1
|
Nayak AR, Holdcraft CJ, Yin AC, Nicoletto RE, Zhao C, Zheng H, Temiakov D, Goldberg GS. Maackia amurensis seed lectin (MASL) structure and sequence comparison with other Maackia amurensis lectins. J Biol Chem 2025:108466. [PMID: 40158854 DOI: 10.1016/j.jbc.2025.108466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/14/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025] Open
Abstract
Maackia amurensis lectins, including MASL, MAA, and MAL2, are widely utilized in biochemical and medicinal research. However, the structural and functional differences between these lectins have not been defined. Here, we present a high-resolution cryo-EM structure of MASL revealing that its tetrameric assembly is directed by two intersubunit disulfide bridges. These bridges, formed by C272 residues, are central to the dimer-of-dimers assembly of a MASL tetramer. This cryo-EM structure also identifies residues involved in stabilizing the dimer interface, multiple glycosylation sites, and calcium and manganese atoms in the sugar-binding pockets of MASL. Notably, our analysis reveals that Y250 in the carbohydrate-binding site of MASL adopts a flipped conformation, likely acting as a gatekeeper that obstructs access to non-cognate substrates, a feature that may contribute to MASL's substrate specificity. Sequence analysis suggests that MAA is a truncated version of MASL, while MAL2 represents a homologous isoform. Unlike MASL, neither MAL2 nor MAA contains a cysteine residue required for disulfide bridge formation. Accordingly, analysis of these proteins using reducing and nonreducing SDS-PAGE confirms that the C272 residue in MASL drives intermolecular disulfide bridge formation. These findings provide critical insights into the unique structural features of MASL that distinguish it from other Maackia amurensis lectins, offering a foundation for further exploration of its biological and therapeutic potential.
Collapse
Affiliation(s)
- Ashok R Nayak
- Biochemistry & Molecular Biology Department, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Cayla J Holdcraft
- Molecular Biology Department, Rowan Virtua SOM, Rowan University, 2 Medical Center Dr., Stratford, NJ 08084, USA
| | - Ariel C Yin
- Molecular Biology Department, Rowan Virtua SOM, Rowan University, 2 Medical Center Dr., Stratford, NJ 08084, USA
| | - Rachel E Nicoletto
- Molecular Biology Department, Rowan Virtua SOM, Rowan University, 2 Medical Center Dr., Stratford, NJ 08084, USA
| | - Caifeng Zhao
- Biological Mass Spectrometry Resources, Robert Wood Johnson Medical School, Rutgers, State University of New Jersey, 679 Hoes Lane West, Piscataway, NJ 08854-8021, USA
| | - Haiyan Zheng
- Biological Mass Spectrometry Resources, Robert Wood Johnson Medical School, Rutgers, State University of New Jersey, 679 Hoes Lane West, Piscataway, NJ 08854-8021, USA
| | - Dmitry Temiakov
- Biochemistry & Molecular Biology Department, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA.
| | - Gary S Goldberg
- Molecular Biology Department, Rowan Virtua SOM, Rowan University, 2 Medical Center Dr., Stratford, NJ 08084, USA.
| |
Collapse
|
2
|
Zemła J, Szydlak R, Gajos K, Kozłowski Ł, Zieliński T, Luty M, Øvreeide IH, Prot VE, Stokke BT, Lekka M. Plasma Treatment of PDMS for Microcontact Printing (μCP) of Lectins Decreases Silicone Transfer and Increases the Adhesion of Bladder Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:51863-51875. [PMID: 37889219 PMCID: PMC10636731 DOI: 10.1021/acsami.3c09195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023]
Abstract
The present study investigates silicone transfer occurring during microcontact printing (μCP) of lectins with polydimethylsiloxane (PDMS) stamps and its impact on the adhesion of cells. Static adhesion assays and single-cell force spectroscopy (SCFS) are used to compare adhesion of nonmalignant (HCV29) and cancer (HT1376) bladder cells, respectively, to high-affinity lectin layers (PHA-L and WGA, respectively) prepared by physical adsorption and μCP. The chemical composition of the μCP lectin patterns was monitored by time-of-flight secondary ion mass spectrometry (ToF-SIMS). We show that the amount of transferred silicone in the μCP process depends on the preprocessing of the PDMS stamps. It is revealed that silicone contamination within the patterned lectin layers inhibits the adhesion of bladder cells, and the work of adhesion is lower for μCP lectins than for drop-cast lectins. The binding capacity of microcontact printed lectins was larger when the PDMS stamps were treated with UV ozone plasma as compared to sonication in ethanol and deionized water. ToF-SIMS data show that ozone-based treatment of PDMS stamps used for μCP of lectin reduces the silicone contamination in the imprinting protocol regardless of stamp geometry (flat vs microstructured). The role of other possible contributors, such as the lectin conformation and organization of lectin layers, is also discussed.
Collapse
Affiliation(s)
- Joanna Zemła
- Institute
of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Renata Szydlak
- Institute
of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Katarzyna Gajos
- M.
Smoluchowski Institute of Physics, Jagiellonian
University, 30348 Kraków, Poland
| | - Łukasz Kozłowski
- Institute
of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Tomasz Zieliński
- Institute
of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Marcin Luty
- Institute
of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Ingrid H. Øvreeide
- Biophysics
and Medical Technology, Department of Physics, The Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Victorien E. Prot
- Biomechanics,
Department of Structural Engineering, The
Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Bjørn T. Stokke
- Biophysics
and Medical Technology, Department of Physics, The Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Małgorzata Lekka
- Institute
of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| |
Collapse
|
3
|
Junker F, Camillo Teixeira P. Barcoding of live peripheral blood mononuclear cells to assess immune cell phenotypes using full spectrum flow cytometry. Cytometry A 2022; 101:909-921. [PMID: 35150047 DOI: 10.1002/cyto.a.24543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/11/2022] [Accepted: 02/07/2022] [Indexed: 01/27/2023]
Abstract
Barcoded flow cytometry is a multiplexing technique allowing for the simultaneous acquisition of cells from different donors or experimental conditions in a high-throughput manner. This approach allows to synchronize acquisition of samples and reduce variance introduced through the operator or technical platform. However, to date, only very few flow cytometry barcoding protocols have been developed, which often suffer from technical limitations. Here, we developed a novel barcoding protocol for a full-spectrum flow cytometry platform. We developed a 21-color immunophenotyping assay for up to 20 different samples analyzed simultaneously with comparable variance between repeated single-tube acquisition and postde-multiplexing. Barcoding offers great potential in parallelizing the analysis of complex cell populations such as peripheral blood mononuclear cells (PBMCs). Consequently, we assessed the performance of our method in situations where PBMCs were challenged with phytohaemagglutinin (PHA), a strong mitogen and broad activator of B cells and T cells, and superantigen Staphylococcus enterotoxin B (SEB) that has been reported to induce polyclonal T cell activation. PBMCs were either barcoded before pooled challenge or challenged individually pre-barcoding. Our final workflow included pooled immunophenotyping followed by machine learning aided single-cell data analysis and enabled us to identify robust PHA and SEB mode of action related phenotypic changes in PBMC immune cell lineages. Conclusively, we present a novel technique allowing the barcoded acquisition and analysis of PBMCs from up to 20 different donors and present a valid basis for the future development of complex immunophenotyping protocols.
Collapse
Affiliation(s)
- Fabian Junker
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Priscila Camillo Teixeira
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| |
Collapse
|
4
|
Peddio S, Padiglia A, Cannea FB, Crnjar R, Zam W, Sharifi-Rad J, Rescigno A, Zucca P. Common bean (Phaseolus vulgaris L.) α-amylase inhibitors as safe nutraceutical strategy against diabetes and obesity: An update review. Phytother Res 2022; 36:2803-2823. [PMID: 35485365 PMCID: PMC9544720 DOI: 10.1002/ptr.7480] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/22/2022] [Accepted: 04/14/2022] [Indexed: 12/23/2022]
Abstract
Overweight and obesity are constantly increasing, not only in Western countries but also in low‐middle‐income ones. The decrease of both the intake of carbohydrates and their assimilation are among the main dietary strategies to counter these conditions. α‐Amylase, a key enzyme involved in the digestion of carbohydrates, is the target enzyme to reduce the absorption rate of carbohydrates. α‐Amylase inhibitors (α‐AIs) can be found in plants. The common bean, Phaseolus vulgaris is of particular interest due to the presence of protein‐based α‐AIs which, through a protein–protein interaction, reduce the activity of this enzyme. Here we describe the nature of the various types of common bean seed extracts, the type of protein inhibitors they contain, reviewing the recent Literature about their molecular structure and mechanism of action. We also explore the existing evidence (clinical trials conducted on both animals and humans) supporting the potential benefits of this protein inhibitors from P. vulgaris, also highlighting the urgent need of further studies to confirm the clinical efficacy of the commercial products. This work could contribute to summarize the knowledge and application of P. vulgaris extract as a nutraceutical strategy for controlling unwanted weight gains, also highlighting the current limitations.
