1
|
Bhavsar PK, Sukkar MB, Khorasani N, Lee KY, Chung KF. Glucocorticoid suppression of CX3CL1 (fractalkine) by reduced gene promoter recruitment of NF-kappaB. FASEB J 2008; 22:1807-16. [PMID: 18230685 DOI: 10.1096/fj.07-094235] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Glucocorticoids are an important anti-inflammatory treatment of many inflammatory diseases including asthma. However, the mechanisms by which they mediate their suppressive effects are not fully understood. Respiratory epithelial cells are a source of CX(3)CL1 (fractalkine), which mediates cell adhesion and acts as a chemoattractant for monocytes, T cells, and mast cells. We show, in lung A549 epithelial cells, that the tumor necrosis factor-alpha (TNF-alpha) and IFNgamma synergistically induced protein release and mRNA expression of CX(3)CL1 is inhibited by dexamethasone, without interfering with cytokine-induced nuclear translocation of NF-kappaB, and by an inhibitor of IkappaB kinase 2, AS602868. DNA binding assays confirmed the ability of NF-kappaB to bind to the proximal CX(3)CL1 promoter. Chromatin immunoprecipitation assays showed a 5-fold increase in the recruitment of NF-kappaB to the CX(3)CL1 gene promoter in response to IFNgamma/TNF-alpha; this too was reversed by dexamethasone. In contrast, dexamethasone did not displace NF-kappaB from the granulocyte-macrophage colony-stimulating factor gene promoter. We conclude that CX(3)CL1 expression is regulated through the NF-kappaB pathway and that dexamethasone inhibits CX(3)CL1 expression through a glucocorticoid receptor-dependent (RU486 sensitive) mechanism. This study also provides support for the action of glucocorticoids mediating their suppressive effects on expression by interfering with the binding of transcriptional activators at native gene promoters.
Collapse
Affiliation(s)
- Pankaj K Bhavsar
- Experimental Studies, Airway Disease Section, National Heart and Lung Institute, Imperial College London, UK.
| | | | | | | | | |
Collapse
|
2
|
Ito K, Yamamura S, Essilfie-Quaye S, Cosio B, Ito M, Barnes PJ, Adcock IM. Histone deacetylase 2-mediated deacetylation of the glucocorticoid receptor enables NF-kappaB suppression. ACTA ACUST UNITED AC 2005; 203:7-13. [PMID: 16380507 PMCID: PMC2118081 DOI: 10.1084/jem.20050466] [Citation(s) in RCA: 449] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Glucocorticoids are the most effective antiinflammatory agents for the treatment of chronic inflammatory diseases even though some diseases, such as chronic obstructive pulmonary disease (COPD), are relatively glucocorticoid insensitive. However, the molecular mechanism of this glucocorticoid insensitivity remains uncertain. We show that a defect of glucocorticoid receptor (GR) deacetylation caused by impaired histone deacetylase (HDAC) 2 induces glucocorticoid insensitivity toward nuclear factor (NF)-κB–mediated gene expression. Specific knockdown of HDAC2 by RNA interference resulted in reduced sensitivity to dexamethasone suppression of interleukin 1β–induced granulocyte/macrophage colony-stimulating factor production. Loss of HDAC2 did not reduce GR nuclear translocation, GR binding to glucocorticoid response element (GRE) on DNA, or GR-induced DNA or gene induction but inhibited the association between GR and NF-κB. GR becomes acetylated after ligand binding, and HDAC2-mediated GR deacetylation enables GR binding to the NF-κB complex. Site-directed mutagenesis of K494 and K495 reduced GR acetylation, and the ability to repress NF-κB–dependent gene expression becomes insensitive to histone deacetylase inhibition. In conclusion, we show that overexpression of HDAC2 in glucocorticoid-insensitive alveolar macrophages from patients with COPD is able to restore glucocorticoid sensitivity. Thus, reduction of HDAC2 plays a critical role in glucocorticoid insensitivity in repressing NF-κB–mediated, but not GRE-mediated, gene expression.
Collapse
Affiliation(s)
- Kazuhiro Ito
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London SW3 6LY, England, UK.
| | | | | | | | | | | | | |
Collapse
|
3
|
Lehmann TE, Greenberg WA, Liberles DA, Wada CK, Dervan PB. Triple-Helix Formation by Pyrimidine Oligonucleotides Containing Nonnatural Nucleosides with Extended Aromatic Nucleobases: Intercalation from the major groove as a method for recognizing C·G and T · A base pairs. Helv Chim Acta 2004. [DOI: 10.1002/hlca.19970800618] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Uil TG, Haisma HJ, Rots MG. Therapeutic modulation of endogenous gene function by agents with designed DNA-sequence specificities. Nucleic Acids Res 2003; 31:6064-78. [PMID: 14576293 PMCID: PMC275457 DOI: 10.1093/nar/gkg815] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Designer molecules that can specifically target pre-determined DNA sequences provide a means to modulate endogenous gene function. Different classes of sequence-specific DNA-binding agents have been developed, including triplex-forming molecules, synthetic polyamides and designer zinc finger proteins. These different types of designer molecules with their different principles of engineered sequence specificity are reviewed in this paper. Furthermore, we explore and discuss the potential of these molecules as therapeutic modulators of endogenous gene function, focusing on modulation by stable gene modification and by regulation of gene transcription.
