1
|
Rikken SAOF, van 't Hof AWJ, ten Berg JM, Kereiakes DJ, Coller BS. Critical Analysis of Thrombocytopenia Associated With Glycoprotein IIb/IIIa Inhibitors and Potential Role of Zalunfiban, a Novel Small Molecule Glycoprotein Inhibitor, in Understanding the Mechanism(s). J Am Heart Assoc 2023; 12:e031855. [PMID: 38063187 PMCID: PMC10863773 DOI: 10.1161/jaha.123.031855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Thrombocytopenia is a rare but serious complication of the intravenous glycoprotein IIb/IIIa (GPIIb/IIIa; integrin αIIbβ3) receptor inhibitors (GPIs), abciximab, eptifibatide, and tirofiban. The thrombocytopenia ranges from mild (50 000-100 000 platelets/μL), to severe (20 000 to <50 000/μL), to profound (<20 000/μL). Profound thrombocytopenia appears to occur in <1% of patients receiving their first course of therapy. Thrombocytopenia can be either acute (<24 hours) or delayed (up to ~14 days). Both hemorrhagic and thrombotic complications have been reported in association with thrombocytopenia. Diagnosis requires exclusion of pseudothrombocytopenia and heparin-induced thrombocytopenia. Therapy based on the severity of thrombocytopenia and symptoms may include drug withdrawals and treatment with steroids, intravenous IgG, and platelet transfusions. Abciximab-associated thrombocytopenia is most common and due to either preformed antibodies or antibodies induced in response to abciximab (delayed). Readministration of abciximab is associated with increased risk of thrombocytopenia. Evidence also supports an immune basis for thrombocytopenia associated with the 2 small molecule GPIs. The latter bind αIIbβ3 like the natural ligands and thus induce the receptor to undergo major conformational changes that potentially create neoepitopes. Thrombocytopenia associated with these drugs is also immune-mediated, with antibodies recognizing the αIIbβ3 receptor only in the presence of the drug. It is unclear whether the antibody binding depends on the conformational change and whether the drug contributes directly to the epitope. Zalunfiban, a second-generation subcutaneous small molecule GPI, does not induce the conformational changes; therefore, data from studies of zalunfiban will provide information on the contribution of the conformational changes to the development of GPI-associated thrombocytopenia.
Collapse
Affiliation(s)
- Sem A. O. F. Rikken
- Department of CardiologySt. Antonius HospitalNieuwegeinThe Netherlands
- Cardiovascular Research Institute Maastricht (CARIM)MaastrichtThe Netherlands
| | - Arnoud W. J. van 't Hof
- Cardiovascular Research Institute Maastricht (CARIM)MaastrichtThe Netherlands
- Department of CardiologyMUMC+MaastrichtThe Netherlands
- Department of CardiologyZuyderland Medical CentreHeerlenThe Netherlands
| | - Jurriën M. ten Berg
- Department of CardiologySt. Antonius HospitalNieuwegeinThe Netherlands
- Cardiovascular Research Institute Maastricht (CARIM)MaastrichtThe Netherlands
- Department of CardiologyMUMC+MaastrichtThe Netherlands
| | - Dean J. Kereiakes
- The Christ Hospital Heart and Vascular Institute and Lindner Clinical Research CenterCincinnatiOHUSA
| | - Barry S. Coller
- Allen and Frances Adler Laboratory of Blood and Vascular BiologyRockefeller UniversityNew YorkNYUSA
| |
Collapse
|
2
|
Hantgan RR, Stahle MC. Integrin Priming Dynamics: Mechanisms of Integrin Antagonist-Promoted αIIbβ3:PAC-1 Molecular Recognition. Biochemistry 2009; 48:8355-65. [DOI: 10.1021/bi900475k] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Roy R. Hantgan
- Department of Biochemistry, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157-1016
| | - Mary C. Stahle
- Department of Biochemistry, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157-1016
| |
Collapse
|
3
|
Han J, Lim CJ, Watanabe N, Soriani A, Ratnikov B, Calderwood DA, Puzon-McLaughlin W, Lafuente EM, Boussiotis VA, Shattil SJ, Ginsberg MH. Reconstructing and deconstructing agonist-induced activation of integrin alphaIIbbeta3. Curr Biol 2006; 16:1796-806. [PMID: 16979556 DOI: 10.1016/j.cub.2006.08.035] [Citation(s) in RCA: 370] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 07/12/2006] [Accepted: 08/01/2006] [Indexed: 11/16/2022]
Abstract