Collapse
Affiliation(s)
- Stefania Peddio
- Department of Biomedical Sciences (DiSB), Cittadella Universitaria di Monserrato, Cagliari, Italy
| | - Alessandra Padiglia
- Department of Life and Environmental Sciences (DiSVA), Cittadella Universitaria di Monserrato, Cagliari, Italy
| | - Faustina B Cannea
- Department of Life and Environmental Sciences (DiSVA), Cittadella Universitaria di Monserrato, Cagliari, Italy
| | - Roberto Crnjar
- Department of Biomedical Sciences (DiSB), Cittadella Universitaria di Monserrato, Cagliari, Italy
| | - Wissam Zam
- Department of Analytical and Food Chemistry, Faculty of Pharmacy, Al-Wadi International University, Tartous, Syria
| | | | - Antonio Rescigno
- Department of Biomedical Sciences (DiSB), Cittadella Universitaria di Monserrato, Cagliari, Italy
| | - Paolo Zucca
- Department of Biomedical Sciences (DiSB), Cittadella Universitaria di Monserrato, Cagliari, Italy
| |
Collapse
|
5
|
Wang Y, He S, Zhou F, Sun H, Cao X, Ye Y, Li J. Detection of Lectin Protein Allergen of Kidney Beans ( Phaseolus vulgaris L.) and Desensitization Food Processing Technology. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14723-14741. [PMID: 34251800 DOI: 10.1021/acs.jafc.1c02801] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With the increase of food allergy events related to not properly cooked kidney beans (Phaseolus vulgaris L.), more and more researchers are paying attention to the sensitization potential of lectin, one of the major storage and defensive proteins with the specific carbohydrate-binding activity. The immunoglobulin E (IgE), non-IgE, and mixed allergic reactions induced by the lectins were inducted in the current paper, and the detection methods of kidney bean lectin, including the purification strategies, hemagglutination activity, specific polysaccharide or glycoprotein interactions, antibody combinations, mass spectrometry methods, and allergomics strategies, were summarized, while various food processing aspects, such as the physical thermal processing, physical non-thermal processing, chemical modifications, and biological treatments, were reviewed in the potential of sensitization reduction. It might be the first comprehensive review on lectin allergen detection from kidney bean and the desensitization strategy in food processing and will provide a basis for food safety control.
Collapse
Affiliation(s)
- Yongfei Wang
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Shudong He
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Fanlin Zhou
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Hanju Sun
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Xiaodong Cao
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Yongkang Ye
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Jing Li
- College of Biological and Environmental Engineering, Hefei University, Hefei, Anhui 230601, People's Republic of China
| |
Collapse
|
6
|
A
Phaseolus vulgaris
Leukoagglutinin Biosensor as a Selective Device for the Detection of Cancer‐associated
N
‐glycans with Increased β1→6 Branching. ELECTROANAL 2021. [DOI: 10.1002/elan.202100350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Martínez-Alarcón D, Varrot A, Fitches E, Gatehouse JA, Cao M, Pyati P, Blanco-Labra A, Garcia-Gasca T. Recombinant Lectin from Tepary Bean ( Phaseolus acutifolius) with Specific Recognition for Cancer-Associated Glycans: Production, Structural Characterization, and Target Identification. Biomolecules 2020; 10:E654. [PMID: 32340396 PMCID: PMC7226325 DOI: 10.3390/biom10040654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022] Open
Abstract
Herein, we report the production of a recombinant Tepary bean lectin (rTBL-1), its three-dimensional (3D) structure, and its differential recognition for cancer-type glycoconjugates. rTBL-1 was expressed in Pichia pastoris, yielding 316 mg per liter of culture, and was purified by nickel affinity chromatography. Characterization of the protein showed that rTBL-1 is a stable 120 kDa homo-tetramer folded as a canonical leguminous lectin with two divalent cations (Ca2+ and Mn2+) attached to each subunit, confirmed in its 3D structure solved by X-ray diffraction at 1.9 Å resolution. Monomers also presented a ~2.5 kDa N-linked glycan located on the opposite face of the binding pocket. It does not participate in carbohydrate recognition but contributes to the stabilization of the interfaces between protomers. Screening for potential rTBL-1 targets by glycan array identified 14 positive binders, all of which correspond to β1-6 branched N-glycans' characteristics of cancer cells. The presence of α1-6 core fucose, also tumor-associated, improved carbohydrate recognition. rTBL-1 affinity for a broad spectrum of mono- and disaccharides was evaluated by isothermal titration calorimetry (ITC); however, no interaction was detected, corroborating that carbohydrate recognition is highly specific and requires larger ligands for binding. This would explain the differential recognition between healthy and cancer cells by Tepary bean lectins.
Collapse
Affiliation(s)
- Dania Martínez-Alarcón
- Centro de Investigación y de Estudios Avanzados Unidad Irapuato, Departamento de Biotecnología y Bioquímica, Irapuato 36821, Guanaj uato, Mexico;
- University of Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France;
| | - Annabelle Varrot
- University of Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France;
| | - Elaine Fitches
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (E.F.); (J.A.G.); (M.C.); (P.P.)
| | - John A. Gatehouse
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (E.F.); (J.A.G.); (M.C.); (P.P.)
| | - Min Cao
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (E.F.); (J.A.G.); (M.C.); (P.P.)
| | - Prashant Pyati
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (E.F.); (J.A.G.); (M.C.); (P.P.)
| | - Alejandro Blanco-Labra
- Centro de Investigación y de Estudios Avanzados Unidad Irapuato, Departamento de Biotecnología y Bioquímica, Irapuato 36821, Guanaj uato, Mexico;
| | - Teresa Garcia-Gasca
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Santiago de Querétaro 76230, Querétaro, Mexico
| |
Collapse
|
8
|
Barre A, Bourne Y, Van Damme EJM, Rougé P. Overview of the Structure⁻Function Relationships of Mannose-Specific Lectins from Plants, Algae and Fungi. Int J Mol Sci 2019; 20:E254. [PMID: 30634645 PMCID: PMC6359319 DOI: 10.3390/ijms20020254] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/29/2018] [Accepted: 12/31/2018] [Indexed: 01/05/2023] Open
Abstract
To date, a number of mannose-binding lectins have been isolated and characterized from plants and fungi. These proteins are composed of different structural scaffold structures which harbor a single or multiple carbohydrate-binding sites involved in the specific recognition of mannose-containing glycans. Generally, the mannose-binding site consists of a small, central, carbohydrate-binding pocket responsible for the "broad sugar-binding specificity" toward a single mannose molecule, surrounded by a more extended binding area responsible for the specific recognition of larger mannose-containing N-glycan chains. Accordingly, the mannose-binding specificity of the so-called mannose-binding lectins towards complex mannose-containing N-glycans depends largely on the topography of their mannose-binding site(s). This structure⁻function relationship introduces a high degree of specificity in the apparently homogeneous group of mannose-binding lectins, with respect to the specific recognition of high-mannose and complex N-glycans. Because of the high specificity towards mannose these lectins are valuable tools for deciphering and characterizing the complex mannose-containing glycans that decorate both normal and transformed cells, e.g., the altered high-mannose N-glycans that often occur at the surface of various cancer cells.
Collapse
Affiliation(s)
- Annick Barre
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France.
| | - Yves Bourne
- Centre National de la Recherche Scientifique, Aix-Marseille Univ, Architecture et Fonction des Macromolécules Biologiques, 163 Avenue de Luminy, 13288 Marseille, France.
| | - Els J M Van Damme
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium.
| | - Pierre Rougé
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France.
| |
Collapse
|
9
|
Nciri N, Cho N. New research highlights: Impact of chronic ingestion of white kidney beans ( Phaseolus vulgaris L. var. Beldia) on small-intestinal disaccharidase activity in Wistar rats. Toxicol Rep 2017; 5:46-55. [PMID: 29270365 PMCID: PMC5735304 DOI: 10.1016/j.toxrep.2017.12.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 11/26/2017] [Accepted: 12/13/2017] [Indexed: 01/23/2023] Open
Abstract
Impact of bean exposure on disaccharidase activity in rat jejunum was investigated. Raw white beans depressed the jejunal maltase and sucrase activities in Wistar rats. No lectins were found in the blood and feces of rats after 10 days of bean feeding. White beans may pose a risk to the consumer when eaten raw or undercooked. The chronic ingestion of raw or undercooked kidney beans (Phaseolus vulgaris L.) is involved in the pathogenesis of multiple organ dysfunction; the underlying mechanisms are still poorly understood. The objective of this study was to assess the gavage effects of a raw Beldia bean variety on the brush border disaccharidase activities in the jejunal mucosa of Wistar rats. Twenty young adult male rats were randomly assigned into 2 groups of 10 rats each: Control, rats were gavaged with 300 mg of a rodent pellet flour suspension (RPFS); Experimental, rats were orogastrically fed a dose of 300 mg Beldia bean flour suspension (BBFS). Prior to determining the disaccharidase activity by Dahlqvist method, the blood and stool specimens were collected on day 10. The sera and feces were screened for the presence of lectins by serologic and hemagglutination assays. The results showed that the brush border maltase and sucrase activities were significantly diminished but lactase activity did not undergo any change in BBFS-gavaged animals as compared with control. Preliminary immunobiochemical assays revealed the absence of lectins in the systemic circulation and feces of rats, but further work is required to prove this. Overall, the dietary administration of BBFS caused depression of the activity of the small intestinal enzymes maltase and sucrase.
