1
|
Romano F, Di Porzio A, Iaccarino N, Riccardi G, Di Lorenzo R, Laneri S, Pagano B, Amato J, Randazzo A. G-quadruplexes in cancer-related gene promoters: from identification to therapeutic targeting. Expert Opin Ther Pat 2023; 33:745-773. [PMID: 37855085 DOI: 10.1080/13543776.2023.2271168] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
INTRODUCTION Guanine-rich DNA sequences can fold into four-stranded noncanonical secondary structures called G-quadruplexes (G4s) which are widely distributed in functional regions of the human genome, such as telomeres and gene promoter regions. Compelling evidence suggests their involvement in key genome functions such as gene expression and genome stability. Notably, the abundance of G4-forming sequences near transcription start sites suggests their potential involvement in regulating oncogenes. AREAS COVERED This review provides an overview of current knowledge on G4s in human oncogene promoters. The most representative G4-binding ligands have also been documented. The objective of this work is to present a comprehensive overview of the most promising targets for the development of novel and highly specific anticancer drugs capable of selectively impacting the expression of individual or a limited number of genes. EXPERT OPINION Modulation of G4 formation by specific ligands has been proposed as a powerful new tool to treat cancer through the control of oncogene expression. Actually, most of G4-binding small molecules seem to simultaneously target a range of gene promoter G4s, potentially influencing several critical driver genes in cancer, thus producing significant therapeutic benefits.
Collapse
Affiliation(s)
- Francesca Romano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Anna Di Porzio
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Nunzia Iaccarino
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | | | - Sonia Laneri
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
2
|
Wang H, Zhou HC, Ren RL, Du SX, Guo ZK, Shen XH. Apolipoprotein E2 inhibits mitochondrial apoptosis in pancreatic cancer cells through ERK1/2/CREB/BCL-2 signaling. Hepatobiliary Pancreat Dis Int 2023; 22:179-189. [PMID: 36243659 DOI: 10.1016/j.hbpd.2022.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 09/23/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Apolipoprotein E2 (ApoE2) is a pleiotropic protein that influences several aspects of cancer metabolism and development. Evading apoptosis is a vital factor for facilitating cancer cell growth. However, the role and mechanism of ApoE2 in regulating cell apoptosis of pancreatic cancer remain unclear. METHODS In this study, we firstly detected the mRNA and protein expressions of ApoE2 in PANC-1 and Capan-2 cells by real-time polymerase chain reaction and Western blotting. We then performed TUNEL and flow cytometric analyses to explore the role of recombinant human ApoE2, pCMV6-ApoE2 and siApoE2 in the apoptosis of PANC-1 and Capan-2 cells. Furthermore, we investigated the molecular mechanism through which ApoE2 affected apoptosis in PANC-1 cells using immunofluorescence, immunoprecipitation, Western blotting and co-immunoprecipitation analysis. RESULTS ApoE2 phosphorylated ERK1/2 and inhibited pancreatic cancer cell apoptosis. In addition, our data showed that ApoE2/ERK1/2 altered the expression and mitochondrial localization of BCL-2 via activating CREB. ApoE2/ERK1/2/CREB also increased the total BCL-2/BAX ratio, inhibited the opening of the mitochondrial permeability transition pore and the depolarization of mitochondrial transmembrane potential, blocked the leakage of cytochrome-c and the formation of the apoptosome, and consequently, suppressed mitochondrial apoptosis. CONCLUSIONS ApoE2 regulates the mitochondrial localization and expression of BCL-2 through the activation of the ERK1/2/CREB signaling cascade to evade the mitochondrial apoptosis of pancreatic cancer cells. ApoE2 may be a distinct prognostic marker and a potential therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Hui Wang
- Tianjin Institute of Medical & Pharmaceutical Sciences, Tianjin 300020, China; School of Medicine, Nankai University, Tianjin 300071, China
| | - Hui-Chao Zhou
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Run-Ling Ren
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Shao-Xia Du
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Zhong-Kui Guo
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Xiao-Hong Shen
- School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
3
|