Collapse
Affiliation(s)
- Taco G Uil
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | |
Collapse
|
5
|
Holloway AF, Rao S, Chen X, Shannon MF. Changes in chromatin accessibility across the GM-CSF promoter upon T cell activation are dependent on nuclear factor kappaB proteins. J Exp Med 2003; 197:413-23. [PMID: 12591900 PMCID: PMC2193861 DOI: 10.1084/jem.20021039] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Granulocyte/macrophage colony-stimulating factor (GM-CSF) is a key cytokine in myelopoiesis and aberrant expression is associated with chronic inflammatory disease and myeloid leukemias. This aberrant expression is often associated with constitutive nuclear factor (NF)-kappaB activation. To investigate the relationship between NF-kappaB and GM-CSF transcription in a chromatin context, we analyzed the chromatin structure of the GM-CSF gene in T cells and the role of NF-kappaB proteins in chromatin remodeling. We show here that chromatin remodeling occurs across a region of the GM-CSF gene between -174 and +24 upon T cell activation, suggesting that remodeling is limited to a single nucleosome encompassing the proximal promoter. Nuclear NF-kappaB levels appear to play a critical role in this process. In addition, using an immobilized template assay we found that the ATPase component of the SWI/SNF chromatin remodeling complex, brg1, is recruited to the GM-CSF proximal promoter in an NF-kappaB-dependent manner in vitro. These results suggest that chromatin remodeling across the GM-CSF promoter in T cells is a result of recruitment of SWI/SNF type remodeling complexes by NF-kappaB proteins binding to the CD28 response region of the promoter.
Collapse
Affiliation(s)
- Adele F Holloway
- Division of Molecular Bioscience, John Curtin School of Medical Research, Australian National University, ACT 2601, Australia
| | | | | | | |
Collapse
|
6
|
Ghosh MK, Katyal A, Brahmachari V, Chandra R. Design and structural analysis of hairpin-TFO for transcriptional activation of genes in S. cerevisiae. J Biomol Struct Dyn 2002; 20:265-73. [PMID: 12354078 DOI: 10.1080/07391102.2002.10506842] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Triplex forming oligonucleotides (TFOs) have the potential to modulate gene expression. While most of the experiments are directed towards triplex mediated inhibition of gene expression the strategy potentially could be used for gene specific activation. In an attempt to design a strategy for gene specific activation in vivo applicable to a large number of genes we have designed a TFO based activator-target system which may be utilized in Saccharomyces cerevisiae or any other system where Gal4 protein is ectopically expressed. The total genome sequence of Saccharomyces cerevisiae and expression profiles were used to select the target genes with upstream poly (pu/py) sequences. We have utilized the paradigm of Gal4 protein and its binding site. We describe here the selection of target genes and design of hairpin-TFO including the targeting sequences containing polypurine stretch found in the upstream promoter regions of weakly expressed genes. We demonstrate, the formation of hairpin-TFO, its binding to Gal4 protein, its ability to form triplex with the target duplex in vitro, the effect of polyethylenimine on complex formation and discuss the implication on in vivo transcription activation.
Collapse
Affiliation(s)
- Mrinal Kanti Ghosh
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi-110007, India
| | | | | | | |
Collapse
|
7
|
Zahedi K, Prada AE, Mulligan A, Prada JA, Davis AE. Normal transcription of the C1 inhibitor gene is dependent upon a polypurine-polypyrimidine region within the promoter. Inflammation 2002; 26:183-91. [PMID: 12184632 DOI: 10.1023/a:1016519813252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Analysis of the transcriptional activity of C1 inhibitor (CIINH) promoter reporter constructs with mutations in the R-Y region indicate that triplex formation by this region is not a predictor of transcriptional activity and that normal promoter function depends on the interaction of trans acting factors with specific elements within this region. Electrophoretic mobility shift assay (EMSA) of Hep3B nuclear extracts using the wild type promoter probe (nucleotides -98 to -9) yielded four major bands. Incubation of the same extracts with probes lacking the HNF-1 site resulted in the disappearance of one band. Supershift assays indicate that HNF-1alpha is the only previously identified protein that is present in the EMSA bands. Southwestern blot analysis detected four bands (M(r)s -130, 75, 65 and 20 kDa). These data suggest that the -98 to -9 region of the C1INH promoter interacts with at least four proteins, one of which is HNF-1alpha.
Collapse
Affiliation(s)
- Kamyar Zahedi
- Division of Nephrology and Hypertension, Children's Hospital Research Foundation, Cincinnati, Ohio 45229, USA.
| | | | | | | | | |
Collapse
|
8
|
Umland SP, Schleimer RP, Johnston SL. Review of the molecular and cellular mechanisms of action of glucocorticoids for use in asthma. Pulm Pharmacol Ther 2002; 15:35-50. [PMID: 11969362 DOI: 10.1006/pupt.2001.0312] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Asthma is characterized by inflammation in the lung and glucocorticoids (GCs) are the most clinically effective treatment available. The success of chronic GC therapy for asthma stems largely from the ability of the GC-GC receptor (GR) complex to alter transcription of a wide array of molecules involved in the inflammatory process. Many of the adverse effects of elevated systemic GC levels have been reduced through the use of inhalation as a method of administration, as opposed to oral GC. GCs exert their effects by binding to the wild-type GR, GR(alpha). The GR(alpha) complex can directly or indirectly alter gene transcription by binding to specific DNA sites or by activating transcription factors. There is also evidence to support GR(alpha) involvement in post-translational activities. In the management of asthma, the GR(alpha) down-regulates proinflammatory mediators such as interleukin-(IL)-1, 3, and 5, and up-regulates anti-inflammatory mediators such as IkappaB [inhibitory molecule for nuclear factor kappaB1 IL-10, and 12. Newer GCs are being designed to increase potency and topical activity. Mometasone furoate (MF), has recently been developed for the treatment of asthma and inhibits key anti-inflammatory processes with a potency equal to or greater than that of fluticasone propionate. A better understanding of the molecular mechanisms involved might provide strategies for optimizing the effectiveness of GC in the treatment of asthma.
