1
|
Initial bridges between two ribosomal subunits are formed within 9.4 milliseconds, as studied by time-resolved cryo-EM. Proc Natl Acad Sci U S A 2014; 111:9822-7. [PMID: 24958863 DOI: 10.1073/pnas.1406744111] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Association of the two ribosomal subunits during the process of translation initiation is a crucial step of protein synthesis. The two subunits (30S and 50S) of the bacterial 70S ribosome are held together by 12 dynamic bridges involving RNA-RNA, RNA-protein, and protein-protein interactions. The process of bridge formation, such as whether all these bridges are formed simultaneously or in a sequential order, is poorly understood. To understand such processes, we have developed and implemented a class of microfluidic devices that mix two components to completion within 0.4 ms and spray the mixture in the form of microdroplets onto an electron microscopy grid, yielding a minimum reaction time of 9.4 ms before cryofixation. Using these devices, we have obtained cryo-EM data corresponding to reaction times of 9.4 and 43 ms and have determined 3D structures of ribosomal subunit association intermediates. Molecular analyses of the cryo-EM maps reveal that eight intersubunit bridges (bridges B1a, B1b, B2a, B2b, B3, B7a, B7b, and B8) form within 9.4 ms, whereas the remaining four bridges (bridges B2c, B4, B5, and B6) take longer than 43 ms to form, suggesting that bridges are formed in a stepwise fashion. Our approach can be used to characterize sequences of various dynamic functional events on complex macromolecular assemblies such as ribosomes.
Collapse
|
2
|
Lu Z, Shaikh TR, Barnard D, Meng X, Mohamed H, Yassin A, Mannella CA, Agrawal RK, Lu TM, Wagenknecht T. Monolithic microfluidic mixing-spraying devices for time-resolved cryo-electron microscopy. J Struct Biol 2009; 168:388-95. [PMID: 19683579 DOI: 10.1016/j.jsb.2009.08.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 07/14/2009] [Accepted: 08/10/2009] [Indexed: 11/19/2022]
Abstract
The goal of time-resolved cryo-electron microscopy is to determine structural models for transient functional states of large macromolecular complexes such as ribosomes and viruses. The challenge of time-resolved cryo-electron microscopy is to rapidly mix reactants, and then, following a defined time interval, to rapidly deposit them as a thin film and freeze the sample to the vitreous state. Here we describe a methodology in which reaction components are mixed and allowed to react, and are then sprayed onto an EM grid as it is being plunged into cryogen. All steps are accomplished by a monolithic, microfabricated silicon device that incorporates a mixer, reaction channel, and pneumatic sprayer in a single chip. We have found that microdroplets produced by air atomization spread to sufficiently thin films on a millisecond time scale provided that the carbon supporting film is made suitably hydrophilic. The device incorporates two T-mixers flowing into a single channel of four butterfly-shaped mixing elements that ensure effective mixing, followed by a microfluidic reaction channel whose length can be varied to achieve the desired reaction time. The reaction channel is flanked by two ports connected to compressed humidified nitrogen gas (at 50 psi) to generate the spray. The monolithic mixer-sprayer is incorporated into a computer-controlled plunging apparatus. To test the mixing performance and the suitability of the device for preparation of biological macromolecules for cryo-EM, ribosomes and ferritin were mixed in the device and sprayed onto grids. Three-dimensional reconstructions of the ribosomes demonstrated retention of native structure, and 30S and 50S subunits were shown to be capable of reassociation into ribosomes after passage through the device.