Wang H, Ren R, Yang Z, Cai J, Du S, Shen X. The COL11A1/Akt/CREB signaling axis enables mitochondrial-mediated apoptotic evasion to promote chemoresistance in pancreatic cancer cells through modulating BAX/BCL-2 function. J Cancer 2021; 12:1406-1420. [PMID: 33531986 PMCID: PMC7847647 DOI: 10.7150/jca.47032] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 12/05/2020] [Indexed: 12/27/2022] Open
Abstract
Collagen XI, a member of the collagen family, is present in the extracellular matrix (ECM), and high collagen XI/αI (COL11A1) expression in tumor tissue is reportedly correlated with the clinicopathological parameters of pancreatic ductal adenocarcinoma (PDAC). However, the function of COL11A1 in the development of pancreatic cancer cells remains unclear. In the current study, we assessed mRNA expression of COL11A1 and its receptors and created a testing-model of both a COL11A1-overexpressing tumor microenvironment and/or altered-COL11A1 expression in pancreatic cancer cell lines. Next, we investigated the mechanism by which COL11A1 affects growth, gemcitabine (GEM) resistance and apoptosis in pancreatic cancer cells. We demonstrated that COL11A1 phosphorylated AktSer473, promoting proliferation of cancer cells and inhibiting their apoptosis. Additionally, our data showed that COL11A1/Akt/CREB altered the balance between BCL-2 and BAX and mediated their mitochondrial translocation in pancreatic cancer cells. The COL11A1/Akt axis induced disruption of mitochondrial transmembrane function, enabling mitochondria-mediated apoptotic evasion to promote chemoresistance. We also explored the regulatory effect of COL11A1/Akt on molecular signaling in the mitochondria-mediated apoptotic program. COL11A1/Akt disturbed the BCL-2/BAX balance, inhibiting cytochrome c (Cyt-C) release and binding of Apaf-1/procaspase-9/Cyt-C, which suppressed the apoptotic program and induced GEM resistance in pancreatic cancer cells. In conclusion, COL11A1 modulates apoptotic inhibition and chemoresistance in pancreatic cancer cells by activating the Akt/CREB/BCL-2/BAX signaling pathway. COL11A1 may represent a distinct prognostic indicator and may be an attractive therapeutic target for PDAC.
Collapse
Affiliation(s)
- Hui Wang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Runling Ren
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Zizhong Yang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Jun Cai
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Shaoxia Du
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Xiaohong Shen
- School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
4
|
Huang GL, Liao D, Chen H, Lu Y, Chen L, Li H, Li B, Liu W, Ye C, Li T, Zhu Z, Wang J, Uchida T, Zou Y, Dong Z, He Z. The protein level and transcription activity of activating transcription factor 1 is regulated by prolyl isomerase Pin1 in nasopharyngeal carcinoma progression. Cell Death Dis 2016; 7:e2571. [PMID: 28032861 PMCID: PMC5260992 DOI: 10.1038/cddis.2016.349] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 01/12/2023]
Abstract
The function of activating transcription factor 1 (ATF1) and the mechanism about why ATF1 was over-phosphorylated in nasopharyngeal carcinoma (NPC) progression is completely undiscovered. In this study, a series of experiments both in vitro and in vivo were used to characterize a promotive function of ATF1 in NPC tumorigenesis and identify prolyl isomerase Pin1 as a novel regulator of ATF1 at post-transcription. First, we found that overexpression of ATF1 promoted colony formation in NPC. However, the high protein level of ATF1 in NPC was not resulted from high mRNA level. Then, a direct interaction between Pin1 and ATF1 at Thr184 was demonstrated using mammalian two-hybrid assay and coimmunoprecipitation. Cycloheximide (CHX) treatment indicated Pin1 stabilized the expression of ATF1 at post-transcription level. We confirmed that Pin1 upregulated ATF1 transcriptional activity of Bcl-2 using luciferase reporter assay, quantitative RT-PCR and western blot. Furthermore, the newly identified phosphorylation of ATF1 at Thr184 was suggested to have an important role in ATF1 function of transcription and tumor promotion. Finally, high expression of Pin1 in NPC tissue was found to be positively correlated with ATF1. The ATF1 promoted NPC tumorigenesis was regulated by Pin1 both in vitro and in vivo. All these findings clearly state that Pin1 is a novel regulator of ATF1 at Thr184 and thereby enhances ATF1 transcription activity and tumorigenesis promotive function in NPC.