BACKGROUND Integrin receptors, composed of transmembrane alpha and beta subunits, are essential for the development and functioning of multicellular animals. Agonist stimulation leads cells to regulate integrin affinity ("activation"), thus controlling cell adhesion and migration, controlling extracellular-matrix assembly, and contributing to angiogenesis, tumor cell metastasis, inflammation, the immune response, and hemostasis. A final step in integrin activation is the binding of talin, a cytoskeletal protein, to integrin beta cytoplasmic domains. Many different signaling molecules that regulate integrin affinity have been described, but a pathway that connects agonist stimulation to talin binding and activation has not been mapped. RESULTS We used forward, reverse, and synthetic genetics to engineer and order an integrin activation pathway in cells expressing a prototype activatable integrin, platelet alphaIIbbeta3. Phorbol myristate acetate (PMA) activated alphaIIbbeta3 only after the increased expression of both recombinant protein kinase Calpha (PKCalpha) and talin to levels approximating those in platelets. Inhibition of Rap1 GTPase reduced alphaIIbbeta3 activation, whereas activated Rap1A(G12V) bypassed the requirement for PKC, establishing that Rap1 is downstream of PKC. Talin binding to integrins mediates Rap1-induced activation because Rap1A(G12V) failed to activate alphaIIbbeta3 in cells expressing integrin binding-defective talin (W359A). Rap1 activated integrins by forming an integrin-associated complex containing talin in combination with the Rap effector, RIAM. Furthermore, siRNA-mediated knockdown of RIAM blocked integrin activation. CONCLUSIONS We have, for the first time, ordered a pathway from agonist stimulation to integrin activation and established the Rap1-induced formation of an "integrin activation complex," containing RIAM and talin, that binds to and activates the integrin.
Collapse
Affiliation(s)
- Jaewon Han
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Schwarz M, Röttgen P, Takada Y, Le Gall F, Knackmuss S, Bassler N, Büttner C, Little M, Bode C, Peter K. Single‐chain antibodies for the conformation‐specific blockade of activated platelet integrin αIIbβ3designed by subtractive selection from naïve human phage libraries. FASEB J 2004; 18:1704-6. [PMID: 15522915 DOI: 10.1096/fj.04-1513fje] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Binding of fibrinogen to platelet integrin alphaIIbbeta3 mediates platelet aggregation, and thus inhibition of alphaIIbbeta3 represents a powerful therapeutic strategy in cardiovascular medicine. However, the currently used inhibitors of alphaIIbbeta3 demonstrate several adverse effects like thrombocytopenia and bleeding, which are associated with their property to bind to non-activated alphaIIbbeta3. To circumvent these problems, we designed blocking single-chain antibody-fragments (scFv) that bind to alphaIIbbeta3 exclusively in its activated conformation. Two naive phage libraries were created: a natural phage library, based on human lymphocyte cDNA, and a synthetic library, with randomized VHCDR3. We performed serial rounds of subtractive panning with depletion on non-activated and selection on activated alphaIIbbeta3, which were provided on resting and ADP-stimulated platelets and CHO cells, expressing wild-type or mutated and thereby activated alphaIIbbeta3. In contrast to isolated, immobilized targets, as generally used for phage display, this unique cell-based approach for panning allowed the preservation of functional integrin conformation. Thereby, we obtained several scFv-clones that demonstrated exclusive binding to activated platelets and complete inhibition of fibrinogen binding and platelet aggregation. Interestingly, all activation-specific clones contained an RXD pattern in the HCDR3. Binding studies on transiently expressed point mutants and mouse-human domain-switch mutants of alphaIIbbeta3 indicate a binding site similar to fibrinogen. In conclusion, we generated human activation-specific scFvs against alphaIIbbeta3, which bind selectively to activated alphaIIbbeta3 and thereby potently inhibit fibrinogen binding to alphaIIbbeta3 and platelet aggregation.