Collapse
Affiliation(s)
- Shelby P Umland
- Schering-Plough Research Institute, Kenilworth, NJ 07033, USA
| | | | | |
Collapse
|
9
|
Kagoshima M, Wilcke T, Ito K, Tsaprouni L, Barnes PJ, Punchard N, Adcock IM. Glucocorticoid-mediated transrepression is regulated by histone acetylation and DNA methylation. Eur J Pharmacol 2001; 429:327-34. [PMID: 11698053 DOI: 10.1016/s0014-2999(01)01332-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Glucocorticoids are highly effective in controlling chronic inflammatory diseases by inhibiting the expression of cytokines and chemokines. Glucocorticoids act through binding of their receptor resulting to inhibition of transcription factors such as nuclear factor kappa B (NF-kappa B). This may occur via the transcription integrator protein, CREB binding protein (CBP), which has intrinsic histone acetylase (HAT) activity. Interleukin (IL)-1 beta caused a significant increase in NF-kappa B-mediated granulocyte/macrophage colony stimulating factor (GM-CSF) release, which was inhibited by the glucocorticoid mometasone furoate (MF) (EC(50)=2 x 10(-11) M). This effect was inhibited by CBP over-expression. The role of histone acetylation and DNA methylation in the transcription of GM-CSF was indicated by trichostatin A (TSA), an inhibitor of histone deacetylases, and 5-azacytidine (5-aza), a DNA methylase inhibitor, to increase GM-CSF expression partially blocking glucocorticoid inhibition of IL-1 beta-stimulated GM-CSF release. These data suggest that the mechanism of glucocorticoid action in suppressing interleukin-1 beta-stimulated GM-CSF release in A549 cells may involve modulation of CBP-mediated histone-acetylase activity and DNA methylation.
Collapse
Affiliation(s)
- M Kagoshima
- Thoracic Medicine, National Heart and Lung Institute, Imperial College School of Medicine, Dovehouse Street, London SW3 6LY, UK
| | | | | | | | | | | | | |
Collapse
|
10
|
Obika S, Uneda T, Sugimoto T, Nanbu D, Minami T, Doi T, Imanishi T. 2'-O,4'-C-Methylene bridged nucleic acid (2',4'-BNA): synthesis and triplex-forming properties. Bioorg Med Chem 2001; 9:1001-11. [PMID: 11354656 DOI: 10.1016/s0968-0896(00)00325-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
For development of ideal antisense and antigene molecules, various chemical modifications of oligonucleotides have been studied. However, despite their importance, there is only limited information available on the triplex-forming ability of the conformationally restricted or locked oligonucleotides. We report herein that 2'-O,4'-C-methylene bridged nucleic acid (2',4'-BNA) modification of triplex-forming oligonucleotide (TFO) significantly enhances the binding affinity towards target dsDNA. On Tm measurements, the triplex with the 2',4'-BNA oligonucleotides were found to be stabilized with deltaTm/modification of +4.3 to +5 degrees C at pH 6.6 compared to the triplexes with the unmodified oligonucleotide. By means of gel-retardation assay, the binding constant of the 2',4'-BNA oligonucleotide at pH 7.0 was at least 300-fold higher than that of the natural oligonucleotide. In addition, the 2',4'-BNA oligonucleotide clearly showed the inhibition of the NF-kappaB transcription factor (p50)-target dsDNA binding by forming a stable triplex at pH 7.0.
Collapse
Affiliation(s)
- S Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The ability to specifically manipulate gene expression has wide-ranging applications in experimental biology and in gene-based therapeutics. The design of molecules that recognise specific sequences on the DNA double helix provides us with interesting tools to interfere with DNA information processing at an early stage of gene expression. Triplex-forming molecules specifically recognise oligopyrimidine-oligopurine sequences by hydrogen bonding interactions. Applications of such triplex-forming molecules (TFMs) are the subject of the present review. In cell cultures, TFMs have been successfully used to down- or up-regulate transcription in a gene-specific manner and to induce genomic DNA modifications at a selected site. The first evidence of a triplex-based activity in animals has been provided recently. In addition, TFMs are also powerful tools for gene-specific chemistry, in particular for gene transfer applications.
Collapse
Affiliation(s)
- M Faria
- Department of Microbiologia, Immunologia e Parasitologia, UNIFESP, Sao Paulo, SP, Brazil
| | | |
Collapse
|
12
|
Wang G, Chen Z, Zhang S, Wilson GL, Jing K. Detection and determination of oligonucleotide triplex formation-mediated transcription-coupled DNA repair in HeLa nuclear extracts. Nucleic Acids Res 2001; 29:1801-7. [PMID: 11292853 PMCID: PMC31311 DOI: 10.1093/nar/29.8.1801] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2000] [Revised: 02/20/2001] [Accepted: 02/20/2001] [Indexed: 11/12/2022] Open
Abstract
Transcription-coupled repair (TCR) plays an important role in removing DNA damage from actively transcribed genes. It has been speculated that TCR is the most important mechanism for repairing DNA damage in non-dividing cells such as neurons. Therefore, abnormal TCR may contribute to the development of many age-related and neurodegenerative diseases. However, the molecular mechanism of TCR is not well understood. Oligonucleotide DNA triplex formation provides an ideal system to dissect the molecular mechanism of TCR since triplexes can be formed in a sequence-specific manner to inhibit transcription of target genes. We have recently studied the molecular mechanism of triplex-forming oligonucleotide (TFO)-mediated TCR in HeLa nuclear extracts. Using plasmid constructs we demonstrate that the level of TFO-mediated DNA repair activity is directly correlated with the level of transcription of the plasmid in HeLa nuclear extracts. TFO-mediated DNA repair activity was further linked with transcription since the presence of rNTPs in the reaction was essential for AG30-mediated DNA repair activity in HeLa nuclear extracts. The involvement of individual components, including TFIID, TFIIH, RNA polymerase II and xeroderma pigmentosum group A (XPA), in the triplex-mediated TCR process was demonstrated in HeLa nuclear extracts using immunodepletion assays. Importantly, our studies also demonstrated that XPC, a component involved in global genome DNA repair, is involved in the AG30-mediated DNA repair process. The results obtained in this study provide an important new understanding of the molecular mechanisms involved in the TCR process in mammalian cells.
