1
|
Rashid M, Hayat MH, Zahra N, Khan MS, Suleman, Nadeem M, Rehman TU, Ehsan M, Malik MI, Obaid MK, Bakhsh A, Darghouth MA, Ren Q. Systematic review on buparvaquone resistance associated with non-synonymous mutation in drug binding genes site of Theileria annulate. Vet Parasitol 2024; 332:110321. [PMID: 39418760 DOI: 10.1016/j.vetpar.2024.110321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Theileria annulata (T. annulata) is intra-erythrocytic protozoan parasite which is more prevalent in tropical and sub-tropical countries. It has a significant economic impact on the productivity of the dairy industry, and buparvaquone is used to treat infected animals in the prevalent regions of the world. Systematically, buparvaquone targets the cyto-b gene to break the electron transport chain (ETC) and Theileria annulata peptidyl-prolyl isomerase 1 (TaPIN1) gene to destabilize transcription factor JUN (c-JUN) to inhibit proliferation of infected cells, which ultimately leads to the death of T. annulata. The reported studies on drug resistance is due to inappropriate drug application, evolutionary characteristics of the cytochrome b (cyto-b) gene and oncogenic signaling pathways gene (TaPIN1) make the parasite resistant against buparvaquone. Hence, this systematic review was designed to find out non-synonymous mutation in genes (cyto-b and TaPIN1) responsible for drug resistance reported from Tunisia, Turkey, Egypt, Sudan, Iran, Pakistan, China and Germany with reference to the T. annulata Ankara strain of cyto-b (accession no. XM_949625.1) and TaPIN1 (accession no. TA18945) wild type genes. Non-synonymous point mutations were found in cyto-b (Q01 at 130-148 and Q02 at 253-262 regions) and TaPIN1 (A53P and A53T) genes. These point mutations are responsible for developing buparvaquone resistance against T. annulata infection. These genes can be used as biomarkers for the identification of drug resistance in any endemic area. To avoid the complication of drug resistance, development of genetically resistant cattle breeds, potent vaccines and anti-theilerial drugs (Trifloxystrobin and anti-cancerous) are currently required to control proliferating economically important T. annulata parasites.
Collapse
Affiliation(s)
- Muhammad Rashid
- Department of Parasitology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan.
| | | | - Naveed Zahra
- Department of Livestock Management, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan.
| | | | - Suleman
- Department of Zoology, University of Swabi, Pakistan; Department of Zoology, Government Post Graduate College, Dargai 23060, Malakand, Khyber Pakhtunkhwa, Pakistan.
| | - Muhammad Nadeem
- Department of Zoology, Ghazi University, Dera Ghazi Khan, Pakistan.
| | - Tauseef Ur Rehman
- Department of Parasitology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan.
| | - Muhammad Ehsan
- Department of Parasitology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan.
| | - Muhammad Irfan Malik
- Department of Parasitology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan.
| | - Muhammad Kashif Obaid
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu 730046, China.
| | - Amir Bakhsh
- Livestock and Dairy Development Department, Government of Punjab, Punjab, Pakistan.
| | - Mohamed Aziz Darghouth
- Ecole Nationale de Médecine Vétérinaire", Laboratory of Parasitology, Sidi Thabet, Ariana 2020, Tunisia.
| | - Qiaoyun Ren
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu 730046, China.
| |
Collapse
|
2
|
Stimulatory effect of xenobiotics on oxidative electron transport of chemolithotrophic nitrifying bacteria used as biosensing element. PLoS One 2013; 8:e53484. [PMID: 23326438 PMCID: PMC3541135 DOI: 10.1371/journal.pone.0053484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 11/30/2012] [Indexed: 02/01/2023] Open
Abstract
Electron transport chain (ETCh) of ammonium (AOB) and nitrite oxidizing bacteria (NOB) participates in oxidation of ammonium to nitrate (nitrification). Operation of ETCh may be perturbed by a range of water-soluble xenobiotics. Therefore, consortia of nitrifying bacteria may be used as a biosensor to detect water contamination. A surprising feature of this system is an increase of oxygen consumption, detected in the presence of certain inhibitors of ETCh. Thus, to shed light on the mechanism of this effect (and other differences between inhibitors) we monitored separately respiration of the bacteria of the first (AOB - Nitrosomonas) and second (NOB -Nitrobacter) stages of nitrification. Furthermore, we measured plasma membrane potential and the level of reduction of NAD(P)H. We propose a novel model of ETCh in NOB to explain the role of reverse electron transport in the stimulation of oxygen consumption (previously attributed to hormesis).