Collapse
Affiliation(s)
- Meike Schwarz
- Department of Cardiology, University of Freiburg, Breisacherstr. 33, Freiburg 79106, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Acute thrombocytopenia after treatment with tirofiban or eptifibatide is associated with antibodies specific for ligand-occupied GPIIb/IIIa. Blood 2002. [DOI: 10.1182/blood.v100.6.2071] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractAcute thrombocytopenia is a recognized complication of treatment with GPIIb/IIIa inhibitors whose cause is not yet known. We studied 9 patients who developed severe thrombocytopenia (platelets less than 25 × 109/L) within several hours of treatment with the GPIIb/IIIa inhibitors tirofiban (4 patients) and eptifibatide (5 patients). In each patient, acute-phase serum contained a high titer (range, 1:80-1:20 000) IgG antibody that reacted with the glycoprotein IIb/IIIa complex only in the presence of the drug used in treatment. Four patients had been previously treated with the same drug, but 5 had no known prior exposure. Pretreatment serum samples from 2 of the latter patients contained drug-dependent antibodies similar to those identified after treatment. No tirofiban- or eptifibatide-dependent antibodies were found in any of 100 randomly selected healthy blood donors, and only 2 of 23 patients receiving tirofiban or eptifibatide who did not experience significant thrombocytopenia had extremely weak (titer, 1:2) tirofiban-dependent antibodies. In preliminary studies, evidence was obtained that the 9 antibodies recognize multiple target epitopes on GPIIb/IIIa complexed with the inhibitor to which the patient was sensitive, indicating that they cannot all be specific for the drug-binding site. The findings indicate that acute thrombocytopenia after the administration of tirofiban or eptifibatide can be caused by drug-dependent antibodies that are “naturally occurring” or are induced by prior exposure to drug. These antibodies may be human analogs of mouse monoclonal antibodies that recognize ligand-induced binding sites (LIBS) induced in the GPIIb/IIIa heterodimer when it reacts with a ligand-mimetic drug.
Collapse
|
6
|
Acute thrombocytopenia after treatment with tirofiban or eptifibatide is associated with antibodies specific for ligand-occupied GPIIb/IIIa. Blood 2002. [DOI: 10.1182/blood.v100.6.2071.h81802002071_2071_2076] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acute thrombocytopenia is a recognized complication of treatment with GPIIb/IIIa inhibitors whose cause is not yet known. We studied 9 patients who developed severe thrombocytopenia (platelets less than 25 × 109/L) within several hours of treatment with the GPIIb/IIIa inhibitors tirofiban (4 patients) and eptifibatide (5 patients). In each patient, acute-phase serum contained a high titer (range, 1:80-1:20 000) IgG antibody that reacted with the glycoprotein IIb/IIIa complex only in the presence of the drug used in treatment. Four patients had been previously treated with the same drug, but 5 had no known prior exposure. Pretreatment serum samples from 2 of the latter patients contained drug-dependent antibodies similar to those identified after treatment. No tirofiban- or eptifibatide-dependent antibodies were found in any of 100 randomly selected healthy blood donors, and only 2 of 23 patients receiving tirofiban or eptifibatide who did not experience significant thrombocytopenia had extremely weak (titer, 1:2) tirofiban-dependent antibodies. In preliminary studies, evidence was obtained that the 9 antibodies recognize multiple target epitopes on GPIIb/IIIa complexed with the inhibitor to which the patient was sensitive, indicating that they cannot all be specific for the drug-binding site. The findings indicate that acute thrombocytopenia after the administration of tirofiban or eptifibatide can be caused by drug-dependent antibodies that are “naturally occurring” or are induced by prior exposure to drug. These antibodies may be human analogs of mouse monoclonal antibodies that recognize ligand-induced binding sites (LIBS) induced in the GPIIb/IIIa heterodimer when it reacts with a ligand-mimetic drug.