Collapse
Affiliation(s)
- Zonghuan Lu
- Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Datta PP, Sharma MR, Qi L, Frank J, Agrawal RK. Interaction of the G′ Domain of Elongation Factor G and the C-Terminal Domain of Ribosomal Protein L7/L12 during Translocation as Revealed by Cryo-EM. Mol Cell 2005; 20:723-31. [PMID: 16337596 DOI: 10.1016/j.molcel.2005.10.028] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2005] [Revised: 09/30/2005] [Accepted: 10/25/2005] [Indexed: 10/25/2022]
Abstract
During tRNA translocation on the ribosome, an arc-like connection (ALC) is formed between the G' domain of elongation factor G (EF-G) and the L7/L12-stalk base of the large ribosomal subunit in the GDP state. To delineate the boundary of EF-G within the ALC, we tagged an amino acid residue near the tip of the G' domain of EF-G with undecagold, which was then visualized with three-dimensional cryo-electron microscopy (cryo-EM). Two distinct positions for the undecagold, observed in the GTP-state and GDP-state cryo-EM maps of the ribosome bound EF-G, allowed us to determine the movement of the labeled amino acid. Molecular analyses of the cryo-EM maps show: (1) that three structural components, the N-terminal domain of ribosomal protein L11, the C-terminal domain of ribosomal protein L7/L12, and the G' domain of EF-G, participate in formation of the ALC; and (2) that both EF-G and the ribosomal protein L7/L12 undergo large conformational changes to form the ALC.
Collapse
Affiliation(s)
- Partha P Datta
- Division of Molecular Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, P.O. Box 509, Albany, New York 12201, USA
| | | | | | | | | |
Collapse
|
4
|
Hirokawa G, Nijman RM, Raj VS, Kaji H, Igarashi K, Kaji A. The role of ribosome recycling factor in dissociation of 70S ribosomes into subunits. RNA (NEW YORK, N.Y.) 2005; 11:1317-28. [PMID: 16043510 PMCID: PMC1370814 DOI: 10.1261/rna.2520405] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Protein synthesis is initiated on ribosomal subunits. However, it is not known how 70S ribosomes are dissociated into small and large subunits. Here we show that 70S ribosomes, as well as the model post-termination complexes, are dissociated into stable subunits by cooperative action of three translation factors: ribosome recycling factor (RRF), elongation factor G (EF-G), and initiation factor 3 (IF3). The subunit dissociation is stable enough to be detected by conventional sucrose density gradient centrifugation (SDGC). GTP, but not nonhydrolyzable GTP analog, is essential in this process. We found that RRF and EF-G alone transiently dissociate 70S ribosomes. However, the transient dissociation cannot be detected by SDGC. IF3 stabilizes the dissociation by binding to the transiently formed 30S subunits, preventing re-association back to 70S ribosomes. The three-factor-dependent stable dissociation of ribosomes into subunits completes the ribosome cycle and the resulting subunits are ready for the next round of translation.
Collapse
Affiliation(s)
- Go Hirokawa
- Department of Microbiology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
5
|
Xaplanteri MA, Petropoulos AD, Dinos GP, Kalpaxis DL. Localization of spermine binding sites in 23S rRNA by photoaffinity labeling: parsing the spermine contribution to ribosomal 50S subunit functions. Nucleic Acids Res 2005; 33:2792-805. [PMID: 15897324 PMCID: PMC1129027 DOI: 10.1093/nar/gki557] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Polyamine binding to 23S rRNA was investigated, using a photoaffinity labeling approach. This was based on the covalent binding of a photoreactive analog of spermine, N1-azidobenzamidino (ABA)-spermine, to Escherichia coli ribosomes or naked 23S rRNA under mild irradiation conditions. The cross-linking sites of ABA-spermine in 23S rRNA were determined by RNase H digestion and primer-extension analysis. Domains I, II, IV and V in naked 23S rRNA were identified as discrete regions of preferred cross-linking. When 50S ribosomal subunits were targeted, the interaction of the photoprobe with the above 23S rRNA domains was elevated, except for helix H38 in domain II whose susceptibility to cross-linking was greatly reduced. In addition, cross-linking sites were identified in domains III and VI. Association of 30S with 50S subunits, poly(U), tRNAPhe and AcPhe-tRNA to form a post-translocation complex further altered the cross-linking, in particular to helices H11–H13, H21, H63, H80, H84, H90 and H97. Poly(U)-programmed 70S ribosomes, reconstituted from photolabeled 50S subunits and untreated 30S subunits, bound AcPhe-tRNA in a similar fashion to native ribosomes. However, they exhibited higher reactivity toward puromycin and enhanced tRNA-translocation efficiency. These results suggest an essential role for polyamines in the structural and functional integrity of the large ribosomal subunit.