Collapse
Affiliation(s)
- G Wang
- Department of Cell Biology and Neuroscience, University of South Alabama College of Medicine, 307 University Boulevard, MSB 2312, Mobile, AL 36688-0002, USA.
| | | | | | | | | |
Collapse
|
13
|
Liu J, Xu R, Jin Y, Wang D. Triplex targeting of human PDGF-B (c-sis, proto-oncogene) promoter specifically inhibits factors binding and PDGF-B transcription. Nucleic Acids Res 2001; 29:783-91. [PMID: 11160902 PMCID: PMC30399 DOI: 10.1093/nar/29.3.783] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Human c-sis/PDGF-B proto-oncogene has been shown to be overexpressed in a large percentage of human tumor cells establishing a growth-promoting, autocrine growth circuit. Triplex forming oligonucleotides (TFOs) can recognize and bind sequences in duplex DNA, and have received considerable attention because of their potential for targeting specific genomic sites. The c-sis/PDGF-B promoter contains a unique homopurine/homopyrimidine sequence (SIS proximal element, SPE), which is crucial for binding nuclear factors that provoke transcription. In order to develop specific transcriptional inhibitors of the human c-sis/PDGF-B proto-oncogene, 20 potential TFOs targeting part or all of the SPE were screened by gel mobility analysis. DNase I footprinting shows that the TFOs we designed can form a sequence-specific triplex with the target. Protein binding assays demonstrate that triplex formation inhibits nuclear factors binding the c-sis/PDGF-B promoter. Both transient and stable transfection experiments demonstrate that the transcriptional activity of the promoter is considerably inhibited by the TFOs. We propose that TFOs represent a therapeutic potential to specifically diminish the expression of c-sis/PDGF-B proto-oncogene in various pathologic settings where constitutive expression of this gene has been observed.
Collapse
Affiliation(s)
- J Liu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | |
Collapse
|
14
|
Intody Z, Perkins BD, Wilson JH, Wensel TG. Blocking transcription of the human rhodopsin gene by triplex-mediated DNA photocrosslinking. Nucleic Acids Res 2000; 28:4283-90. [PMID: 11058128 PMCID: PMC113126 DOI: 10.1093/nar/28.21.4283] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To explore the ability of triplex-forming oligodeoxyribonucleotides (TFOs) to inhibit genes responsible for dominant genetic disorders, we used two TFOs to block expression of the human rhodopsin gene, which encodes a G protein-coupled receptor involved in the blinding disorder autosomal dominant retinitis pigmentosa. Psoralen-modified TFOs and UVA irradiation were used to form photoadducts at two target sites in a plasmid expressing a rhodopsin-EGFP fusion, which was then transfected into HT1080 cells. Each TFO reduced rhodopsin-GFP expression by 70-80%, whereas treatment with both reduced expression by 90%. Expression levels of control genes on either the same plasmid or one co-transfected were not affected by the treatment. Mutations at one TFO target eliminated its effect on transcription, without diminishing inhibition by the other TFO. Northern blots indicated that TFO-directed psoralen photoadducts blocked progression of RNA polymerase, resulting in truncated transcripts. Inhibition of gene expression was not relieved over a 72 h period, suggesting that TFO-induced psoralen lesions are not repaired on this time scale. Irradiation of cells after transfection with plasmid and psoralen-TFOs produced photoadducts inside the cells and also inhibited expression of rhodopsin-EGFP. We conclude that directing DNA damage with psoralen-TFOs is an efficient and specific means for blocking transcription from the human rhodopsin gene.
Collapse
Affiliation(s)
- Z Intody
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
15
|
Jen KY, Gewirtz AM. Suppression of gene expression by targeted disruption of messenger RNA: available options and current strategies. Stem Cells 2000; 18:307-19. [PMID: 11007915 DOI: 10.1634/stemcells.18-5-307] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
At least three different approaches may be used for gene targeting including: A) gene knockout by homologous recombination; B) employment of synthetic oligonucleotides capable of hybridizing with DNA or RNA, and C) use of polyamides and other natural DNA-bonding molecules called lexitropsins. Targeting mRNA is attractive because mRNA is more accessible than the corresponding gene. Three basic strategies have emerged for this purpose, the most familiar being to introduce antisense nucleic acids into a cell in the hopes that they will form Watson-Crick base pairs with the targeted gene's mRNA. Duplexed mRNA cannot be translated, and almost certainly initiates processes which lead to its destruction. The antisense nucleic acid can take the form of RNA expressed from a vector which has been transfected into the cell, or take the form of a DNA or RNA oligonucleotide which can be introduced into cells through a variety of means. DNA and RNA oligonucleotides can be modified for stability as well as engineered to contain inherent cleaving activity. It has also been proven that because RNA and DNA are very similar chemical compounds, DNA molecules with enzymatic activity could also be developed. This assumption proved correct and led to the development of a "general-purpose" RNA-cleaving DNA enzyme. The attraction of DNAzymes over ribozymes is that they are very inexpensive to make and that because they are composed of DNA and not RNA, they are inherently more stable than ribozymes. Although mRNA targeting is impeccable in theory, many additional considerations must be taken into account in applying these strategies in living cells including mRNA site selection, drug delivery and intracellular localization of the antisense agent. Nevertheless, the ongoing revolution in cell and molecular biology, combined with advances in the emerging disciplines of genomics and informatics, has made the concept of nontoxic, cancer-specific therapies more viable then ever and continues to drive interest in this field.