Collapse
|
7
|
Fullard J, Murphy R, O'Neill S, Moran N, Ottridge B, Fitzgerald DJ. A Val193Met mutation in GPIIIa results in a GPIIb/IIIa receptor with a constitutively high affinity for a small ligand. Br J Haematol 2001; 115:131-9. [PMID: 11722423 DOI: 10.1046/j.1365-2141.2001.03075.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We have identified a patient designated as (GTa) with Glanzmann's Thrombasthenia (GT) diagnosed on the basis of a prolonged bleeding time and failure of the patient's platelets to aggregate. The number of glycoprotein (GP)IIb/IIIa receptors on the platelet surface was 37% of normal and those receptors displayed a defect in soluble fibrinogen binding. Nevertheless, GTa platelets showed increased adhesion to solid-phase fibrinogen and binding affinity for the RGD-mimetic (3)H-SC52012, a non-peptide GPIIb/IIIa antagonist. Dithiothreitol (DTT) and ADP enhanced the affinity for [(3)H]-SC52012 in normal platelets, but had little effect in GTa platelets. These findings suggested that GTa platelets were locked in an altered affinity state. Genetic analysis showed that GTa was a compound heterozygote for the GPIIIa gene. One allele showed a deletion at the 3' end of exon 3 resulting in a premature stop codon. The second GPIIIa allele had a G to A transition at nucleotide 577, resulting in a Val193Met substitution. HEK 293T cells transfected with mutant GPIIb/IIIaV193M bound [(3)H]-SC52012 with a higher affinity than wild-type GPIIb/IIIa, and this was not increased by DTT. The mutant receptor distinguishes between platelet adhesion and aggregation, and demonstrates the phenotype that may be expected when platelet aggregation alone is inhibited.
Collapse
Affiliation(s)
- J Fullard
- Department of Clinical Pharmacology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
8
|
Gidwitz S, Lyman S, White GC. Expression and function of calcium binding domain chimeras of the integrins alpha(IIb) and alpha(5). J Biol Chem 2000; 275:6680-8. [PMID: 10692478 DOI: 10.1074/jbc.275.9.6680] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To further identify amino acid domains involved in the ligand binding specificity of alpha(IIb)beta(3), chimeras of the conserved calcium binding domains of alpha(IIb) and the alpha subunit of the fibronectin receptor alpha(5)beta(1) were constructed. Chimeras that replaced all four calcium binding domains, replaced all but the second calcium binding domain of alpha(IIb) with those of alpha(5), or deleted all four calcium binding domains were synthesized but not expressed on the cell surface. Additional chimeras exchanged subsets or all of the variant amino acids in the second calcium binding domain, a region implicated in ligand binding. Cell surface expression of each second calcium binding domain mutant complexed with beta(3) was observed. Each second calcium binding domain mutant was able to 1) bind to immobilized fibrinogen, 2) form fibrinogen-dependent aggregates after treatment with dithiothreitol, and 3) bind the activation-dependent antibody PAC1 after LIBS 6 treatment. Soluble fibrinogen binding studies suggested that there were only small changes in either the K(d) or B(max) of any mutant. We conclude that chimeras of alpha(IIb) containing the second calcium binding domain sequences of alpha(5) are capable of complexing with beta(3), that the complexes are expressed on the cell surface, and that mutant complexes are capable of binding both immobilized and soluble fibrinogen, suggesting that the second calcium binding domain does not determine ligand binding specificity.