Collapse
Affiliation(s)
| | | | | | - Dimitrios L. Kalpaxis
- To whom correspondence should be addressed. Tel: +30 2610 996124; Fax: +30 2610 997690;
| |
Collapse
|
6
|
Frank J, Agrawal RK. Ratchet-like movements between the two ribosomal subunits: their implications in elongation factor recognition and tRNA translocation. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:67-75. [PMID: 12762009 DOI: 10.1101/sqb.2001.66.67] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- J Frank
- Howard Hughes Medical Institute, Health Research, Inc., Wadsworth Center, Department of Biomedical Sciences, State University of New York at Albany, New York, USA
| | | |
Collapse
|
7
|
Bonincontro A, Nierhaus KH, Onori G, Risuleo G. Intrinsic structural differences between "tight couples" and Kaltschmidt-Wittmann ribosomes evidenced by dielectric spectroscopy and scanning microcalorimetry. FEBS Lett 2001; 490:93-6. [PMID: 11172818 DOI: 10.1016/s0014-5793(00)02415-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Measurements of dielectric spectroscopy (DS) and microcalorimetry (differential scanning calorimetry (DSC)) of Escherichia coli 70S, 50S and 30S were performed on particles prepared according either to the "classical" twice NH(4)Cl-washed ribosomes, also known as loose couples (LC), or to the "tight couples" preparative protocol (TC). Results show that 70S particles prepared according to the two different protocols exhibit different structural properties. Two subsequent relaxation processes occur in both samples as measured by DS. However, in LC ribosomes the first one is shifted towards a lower frequency with a higher dielectric increment. This is suggestive of a more extensive exposure of RNA to the solvent and of an overall more relaxed structure. The smaller LC subunit exhibits only one relaxation while the TC 30S shows two dielectric dispersions as well as 70S. No substantial differences were evidenced in either 50S species. Two typical melting peaks were observed by DSC both in LC and TC 70S as well as in 50S. Thermograms obtained from the TC 30S show a single well structured peak while LC particles produce a large unstructured curve. On the basis of these results we conclude that TC 70S particles are more compact than LC ribosomes and that in the former ones the rRNA is less exposed to the solvent phase. Furthermore 30S particles obtained from TC show a more stable structure with respect to LC 30S. We conclude that the 30S subunit gives a major contribution to the compact character of the whole TC 70S. These differences might be related to the intrinsic and well documented functional difference between the two ribosome species.
Collapse
Affiliation(s)
- A Bonincontro
- Dipartimento di Fisica, Università La Sapienza, Rome, Italy
| | | | | | | |
Collapse
|
8
|
Frank J, Penczek P, Agrawal RK, Grassucci RA, Heagle AB. Three-dimensional cryoelectron microscopy of ribosomes. Methods Enzymol 2000; 317:276-91. [PMID: 10829286 DOI: 10.1016/s0076-6879(00)17020-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- J Frank
- Howard Hughes Medical Institute, Wadsworth Center, New York, USA
| | | | | | | | | |
Collapse
|
9
|
Agrawal RK, Spahn CM, Penczek P, Grassucci RA, Nierhaus KH, Frank J. Visualization of tRNA movements on the Escherichia coli 70S ribosome during the elongation cycle. J Cell Biol 2000; 150:447-60. [PMID: 10931859 PMCID: PMC2175196 DOI: 10.1083/jcb.150.3.447] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2000] [Accepted: 06/16/2000] [Indexed: 11/22/2022] Open
Abstract
Three-dimensional cryomaps have been reconstructed for tRNA-ribosome complexes in pre- and posttranslocational states at 17-A resolution. The positions of tRNAs in the A and P sites in the pretranslocational complexes and in the P and E sites in the posttranslocational complexes have been determined. Of these, the P-site tRNA position is the same as seen earlier in the initiation-like fMet-tRNA(f)(Met)-ribosome complex, where it was visualized with high accuracy. Now, the positions of the A- and E-site tRNAs are determined with similar accuracy. The positions of the CCA end of the tRNAs at the A site are different before and after peptide bond formation. The relative positions of anticodons of P- and E-site tRNAs in the posttranslocational state are such that a codon-anticodon interaction at the E site appears feasible.