Collapse
|
4
|
Woźnica A, Dzirba J, Mańka D, Łabuzek S. Effects of electron transport inhibitors on iron reduction in Aeromonas hydrophila strain KB1. Anaerobe 2007; 9:125-30. [PMID: 16887699 DOI: 10.1016/s1075-9964(03)00059-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2003] [Accepted: 04/09/2003] [Indexed: 10/27/2022]
Abstract
The aim of this study was to determine the influence of respiratory chain inhibitors upon iron (III) reduction in Aeromonas hydrophila strain KB1. Optimal conditions of the reduction process were established by determining the amount of biomass, optimal pH, temperature and substrate concentration. The obtained results allowed us to determine Hill equation coefficients (K(m)=1.45+/-0.18 mM; V(max)=83.40+/-2.70 microM/min, and h=0.7+/-0.03). The value of h points to Michaelis-like kinetics of the process. The substrate concentration used in our study was such as to allow the maximum iron reduction rate. The reaction was mesophilic. The participation of electron carriers in the iron reduction process was investigated using respiratory chain inhibitors. Rotenone and capsaicin were used to study Q sites of the respiratory chain complex I. Dicumarol was used as an inhibitor of the quinone loop, while quinacrine was used to inhibit alloxazine centers. Additionally, complex III inhibitors, such as antimycin A, myxothiazole and 2-heptyl-4-hydroxy-quinoline N-oxide (HQNO) were used. Azide was used to inhibit complex IV. The observed inhibition of iron reduction by rotenone and capsaicin may suggest the existence of Q sites in formate reductase, analogous to those in complex I. Inhibition of quinones, isoalloxazine centers and complex III suggests participation of these carriers in the electron transport during iron reduction. Lack of inhibition of iron reduction by azide suggests that complex IV does not participate in this process.
Collapse
Affiliation(s)
- A Woźnica
- Faculty of Biology and Environmental Protection, Department of Biochemistry, University of Silesia, Jagiellonska 28, Katowice 40-007, Poland.
| | | | | | | |
Collapse
|
5
|
Dopson M, Baker-Austin C, Bond P. Towards determining details of anaerobic growth coupled to ferric iron reduction by the acidophilic archaeon 'Ferroplasma acidarmanus' Fer1. Extremophiles 2006; 11:159-68. [PMID: 17048042 DOI: 10.1007/s00792-006-0029-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 07/19/2006] [Indexed: 11/25/2022]
Abstract
Elucidation of the different growth states of Ferroplasma species is crucial in understanding the cycling of iron in acid leaching sites. Therefore, a proteomic and biochemical study of anaerobic growth in 'Ferroplasma acidarmanus' Fer1 has been carried out. Anaerobic growth in Ferroplasma spp. occurred by coupling oxidation of organic carbon with the reduction of Fe(3+); but sulfate, nitrate, sulfite, thiosulfate, and arsenate were not utilized as electron acceptors. Rates of Fe(3+) reduction were similar to other acidophilic chemoorganotrophs. Analysis of the 'F. acidarmanus' Fer1 proteome by 2-dimensional polyacrylamide gel electrophoresis revealed ten key proteins linked with central metabolic pathways > or =4 fold up-regulated during anaerobic growth. These included proteins putatively identified as associated with the reductive tricarboxylic acid pathway used for anaerobic energy production, and others including a putative flavoprotein involved in electron transport. Inhibition of anaerobic growth and Fe(3+) reduction by inhibitors suggests the involvement of electron transport in Fe(3+)reduction. This study has increased the knowledge of anaerobic growth in this biotechnologically and environmentally important acidophilic archaeon.
Collapse
Affiliation(s)
- Mark Dopson
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | | | | |
Collapse
|
7
|
Shinkarev VP, Crofts AR, Wraight CA. The electric field generated by photosynthetic reaction center induces rapid reversed electron transfer in the bc1 complex. Biochemistry 2001; 40:12584-90. [PMID: 11601982 DOI: 10.1021/bi011334j] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cytochrome bc(1) complex is the central enzyme of respiratory and photosynthetic electron-transfer chains. It couples the redox work of quinol oxidation and cytochrome reduction to the generation of a proton gradient needed for ATP synthesis. When the quinone processing Q(i)- and Q(o)-sites of the complex are inhibited by both antimycin and myxothiazol, the flash-induced kinetics of the b-heme chain, which transfers electrons between these sites, are also expected to be inhibited. However, we have observed in Rhodobacter sphaeroides chromatophores, that when a fraction of heme b(H) is reduced, flash excitation induces fast (half-time approximately 0.1 ms) oxidation of heme b(H), even in the presence of antimycin and myxothiazol. The sensitivity of this oxidation to ionophores and uncouplers, and the absence of any delay in the onset of this reaction, indicates that it is due to a reversal of electron transfer between b(L) and b(H) hemes, driven by the electrical field generated by the photosynthetic reaction center. In the presence of antimycin A, but absence of myxothiazol, the second and following flashes induce a similar ( approximately 0.1 ms) transient oxidation of approximately 10% of the cytochrome b(H) reduced on the first flash. From the observed amplitude of the field-induced oxidation of heme b(H), we estimate that the equilibrium constant for sharing one electron between hemes b(L) and b(H) is 10-15 at pH 7. The small value of this equilibrium constant modifies our understanding of the thermodynamics of the Q-cycle, especially in the context of a dimeric structure of bc(1) complex.