Collapse
Affiliation(s)
- Nader Nciri
- Intestinal Immunophysiology-Research Unit (02/RU/09-02), Faculty of Medicine of Tunis, University of Tunis El Manar, 15 Street Djebel Akhdar, Bab Saâdoun, 1007, Tunis, Tunisia.,Department of Animal Resources, Fisheries, and Food Technology, National Institute of Agronomy of Tunisia, 43 Charles Nicolle Avenue, El Mahrajène, 1082, Tunis, Tunisia.,Department of Energy, Materials, and Chemical Engineering, Korea University of Technology and Education, 1600 Chungjeol-ro, Byeongcheon-myeon, Dongnam-gu, Cheonan-City, Chungnam-Province 330-708, 31253, Republic of Korea
| | - Namjun Cho
- Department of Energy, Materials, and Chemical Engineering, Korea University of Technology and Education, 1600 Chungjeol-ro, Byeongcheon-myeon, Dongnam-gu, Cheonan-City, Chungnam-Province 330-708, 31253, Republic of Korea
| |
Collapse
|
10
|
Legume Lectins: Proteins with Diverse Applications. Int J Mol Sci 2017; 18:ijms18061242. [PMID: 28604616 PMCID: PMC5486065 DOI: 10.3390/ijms18061242] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 12/26/2022] Open
Abstract
Lectins are a diverse class of proteins distributed extensively in nature. Among these proteins; legume lectins display a variety of interesting features including antimicrobial; insecticidal and antitumor activities. Because lectins recognize and bind to specific glycoconjugates present on the surface of cells and intracellular structures; they can serve as potential target molecules for developing practical applications in the fields of food; agriculture; health and pharmaceutical research. This review presents the current knowledge of the main structural characteristics of legume lectins and the relationship of structure to the exhibited specificities; provides an overview of their particular antimicrobial; insecticidal and antitumor biological activities and describes possible applications based on the pattern of recognized glyco-targets.
Collapse
|
11
|
Chen J, Liu T, Gao J, Gao L, Zhou L, Cai M, Shi Y, Xiong W, Jiang J, Tong T, Wang H. Variation in Carbohydrates between Cancer and Normal Cell Membranes Revealed by Super-Resolution Fluorescence Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2016; 3:1600270. [PMID: 27981014 PMCID: PMC5157168 DOI: 10.1002/advs.201600270] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 07/30/2016] [Indexed: 05/03/2023]
Abstract
Carbohydrate alterations on cell membranes are associated with various cancer processes, including tumorigenesis, malignant transformation, and tumor dissemination. However, variations in the distributions of cancer-associated carbohydrates are unclear at the molecular level. Herein, direct stochastic optical reconstruction microscopy is used to reveal that seven major types of carbohydrates tended to form obvious clusters on cancer cell membranes compared with normal cell membranes (both cultured and primary cells), and most types of carbohydrates present a similar distributed characteristic on various cancer cells (e.g., HeLa and Os-Rc-2 cells). Significantly, sialic acid is found to distribute in larger-sized clusters with a higher cluster coverage percentage on various cancer cells than normal cells. These findings on the aberrant distributions of cancer-associated carbohydrates can potentially serve as novel diagnostic and therapeutic targets, as well as making a contribution to clarify how abnormal glycosylations of membrane glycoconjugates participate in tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Junling Chen
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Tianzhou Liu
- The second hospital of Jilin universityChangchunJilin130022P. R. China
| | - Jing Gao
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
| | - Lan Gao
- Kunming institute of botanyChinese Academy of SciencesKunmingYunnan650201P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Lulu Zhou
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Mingjun Cai
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
| | - Yan Shi
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
| | - Wenyong Xiong
- Kunming institute of botanyChinese Academy of SciencesKunmingYunnan650201P. R. China
| | - Junguang Jiang
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
| | - Ti Tong
- The second hospital of Jilin universityChangchunJilin130022P. R. China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
| |
Collapse
|
12
|
Kochubei T, Kitam V, Maksymchuk O, Piven O, Lukash L. Possible mechanisms of Leukoagglutinin induced apoptosis in human cells in vitro. Cell Biol Int 2016; 40:1313-1319. [PMID: 27629532 DOI: 10.1002/cbin.10683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 09/13/2016] [Indexed: 11/06/2022]
Abstract
Leukoagglutinin is one of the phytohemagglutinin isolectins isolated from Phaseolus vulgaris. In our recent study, we showed that this lectin is able to influence the growth of human cancer cells in vitro. In addition, using the acridine orange and ethidium bromide staining, we found that leukoagglutinin can induce apoptosis. In order to understand the molecular mechanisms of induction of apoptosis, we performed computational modeling with subsequent experimental verification of theoretical data in vitro. We developed computational models of leukoagglutinin interaction with pro- (FasR and TNFR) and anti-apoptotic (IGF-1 and EGFR) receptors, and confirmed that leukoagglutinin may specifically interact with these receptors. Furthermore, we proved that leukoagglutinin can induce apoptosis in cancer (HEp-2) and non-cancer (4BL) cells, and observed that PHA-L is able to induce apoptosis through the up-regulation of Bax protein and activation of the effector caspase-3 and initiator caspase-8. However, these proteins have no effect on the Bcl-2 expression level.
Collapse
Affiliation(s)
- Tetiana Kochubei
- Institute of Molecular Biology and Genetics National Academy of Science of Ukraine, 150 Zabolotnoho St., Kyiv, 03143, Ukraine
| | - Volodymyr Kitam
- The Ukrainian Research Institute of Archival Affairs and Records Keeping (URIAARK), Department for Archival Affairs Technological Support, Sector for Archives Preservation Technologies Development, 24 Solomyanska St., Kyiv, 03110, Ukraine
| | - Oksana Maksymchuk
- Institute of Molecular Biology and Genetics National Academy of Science of Ukraine, 150 Zabolotnoho St., Kyiv, 03143, Ukraine
| | - Oksana Piven
- Institute of Molecular Biology and Genetics National Academy of Science of Ukraine, 150 Zabolotnoho St., Kyiv, 03143, Ukraine
| | - Lyubov Lukash
- Institute of Molecular Biology and Genetics National Academy of Science of Ukraine, 150 Zabolotnoho St., Kyiv, 03143, Ukraine
| |
Collapse
|
13
|
Nguyen CT, Tanaka K, Cao Y, Cho SH, Xu D, Stacey G. Computational Analysis of the Ligand Binding Site of the Extracellular ATP Receptor, DORN1. PLoS One 2016; 11:e0161894. [PMID: 27583834 PMCID: PMC5008829 DOI: 10.1371/journal.pone.0161894] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/12/2016] [Indexed: 12/29/2022] Open
Abstract
DORN1 (also known as P2K1) is a plant receptor for extracellular ATP, which belongs to a large gene family of legume-type (L-type) lectin receptor kinases. Extracellular ATP binds to DORN1 with strong affinity through its lectin domain, and the binding triggers a variety of intracellular activities in response to biotic and abiotic stresses. However, information on the tertiary structure of the ligand binding site of DORN1is lacking, which hampers efforts to fully elucidate the mechanism of receptor action. Available data of the crystal structures from more than 50 L-type lectins enable us to perform an in silico study of molecular interaction between DORN1 and ATP. In this study, we employed a computational approach to develop a tertiary structure model of the DORN1 lectin domain. A blind docking analysis demonstrated that ATP binds to a cavity made by four loops (defined as loops A B, C and D) of the DORN1 lectin domain with high affinity. In silico target docking of ATP to the DORN1 binding site predicted interaction with 12 residues, located on the four loops, via hydrogen bonds and hydrophobic interactions. The ATP binding pocket is structurally similar in location to the carbohydrate binding pocket of the canonical L-type lectins. However, four of the residues predicted to interact with ATP are not conserved between DORN1 and the other carbohydrate-binding lectins, suggesting that diversifying selection acting on these key residues may have led to the ATP binding activity of DORN1. The in silico model was validated by in vitro ATP binding assays using the purified extracellular lectin domain of wild-type DORN1, as well as mutated DORN1 lacking key ATP binding residues.
Collapse
Affiliation(s)
- Cuong The Nguyen
- Division of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri Columbia, Missouri, 65211, United States of America
| | - Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, Washington, 646430, United States of America
| | - Yangrong Cao
- Division of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri Columbia, Missouri, 65211, United States of America
| | - Sung-Hwan Cho
- Division of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri Columbia, Missouri, 65211, United States of America
| | - Dong Xu
- Department of Computer Science, Informatics Institute, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65211, United States of America
| | - Gary Stacey
- Division of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri Columbia, Missouri, 65211, United States of America
- * E-mail:
| |
Collapse
|
14
|
Chen J, Gao J, Zhang M, Cai M, Xu H, Jiang J, Tian Z, Wang H. Systemic localization of seven major types of carbohydrates on cell membranes by dSTORM imaging. Sci Rep 2016; 6:30247. [PMID: 27453176 PMCID: PMC4958959 DOI: 10.1038/srep30247] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/01/2016] [Indexed: 12/13/2022] Open
Abstract
Carbohydrates on the cell surface control intercellular interactions and play a vital role in various physiological processes. However, their systemic distribution patterns are poorly understood. Through the direct stochastic optical reconstruction microscopy (dSTORM) strategy, we systematically revealed that several types of representative carbohydrates are found in clustered states. Interestingly, the results from dual-color dSTORM imaging indicate that these carbohydrate clusters are prone to connect with one another and eventually form conjoined platforms where different functional glycoproteins aggregate (e.g., epidermal growth factor receptor, (EGFR) and band 3 protein). A thorough understanding of the ensemble distribution of carbohydrates on the cell surface paves the way for elucidating the structure-function relationship of cell membranes and the critical roles of carbohydrates in various physiological and pathological cell processes.