Collapse
Affiliation(s)
- S Gidwitz
- Center for Thrombosis and Hemostasis, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | |
Collapse
|
9
|
|
10
|
Rahman S, Aitken A, Flynn G, Formstone C, Savidge GF. Modulation of RGD sequence motifs regulates disintegrin recognition of alphaIIb beta3 and alpha5 beta1 integrin complexes. Replacement of elegantin alanine-50 with proline, N-terminal to the RGD sequence, diminishes recognition of the alpha5 beta1 complex with restoration induced by Mn2+ cation. Biochem J 1998; 335 ( Pt 2):247-57. [PMID: 9761721 PMCID: PMC1219776 DOI: 10.1042/bj3350247] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Several recent studies have demonstrated that the amino acid residues flanking the RGD sequence of high-affinity ligands modulate their specificity of interaction with integrin complexes. The present study has addressed the role of the residues flanking the RGD sequence in regulating the recognition by disintegrin of the alphaIIb beta3 and alpha5beta1 complexes by construction of a panel of recombinant molecules of Elegantin (the platelet aggregation inhibitor from the venom of Trimerasurus elegans) expressing specific RGD sequence motifs. Wild-type Elegantin (ARGDNP) and several variants including Eleg. AM (ARGDMP), Eleg. PM (PRGDMP) and Eleg. PN (PRGDNP) were expressed as glutathione S-transferase (GST) fusion proteins in Escherichia coli. The inhibitory efficacies of the panel of Elegantin variants were analysed in platelet adhesion assays with substrates immobilized with fibrinogen and fibronectin. Elegantin molecules containing an Ala residue N-terminal to the RGD sequence (wild-type Elegantin and Eleg. AM) showed strong inhibitory activity towards alphaIIbbeta3-dependent platelet adhesion on fibronectin, whereas a Pro residue in this position (Eleg. PM and Kistrin, the inhibitor from the venom of Calloselasma rhodostoma) engendered lower activity. The decreased activity could not be attributed to a decrease in the affinity of the disintegrin for the alphaIIb beta3 complex because both Eleg. AM and Eleg. PM had similar Kd (app) values. In contrast, Elegantin molecules into which a Met residue was introduced in place of the Asn residue C-terminal to the RGD sequence showed 10-13-fold elevated inhibitory activity towards platelet adhesion on fibrinogen and this was maintained with either a Pro or Ala residue N-terminal to the RGD sequence. In experiments with the alpha5 beta1 complex on K562 cells, the inhibitory efficacies of the panel of Elegantin molecules were analysed under two different cation conditions. First, in the presence of Ca2+/Mg2+, K562 cell adhesion on fibronectin was inhibited equally well by Elegantin and Eleg. AM but inhibited poorly by Eleg. PM and Kistrin. In contrast with platelets, the decreased inhibitory efficacy of the PRGDMP disintegrins was due to poor recognition of the alpha5 beta1 complex. In the presence of Mn2+ cation, K562 cell adhesion on fibrinogen was observed in an alpha5 beta1-dependent manner. Under these conditions both PRGD and ARGD containing disintegrins were strong inhibitors of K562 cell adhesion on fibrinogen and this was due to a markedly improved recognition of the alpha5 beta1 complex by the PRGD molecules. These observations demonstrate the pivotal role of the amino acids flanking the RGD sequence for disintegrin recognition of integrin complexes and highlight the subtle nature by which integrin-ligand binding specificity can be modulated by both cation and adhesive motif.
Collapse
Affiliation(s)
- S Rahman
- The Coagulation Research Laboratory, Division of Internal Medicine, United Medical and Dental School of Guy's, King's and St Thomas' Hospitals (GKT), St. Thomas' Campus, Lambeth Palace Road, London SE1 7EH, UK.
| | | | | | | | | |
Collapse
|
11
|
Kodandapani R, Veerapandian L, Ni CZ, Chiou CK, Whittal RM, Kunicki TJ, Ely KR. Conformational change in an anti-integrin antibody: structure of OPG2 Fab bound to a beta 3 peptide. Biochem Biophys Res Commun 1998; 251:61-6. [PMID: 9790907 DOI: 10.1006/bbrc.1998.9380] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Antibodies are important tools to explore receptor-ligand interactions. The anti-integrin antibody OPG2 binds in an RGD-related manner to the alphaIIb beta3 integrin as a molecular mimic of fibrinogen. The Fab fragment from OPG2 was cocrystallized with a peptide from the beta3 subunit of the integrin representing a site that binds RGD. The crystal structure of the complex was determined at 2.2-A resolution and compared with the unbound Fab. On binding the integrin peptide there were conformational changes in CDR3 of the heavy chain. Also, a significant shift across the intermolecular interface between the CH1-CL domains was observed so that the angle of rotation relating the two domains was reduced by 15 degrees. This unusual conformational adjustment represents the first example of ligand-induced conformational changes in the carboxyl domains of a Fab fragment.