Collapse
Affiliation(s)
- V P Shinkarev
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 156 Davenport Hall, 607 South Mathews Avenue, Urbana, Illinois 6l80l, USA.
| | | | | |
Collapse
|
8
|
Barbagallo RP, Breyton C, Finazzi G. Kinetic effects of the electrochemical proton gradient on plastoquinone reduction at the Qi site of the cytochrome b6f complex. J Biol Chem 2000; 275:26121-7. [PMID: 10866998 DOI: 10.1074/jbc.m002299200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have investigated the effects of the light-induced thylakoid transmembrane potential on the turnover of the b(6)f complex in cells of the unicellular green alga Chlamydomonas reinhardtii. The reduction of the potential by either decreasing the light intensity or by adding increasing concentrations of the ionophore carbonylcyanide p-(trifluoromethoxy)phenylhydrazone (FCCP) revealed a marked inhibition of the cytochrome b(6) oxidation rate (10-fold) without substantial modifications of cytochrome f oxidation kinetics. Partial recovery of this inhibition could be obtained in the presence of ionophores provided that the membrane potential was re-established by illumination with a train of actinic flashes fired at a frequency higher than its decay. Measurements of isotopic effects on the kinetics of cytochrome b(6) oxidation revealed a synergy between the effects of ionophores and the H(2)O-D(2)O exchange. We propose therefore, that protonation events influence the kinetics of cytochrome b(6) oxidation at the Qi site and that these reactions are strongly influenced by the light-dependent generation of a transmembrane potential.
Collapse
Affiliation(s)
- R P Barbagallo
- Centro di Studio del CNR sulla Biologia Cellulare e Molecolare delle Piante, via Celoria 26, 20133 Milano, Italy
| | | | | |
Collapse
|
9
|
Orii Y, Miki T. Oxidation process of bovine heart ubiquinol-cytochrome c reductase as studied by stopped-flow rapid-scan spectrophotometry and simulations based on the mechanistic Q cycle model. J Biol Chem 1997; 272:17594-604. [PMID: 9211907 DOI: 10.1074/jbc.272.28.17594] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Stopped-flow rapid-scan spectrophotometry was employed to study complicated oxidation processes of ubiquinol-cytochrome c reductase (QCR) that was purified from bovine heart mitochondria and maximally contained 0.36 mol of ubiquinone-10/mol of heme c1. When fully reduced QCR was allowed to react with dioxygen in the presence of cytochrome c plus cytochrome c oxidase, the oxidation of b-type hemes accompanied an initial lag, apparently low potential heme bL was oxidized first, followed by high potential heme bH. Antimycin A inhibited the oxidation of both b-type hemes. The oxidation of heme c1 was triphasic and became biphasic in the presence of antimycin A. On the other hand, starting from partially reduced QCR that was poised at a higher redox potential with succinate and succinate-cytochrome c reductase, the b-type hemes were oxidized immediately without a lag. When the ubiquinone content in QCR was as low as 0.1 mol/mol heme c1 the oxidation of the b-type hemes was almost suppressed. As the Q-deficient QCR was supplemented with ubiquinol-2, the rapid oxidation of b-type hemes was restored to some extent. These results indicate that a limited amount of ubiquinone-10 found in purified preparations of QCR is obligatory for electron transfer from the b-type hemes to iron-sulfur protein (ISP) and heme c1. The characteristic oxidation profiles of heme bL, heme bH, and heme c1 were simulated successfully based on a mechanistic Q cycle model. According to the simulations the two-electron oxidation of ubiquinol-10 via the ISP and heme c1 pathway, which is more favorable thermodynamically than the bifurcation of electron flow into both ISP and heme bL, does really occur as long as heme bL is in the reduced state and provides ubiquinone-10 at center i. Mechanistically this process takes time, thus explaining the initial lag in the oxidation of the b-type hemes. With the partially reduced QCR, inherent ubisemiquinone at center i immediately oxidizes reduced heme bH thus eliminating the lag. The mechanistic Q cycle model consists of 56 reaction species, which are interconnected by the reaction paths specified with microscopic rate constants. The simulations further indicate that the rate constants for electron transfer between the redox centers can be from 10(5) to 10(3) s-1 and are rarely rate-limiting. On the other hand, a shuttle of ubiquinone or ubiquinol between center o and center i and the oxidation of heme c1 can be rate-limiting. The interplay of the microscopic rate constants determines the actual reaction pathway that is shown schematically by the "reaction map." Most significantly, the simulations support the consecutive oxidation of ubiquinol in center o as long as both heme bL and heme bH are in the reduced state. Only when heme bL is oxidized and ISP is reduced can SQo donate an electron to heme bL. Thus, we propose that a kinetic control mechanism, or "a kinetic switch," is significant for the bifurcation of electron flow.
Collapse
Affiliation(s)
- Y Orii
- Department of Public Health, Graduate School of Medicine, Kyoto University, Kyoto 606, Japan.
| | | |
Collapse
|