Collapse
Affiliation(s)
- Junling Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jing Gao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Min Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Mingjun Cai
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P.R. China
| | - Haijiao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P.R. China
| | - Junguang Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P.R. China
| | - Zhiyuan Tian
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P.R. China
| |
Collapse
|
15
|
Surya S, Geethanandan K, Sadasivan C, Haridas M. Gallic acid binding to Spatholobus parviflorus lectin provides insight to its quaternary structure forming. Int J Biol Macromol 2016; 91:696-702. [PMID: 27283232 DOI: 10.1016/j.ijbiomac.2016.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 06/02/2016] [Accepted: 06/05/2016] [Indexed: 11/25/2022]
Abstract
Therapeutic effects of gallic acid (GA) have already been extensively studied. However, its interaction with lectins has not gained much attention. It is of interest to validate the binding profile of GA with Spatholobus parviflorus seed lectin. A combination of Isothermal Titration Calorimetry (ITC), haemagglutination assay and molecular docking was applied on SPL-GA interaction. ITC results showed four binding sites, stoichiometry, n=4, irrespective of the ratio of SPL:GA taken for titration. Difference among the four binding sites of a single molecule of SPL with regard to GA binding kinetic parameters was consistently varying. Similarly, the glide scores obtained for GA in the four different binding clefts of SPL were also conformed to the ITC. The binding of GA on SPL without affecting its sugar binding property could be considered as a boon for glycobiological research. From the presented studies, it could be proposed that the SPL-GA interactions may facilitate drug delivery by specific targeting/attachment by profiling of cell-surface glycans, followed by controlled release of drugs.
Collapse
Affiliation(s)
- Sukumaran Surya
- Inter University Centre for Bioscience and Department of Biotechnology and Microbiology, Kannur University, Thalassery Campus, Kannur 670661, India
| | - Krishnan Geethanandan
- Inter University Centre for Bioscience and Department of Biotechnology and Microbiology, Kannur University, Thalassery Campus, Kannur 670661, India
| | - Chittalakkottu Sadasivan
- Inter University Centre for Bioscience and Department of Biotechnology and Microbiology, Kannur University, Thalassery Campus, Kannur 670661, India
| | - Madhathilkovilakathu Haridas
- Inter University Centre for Bioscience and Department of Biotechnology and Microbiology, Kannur University, Thalassery Campus, Kannur 670661, India.
| |
Collapse
|
16
|
Inhibitory Effect of Alloferons in Combination with Human Lymphocytes on Human Herpesvirus 1 (HHV-1) Replication In Vitro. Int J Pept Res Ther 2015. [DOI: 10.1007/s10989-015-9506-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Majumdar S, Almeida IC, Arigi EA, Choi H, VerBerkmoes NC, Trujillo-Reyes J, Flores-Margez JP, White JC, Peralta-Videa JR, Gardea-Torresdey JL. Environmental Effects of Nanoceria on Seed Production of Common Bean (Phaseolus vulgaris): A Proteomic Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:13283-13293. [PMID: 26488752 DOI: 10.1021/acs.est.5b03452] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The rapidly growing literature on the response of edible plants to nanoceria has provided evidence of its uptake and bioaccumulation, which delineates a possible route of entry into the food chain. However, little is known about how the residing organic matter in soil may affect the bioavailability and resulting impacts of nanoceria on plants. Here, we examined the effect of nanoceria exposure (62.5-500 mg/kg) on kidney bean (Phaseolus vulgaris) productivity and seed quality as a function of soil organic matter content. Cerium accumulation in the seeds produced from plants in organic matter enriched soil showed a dose-dependent increase, unlike in low organic matter soil treatments. Seeds obtained upon nanoceria exposure in soils with higher organic matter were more susceptible to changes in nutrient quality. A quantitative proteomic analysis of the seeds produced upon nanoceria exposure provided evidence for upregulation of stress-related proteins at 62.5 and 125 mg/kg nanoceria treatments. Although the plants did not exhibit overt toxicity, the major seed proteins primarily associated with nutrient storage (phaseolin) and carbohydrate metabolism (lectins) were significantly down-regulated in a dose dependent manner upon nanoceria exposure. This study thus suggests that nanoceria exposures may negatively affect the nutritional quality of kidney beans at the cellular and molecular level. More confirmatory studies with nanoceria along different species using alternative and orthogonal "omic" tools are currently under active investigation, which will enable the identification of biomarkers of exposure and susceptibility.
Collapse
Affiliation(s)
- Sanghamitra Majumdar
- Department of Chemistry, The University of Texas at El Paso , 500 West University Ave., El Paso, Texas 79968, United States
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN) , El Paso, Texas United States
| | - Igor C Almeida
- Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso , 500 West University Ave., El Paso, Texas 79968, United States
| | - Emma A Arigi
- Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso , 500 West University Ave., El Paso, Texas 79968, United States
| | - Hyungwon Choi
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System , Singapore
| | - Nathan C VerBerkmoes
- Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso , 500 West University Ave., El Paso, Texas 79968, United States
| | - Jesica Trujillo-Reyes
- Department of Chemistry, The University of Texas at El Paso , 500 West University Ave., El Paso, Texas 79968, United States
| | - Juan P Flores-Margez
- Autonomous University of Ciudad Juarez , Departamento de Química y Biología, Instituto de Ciencias Biomédicas, Anillo envolvente PRONAF y Estocolmo, Ciudad Juarez, Chihuahua 32310, México
| | - Jason C White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut 06504, United States
| | - Jose R Peralta-Videa
- Department of Chemistry, The University of Texas at El Paso , 500 West University Ave., El Paso, Texas 79968, United States
- Environmental Science and Engineering PhD Program, The University of Texas at El Paso , 500 West University Ave., El Paso, Texas 79968, United States
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN) , El Paso, Texas United States
| | - Jorge L Gardea-Torresdey
- Department of Chemistry, The University of Texas at El Paso , 500 West University Ave., El Paso, Texas 79968, United States
- Environmental Science and Engineering PhD Program, The University of Texas at El Paso , 500 West University Ave., El Paso, Texas 79968, United States
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN) , El Paso, Texas United States
| |
Collapse
|
18
|
|
19
|
Metal Ion Coordination Essential for Specific Molecular Interactions of Butea monosperma Lectin: ITC and MD Simulation Studies. Appl Biochem Biotechnol 2015; 176:277-86. [DOI: 10.1007/s12010-015-1573-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/12/2015] [Indexed: 12/13/2022]
|
20
|
Nciri N, Cho N, El Mhamdi F, Ben Ismail H, Ben Mansour A, Sassi FH, Ben Aissa-Fennira F. Toxicity Assessment of Common Beans (Phaseolus vulgaris L.) Widely Consumed by Tunisian Population. J Med Food 2015; 18:1049-64. [PMID: 26355953 DOI: 10.1089/jmf.2014.0120] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
This research aimed at assessing the content and the functional properties of phytohemagglutinin (PHA) in different varieties of beans widely consumed in Tunisia through soaking, cooking, autoclaving, germination, and their combinations. This study was carried out on three varieties of white beans grown in different localities of Tunisia, namely Twila, Coco, and Beldia, as well as on imported and local canned beans. All bean samples underwent biochemical and immunological evaluation by employing several techniques such as indirect competitive enzyme-linked immunosorbent assay (ELISA), hemagglutinating assay, Ouchterlony double immunodiffusion, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Biochemical and immunological analyses indicated that raw dry beans contained a considerable amount of proteins and PHAs. ELISA demonstrated that soaking, either in plain water or in alkaline solution, caused an increase in the concentration of PHA. A slight increase of PHA was produced equally by germination during 4 days in all bean varieties. Cooking or autoclaving of presoaked beans resulted in a complete disappearance of PHA. ELISA test also proved that both imported and local canned beans contained fingerprints of PHA. Hemagglutination assays showed that not only cooked and autoclaved presoaked beans lacked the ability to agglutinate red blood cells but also autoclaved unsoaked beans did. In agar gel immunodiffusion using rabbit anti-PHA serum, raw, soaked, cooked unsoaked, and sprouted beans gave precipitin arc reactions, indicating that PHA existed in immunoreactive form in the tested seeds. SDS-PAGE electrophoretograms showed protein isolates of Twila and Beldia beans to have different profiles through soaking, cooking, and autoclaving processes. This work revealed that the combination of soaking and cooking/autoclaving was the best way in reducing PHA content and its activity in all bean varieties when compared with germination.