Collapse
Affiliation(s)
- R Kodandapani
- Cancer Research Center, The Burnham Institute, La Jolla, California, 92037, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Mould AP, Burrows L, Humphries MJ. Identification of amino acid residues that form part of the ligand-binding pocket of integrin alpha5 beta1. J Biol Chem 1998; 273:25664-72. [PMID: 9748233 DOI: 10.1074/jbc.273.40.25664] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Arg-Arg-Glu-Thr-Ala-Trp-Ala (RRETAWA) is a novel ligand peptide for integrin alpha5 beta1, which blocks alpha5 beta1-mediated cell adhesion to fibronectin (Koivunen, E., Wang, B., and Ruoslahti, E. (1994) J. Cell Biol. 124, 373-380). Here we have localized the binding site for RRETAWA on alpha5 beta1 using inhibitory monoclonal antibodies (mAbs) and site-directed mutagenesis. A cyclic peptide containing this sequence (*CRRETAWAC*) had little effect on the binding of most anti-alpha5 and anti-beta1 mAbs to alpha5 beta1 but completely blocked binding of the anti-alpha5 mAb 16 in a directly competitive manner. Hence, the binding site of RRETAWA appears to closely overlap with the epitope of mAb 16. *CRRETAWAC* also acted as a direct competitive inhibitor of the binding of Arg-Gly-Asp (RGD)-containing fibronectin fragments to alpha5 beta1, suggesting that the binding site for RRETAWA is also closely overlapping with that for RGD. However, differences between the binding sites of RRETAWA and RGD were apparent in that (i) RGD peptides allosterically inhibited the binding of mAb 16 to alpha5 beta1, and (ii) several mAbs that perturbed binding of alpha5 beta1 to RGD had little effect on binding of alpha5 beta1 to RRETAWA. A double mutation in alpha5 (S156G/W157S) blocked the interaction of both RRETAWA and mAb 16 with alpha5 beta1 but had no effect on fibronectin binding or on the binding of other anti-alpha5 mAbs. Ser156-Trp157 is located near the apex of a putative loop region on the upper surface of a predicted beta-propeller structure formed by the NH2-terminal repeats of alpha5. Our findings suggest that this sequence forms part of the ligand-binding pocket of alpha5 beta1. Furthermore, as Ser156-Trp157 is unique to the alpha5 subunit, it may be responsible for the specific recognition of RRETAWA by alpha5 beta1.
Collapse
Affiliation(s)
- A P Mould
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom.
| | | | | |
Collapse
|
13
|
Affiliation(s)
- M Quinn
- Centre for Cardiovascular Science, Royal College of Surgeons in Ireland, Dublin
| | | |
Collapse
|
14
|
Mehta RJ, Diefenbach B, Brown A, Cullen E, Jonczyk A, Güssow D, Luckenbach GA, Goodman SL. Transmembrane-truncated alphavbeta3 integrin retains high affinity for ligand binding: evidence for an 'inside-out' suppressor? Biochem J 1998; 330 ( Pt 2):861-9. [PMID: 9480902 PMCID: PMC1219217 DOI: 10.1042/bj3300861] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The molecular mechanisms of alphavbeta3 integrin affinity regulation have important biological implications in tumour development, wound repair and angiogenesis. We expressed, purified and characterized recombinant forms of human alphavbeta3 (r-alphavbeta3) and compared the activation state of these with alphavbeta3 in its cellular environment. The ligand specificity and selectivity of recombinant full-length and double transmembrane truncations of r-alphavbeta3 cloned in BacPAK6 vectors and expressed in Sf9 and High Five insect cells were compared with those of native placental alphavbeta3 and the receptor in situ on the cell surface. r-alphavbeta3 integrins were purified by affinity chromatography from detergent extracts of cells (full-length), and from the culture medium of cells expressing double-truncated r-alphavbeta3. r-alphavbeta3 had the same epitopes, ligand-binding specificities, bivalent cation requirements and susceptibility to RGD-containing peptides as native alphavbeta3. On M21-L4 melanoma cells, alphavbeta3 mediated binding to vitronectin, but not to fibrinogen unless activated with Mn2+. Non-activated alphaIIbbeta3 integrin as control in M21-L-IIb cells had the opposite profile, mediating binding to fibrinogen, but not to vitronectin unless activated with Mn2+. Thus these receptors had moderate to low ligand affinity. In marked contrast, purified alphavbeta3 receptors, with or without transmembrane and cytoplasmic domains, were constitutively of high affinity and able to bind strongly to vitronectin, fibronectin and fibrinogen under physiological conditions. Our data suggest that, in contrast with the positive regulation of alphaIIbbeta3 in situ, intracellular controls lower the affinity of alphavbeta3, and the cytoplasmic domains may act as a target for negative regulators of alphavbeta3 activity.