Collapse
Affiliation(s)
- Guo-Liang Huang
- China-American Cancer Research Institute, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, China.,Key Laboratory for Epigenetics of Dongguan City, Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan, China
| | - Dan Liao
- China-American Cancer Research Institute, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, China.,Key Laboratory for Epigenetics of Dongguan City, Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan, China.,Department of Gynaecology and Obstetrics, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, China
| | - Hua Chen
- China-American Cancer Research Institute, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, China.,Key Laboratory for Epigenetics of Dongguan City, Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan, China
| | - Yan Lu
- China-American Cancer Research Institute, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, China.,Key Laboratory for Epigenetics of Dongguan City, Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan, China.,Research Institute of Clinical Medicine, The First People's Hospital of Shunde Affiliate to Southern Medical University, Foshan, China
| | - Liyong Chen
- China-American Cancer Research Institute, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, China.,Key Laboratory for Epigenetics of Dongguan City, Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan, China
| | - Huahui Li
- China-American Cancer Research Institute, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, China.,Key Laboratory for Epigenetics of Dongguan City, Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan, China
| | - Binbin Li
- China-American Cancer Research Institute, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, China.,Key Laboratory for Epigenetics of Dongguan City, Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan, China
| | - Weilong Liu
- Experimental Animal Center, Shenzhen Third People's Hospital, Shenzhen, China
| | - Caiguo Ye
- China-American Cancer Research Institute, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, China.,Key Laboratory for Epigenetics of Dongguan City, Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan, China
| | - Tong Li
- China-American Cancer Research Institute, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, China.,Key Laboratory for Epigenetics of Dongguan City, Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan, China
| | - Zhu Zhu
- China-American Cancer Research Institute, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, China.,Key Laboratory for Epigenetics of Dongguan City, Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan, China
| | - Jian Wang
- China-American Cancer Research Institute, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, China.,Key Laboratory for Epigenetics of Dongguan City, Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan, China
| | - Takafumi Uchida
- Department of Molecular Cell Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Ying Zou
- China-American Cancer Research Institute, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, China.,Key Laboratory for Epigenetics of Dongguan City, Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan, China
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Zhiwei He
- China-American Cancer Research Institute, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, China.,Key Laboratory for Epigenetics of Dongguan City, Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan, China
| |
Collapse
|
5
|
Liu N, Yu Z, Xun Y, Li M, Peng X, Xiao Y, Hu X, Sun Y, Yang M, Gan S, Yuan S, Wang X, Xiang S, Zhang J. TNFAIP1 contributes to the neurotoxicity induced by Aβ25-35 in Neuro2a cells. BMC Neurosci 2016; 17:51. [PMID: 27430312 PMCID: PMC4949755 DOI: 10.1186/s12868-016-0286-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 07/08/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Amyloid-beta (Aβ) accumulation is a hallmark of Alzheimer's disease (AD) that can lead to neuronal dysfunction and apoptosis. Tumor necrosis factor, alpha-induced protein 1 (TNFAIP1) is an apoptotic protein that was robustly induced in the transgenic C. elegans AD brains. However, the roles of TNFAIP1 in AD have not been investigated. RESULTS We found TNFAIP1 protein and mRNA levels were dramatically elevated in primary mouse cortical neurons and Neuro2a (N2a) cells exposed to Aβ25-35. Knockdown and overexpression of TNFAIP1 significantly attenuated and exacerbated Aβ25-35-induced neurotoxicity in N2a cells, respectively. Further studies showed that TNFAIP1 knockdown significantly blocked Aβ25-35-induced cleaved caspase 3, whereas TNFAIP1 overexpression enhanced Aβ25-35-induced cleaved caspase 3, suggesting that TNFAIP1 plays an important role in Aβ25-35-induced neuronal apoptosis. Moreover, we observed that TNFAIP1 was capable of inhibiting the levels of phosphorylated Akt and CREB, and also anti-apoptotic protein Bcl-2. TNFAIP1 overexpression enhanced the inhibitory effect of Aβ25-35 on the levels of p-CREB and Bcl-2, while TNFAIP1 knockdown reversed Aβ25-35-induced attenuation in the levels of p-CREB and Bcl-2. CONCLUSION These results suggested that TNFAIP1 contributes to Aβ25-35-induced neurotoxicity by attenuating Akt/CREB signaling pathway, and Bcl-2 expression.