Collapse
Affiliation(s)
- Nader Nciri
- 1 Intestinal Immunophysiology-Research Unit (02/RU/09-02), Faculty of Medicine of Tunis, University of Tunis El Manar, Bab Saâdoun, Tunisia .,2 Department of Animal Resources, Fisheries, and Food Technology, National Institute of Agronomy of Tunisia, El Mahrajène, Tunisia .,3 School of Energy, Materials, and Chemical Engineering, Korea University of Technology and Education, Cheonan, Korea
| | - Namjun Cho
- 3 School of Energy, Materials, and Chemical Engineering, Korea University of Technology and Education, Cheonan, Korea
| | - Faiçal El Mhamdi
- 1 Intestinal Immunophysiology-Research Unit (02/RU/09-02), Faculty of Medicine of Tunis, University of Tunis El Manar, Bab Saâdoun, Tunisia
| | - Hanen Ben Ismail
- 2 Department of Animal Resources, Fisheries, and Food Technology, National Institute of Agronomy of Tunisia, El Mahrajène, Tunisia
| | - Abderraouf Ben Mansour
- 1 Intestinal Immunophysiology-Research Unit (02/RU/09-02), Faculty of Medicine of Tunis, University of Tunis El Manar, Bab Saâdoun, Tunisia
| | - Fayçal Haj Sassi
- 1 Intestinal Immunophysiology-Research Unit (02/RU/09-02), Faculty of Medicine of Tunis, University of Tunis El Manar, Bab Saâdoun, Tunisia
| | - Fatma Ben Aissa-Fennira
- 1 Intestinal Immunophysiology-Research Unit (02/RU/09-02), Faculty of Medicine of Tunis, University of Tunis El Manar, Bab Saâdoun, Tunisia
| |
Collapse
|
21
|
Scientific Opinion on the safety and efficacy of Suilectin™ (Phaseolus vulgarislectins) as a zootechnical additive for suckling piglets (performance enhancer). EFSA J 2015. [DOI: 10.2903/j.efsa.2015.3903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
22
|
Sousa BL, Silva Filho JC, Kumar P, Pereira RI, Łyskowski A, Rocha BAM, Delatorre P, Bezerra GA, Nagano CS, Gruber K, Cavada BS. High-resolution structure of a new Tn antigen-binding lectin from Vatairea macrocarpa and a comparative analysis of Tn-binding legume lectins. Int J Biochem Cell Biol 2014; 59:103-10. [PMID: 25499445 DOI: 10.1016/j.biocel.2014.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/10/2014] [Accepted: 12/03/2014] [Indexed: 11/28/2022]
Abstract
Plant lectins have been studied as histological markers and promising antineoplastic molecules for a long time, and structural characterization of different lectins bound to specific cancer epitopes has been carried out successfully. The crystal structures of Vatairea macrocarpa (VML) seed lectin in complex with GalNAc-α-O-Ser (Tn antigen) and GalNAc have been determined at the resolution of 1.4Å and 1.7Å, respectively. Molecular docking analysis of this new structure and other Tn-binding legume lectins to O-mucin fragments differently decorated with this antigen provides a comparative binding profile among these proteins, stressing that subtle alterations that may not influence monosaccharide binding can, nonetheless, directly impact the ability of these lectins to recognize naturally occurring antigens. In addition to the specific biological effects of VML, the structural and binding similarities between it and other lectins commonly used as histological markers (e.g., VVLB4 and SBA) strongly suggest VML as a candidate tool for cancer research.
Collapse
Affiliation(s)
- Bruno Lopes Sousa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Av. Mister Hull s/n, Bloco 907, Box 6043, 60440-970 Fortaleza, Ceará, Brazil
| | - José Caetano Silva Filho
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Av. Mister Hull s/n, Bloco 907, Box 6043, 60440-970 Fortaleza, Ceará, Brazil
| | - Prashant Kumar
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/3, A-8010 Graz, Austria
| | - Ronniery Ilário Pereira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Av. Mister Hull s/n, Bloco 907, Box 6043, 60440-970 Fortaleza, Ceará, Brazil
| | - Andrzej Łyskowski
- Department of Biochemistry and Biotechnology, Rzeszów University of Technology, 35-959 Rzeszów, Poland
| | - Bruno Anderson Matias Rocha
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Av. Mister Hull s/n, Bloco 907, Box 6043, 60440-970 Fortaleza, Ceará, Brazil
| | - Plínio Delatorre
- Departamento de Biologia Molecular, Universidade Federal da Paraíba, Cidade Universitária, 58059-900 João Pessoa, Brazil
| | - Gustavo Arruda Bezerra
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | - Celso Shiniti Nagano
- Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Av. Mister Hull s/n, Bloco 827, Fortaleza, Brazil
| | - Karl Gruber
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/3, A-8010 Graz, Austria
| | - Benildo Sousa Cavada
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Av. Mister Hull s/n, Bloco 907, Box 6043, 60440-970 Fortaleza, Ceará, Brazil.
| |
Collapse
|
23
|
Pattern Recognition in Legume Lectins to Extrapolate Amino Acid Variability to Sugar Specificity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014. [DOI: 10.1007/978-3-319-11280-0_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
24
|
KleinJan GH, Buckle T, van Willigen DM, van Oosterom MN, Spa SJ, Kloosterboer HE, van Leeuwen FWB. Fluorescent lectins for local in vivo visualization of peripheral nerves. Molecules 2014; 19:9876-92. [PMID: 25006792 PMCID: PMC6271788 DOI: 10.3390/molecules19079876] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/19/2014] [Accepted: 07/01/2014] [Indexed: 01/26/2023] Open
Abstract
Damage to peripheral nerves caused during a surgical intervention often results in function loss. Fluorescence imaging has the potential to improve intraoperative identification and preservation of these structures. However, only very few nerve targeting agents are available. This study describes the in vivo nerve staining capabilities of locally administered fluorescent lectin-analogues. To this end WGA, PNA, PHA-L and LEL were functionalized with Cy5 (λex max 640 nm; λem max 680 nm). Transfer of these imaging agents along the sciatic nerve was evaluated in Thy1-YFP mice (n = 12) after intramuscular injection. Migration from the injection site was assessed in vivo using a laboratory fluorescence scanner and ex vivo via fluorescence confocal microscopy. All four lectins showed retrograde movement and staining of the epineurium with a signal-to-muscle ratio of around two. On average, the longest transfer distance was obtained with WGA-Cy5 (0.95 cm). Since WGA also gave minimal uptake in the lymphatic system, this lectin type revealed the highest potential as a migration imaging agent to visualize nerves.
Collapse
Affiliation(s)
- Gijs Hendrik KleinJan
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Hospital, Albinusdreef 2, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Tessa Buckle
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Hospital, Albinusdreef 2, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Danny Michel van Willigen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Hospital, Albinusdreef 2, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Matthias Nathanaël van Oosterom
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Hospital, Albinusdreef 2, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Silvia Johara Spa
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Hospital, Albinusdreef 2, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Harmen Egbert Kloosterboer
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Hospital, Albinusdreef 2, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Fijs Willem Bernhard van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Hospital, Albinusdreef 2, PO Box 9600, 2300 RC Leiden, The Netherlands.
| |
Collapse
|
25
|
Nagae M, Soga K, Morita-Matsumoto K, Hanashima S, Ikeda A, Yamamoto K, Yamaguchi Y. Phytohemagglutinin from Phaseolus vulgaris (PHA-E) displays a novel glycan recognition mode using a common legume lectin fold. Glycobiology 2014; 24:368-78. [DOI: 10.1093/glycob/cwu004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
26
|
Phytohemagglutinins augment red kidney bean (Phaseolus vulgaris L.) induced allergic manifestations. J Proteomics 2013; 93:50-64. [DOI: 10.1016/j.jprot.2013.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 01/31/2013] [Accepted: 02/02/2013] [Indexed: 11/19/2022]
|
27
|
Sakthivelkumar S, Jesse MI, Veeramani V, Ramaraj P, Kathiravan K, Arumugam M, Janarthanan S. Diversity and analysis of sequences encoded by arcelin genes from Indian wild pulses resistant to bruchids. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Abhilash J, Dileep KV, Palanimuthu M, Geethanandan K, Sadasivan C, Haridas M. Metal ions in sugar binding, sugar specificity and structural stability of Spatholobus parviflorus seed lectin. J Mol Model 2013; 19:3271-8. [DOI: 10.1007/s00894-013-1854-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 04/16/2013] [Indexed: 12/12/2022]
|
29
|
Novo S, Ibáñez E, Barrios L, Castell O, Nogués C. Biomolecule screening for efficient attachment of biofunctionalized microparticles to the zona pellucida of mammalian oocytes and embryos. Biomed Microdevices 2013; 15:801-9. [PMID: 23613175 DOI: 10.1007/s10544-013-9766-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Individual tagging of oocytes and embryos through the attachment of micrometer-sized polysilicon barcodes to their zona pellucida (ZP) is a promising approach to ensure their correct identification and traceability in human assisted reproduction and in animal production programs. To provide barcodes with the capacity of binding to the ZP, they must be first biofunctionalized with a biomolecule capable of binding to the ZP of both oocytes and embryos. The aim of this work was to select, among an anti-ZP2 antibody and the two lectins wheat germ agglutinin (WGA) and phytohemagglutinin-L, the most optimal biomolecule for the eventual biofunctionalization of barcodes, using mouse oocytes and embryos and commercially available microspheres as a model. Despite the anti-ZP2 antibody showed the highest number of binding sites onto the ZP surface, as determined by field emission scanning electron microscopy, the binding of anti-ZP2-biofunctionalized microspheres to the ZP of cultured oocytes and embryos was less robust and less stable than the binding of lectin-biofunctionalized ones. WGA proved to be, among the three candidates tested, the most appropriate biomolecule to biofunctionalize microparticles with the aim to attach them to the ZP of both oocytes and embryos and to maintain them attached through oocyte activation (zona reaction) and in vitro culture up to the blastocyst stage. As saccharides recognized by WGA are highly abundant in the ZP of most mammalian species, WGA-biofuncionalized microparticles would be able to attach to the ZP of oocytes/embryos of species other than the mouse, such as humans and farm animals.