Collapse
Affiliation(s)
- Rajendra K. Agrawal
- Wadsworth Center, Department of Biomedical Sciences, State University of New York, Albany, New York 12201
| | - Christian M.T. Spahn
- Howard Hughes Medical Institute, Health Research, Incorporated at Wadsworth Center, Albany, New York 12201
- Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, D-14195 Berlin, Germany
| | - Pawel Penczek
- Wadsworth Center, Department of Biomedical Sciences, State University of New York, Albany, New York 12201
| | - Robert A. Grassucci
- Howard Hughes Medical Institute, Health Research, Incorporated at Wadsworth Center, Albany, New York 12201
| | - Knud H. Nierhaus
- Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, D-14195 Berlin, Germany
| | - Joachim Frank
- Wadsworth Center, Department of Biomedical Sciences, State University of New York, Albany, New York 12201
- Howard Hughes Medical Institute, Health Research, Incorporated at Wadsworth Center, Albany, New York 12201
| |
Collapse
|
10
|
Frank J, Agrawal RK. A ratchet-like inter-subunit reorganization of the ribosome during translocation. Nature 2000; 406:318-22. [PMID: 10917535 DOI: 10.1038/35018597] [Citation(s) in RCA: 613] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ribosome is a macromolecular assembly that is responsible for protein biosynthesis following genetic instructions in all organisms. It is composed of two unequal subunits: the smaller subunit binds messenger RNA and the anticodon end of transfer RNAs, and helps to decode the mRNA; and the larger subunit interacts with the amino-acid-carrying end of tRNAs and catalyses the formation of the peptide bonds. After peptide-bond formation, elongation factor G (EF-G) binds to the ribosome, triggering the translocation of peptidyl-tRNA from its aminoacyl site to the peptidyl site, and movement of mRNA by one codon. Here we analyse three-dimensional cryo-electron microscopy maps of the Escherichia coli 70S ribosome in various functional states, and show that both EF-G binding and subsequent GTP hydrolysis lead to ratchet-like rotations of the small 30S subunit relative to the large 50S subunit. Furthermore, our finding indicates a two-step mechanism of translocation: first, relative rotation of the subunits and opening of the mRNA channel following binding of GTP to EF-G; and second, advance of the mRNA/(tRNA)2 complex in the direction of the rotation of the 30S subunit, following GTP hydrolysis.