Collapse
Affiliation(s)
- Ning Liu
- College of Medicine, Hunan Normal University, Changsha, China.,Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.,Neuroprotection Research Laboratory, Department of Neurology and Radiology, Massachusetts General Hospital, Neuroscience Program, Harvard Medical School, Boston, MA, USA
| | - Zhanyang Yu
- Neuroprotection Research Laboratory, Department of Neurology and Radiology, Massachusetts General Hospital, Neuroscience Program, Harvard Medical School, Boston, MA, USA
| | - Yu Xun
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Miaomiao Li
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xiaoning Peng
- College of Medicine, Hunan Normal University, Changsha, China
| | - Ye Xiao
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xiang Hu
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yi Sun
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Manjun Yang
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Shiquan Gan
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Shishan Yuan
- College of Medicine, Hunan Normal University, Changsha, China
| | - Xiaoying Wang
- Neuroprotection Research Laboratory, Department of Neurology and Radiology, Massachusetts General Hospital, Neuroscience Program, Harvard Medical School, Boston, MA, USA
| | - Shuanglin Xiang
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| | - Jian Zhang
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
6
|
Lee EH, Kim SS, Lee S, Baek KH, Seo SR. Pituitary Adenylate Cyclase-activating Polypeptide (PACAP) Targets Down Syndrome Candidate Region 1 (DSCR1/RCAN1) to control Neuronal Differentiation. J Biol Chem 2015; 290:21019-21031. [PMID: 26157140 DOI: 10.1074/jbc.m115.639476] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Indexed: 11/06/2022] Open
Abstract
Pituitary adenylate cyclase-activating peptide (PACAP) is a neurotrophic peptide involved in a wide range of nervous functions, including development, differentiation, and survival, and various aspects of learning and memory. Here we report that PACAP induces the expression of regulator of calcineurin 1 (RCAN1, also known as DSCR1), which is abnormally expressed in the brains of Down syndrome patients. Increased RCAN1 expression is accompanied by activation of the PKA-cAMP response element-binding protein pathways. EMSA and ChIP analyses demonstrate the presence of a functional cAMP response element in the RCAN1 promoter. Moreover, we show that PACAP-dependent neuronal differentiation is significantly disturbed by improper RCAN1 expression. Our data provide the first evidence of RCAN1, a Down syndrome-related gene, as a novel target for control of the neurotrophic function of PACAP.
Collapse
Affiliation(s)
- Eun Hye Lee
- Department of Molecular Bioscience, College of Biomedical Science, and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 200-701, Republic of Korea and
| | - Seon Sook Kim
- Department of Molecular Bioscience, College of Biomedical Science, and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 200-701, Republic of Korea and
| | - Seul Lee
- Department of Molecular and Cellular Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi 440-746, Republic of Korea
| | - Kwan-Hyuck Baek
- Department of Molecular and Cellular Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi 440-746, Republic of Korea
| | - Su Ryeon Seo
- Department of Molecular Bioscience, College of Biomedical Science, and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 200-701, Republic of Korea and.
| |
Collapse
|
7
|
Bell MT, Puskas F, Bennett DT, Herson PS, Quillinan N, Fullerton DA, Reece TB. Dexmedetomidine, an α-2a adrenergic agonist, promotes ischemic tolerance in a murine model of spinal cord ischemia-reperfusion. J Thorac Cardiovasc Surg 2014; 147:500-6. [DOI: 10.1016/j.jtcvs.2013.07.043] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/14/2013] [Accepted: 07/18/2013] [Indexed: 11/24/2022]
|
8
|
Isorhynchophylline Protects PC12 Cells Against Beta-Amyloid-Induced Apoptosis via PI3K/Akt Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:163057. [PMID: 24319473 PMCID: PMC3836301 DOI: 10.1155/2013/163057] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 09/12/2013] [Accepted: 09/23/2013] [Indexed: 11/18/2022]
Abstract
The neurotoxicity of amyloid- β (A β ) has been implicated as a critical cause of Alzheimer's disease. Isorhynchophylline (IRN), an oxindole alkaloid isolated from Uncaria rhynchophylla, exerts neuroprotective effect against Aβ 25-35-induced neurotoxicity in vitro. However, the exact mechanism for its neuroprotective effect is not well understood. The present study aimed to investigate the molecular mechanisms underlying the protective action of IRN against Aβ 25-35-induced neurotoxicity in cultured rat pheochromocytoma (PC12) cells. Pretreatment with IRN significantly increased the cell viability, inhibited the release of lactate dehydrogenase and the extent of DNA fragmentation in Aβ 25-35-treated cells. IRN treatment was able to enhance the protein levels of phosphorylated Akt (p-Akt) and glycogen synthase kinase-3 β (p-GSK-3 β ). Lithium chloride blocked Aβ 25-35-induced cellular apoptosis in a similar manner as IRN, suggesting that GSK-3 β inhibition was involved in neuroprotective action of IRN. Pretreatment with LY294002 completely abolished the protective effects of IRN. Furthermore, IRN reversed Aβ 25-35-induced attenuation in the level of phosphorylated cyclic AMP response element binding protein (p-CREB) and the effect of IRN could be blocked by the PI3K inhibitor. These experimental findings unambiguously suggested that the protective effect of IRN against Aβ 25-35-induced apoptosis in PC12 cells was associated with the enhancement of p-CREB expression via PI3K/Akt/GSK-3 β signaling pathway.