Collapse
Affiliation(s)
- Sergio Novo
- Departament de Biologia Cel lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Facultat Biociències, 08193 Bellaterra, Spain
| | | | | | | | | |
Collapse
|
30
|
Schneider OD, Millen SH, Weiss AA, Miller WE. Mechanistic insight into pertussis toxin and lectin signaling using T cells engineered to express a CD8α/CD3ζ chimeric receptor. Biochemistry 2012; 51:4126-37. [PMID: 22551306 DOI: 10.1021/bi3002693] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mammalian cell-surface receptors typically display N- or O-linked glycans added post-translationally. Plant lectins such as phytohemagluttinin (PHA) can activate the T cell receptor (TCR) and other cell-surface receptors by binding to glycans and initiating receptor cross-linking. Pathogenic microorganisms such as Bordetella pertussis also express proteins with lectin-like activities. Similar to plant lectins, pertussis toxin (PTx) can activate the TCR and bind to a variety of glycans. However, whether the lectin-like activity of PTx is responsible for its ability to activate TCR signaling has not been formally proven. Here we examined the ability of PTx and a panel of lectins to activate the TCR or a CD8α/CD3ζ chimeric receptor (termed CD8ζ). We demonstrate that CD8ζ rescues PTx-induced signaling events lacking in TCR null cells. This result indicates that CD8ζ can substitute for TCR and supports the hypothesis that PTxB (functioning as a lectin) stimulates signaling via receptor cross-linking rather than by binding to a specific epitope on the TCR. Moreover, PTx is able to activate signaling by binding either N-linked or O-linked glycan-modified receptors as the TCR displays N-linked glycans while CD8ζ displays O-linked glycans. Finally, studies with a diverse panel of lectins indicate that the signaling activity of the lectins does not always correlate with the biochemical reports of ligand preferences. Comparison of lectin signaling through TCR or CD8ζ allows us to better define the structural and functional properties of lectin-glycan interactions using a biologically based signaling readout.
Collapse
Affiliation(s)
- Olivia D Schneider
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | | | | | |
Collapse
|
31
|
Geethanandan K, Abhilash J, Bharath S, Sadasivan C, Haridas M. X-ray structure of a galactose-specific lectin from Spatholobous parviflorous. Int J Biol Macromol 2011; 49:992-8. [DOI: 10.1016/j.ijbiomac.2011.08.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 08/11/2011] [Accepted: 08/20/2011] [Indexed: 10/17/2022]
|
32
|
Geethanandan K, Abhilash J, Bharath SR, Sadasivan C, Haridas M. Crystallization and preliminary X-ray studies of a galactose-specific lectin from the seeds of Spatholobus parviflorus. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:700-2. [PMID: 21636916 PMCID: PMC3107147 DOI: 10.1107/s174430911101387x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 04/12/2011] [Indexed: 11/11/2022]
Abstract
A galactose-specific seed lectin was purified from the legume Spatholobus parviflorus and crystallized using the hanging-drop vapour-diffusion technique. The crystals belonged to space group P1, with unit-cell parameters a = 60.998, b = 60.792, c = 78.179 Å, α = 101.32, β = 91.38, γ = 104.32°. X-ray diffraction data were collected under cryoconditions (100 K) to a resolution of 2.04 Å using a MAR image-plate detector system mounted on a rotating-anode X-ray (Cu Kα) generator. Molecular replacement using legume-lectin coordinates as a search model gave a tetrameric structure.
Collapse
Affiliation(s)
- K. Geethanandan
- Department of Biotechnology and Microbiology, Kannur University, Kerala 670 661, India
| | - Joseph Abhilash
- Department of Biotechnology and Microbiology, Kannur University, Kerala 670 661, India
| | - S. R. Bharath
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - C. Sadasivan
- Department of Biotechnology and Microbiology, Kannur University, Kerala 670 661, India
- Inter University Centre for Bioscience, Kannur University, Kerala 670 661, India
| | - M. Haridas
- Department of Biotechnology and Microbiology, Kannur University, Kerala 670 661, India
- Inter University Centre for Bioscience, Kannur University, Kerala 670 661, India
| |
Collapse
|
33
|
Proteomic approaches to study structure, functions and toxicity of legume seeds lectins. Perspectives for the assessment of food quality and safety. J Proteomics 2009; 72:527-38. [DOI: 10.1016/j.jprot.2009.02.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 02/02/2009] [Accepted: 02/04/2009] [Indexed: 11/16/2022]
|
34
|
Ren J, Shi J, Kakuda Y, Kim D, Xue SJ, Zhao M, Jiang Y. Phytohemagglutinin isolectins extracted and purified from red kidney beans and its cytotoxicity on human H9 lymphoma cell line. Sep Purif Technol 2008. [DOI: 10.1016/j.seppur.2008.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
35
|
Rocha BAM, Moreno FBMB, Delatorre P, Souza EP, Marinho ES, Benevides RG, Rustiguel JKR, Souza LAG, Nagano CS, Debray H, Sampaio AH, de Azevedo WF, Cavada BS. Purification, Characterization, and Preliminary X-Ray Diffraction Analysis of a Lactose-Specific Lectin from Cymbosema roseum Seeds. Appl Biochem Biotechnol 2008; 152:383-93. [DOI: 10.1007/s12010-008-8334-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 07/29/2008] [Indexed: 11/30/2022]
|
36
|
Morari D, Stepurina T, Rotari VI. Calcium ions make phytohemagglutinin resistant to trypsin proteolysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:3764-3771. [PMID: 18459789 DOI: 10.1021/jf0734222] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
To investigate the mechanism of phytohemagglutinin (PHA) susceptibility or resistance to the action of proteolytic enzymes, its in vitro proteolysis by trypsin was studied. It was found that Ca (2+) gives resistance to the native PHA molecule to trypsin proteolysis. In the absence of Ca (2+) trypsin performs a thorough hydrolysis of PHA. At the first stage of trypsin hydrolysis of PHA the formation of a relatively stable high molecular mass product occurs (PHA-T) as a result of non-co-operative proteolysis. At the second stage, the degradation of PHA-T occurs, and this degradation is performed by parallel co-operative proteolysis. This type of proteolysis differs from the action of trypsin on phaseolin, the main storage protein from common bean ( Phaseolus vulgaris L.). The implications of Ca (2+)influence of PHA hydrolysis by trypsin are discussed.
Collapse
Affiliation(s)
- Diana Morari
- Laboratory of Plant Biochemistry, State University of Moldova, Mateevici str. 60, MD-2009 Kishinev, Republic of Moldova
| | | | | |
Collapse
|
37
|
Comparison of the phytohaemagglutinin from red kidney bean (Phaseolus vulgaris) purified by different affinity chromatography. Food Chem 2008. [DOI: 10.1016/j.foodchem.2007.10.071] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Zhang YL, Liu FJ, Sun DQ, Chen XQ, Zhang Y, Zheng YM, Zhao MT, Wang GH. Phytohemagglutinin improves efficiency of electrofusing mammary gland epithelial cells into oocytes in goats. Theriogenology 2008; 69:1165-71. [PMID: 18400286 DOI: 10.1016/j.theriogenology.2007.10.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 10/28/2007] [Accepted: 10/20/2007] [Indexed: 11/16/2022]
Abstract
The objective was to investigate the effect of phytohemagglutinin (PHA) on the fusion of mammary gland epithelial (MGE) cells into enucleated oocytes in goats. The toxicity of PHA was evaluated by testing its effect on the development of parthenogenetic caprine oocytes. The effective dose and duration of PHA treatment (100 microg/mL, 20 min incubation) was selected and used to compare fusion efficiency and embryo development following nuclear transfer. Two electrofusion protocols, chamber fusion (CF) and pressurized microelectrode fusion (pMEF), were also compared, when couplets were treated with and without PHA (100 microg/mL, 20 min). Fusion rate of couplets increased from 52.8 to 74.0% for the CF protocol (P<0.05), but was not significantly different for the pMEF protocol (72.7% vs. 78.1%) after PHA treatment. There were no significant differences between treated group and control in rates of subsequent cleavage or blastocyst development. Following transfer of the cloned blastocysts derived from the PHA-treated group and the control group into synchronized recipients, pregnancy rates (Day 30) were not significantly different between treated group and control (28.6% vs. 25.0%). However, all recipients aborted within 120d, microsatellite DNA analyses confirmed that the aborted fetuses were genetically identical to the donor goat. In conclusion, the fusion rate of caprine MGE cell couplets was improved by pre-incubating couplets in medium containing 100 microg/mL PHA prior to electrical pulsing, and embryos derived from PHA treatment established early pregnancies.