Collapse
Affiliation(s)
- K Y Jen
- Department of Cell and Molecular Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
16
|
Catapano CV, McGuffie EM, Pacheco D, Carbone GM. Inhibition of gene expression and cell proliferation by triple helix-forming oligonucleotides directed to the c-myc gene. Biochemistry 2000; 39:5126-38. [PMID: 10819980 DOI: 10.1021/bi992185w] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Triple helix-forming oligonucleotides (TFOs) bind with high affinity and specificity to homopurine-homopyrimidine sequences in DNA and have been shown to inhibit transcription of target genes in various experimental systems. In the present study, we evaluated the ability of 3'-amino-modified phosphodiester TFOs directed to four sites in the c-myc gene to inhibit gene expression and proliferation of human leukemia (CEM, KG-1, and HL-60) and lymphoma (Raji and ST486) cells. GT-rich TFOs were designed to target sequences located either upstream (myc1 and -2) or downstream (myc3 and -4) of the P2 promoter, which is the major c-myc promoter. Myc2, which was directed to a site immediately upstream of this promoter, inhibited c-myc expression and proliferation of CEM cells. The effects of this TFO were sequence- and target-specific, since control oligonucleotides and TFOs directed to other sites were less or not active. Myc2 was also effective in KG-1, HL-60, and Raji cells. In contrast, ST486 cells were more sensitive to myc3, which targets a sequence in intron 1 upstream of the P3 promoter, than myc2. As result of a chromosomal translocation, P3 is the active promoter in ST486 cells. This study demonstrates the activity and specificity of TFOs designed to act as repressors of c-myc gene expression in human leukemia and lymphoma cells. Our results suggest that this is a valid approach to selectively inhibit gene expression and cancer cell growth, and encourage further investigation of its potential applications in cancer therapy.
Collapse
Affiliation(s)
- C V Catapano
- Department of Experimental Oncology and Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | | | | | |
Collapse
|
17
|
Marchand P, Resch K, Radeke HH. Selective inhibition of monocyte chemoattractant protein-1 gene expression in human embryonal kidney cells by specific triple helix-forming oligonucleotides. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:2070-6. [PMID: 10657660 DOI: 10.4049/jimmunol.164.4.2070] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Monocyte chemoattractant protein-1 (MCP-1) is a chemokine that is expressed by a variety of tissue cells in response to inflammatory stimuli, such as IL-1beta, TNF-alpha, and IFN-gamma. A major function of MCP-1 is the recruitment and activation of monocytes and T lymphocytes. Overexpression of MCP-1 has been implicated in a number of diseases, including glomerulonephritis and rheumatoid arthritis, indicating that the modulation of MCP-1 activity and/or expression is a desired therapeutic strategy. In the present study, our aim was to test whether the MCP-1 expression could be inhibited at the transcriptional level using triple helix-forming oligonucleotides (TFOs). We designed a TFO targeted to the SP-1 binding site in the human MCP-1 gene promoter. Gel mobility shift assays demonstrated that the phosphodiester TFO formed a sequence-specific triplex with its dsDNA target with an EC50 of approximately 1.9 x 10(-7) M. The corresponding phosphorothioated oligonucleotide was also effective in this assay with an 8-fold higher EC50 value. Binding of the TFO to the target DNA prevented the binding of rSP-1 and of nuclear proteins in vitro. The TFO could also partially inhibit endogenous MCP-1 gene expression in cultured human embryonic kidney cells. Treatment of TNF-alpha-stimulated human embryonic kidney 293 cells with the TFO inhibited the secretion of MCP-1 in a dose-dependent manner (up to 45% at 5 microM oligonucleotide). The inhibition of MCP secretion was caused at the level of gene transcription, because MCP-1 mRNA levels in oligonucleotide-treated cells were also decreased by approximately 40%.
Collapse
Affiliation(s)
- P Marchand
- Institute of Pharmacology, Medical School Hannover, Hannover, Germany
| | | | | |
Collapse
|
18
|
Praseuth D, Guieysse AL, Hélène C. Triple helix formation and the antigene strategy for sequence-specific control of gene expression. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1489:181-206. [PMID: 10807007 DOI: 10.1016/s0167-4781(99)00149-9] [Citation(s) in RCA: 210] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Specific gene expression involves the binding of natural ligands to the DNA base pairs. Among the compounds rationally designed for artificial regulation of gene expression, oligonucleotides can bind with a high specificity of recognition to the major groove of double helical DNA by forming Hoogsteen type bonds with purine bases of the Watson-Crick base pairs, resulting in triple helix formation. Although the potential target sequences were originally restricted to polypurine-polypyrimidine sequences, considerable efforts were devoted to the extension of the repertoire by rational conception of appropriate derivatives. Efficient tools based on triple helices were developed for various biochemical applications such as the development of highly specific artificial nucleases. The antigene strategy remains one of the most fascinating fields of triplex application to selectively control gene expression. Targeting of genomic sequences is now proved to be a valuable concept on a still limited number of studies; local mutagenesis is in this respect an interesting application of triplex-forming oligonucleotides on cell cultures. Oligonucleotide penetration and compartmentalization in cells, stability to intracellular nucleases, accessibility of the target sequences in the chromatin context, the residence time on the specific target are all limiting steps that require further optimization. The existence and the role of three-stranded DNA in vivo, its interaction with intracellular proteins is worth investigating, especially relative to the regulation of gene transcription, recombination and repair processes.