Collapse
|
9
|
Ko CY, Wang WL, Wang SM, Chu YY, Chang WC, Wang JM. Glycogen synthase kinase-3β-mediated CCAAT/enhancer-binding protein delta phosphorylation in astrocytes promotes migration and activation of microglia/macrophages. Neurobiol Aging 2013; 35:24-34. [PMID: 23993701 DOI: 10.1016/j.neurobiolaging.2013.07.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 07/17/2013] [Accepted: 07/22/2013] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease is neuropathologically characterized by the accumulation of amyloid-β protein into senile plaques that are sites of chronic inflammation involving reactive microglia, astrocytes, and proinflammatory molecules, such as interleukin-1β and tumor necrosis factor-α. The human CCAAT/enhancer-binding protein (CEBP) delta (CEBPD) is known to be induced in many inflammation-related diseases. In Alzheimer's disease, this protein is responsive to amyloid-β and proinflammatory cytokines in astrocytes. However, the functional role of CEBPD in astrocytes remains largely unclear. In this study, we show that CEBPD is upregulated by interleukin-1β through the mitogen-activated protein kinase p38 (MAPKp38) signaling pathway and phosphorylated by glycogen synthase kinase (GSK)-3β at Ser167 in astrocytes. CEBPD in astrocytes is associated with microglia activation and migration in amyloid precursor protein transgenic mice (AppTg) mice. We further identified that the monocyte chemotactic protein-1, a chemoattractive factor, and migration factors matrix metalloproteinase-1 and -3 are responsive to GSK3β-mediated CEBPD Ser167 phosphorylation. Our results revealed the novel regulation of LiCl on astrocytes and that GSK3β-mediated CEBPD phosphorylation in astrocytes plays an important role in the activation of microglia.
Collapse
Affiliation(s)
- Chiung-Yuan Ko
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Mitton B, Cho EC, Aldana-Masangkay GI, Sakamoto KM. The function of cyclic-adenosine monophosphate responsive element-binding protein in hematologic malignancies. Leuk Lymphoma 2011; 52:2057-63. [DOI: 10.3109/10428194.2011.584994] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Kim SS, Seo SR. The regulator of calcineurin 1 (RCAN1/DSCR1) activates the cAMP response element-binding protein (CREB) pathway. J Biol Chem 2011; 286:37841-8. [PMID: 21890628 DOI: 10.1074/jbc.m111.232165] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
cAMP response element-binding protein (CREB) is one of the best known transcription factors in the development and function of the nervous system. In this report, we found that the regulator of calcineurin 1 (RCAN1), which is overexpressed in the brain of patients with Down syndrome, increased the phosphorylation of CREB and cAMP response element-mediated gene transcription in response to the activation of the intracellular cAMP pathway. Furthermore, we found that the increased activation of CREB signaling by RCAN1 depended on the ability of RCAN1 to inhibit calcineurin activity. Our data provide the first evidence that RCAN1 acts as an important regulatory component in the control of CREB signaling.
Collapse
Affiliation(s)
- Seon Sook Kim
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | | |
Collapse
|
12
|
Maixnerová J, Špolcová A, Pýchová M, Blechová M, Elbert T, Rezáčová M, Zelezná B, Maletínská L. Characterization of prolactin-releasing peptide: binding, signaling and hormone secretion in rodent pituitary cell lines endogenously expressing its receptor. Peptides 2011; 32:811-7. [PMID: 21185342 DOI: 10.1016/j.peptides.2010.12.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 12/06/2010] [Accepted: 12/14/2010] [Indexed: 11/24/2022]
Abstract
The recently discovered prolactin-releasing peptide (PrRP) binds to the PrRP receptor and is involved in endocrine regulation and energy metabolism. However, its main physiological role is currently unknown. Two biologically active isoforms of PrRP exist: the 31 (PrRP31) and the 20 (PrRP20) amino acid forms, which both contain a C-terminal Phe amide sequence. In the present study, the PrRP receptor was immunodetected in three rodent tumor pituitary cell lines: GH3, AtT20 and RC-4B/C cells. The saturation binding of radioiodinated PrRP31 to intact cells demonstrated a K(d) in the 10(-9)M range and a B(max) in the range of tens of thousands binding sites per cell. For binding to RC-4B/C cells, both PrRP31 and PrRP20 competed with (125)I-PrRP31 with a similar K(i). The C-terminal analog PrRP13 showed lower binding potency compared to PrRP31 and PrRP20. All PrRP analogs increased the phosphorylation of MAPK/ERK1/2 (mitogen-activated phosphorylase/extracellular-regulated kinase) and CREB (cAMP response element-binding protein) in RC-4B/C cells. Additionally, prolactin release was induced by the PrRP analogs in a dose-dependent manner in RC-4B/C cells. Finally, food intake after intracerebroventricular administration of PrRP analogs in fasted mice was followed. Both PrRP31 and PrRP20 decreased food intake, but PrRP13 did not show significant effect. Studies on pituitary cell lines expressing the PrRP receptor are more physiologically relevant than those on cells transfected with the receptor. This cell type can be used as a model system for pharmacological studies searching for PrRP antagonists and stable effective PrRP agonists, as these drugs may have potential as anti-obesity agents.