Collapse
Affiliation(s)
- Y L Zhang
- Institute of Biotechnology, Northwest Sci-Tech University of Agriculture & Forestry, Yangling, Shaanxi 712100, China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Purification of a PHA-Like Chitin-binding Protein from Acacia farnesiana Seeds: A Time-dependent Oligomerization Protein. Appl Biochem Biotechnol 2008; 150:97-111. [DOI: 10.1007/s12010-008-8144-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Accepted: 01/02/2008] [Indexed: 10/22/2022]
|
40
|
Kulkarni KA, Katiyar S, Surolia A, Vijayan M, Suguna K. Generation of blood group specificity: New insights from structural studies on the complexes of A- and B-reactive saccharides with basic winged bean agglutinin. Proteins 2007; 68:762-9. [PMID: 17510954 DOI: 10.1002/prot.21428] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Basic winged bean agglutinin binds A-blood group substance with higher affinity and B-blood group substance with lesser affinity. It does not bind the O substance. The crystal structures of the lectin, complexed with A-reactive and B-reactive di and tri saccharides, have been determined. In addition, the complexes of the lectin with fucosylated A-trisaccharides and B-trisaccharides and with a variant of the A-trisaccharide have been modeled. These structures and models provide valuable insights into the structural basis of blood group specificities. All the four carbohydrate binding loops of the lectin contribute to the primary combining site while the loop of variable length contributes to the secondary binding site. In a significant advance to the current understanding, the interactions at the secondary binding site also contribute substantially, albeit in a subtle manner, to determine the blood group specificity. Compared with the interactions of the B-trisaccharide with the lectin, the third sugar residue of the A-reactive trisacharide forms an additional hydrogen bond with a lysine residue in the variable loop. In the former, the formation of such a hydrogen bond is prevented by a shift in the orientation of third sugar resulting from an internal hydrogen bond in it. The formation of this bond is also facilitated by an interaction dependent change in the rotamer conformation of the lysyl residue of the variable loop. Thus, the difference in the interactions at the secondary site is generated by coordinated movements in the ligand as well as the protein. A comparison of the crystal structure and the model of the complex involving the variant of the A-trisaccharide results in the delineation of the relative contributions of the interactions at the primary and the secondary sites in determining blood group specificity.
Collapse
Affiliation(s)
- Kiran A Kulkarni
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | | | | | | | |
Collapse
|
41
|
Mauk MR, Rosell FI, Mauk AG. Structural modelling of metal ion binding to human haemopexin. Nat Prod Rep 2007; 24:523-32. [PMID: 17534528 DOI: 10.1039/b604184c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Marcia R Mauk
- Department of Biochemistry and Molecular Biology and the Centre for Blood Research, Life Sciences Centre, 2350 Health Sciences Mall University of British Columbia, V6T 1Z3, Canada.
| | | | | |
Collapse
|
42
|
Lekka M, Laidler P, Labedź M, Kulik AJ, Lekki J, Zajac W, Stachura Z. Specific Detection of Glycans on a Plasma Membrane of Living Cells with Atomic Force Microscopy. ACTA ACUST UNITED AC 2006; 13:505-12. [PMID: 16720271 DOI: 10.1016/j.chembiol.2006.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 03/13/2006] [Accepted: 03/13/2006] [Indexed: 01/30/2023]
Abstract
Among the many alterations of cancer cells is the expression of different surface oligosaccharides. In this work, oligosaccharide expression in living cells (cancer and reference ones) was studied with atomic force microscopy by using lectins as probes. The unbinding force obtained for the same lectin type (concanavalin A or Sambucus nigra) suggested slightly dissimilar structures of binding sites of the same ligand type. For the lectin from Phaseolus vulgaris, a much larger unbinding force indicated a distinct structure of the binding site in cancer cells. The unbinding probability confirmed a higher content of both sialic acid and mannose-containing ligands in cancer and reference cells, respectively. These results demonstrate the potential of atomic force microscopy to directly probe the presence of molecules on a living cell surface, together with the quantitative description of their expression.
Collapse
Affiliation(s)
- Małgorzata Lekka
- The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland.
| | | | | | | | | | | | | |
Collapse
|
43
|
Garcia-Pino A, Loris R, Wyns L, Buts L. Crystallization and preliminary X-ray analysis of the Man(alpha1-2)Man-specific lectin from Bowringia mildbraedii in complex with its carbohydrate ligand. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:931-4. [PMID: 16511199 PMCID: PMC1991310 DOI: 10.1107/s174430910502854x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Accepted: 09/12/2005] [Indexed: 11/10/2022]
Abstract
The lectin from Bowringia mildbraedii seeds crystallizes in the presence of the disaccharide Man(alpha1-2)Man. The best crystals grow at 293 K within four weeks after a pre-incubation at 277 K to induce nucleation. A complete data set was collected to a resolution of 1.90 A using synchrotron radiation. The crystals belong to space group I222, with unit-cell parameters a = 66.06, b = 86.35, c = 91.76 A, and contain one lectin monomer in the asymmetric unit.
Collapse
Affiliation(s)
- Abel Garcia-Pino
- Laboratorium voor Ultrastructuur, Vrije Universiteit Brussel and Department of Molecular and Cellular Interactions, Vlaams Interuniversitair Instituut voor Biotechnologie, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Remy Loris
- Laboratorium voor Ultrastructuur, Vrije Universiteit Brussel and Department of Molecular and Cellular Interactions, Vlaams Interuniversitair Instituut voor Biotechnologie, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Lode Wyns
- Laboratorium voor Ultrastructuur, Vrije Universiteit Brussel and Department of Molecular and Cellular Interactions, Vlaams Interuniversitair Instituut voor Biotechnologie, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Lieven Buts
- Laboratorium voor Ultrastructuur, Vrije Universiteit Brussel and Department of Molecular and Cellular Interactions, Vlaams Interuniversitair Instituut voor Biotechnologie, Pleinlaan 2, B-1050 Brussel, Belgium
| |
Collapse
|
44
|
Du F, Shen PC, Xu J, Sung LY, Jeong BS, Lucky Nedambale T, Riesen J, Cindy Tian X, Cheng WTK, Lee SN, Yang X. The cell agglutination agent, phytohemagglutinin-L, improves the efficiency of somatic nuclear transfer cloning in cattle (Bos taurus). Theriogenology 2005; 65:642-57. [PMID: 16045975 DOI: 10.1016/j.theriogenology.2005.05.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Accepted: 05/21/2005] [Indexed: 11/23/2022]
Abstract
One of the several factors that contribute to the low efficiency of mammalian somatic cloning is poor fusion between the small somatic donor cell and the large recipient oocyte. This study was designed to test phytohemagglutinin (PHA) agglutination activity on fusion rate, and subsequent developmental potential of cloned bovine embryos. The toxicity of PHA was established by examining its effects on the development of parthenogenetic bovine oocytes treated with different doses (Experiment 1), and for different durations (Experiment 2). The effective dose and duration of PHA treatment (150 microg/mL, 20 min incubation) was selected and used to compare membrane fusion efficiency and embryo development following somatic cell nuclear transfer (Experiment 3). Cloning with somatic donor fibroblasts versus cumulus cells was also compared, both with and without PHA treatment (150 microg/mL, 20 min). Fusion rate of nuclear donor fibroblasts, after phytohemagglutinin treatment, was increased from 33 to 61% (P < 0.05), and from 59 to 88% (P < 0.05) with cumulus cell nuclear donors. The nuclear transfer (NT) efficiency per oocyte used was improved following PHA treatment, for both fibroblast (13% versus 22%) as well as cumulus cells (17% versus 34%; P < 0.05). The cloned embryos, both with and without PHA treatment, were subjected to vitrification and embryo transfer testing, and resulted in similar survival (approximately 90% hatching) and pregnancy rates (17-25%). Three calves were born following vitrification and embryo transfer of these embryos; two from the PHA-treated group, and one from non-PHA control group. We concluded that PHA treatment significantly improved the fusion efficiency of somatic NT in cattle, and therefore, increased the development of cloned blastocysts. Furthermore, within a determined range of dose and duration, PHA had no detrimental effect on embryo survival post-vitrification, nor on pregnancy or calving rates following embryo transfer.
Collapse
Affiliation(s)
- Fuliang Du
- Department of Animal Science, Center for Regenerative Biology, University of Connecticut, 1390 Storrs Road, Storrs, 06269, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Biswas S, Kayastha AM. Unfolding and refolding of Leucoagglutinin (PHA-L), an oligomeric lectin from kidney beans (Phaseolus vulgaris). Biochim Biophys Acta Gen Subj 2004; 1674:40-9. [PMID: 15342112 DOI: 10.1016/j.bbagen.2004.04.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Revised: 04/06/2004] [Accepted: 04/16/2004] [Indexed: 11/21/2022]
Abstract
The unfolding and refolding of Phaseolus vulgaris Leucoagglutinin, a homotetrameric legume lectin, was studied at pH 2.5 and 7.2 using fluorescence, far- and near-UV circular dichroism (CD) spectroscopy, 8-anilino-1-naphthalene sulfonate (ANS) binding and FPLC techniques. This protein was found to refold even at pH 2.5 and also exhibited high refolding yield around 60% at pH 2.5 and 85% at pH 7.2. The refolding at pH 2.5 takes place with the formation of a dimeric intermediate. Although the hydrodynamic radius of the completely renatured protein and the dimer at pH 2.5 was found to be same, the ANS binding as well as far-UV CD spectra of the two were different. The denaturation kinetics at pH 2.5 followed single exponential pattern with the rate of denaturation being independent of protein concentration. The renaturation kinetics on the other hand was dependent on the protein concentration providing further evidence of an intermediate state during refolding. From these experiments the folding pathway of the protein at pH 2.5 was proposed.