Collapse
Affiliation(s)
- D Praseuth
- Laboratoire de Biophysique, INSERM U201, CNRS UMR 8646, Muséum National d'Histoire Naturelle, Paris, France
| | | | | |
Collapse
|
19
|
Thomas RM, Thomas T, Wada M, Sigal LH, Shirahata A, Thomas TJ. Facilitation of the cellular uptake of a triplex-forming oligonucleotide by novel polyamine analogues: structure-activity relationships. Biochemistry 1999; 38:13328-37. [PMID: 10529208 DOI: 10.1021/bi991004n] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The inefficient uptake of oligodeoxynucleotides, including that of TFO, through the cell membrane is a limiting factor in developing gene therapy approaches for cancer and other diseases. To develop a new strategy for oligonucleotide delivery into the nucleus, we synthesized a series of novel polyamine analogues and examined their effects on the uptake of a 37-mer [32P]-labeled TFO, targeted to the promoter region of c-myc oncogene. We used MCF-7 breast cancer cells to investigate the efficacy of polyamines on the internalization of the TFO. The uptake of TFO was enhanced by complexing it with several unsubstituted polyamine analogues at 0. 1-5 microM concentrations, with up to 6-fold increase in TFO uptake in the presence of a hexamine, 1,21-diamino-4,9,13, 18-tetraazahenicosane (H2N(CH2)(3)NH(CH2)(4)NH(CH2)(3)NH(CH2)(4)NH(CH2)(3)NH(2) or 3-4-3-4-3). TFO uptake increased with the cationicity of the polyamines; however, bis(ethyl) substitution and structural features of the methylene bridging region had significant effects on TFO uptake. The majority of labeled TFO was recovered from the nuclear fraction containing genomic DNA. Electrophoretic mobility shift assay revealed enhanced binding of TFO to a target duplex containing promoter region sequence of c-myc oncogene. Treatment of MCF-7 cells with the TFO complexed with 0.5 microM 3-4-3-4-3 suppressed c-myc mRNA level by 65%, as determined by Northern blot analysis. These data indicate a novel approach to deliver oligodeoxynucleotides to the cell nucleus, and suppress the expression of target genes, and provide new insights into the mechanism of oligonucleotide transport in living cells.
Collapse
Affiliation(s)
- R M Thomas
- Department of Medicine, The Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick 08903, USA
| | | | | | | | | | | |
Collapse
|
20
|
Perkins BD, Wensel TG, Vasquez KM, Wilson JH. Psoralen photo-cross-linking by triplex-forming oligonucleotides at multiple sites in the human rhodopsin gene. Biochemistry 1999; 38:12850-9. [PMID: 10504255 DOI: 10.1021/bi9902743] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Targeting DNA damage by triplex-forming oligonucleotides (TFOs) represents a way of modifying gene expression and structure and a possible approach to gene therapy. We have determined that this approach can deliver damage with great specificity to sites in the human gene for the G-protein-linked receptor rhodopsin, mutations of which can lead to the genetic disorder autosomal dominant retinitis pigmentosa. We have introduced DNA monoadducts and interstrand cross-links at multiple target sites within the gene using TFOs with a photoactivatable psoralen group at the 5'-end. The extent of formation of photoadducts (i.e., monoadducts and cross-links) was measured at target sites with a 5'-ApT sequence at the triplex-duplex junction and at a target site with 5'-ApT and 5'-TpA sequences located four and seven nucleotides away, respectively. To improve psoralen reactivity at more distant sites, psoralen moieties were attached to TFOs with nucleotide "linkers" from two to nine nucleotides in length. High-affinity binding was maintained with linkers of up to 10 nucleotides, but affinities tended to decrease somewhat with increasing linker length due to faster dissociation kinetics. DNase I footprinting indicated little, if any, interaction between linkers and the duplex. Psoralen-TFO conjugates formed DNA cross-links with high efficiency (56-65%) at 5'-ApT sequences located at triplex junctions. At a 5'-ApT site four nucleotides away, the efficiency varied with linker length; a four-nucleotide linker gave the highest efficiency. Duplexes with 5'-TpA and 5'-ApT sites two nucleotides away, in otherwise identical sequences, were cross-linked with efficiencies of 56 and 38%, respectively. These results indicate that TFO-linker-psoralen conjugates allow simultaneous, efficient targeting of multiple sites in the human rhodopsin gene.