Collapse
Affiliation(s)
- R J Mehta
- Merck London, MRC Collaborative Centre, 1-3 Burtonhole Lane, Mill Hill, London NW71AD, U.K
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Kolanus W, Seed B. Integrins and inside-out signal transduction: converging signals from PKC and PIP3. Curr Opin Cell Biol 1997; 9:725-31. [PMID: 9330877 DOI: 10.1016/s0955-0674(97)80127-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recent studies have identified molecules that interact with integrins and appear to participate in the signaling pathways that regulate integrin adhesiveness. Clues provided by studies of these molecules point to the integration by integrins of signal transduction pathways implicated in cell division and activation.
Collapse
Affiliation(s)
- W Kolanus
- Laboratorium für Molekulare Biologie, Genzentrum der Universität München, Germany.
| | | |
Collapse
|
16
|
Si-Tahar M, Pidard D, Balloy V, Moniatte M, Kieffer N, Van Dorsselaer A, Chignard M. Human neutrophil elastase proteolytically activates the platelet integrin alphaIIbbeta3 through cleavage of the carboxyl terminus of the alphaIIb subunit heavy chain. Involvement in the potentiation of platelet aggregation. J Biol Chem 1997; 272:11636-47. [PMID: 9111081 DOI: 10.1074/jbc.272.17.11636] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Neutrophil elastase (NE) and cathepsin G are two serine proteinases released concomitantly by stimulated polymorphonuclear neutrophils. We previously demonstrated that while NE by itself does not activate human platelets, it strongly enhances the weak aggregation induced by a threshold concentration of cathepsin G (threshold of cathepsin G) (Renesto, P., and Chignard, M. (1993) Blood 82, 139-144). The aim of this study was to delineate the molecular mechanisms involved in this potentiation process. Two main pieces of data prompted us to focus on the activation of the platelet fibrinogen receptor, the alphaIIbbeta3 integrin. First, previous studies have shown this integrin to be particularly prone to proteolytic regulation of its function. Second, we found that the potentiating activity of NE on the threshold of cathepsin G-induced platelet aggregation was strictly dependent on the presence of exogenous fibrinogen. Using flow cytometry analysis, NE was shown to trigger a time-dependent binding of PAC-1 and AP-5, two monoclonal antibodies specific for the activated and ligand-occupied conformers of alphaIIbbeta3. Furthermore, the potentiated aggregation was shown to result from an increased capacity of platelets to bind fibrinogen. Indeed, the combination of NE and threshold of cathepsin G increased the binding of PAC-1 approximately 5.5-fold over basal values measured on nontreated platelets, whereas this binding raised only by approximately 3-fold in threshold of cathepsin G-stimulated platelets (p < 0.05). By contrast, phosphatidic acid accumulation, pleckstrin phosphorylation, and calcium mobilization produced by the combination of NE and threshold of cathepsin G were not significantly different from those measured with threshold of cathepsin G alone (p > 0.05), indicating that the phospholipase C/protein kinase C pathway is not involved in the potentiation of aggregation. The foregoing data, as well as the requirement of catalytically active NE to trigger alphaIIbbeta3 activation and potentiate threshold of cathepsin G-initiated platelet aggregation, led us to examine whether the structure of this integrin was affected by NE. Immunoblot and flow cytometry analysis revealed a limited proteolysis of the carboxyl terminus of the alphaIIb subunit heavy chain (alphaIIbH), as judged by the disappearance of the epitope for the monoclonal antibody PMI-1. Mass spectrometry studies performed