Collapse
Affiliation(s)
- Jana Maixnerová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhao R, Zhang Z, Song Y, Wang D, Qi J, Wen S. Implication of phosphatidylinositol-3 kinase/Akt/glycogen synthase kinase-3β pathway in ginsenoside Rb1's attenuation of beta-amyloid-induced neurotoxicity and tau phosphorylation. JOURNAL OF ETHNOPHARMACOLOGY 2011; 133:1109-1116. [PMID: 21129477 DOI: 10.1016/j.jep.2010.11.054] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 11/08/2010] [Accepted: 11/21/2010] [Indexed: 05/30/2023]
Abstract
Ginseng has long been used to alleviate many ailments, particularly those associated with aging and memory deterioration. In the present study we aimed to investigate the neuroprotective effects of ginsenoside Rb1, against Aβ(1-42) toxicity in cultured cortical neurons and also the potential involvement of PI3K/Akt/GSK-3β signal pathway. Cortical neurons were pre-treated with ginsenoside Rb1 (20, 40, 100 μM) or LiCl (1, 5, 10 mM) for 24 h, and then were co-treated with 20 μM Aβ(1-42) for 12 h. In some experiments to evaluate the mechanism of Rb1 action, a PI3K inhibitor (LY294002 10 μM) was co-administered with Rb1 for the 24-h pretreatment. We revealed that Rb1 significantly attenuated Aβ(1-42)-induced neurotoxicity and tau hyperphosphorylation at multiple AD-related sites in a dose-dependent manner. Simultaneously, it increased the levels of phospho-Ser(473)-Akt and down-regulated GSK-3β activity by PI3K activation. The neuroprotective effects of Rb1 against Aβ(1-42)-induced neurotoxicity and tau hyperphosphorylation were blocked by LY294002 (10 μM), a PI3K inhibitor. In addition, Rb1 reversed the Aβ(1-42)-induced decrease in phosphorylation cyclic AMP response element binding (CREB) protein, which could also be blocked by the PI3K inhibitor. All these findings suggest that Rb1 may represent a potential treatment strategy for Alzheimer's disease.
Collapse
Affiliation(s)
- Ruiping Zhao
- Department of Pathology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | | | | | | | | | | |
Collapse
|
14
|
Dluzen D, Li G, Tacelosky D, Moreau M, Liu DX. BCL-2 is a downstream target of ATF5 that mediates the prosurvival function of ATF5 in a cell type-dependent manner. J Biol Chem 2011; 286:7705-13. [PMID: 21212266 DOI: 10.1074/jbc.m110.207639] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATF5 loss of function has been shown previously to cause apoptotic cell death in glioblastoma and breast cancer cells but not in non-transformed astrocytes and human breast epithelial cells. The mechanism for the cell type-dependent survival function of ATF5 is unknown. We report here that the anti-apoptotic factor BCL-2 is a downstream target of ATF5 that mediates the prosurvival function of ATF5 in C6 glioma cells and MCF-7 breast cancer cells. ATF5 binds to an ATF5-specific regulatory element that is downstream of and adjacent to the negative regulatory element in the BCL-2 P2 promoter, stimulating BCL-2 expression. Highlighting the critical role of BCL-2 in ATF5-dependent cancer cell survival, expression of BCL-2 blocks death of C6 and MCF-7 cells induced by dominant-negative ATF5, and depletion of BCL-2 impairs ATF5-promoted cell survival. Moreover, we found that BCL-2 expression is not regulated by ATF5 in non-transformed rat astrocytes, mouse embryonic fibroblasts, and human breast epithelial cells, where expression of BCL-2 but not ATF5 is required for cell survival. These findings identify BCL-2 as an essential mediator for the cancer-specific cell survival function of ATF5 in glioblastoma and breast cancer cells and provide direct evidence that the cell type-specific function of ATF5 derives from differential regulation of downstream targets by ATF5 in different types of cells.