Collapse
Affiliation(s)
- B D Perkins
- Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
21
|
Adcock IM, Nasuhara Y, Stevens DA, Barnes PJ. Ligand-induced differentiation of glucocorticoid receptor (GR) trans-repression and transactivation: preferential targetting of NF-kappaB and lack of I-kappaB involvement. Br J Pharmacol 1999; 127:1003-11. [PMID: 10433509 PMCID: PMC1566089 DOI: 10.1038/sj.bjp.0702613] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Glucocorticoids are highly effective in controlling chronic inflammatory diseases, such as asthma and rheumatoid arthritis, but the exact molecular mechanism of their anti-inflammatory action remains uncertain. They act by binding to a cytosolic receptor (GR) resulting in activation or repression of gene expression. This may occur via direct binding of the GR to DNA (transactivation) or by inhibition of the activity of transcription factors such as AP-1 and NF-kappaB (transrepression). 2. The topically active steroids fluticasone propionate (EC50= 1.8 x 10(-11) M) and budesonide (EC50=5.0 x 10(-11) M) were more potent in inhibiting GM-CSF release from A549 cells than tipredane (EC50 = 8.3 x 10(-10)) M), butixicort (EC50 = 3.7 x 10(-8) M) and dexamethasone (EC50 = 2.2 x 10(-9) M). The anti-glucocorticoid RU486 also inhibited GM-CSF release in these cells (IC50= 1.8 x 10(-10) M). 3. The concentration-dependent ability of fluticasone propionate (EC50 = 9.8 x 10(-10) M), budesonide (EC50= 1.1 x 10(-9) M) and dexamethasone (EC50 = 3.6 x 10(-8) M) to induce transcription of the beta2-receptor was found to correlate with GR DNA binding and occurred at 10-100 fold higher concentrations than the inhibition of GM-CSF release. No induction of the endogenous inhibitors of NF-kappaB, IkappaBalpha or I-kappaBbeta, was seen at 24 h and the ability of IL-1beta to degrade and subsequently induce IkappaBalpha was not altered by glucocorticoids. 4. The ability of fluticasone propionate (IC50=0.5 x 10(-11) M), budesonide (IC50=2.7 x 10(-11) M), dexamethasone (IC50=0.5 x 10(-9) M) and RU486 (IC50=2.7 x 10(-11) M) to inhibit a 3 x kappaB was associated with inhibition of GM-CSF release. 5. These data suggest that the anti-inflammatory properties of a range of glucocorticoids relate to their ability to transrepress rather than transactivate genes.
Collapse
Affiliation(s)
- Ian M Adcock
- Thoracic Medicine, Imperial College School of Medicine at NHLI, Dovehouse Street, London SW3 6LY, U.K
- Author for correspondence:
| | - Yasuyuki Nasuhara
- Thoracic Medicine, Imperial College School of Medicine at NHLI, Dovehouse Street, London SW3 6LY, U.K
| | - David A Stevens
- Thoracic Medicine, Imperial College School of Medicine at NHLI, Dovehouse Street, London SW3 6LY, U.K
| | - Peter J Barnes
- Thoracic Medicine, Imperial College School of Medicine at NHLI, Dovehouse Street, London SW3 6LY, U.K
| |
Collapse
|
22
|
Perkins BD, Wilson JH, Wensel TG, Vasquez KM. Triplex targets in the human rhodopsin gene. Biochemistry 1998; 37:11315-22. [PMID: 9698379 DOI: 10.1021/bi980525s] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We have explored the application of triplex technology to the human rhodopsin gene, which encodes a G-protein-linked receptor involved in the genetic disorder autosomal dominant retinitis pigmentosa (ADRP). Our results support the hypothesis that most human genes contain high-affinity triplex sites and further refine the rules governing identification and successful targeting of triplex-forming oligonucleotides (TFOs) to these sites. Using a computer search for sites 15 nucleotides in length and greater than 80% purine, we found 143 distinct sites in the rhodopsin gene and comparable numbers of sites in several other human genes. By applying more stringent criteria, we selected 17 potential target sites in the rhodopsin gene, screened them with a plasmid binding assay, and found 8 that bound TFOs with submicromolar affinity (Kd = 10(-)9-10(-)7 M). We compared purine (GA) and mixed (GT) TFOs at each site, and found that GA-TFOs consistently bound with higher affinity, and were less sensitive to pyrimidine interruptions in the target strand. High G-content favored high-affinity binding; only sites with >54% G-content bound TFOs with Kd </= 10(-)8 M.
Collapse
Affiliation(s)
- B D Perkins
- Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
23
|
|
24
|
|
25
|
|
26
|
Abstract
Oligonucleotides offer enormous potential for manipulating gene function in cells and, as such, constitute a promising new class of pharmaceutical agents. Oligonucleotides that form triple helices (triplexes) at specific DNA sequences in defined genes can be used to reduce transcription selectively, to introduce site-specific mutations or to stimulate gene-specific targeted recombination.
