurons. Shc mRNA expression was up-regulated markedly whereas N-Shc was down-regulated after nerve injury. Expression levels of SCK, another Shc family member, and Grb2 were unaffected by nerve injury. These results suggest that, whereas the N-Shc-mediated pathway dominates under normal conditions, an alternative Shc-mediated pathway is utilized in the event of nerve injury. By changing the expression of the Shc family members, the signaling pathway can be altered and various responses induced for nerve regeneration.
Collapse
Affiliation(s)
- K Tanabe
- Department of Anatomy, Asahikawa Medical College, Nishikagura 4-5-3-11, Asahikawa 078, Japan
| | | | | | | | | | | | | |
Collapse
|