Collapse
Affiliation(s)
- Douglas Dluzen
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | |
Collapse
|
15
|
Zhang Z, Zhao R, Qi J, Wen S, Tang Y, Wang D. Inhibition of glycogen synthase kinase-3β by Angelica sinensis extract decreases β-amyloid-induced neurotoxicity and tau phosphorylation in cultured cortical neurons. J Neurosci Res 2010; 89:437-47. [DOI: 10.1002/jnr.22563] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 10/08/2010] [Accepted: 11/01/2010] [Indexed: 12/28/2022]
|
16
|
Kendrick S, Akiyama Y, Hecht SM, Hurley LH. The i-motif in the bcl-2 P1 promoter forms an unexpectedly stable structure with a unique 8:5:7 loop folding pattern. J Am Chem Soc 2010; 131:17667-76. [PMID: 19908860 DOI: 10.1021/ja9076292] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transcriptional regulation of the bcl-2 proto-oncogene is highly complex, with the majority of transcription driven by the P1 promoter site and the interaction of multiple regulatory proteins. A guanine- and cytosine-rich (GC-rich) region directly upstream of the P1 site has been shown to be integral to bcl-2 promoter activity, as deletion or mutation of this region significantly increases transcription. This GC-rich element consists of six contiguous runs of guanines and cytosines that have the potential to adopt DNA secondary structures, the G-quadruplex and i-motif, respectively. Our laboratory has previously demonstrated that the polypurine-rich strand of the bcl-2 promoter can form a mixture of three different G-quadruplex structures. In this current study, we demonstrate that the complementary polypyrimidine-rich strand is capable of forming one major intramolecular i-motif DNA secondary structure with a transition pH of 6.6. Characterization of the i-motif folding pattern using mutational studies coupled with circular dichroic spectra and thermal stability analyses revealed an 8:5:7 loop conformation as the predominant structure at pH 6.1. The folding pattern was further supported by chemical footprinting with bromine. In addition, a novel assay involving the sequential incorporation of a fluorescent thymine analog at each thymine position provided evidence of a capping structure within the top loop region of the i-motif. The potential of the GC-rich element within the bcl-2 promoter region to form DNA secondary structures suggests that the transition from the B-DNA to non-B-DNA conformation may play an important role in bcl-2 transcriptional regulation. Furthermore, the two adjacent large lateral loops in the i-motif structure provide an unexpected opportunity for protein and small molecule recognition.
Collapse
Affiliation(s)
- Samantha Kendrick
- Arizona Cancer Center, 1515 North Campbell Avenue, Tucson, Arizona 85724, USA
| | | | | | | |
Collapse
|
17
|
CREB: A Key Regulator of Normal and Neoplastic Hematopoiesis. Adv Hematol 2009; 2009:634292. [PMID: 19960054 PMCID: PMC2778441 DOI: 10.1155/2009/634292] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 05/30/2009] [Indexed: 11/17/2022] Open
Abstract
The cAMP response element-binding protein (CREB) is a nuclear transcription factor downstream of cell surface receptors and mitogens that is critical for normal and neoplastic hematopoiesis. Previous work from our laboratory demonstrated that a majority of patients with acute myeloid leukemia (AML) and acute lymphoid leukemia (ALL) overexpress CREB in the bone marrow. To understand the role of CREB in leukemogenesis, we examined the biological effect of CREB overexpression on primary leukemia cells, leukemia cell lines, and CREB overexpressing transgenic mice. Our results demonstrated that CREB overexpression leads to an increase in cellular proliferation and survival. Furthermore, CREB transgenic mice develop a myeloproliferative disorder with aberrant myelopoiesis in both the bone marrow and spleen. Additional research from other groups has shown that the expression of the cAMP early inducible repressor (ICER), a CREB repressor, is also deregulated in leukemias. And, miR-34b, a microRNA that negative regulates CREB expression, is expressed at lower levels in myeloid leukemia cell lines compared to that of healthy bone marrow. Taken together, these data suggest that CREB plays a role in cellular transformation. The data also suggest that CREB-specific signaling pathways could possibly serve as potential targets for therapeutic intervention.