Collapse
Affiliation(s)
- K M Vasquez
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | |
Collapse
|
27
|
Xodo LE, Pirulli D, Quadrifoglio F. A kinetic study of triple-helix formation at a critical R x Y sequence of the murine c-Ki-ras promoter by (A,G)- and (G,T) oligonucleotides. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 248:424-32. [PMID: 9346298 DOI: 10.1111/j.1432-1033.1997.00424.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The kinetics of triplex formation between the oligonucleotides d(AGGGAGG-GAGGAAGGGAGGG) (20AG), d(TGGGTGGGTGGTTGGGTGGG) (20GT) and a 29-bp polypurine-polypyrimidine sequence located in the c-Ki-ras promoter (D) was studied by electrophoretic experiments in 50 mM Tris/acetate, pH 7.4, 50 mM NaCl, 5 mM MgCl2. Rates of triplex formation were determined at three different temperatures (20 degrees C, 37 degrees C and 45 degrees C), under pseudo-first order conditions obtained by using the triplex-forming oligonucleotide (TFO) 500-fold in excess over the target duplex (5 nM). Measurements at TFO/target ratios of 20 and 100 were also carried out. At 37 degrees C the pseudo first-order constants, k(obs), were 18.9 x 10(-5) s(-1) for 20AG and 13.0 x 10(-5) s(-1) for 20GT, yielding association half-lives of 1 h and 1.5 h, respectively. Second-order association constants were found to be in the order of 10(2) M(-1) s(-1): these are slightly lower if compared with those measured for triplex formation by polypyrimidine (C,T) oligonucleotides (10(3) M(-1) s(-1)) [Maher, L. J., Dervan, P. B. & Wolf, B. J. (1990) Biochemistry 29, 8820-8826; Xodo, L. E. (1995) Eur. J. Biochem. 228, 918-926; Bates, P. J., Dosanjh, H. S., Jenkins, T. C., Laughton, C. A. & Neidle, S. (1995) Nucleic Acids Res. 23, 3627-3632] but dramatically lower when compared with duplex recombination from complementary strands (10(6) M(-1) s(-1)) [Craig, M. E., Crothers, D. M. & Doty, P. (1971) J. Mol. Biol. 62, 383-401; Pörschke, D. & Eigen, M. (1971) J. Mol. Biol. 62, 361-381]. Dissociation rate constants, k(-1), were indirectly obtained from equilibrium constants (Kd) and found to be, at 37 degrees C, 6.7 x 10(-7) s(-1) and 5.4 x 10(-6) s(-1) for 20AG and 20GT, respectively. From the rate constants obtained at 20 degrees C, 37 degrees C and 45 degrees C we estimated activation energies of triplex formation between D plus 20AG and D plus 20GT of respectively 134 +/- 29 and 88 +/- 21 kJ/mol. Moreover, the activation energies for the reaction of triplex dissociation were 385 +/- 50 kJ/mol for 20AG and 330 +/- 42 kJ/mol for 20GT. Decreasing the TFO/target ratio from 500 to 100 or 20, we observed a concomitant decrease of the association rate, in keeping with the finding that triplex formation occurs through a bimolecular process. We found that the effect of salt on triplex formation is rather complex, as, the addition of 2 mM spermidine boosted the binding rate of 20GT, but slightly reduced that of 20AG; the increase of NaCl from 50 mM to 100 mM or 150 mM decreased the rate of triplex formation. Finally, the biological implications of the kinetic behaviour exhibited by the two triplex-forming oligonucleotides specific for the c-Ki-ras promoter are discussed.
Collapse
Affiliation(s)
- L E Xodo
- Dipartimento di Biochimica, Biofisica e Chimica delle Macromolecole, Università di Trieste, Italia.
| | | | | |
Collapse
|
28
|
Giovannangeli C, Hélène C. Progress in developments of triplex-based strategies. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 1997; 7:413-21. [PMID: 9303193 DOI: 10.1089/oli.1.1997.7.413] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recognition of B-DNA by oligonucleotides that form triple helices is a unique method to specifically recognize sequences of double-stranded DNA. Recently, some significant limitations of the triple-based applications have been overcome. Stable intermolecular triplexes can be formed under physiologic conditions. Binding affinities of modified oligonucleotides to their target sequence due to Hoogsteen or reverse Hoogsteen hydrogen bonding interactions are now in the range of those obtained for duplex formation via Watson-Crick hydrogen bonding interactions even if the kinetics may be quite different. Progress has been made toward developing general procedures to determine the molecular mechanisms of action of triplex-forming oligonucleotides (TFO) administered to cultured cells to provide a rational proof-of-concept for antigene strategies. The antigene strategy has reached a point where TFOs can be used to interfere with several biologic progresses (replication, transcription, recombination, repair) in relevant systems both in vitro and ex vivo.
Collapse
Affiliation(s)
- C Giovannangeli
- Laboratoire de Biophysique, INSERM U.201, CNRS URA 481, Paris, France
| | | |
Collapse
|
29
|
Kochetkova M, Iversen PO, Lopez AF, Shannon MF. Deoxyribonucleic acid triplex formation inhibits granulocyte macrophage colony-stimulating factor gene expression and suppresses growth in juvenile myelomonocytic leukemic cells. J Clin Invest 1997; 99:3000-8. [PMID: 9185524 PMCID: PMC508152 DOI: 10.1172/jci119495] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is a severe childhood malignancy. The autocrine production of GMCSF is believed to be responsible for the spontaneous proliferation of JMML cells. A nuclear factor-kappaB (NF-kappaB)/Rel binding site within the GM-CSF gene promoter, termed the kappaB element, plays an important role in controlling transcription from the GM-CSF gene. We investigated the effect of an oligonucleotide GM3, directed to form a DNA triple helix across this kappaB element, on growth and GM-CSF production by JMML cells. Treatment of these cells, either unstimulated or induced by TNFalpha, with GM3 led to a significant and specific inhibition of both GM-CSF production and spontaneous colony formation. This constitutes the first report linking specific triplex-mediated inhibition of gene transcription with a functional outcome; i.e., cell growth. We observed the constitutive presence of NF-kappaB/Rel proteins in the nucleus of JMML cells. The constitutive and TNFalpha-induced NF-kappaB/Rel complexes were identical and were composed mainly of p50 and c-Rel proteins. Treatment of the cells with a neutralizing anti-TNFalpha monoclonal antibody completely abrogated constitutive nuclear expression of NF-kappaB/Rel proteins. These results indicate that the aberrant, constitutive GM-CSF gene activation in JMML is maintained by TNFalpha-mediated activation of NF-kappaB/Rel proteins. Our findings identify the molecular basis for the autocrine TNFalpha activation of the GM-CSF gene in JMML and suggest potential novel and specific approaches for the treatment of this aggressive childhood leukemia.
Collapse
Affiliation(s)
- M Kochetkova
- Division of Human Immunology, Hanson Centre for Cancer Research, Institute of Medical and Veterinary Science, Adelaide, 5000 South Australia, Australia
| | | | | | | |
Collapse
|