Collapse
Affiliation(s)
- Shyamasri Biswas
- School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi-221 005, UP, India.
| | | |
Collapse
|
46
|
Santimone M, Koukiekolo R, Moreau Y, Le Berre V, Rougé P, Marchis-Mouren G, Desseaux V. Porcine pancreatic α-amylase inhibition by the kidney bean (Phaseolus vulgaris) inhibitor (α-AI1) and structural changes in the α-amylase inhibitor complex. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1696:181-90. [PMID: 14871659 DOI: 10.1016/j.bbapap.2003.11.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2003] [Accepted: 11/03/2003] [Indexed: 10/26/2022]
Abstract
Porcine pancreatic alpha-amylase (PPA) is inhibited by the red kidney bean (Phaseolus vulgaris) inhibitor alpha-AI1 [Eur. J. Biochem. 265 (1999) 20]. Inhibition kinetics were carried out using DP 4900-amylose and maltopentaose as substrate. As shown by graphical and statistical analysis of the kinetic data, the inhibitory mode is of the mixed noncompetitive type whatever the substrate thus involving the EI, EI2, ESI and ESI2 complexes. This contrast with the E2I complex obtained in the crystal and with biophysical studies. Such difference very likely depends on the [I]/[E] ratio. At low ratio, the E2I complex is favoured; at high ratio the EI, ESI and EI2 complexes are formed. The inhibition model also differs from those previously proposed for acarbose [Eur. J. Biochem. 241 (1996) 787 and Eur. J. Biochem. 252 (1998) 100]. In particular, with alpha-AI1, the inhibition takes place only when PPA and alpha-AI are preincubated together before adding the substrate. This indicates that the abortive PPA-alphaAI1 complex is formed during the preincubation period. One additional carbohydrate binding site is also demonstrated yielding the ESI complex. Also, a second protein binding site is found in EI2 and ESI2 abortive complexes. Conformational changes undergone by PPA upon alpha-AI1 binding are shown by higher sensitivity to subtilisin attack. From X-ray analysis of the alpha-AI1-PPA complex (E2I), the major interaction occurs with two hairpin loops L1 (residues 29-46) and L2 (residues 171-189) of alpha-AI1 protruding into the V-shaped active site of PPA. The hydrolysis of alpha-AI1 that accounts for the inhibitory activity is reported.
Collapse
Affiliation(s)
- Marius Santimone
- Institut Méditerranéen de Recherche en Nutrition (IMRN case 342), UMR INRA 1111, Faculté des Sciences et Techniques de St Jérôme, Université d'Aix-Marseille, Av Esc Normandie-Niemen, 13397 Marseilles cedex 20, France
| | | | | | | | | | | | | |
Collapse
|
47
|
Kapoor M, Srinivas H, Kandiah E, Gemma E, Ellgaard L, Oscarson S, Helenius A, Surolia A. Interactions of substrate with calreticulin, an endoplasmic reticulum chaperone. J Biol Chem 2003; 278:6194-200. [PMID: 12464625 DOI: 10.1074/jbc.m209132200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calreticulin is a molecular chaperone found in the endoplasmic reticulum in eukaryotes, and its interaction with N-glycosylated polypeptides is mediated by the glycan Glc(1)Man(7-9)GlcNAc(2) present on the target glycoproteins. Here, we report the thermodynamic parameters of its interaction with di-, tri-, and tetrasaccharide, which are truncated versions of the glucosylated arm of Glc(1)Man(7-9)GlcNAc(2), determined by the quantitative technique of isothermal titration calorimetry. This method provides a direct estimate of the binding constants (K(b)) and changes in enthalpy of binding (Delta H(b) degrees ) as well as the stoichiometry of the reaction. Unlike past speculations, these studies demonstrate unambiguously that calreticulin has only one site per molecule for binding its complementary glucosylated ligands. Although the binding of glucose by itself is not detectable, a binding constant of 4.19 x 10(4) m(-1) at 279 K is obtained when glucose occurs in alpha-1,3 linkage to Man alpha Me as in Glc alpha 1-3Man alpha Me. The binding constant increases by 25-fold from di- to trisaccharide and doubles from tri- to tetrasaccharide, demonstrating that the entire Glc alpha 1-3Man alpha 1-2Man alpha 1-2Man alpha Me structure of the oligosaccharide is recognized by calreticulin. The thermodynamic parameters thus obtained were supported by modeling studies, which showed that increased number of hydrogen bonds and van der Waals interactions occur as the size of the oligosaccharide is increased. Also, several novel findings about the recognition of saccharide ligands by calreticulin vis á vis legume lectins, which have the same fold as this chaperone, are discussed.
Collapse
Affiliation(s)
- Mili Kapoor
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Babino A, Tello D, Rojas A, Bay S, Osinaga E, Alzari PM. The crystal structure of a plant lectin in complex with the Tn antigen. FEBS Lett 2003; 536:106-10. [PMID: 12586347 DOI: 10.1016/s0014-5793(03)00037-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structure of the tetrameric Vicia villosa isolectin B4 (VVLB4) in complex with a cancer antigen, the Tn glycopeptide (GalNAc-O-Ser), was determined at 2.7 A resolution. The N-acetylgalactoside moiety of the ligand binds to the primary combining site of VVLB4 in a similar way as observed for other Gal/GalNAc-specific plant lectins. The amino acid moiety of the Tn antigen is largely exposed to the solvent and makes few contacts with the protein. The structure of the complex provides a framework to understand the differences in the strength of VVLB4 binding to different sugars and emphasizes the role of a single protein residue, Tyr127, as a structural determinant of Tn-binding specificity.
Collapse
Affiliation(s)
- Alvaro Babino
- Departamento de Bioquimica, Facultad de Medicina, Av. Gral Flores 2125, Montevideo, Uruguay
| | | | | | | | | | | |
Collapse
|
49
|
Biswas S, Kayastha AM. Thermal stability of Phaseolus vulgaris leucoagglutinin: a differential scanning calorimetry study. JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2002; 35:472-5. [PMID: 12359088 DOI: 10.5483/bmbrep.2002.35.5.472] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phaseolus vulgaris phytohemagglutinin L is a homotetrameric-leucoagglutinating seed lectin. Its three-dimensional structure shows similarity with other members of the legume lectin family. The tetrameric form of this lectin is pH dependent. Gel filtration results showed that the protein exists in its dimeric state at pH 2.5 and as a tetramer at pH 7.2. Contrary to earlier reports on legume lectins that possess canonical dimers, thermal denaturation studies show that the refolding of phytohemagglutinin L at neutral pH is irreversible. Differential scanning calorimetry (DSC) was used to study the denaturation of this lectin as a function of pH that ranged from 2.0 to 3.0. The lectin was found to be extremely thermostable with a transition temperature around 82 degrees C and above 100 degrees C at pH 2.5 and 7.2, respectively. The ratio of calorimetric to vant Hoff enthalpy could not be calculated because of its irreversible-folding behavior. However, from the DSC data, it was discovered that the protein remains in its compact-folded state, even at pH 2.3, with the onset of denaturation occurring at 60 degrees C.
Collapse
Affiliation(s)
- Shyamasri Biswas
- School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi-221 005, India
| | | |
Collapse
|
50
|
Kaneda Y, Whittier RF, Yamanaka H, Carredano E, Gotoh M, Sota H, Hasegawa Y, Shinohara Y. The high specificities of Phaseolus vulgaris erythro- and leukoagglutinating lectins for bisecting GlcNAc or beta 1-6-linked branch structures, respectively, are attributable to loop B. J Biol Chem 2002; 277:16928-35. [PMID: 11864980 DOI: 10.1074/jbc.m112382200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite very similar tertiary structures based upon a common framework, legume lectins exhibit an amazing variety of sugar binding specificities. While most of these lectins recognize rather discrete sugar linkages, Phaseolus vulgaris erythroagglutinating and leukoagglutinating lectins (E(4)- and L(4)-PHA) are unique in recognizing larger structures. E(4)- and L(4)-PHA are known to recognize complex type N-glycans containing bisecting GlcNAc or a beta1,6-linked branch, respectively. However, the detailed mechanisms of molecular recognition are poorly understood. In order to dissect the contributions of different portions of each lectin, we carried out region-swapping mutagenesis between E(4)- and L(4)-PHA. We prepared six chimeric lectins by exchanging different combinations of loop B and the central portion of loop C, two of four loops thought to be important for the recognition of monosaccharides (Sharma, V., and Surolia, A. (1997) J. Mol. Biol. 267, 433-445). The chimeric lectins' sugar binding activities were evaluated quantitatively by surface plasmon resonance. These comparisons indicate that the high specificities of E(4)- and L(4)-PHA toward bisecting GlcNAc and beta1,6-linked branch structures are almost solely attributable to loop B. The contribution of the central portion of loop C to the recognition of those structural motifs was found to be negligible. Instead, it modulates affinity toward LacNAc residues present at the nonreducing terminus. Moreover, some of the chimeric lectins prepared in this study showed even higher specificities/affinities than native E(4)- and L(4)-PHA toward complex sugar chains containing either a bisecting GlcNAc residue or a beta1,6-linked branch.
Collapse
Affiliation(s)
- Yuko Kaneda
- Tokyo Research and Development, Amersham Biosciences, 3-25-1, Hyakunincho, Shinjuku-ku, Tokyo, 169-0073 Japan
| | | | | | | | | | | | | | | |
Collapse
|