on a synthetic peptide mapping over the cleavage domain of alphaIIbH predicted the site of proteolysis as located between Val837 and Asp838. Treatment by NE of ATP-depleted platelets or Chinese hamster ovary cells expressing human recombinant alphaIIbbeta3 clearly established that activation of the integrin was independent of signal transduction events and was concomitant with the proteolysis of alphaIIbH. In support of this latter observation, a close correlation was observed between the kinetics of proteolysis of alphaIIbH on platelets and that of expression of the ligand binding activity of alphaIIbbeta3 (r2 = 0.902, p </= 0. 005). However, only a subpopulation ( approximately 25%) of the proteolyzed alphaIIbbeta3 appeared to fully express the ligand binding capacity. Altogether, these results demonstrate that NE up-regulates the fibrinogen binding activity of alphaIIbbeta3 through a restricted proteolysis of the alphaIIb subunit, and that this process is relevant for the potentiation of platelet aggregation.
Collapse
Affiliation(s)
- M Si-Tahar
- Unité de Pharmacologie Cellulaire, Unité Associée IP/INSERM 285, Institut Pasteur, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
17
|
Kunicki TJ, Annis DS, Felding-Habermann B. Molecular determinants of arg-gly-asp ligand specificity for beta3 integrins. J Biol Chem 1997; 272:4103-7. [PMID: 9020120 DOI: 10.1074/jbc.272.7.4103] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Arg-Tyr-Asp (RYD) and Arg-Gly-Asp (RGD) sequences within the third complementarity-determining region of the heavy chain (H3) of murine recombinant Fab molecules OPG2 and AP7, respectively, are responsible for their specific binding to the platelet integrin alphaIIbbeta3. In this study, we evaluated the influence of divalent cation composition and single amino acid substitutions at key positions within H3 on the selectivity of these Fab molecules for integrin alphaIIbbeta3 versus the vitronectin receptor alphaVbeta3. The parent Fab molecule OPG2 (H3 sequence, HPFYRYDGGN) binds selectively to alphaIIbbeta3 and not at all to any other RGD-cognitive integrin, particularly alphaVbeta3, under any divalent cation conditions. The binding of the AP7 Fab molecule (HPFYRGDGGN) to alphaIIbbeta3 is not affected by the relative composition of calcium, magnesium or manganese. However, AP7 binding to alphaVbeta3, either expressed by M21 cells or as the purified integrin, is supported by manganese and inhibited by calcium. If the flanking asparagine 108 residue within the AP7 H3 loop is replaced by alanine (HPFYRGDGGA), the resulting Fab molecule AP7.4 binds selectively to alphaVbeta3 in a cation-dependent manner, but does not bind at all to alphaIIbbeta3 under any conditions. AP7.4 binding to alphaVbeta3 is supported by manganese, completely inhibited by calcium, and largely unaffected by magnesium. This behavior mimics that of the adhesive protein, osteopontin, another ligand that binds preferentially to alphaVbeta3. Despite these differences in specificity for alphaIIbbeta3 and alphaVbeta3, AP7 and AP7.4 remain selective for the beta3 integrins and do not bind to cell lines that express the RGD-cognitive integrins alphaVbeta5 or alpha5beta1. These results confirm that subtle changes in the amino acid composition immediately flanking the RGD or RYD motifs can have a profound effect on beta3 integrin specificity, most likely because they influence the juxtaposition of the arginine and aspartate side chains within the extended RGD loop sequence.
Collapse
Affiliation(s)
- T J Kunicki
- Roon Research Center for Arteriosclerosis and Thrombosis, Division of Experimental Hemostasis and Thrombosis, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037 USA
| | | | | |
Collapse
|