Collapse
Affiliation(s)
- J Frank
- Howard Hughes Medical Institute, Health Research Incorporated at the Wadsworth Center, and Department of Biomedical Sciences, State University of New York at Albany, 12201-0509, USA
| | | |
Collapse
|
11
|
Agrawal RK, Penczek P, Grassucci RA, Burkhardt N, Nierhaus KH, Frank J. Effect of buffer conditions on the position of tRNA on the 70 S ribosome as visualized by cryoelectron microscopy. J Biol Chem 1999; 274:8723-9. [PMID: 10085112 DOI: 10.1074/jbc.274.13.8723] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The effect of buffer conditions on the binding position of tRNA on the Escherichia coli 70 S ribosome have been studied by means of three-dimensional (3D) cryoelectron microscopy. Either deacylated tRNAfMet or fMet-tRNAfMet were bound to the 70 S ribosomes, which were programmed with a 46-nucleotide mRNA having AUG codon in the middle, under two different buffer conditions (conventional buffer: containing Tris and higher Mg2+ concentration [10-15 mM]; and polyamine buffer: containing Hepes, lower Mg2+ concentration [6 mM], and polyamines). Difference maps, obtained by subtracting 3D maps of naked control ribosome in the corresponding buffer from the 3D maps of tRNA.ribosome complexes, reveal the distinct locations of tRNA on the ribosome. The position of deacylated tRNAfMet depends on the buffer condition used, whereas that of fMet-tRNAfMet remains the same in both buffer conditions. The acylated tRNA binds in the classical P site, whereas deacylated tRNA binds mostly in an intermediate P/E position under the conventional buffer condition and mostly in the position corresponding to the classical P site, i. e. in the P/P state, under the polyamine buffer conditions.
Collapse
Affiliation(s)
- R K Agrawal
- Wadsworth Center, State University of New York, Albany, 12201-0509, USA
| | | | | | | | | | | |
Collapse
|
12
|
Gabashvili IS, Agrawal RK, Grassucci R, Frank J. Structure and structural variations of the Escherichia coli 30 S ribosomal subunit as revealed by three-dimensional cryo-electron microscopy. J Mol Biol 1999; 286:1285-91. [PMID: 10064696 DOI: 10.1006/jmbi.1999.2538] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A three-dimensional reconstruction of the 30 S subunit of the Escherichia coli ribosome was obtained at 23 A resolution. Because of the improved resolution, many more structural details are seen as compared to those obtained in earlier studies. Thus, the new structure is more suitable for comparison with the 30 S subunit part of the 70 S ribosome, whose structure is already known at a better resolution. In addition, we observe relative and, to some extent, independent movements of three main structural domains of the 30 S subunit, namely head, platform and the main body, which lead to partial blurring of the reconstructed volume. An attempt to subdivide the data set into conformationally defined subsets reveals the existence of conformers in which these domains have different orientations with respect to one another. This result suggests the existence of dynamic properties of the 30 S subunit that might be required for facilitating its interactions with mRNA, tRNA and other ligands during protein biosynthesis.
Collapse
Affiliation(s)
- I S Gabashvili
- Wadsworth Center, Howard Hughes Medical Institute, Department of Biomedical Sciences, State University of New York at Albany NY 12201-0509, USA.
| | | | | | | |
Collapse
|
13
|
Agrawal RK, Lata RK, Frank J. Conformational variability in Escherichia coli 70S ribosome as revealed by 3D cryo-electron microscopy. Int J Biochem Cell Biol 1999; 31:243-54. [PMID: 10216957 DOI: 10.1016/s1357-2725(98)00149-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
During protein biosynthesis, ribosomes are believed to go through a cycle of conformational transitions. We have identified some of the most variable regions of the E. coli 70S ribosome and its subunits, by means of cryo-electron microscopy and three-dimensional (3D) reconstruction. Conformational changes in the smaller 30S subunit are mainly associated with the functionally important domains of the subunit, such as the neck and the platform, as seen by comparison of heat-activated, non-activated and 50S-bound states. In the larger 50S subunit the most variable regions are the L7/L12 stalk, central protuberance and the L1-protein, as observed in various tRNA-70S ribosome complexes. Difference maps calculated between 3D maps of ribosomes help pinpoint the location of ribosomal regions that are most strongly affected by conformational transitions. These results throw direct light on the dynamic behavior of the ribosome and help in understanding the role of these flexible domains in the translation process.
Collapse
Affiliation(s)
- R K Agrawal
- Wadsworth Center, New York State Department of Health, Albany 12201-0509, USA
| | | | | |
Collapse
|