Collapse
|
18
|
Wang P, Xu J, Zhang C. CREB, a possible upstream regulator of Bcl-2 in trichosanthin-induced HeLa cell apoptosis. Mol Biol Rep 2009; 37:1891-6. [PMID: 19626458 DOI: 10.1007/s11033-009-9629-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Accepted: 07/09/2009] [Indexed: 11/27/2022]
Abstract
Our previous reports indicated that cyclic AMP response element-binding (CREB) protein was involved in the regulation of Bcl-2 expression in apoptotic HeLa cells induced by trichosanthin (TCS). Here we presented that blockade the binding site of CREB to Bcl-2 by a CRE decoy oligonucleotide abrogated the TCS-decreased Bcl-2 expression. Furthermore, overexpression of phosphorylated CREB (p-CREB) in cells transfected with p-CREB/GFP fusion construct resulted in an increase of Bcl-2 protein content, however, this increase was attenuated by TCS treatment. Therefore, this data supports the hypothesis that CREB is a possible upstream regulator of Bcl-2 in apoptotic HeLa cells induced by TCS. The study provides new insights into understanding the mechanism of TCS in the treatment of cervical cancer.
Collapse
Affiliation(s)
- Ping Wang
- Medical School, Ningbo University, 315211, Ningbo, China.
| | | | | |
Collapse
|
19
|
Duan H, Xiang H, Ma L, Boxer LM. Functional long-range interactions of the IgH 3' enhancers with the bcl-2 promoter region in t(14;18) lymphoma cells. Oncogene 2008; 27:6720-8. [PMID: 18695675 PMCID: PMC2613909 DOI: 10.1038/onc.2008.286] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 07/14/2008] [Accepted: 07/14/2008] [Indexed: 11/09/2022]
Abstract
To better understand the mechanisms underlying the role of the immunoglobulin heavy-chain gene (IgH) 3' enhancers on bcl-2 transcriptional deregulation in t(14;18) lymphoma, we characterized the physical interactions of the IgH 3' enhancer region with the bcl-2 promoters. Using the chromosome conformation capture technique, we found that the IgH 3' enhancers physically interact with the bcl-2 promoter region over a 350 kb genomic region in t(14;18) lymphoma cells. No interactions of the bcl-2 promoter region with sequences distant to the IgH enhancers were observed. The physical interactions of the IgH enhancers with the bcl-2 5' region are functionally involved in the transcriptional control of bcl-2. The histone deacetylase inhibitor, trichostatin A, repressed bcl-2 transcription and decreased the IgH enhancer-bcl-2 promoter region interactions. We showed by chromatin immunoprecipitation assay and small interference RNA transfection studies that the POU2 family transcription factor Oct-2 and its cofactor Bob-1 have an important function in mediating the IgH enhancer-bcl-2 promoter region interactions. This study reveals a new aspect of the regulatory role of the IgH 3' enhancers on bcl-2 transcription in t(14;18) lymphomas.
Collapse
MESH Headings
- Cell Line, Tumor
- Chromosomes, Human, Pair 14/genetics
- Chromosomes, Human, Pair 14/metabolism
- Chromosomes, Human, Pair 18/genetics
- Chromosomes, Human, Pair 18/metabolism
- Enhancer Elements, Genetic/genetics
- Enzyme Inhibitors/pharmacology
- Genes, bcl-2/genetics
- Histone Deacetylase Inhibitors
- Histone Deacetylases/genetics
- Histone Deacetylases/metabolism
- Humans
- Hydroxamic Acids/pharmacology
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Heavy Chains/metabolism
- Lymphoma/genetics
- Lymphoma/metabolism
- Octamer Transcription Factor-2/genetics
- Octamer Transcription Factor-2/metabolism
- Promoter Regions, Genetic/genetics
- RNA, Small Interfering/genetics
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription, Genetic/drug effects
- Transcription, Genetic/genetics
- Translocation, Genetic
Collapse
Affiliation(s)
- Hong Duan
- Center for Molecular Biology in Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304
- Department of Medicine, Stanford University School of Medicine, Stanford, California 94305
| | - Hong Xiang
- Center for Molecular Biology in Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304
- Department of Medicine, Stanford University School of Medicine, Stanford, California 94305
| | - Lawrence Ma
- Center for Molecular Biology in Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304
- Department of Medicine, Stanford University School of Medicine, Stanford, California 94305
| | - Linda M. Boxer
- Center for Molecular Biology in Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304
- Department of Medicine, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
20
|
Sharma S, Jaya Prasanthi R, Schommer E, Feist G, Ghribi O. Hypercholesterolemia-induced Abeta accumulation in rabbit brain is associated with alteration in IGF-1 signaling. Neurobiol Dis 2008; 32:426-32. [PMID: 18775495 PMCID: PMC2658815 DOI: 10.1016/j.nbd.2008.08.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 07/25/2008] [Accepted: 08/07/2008] [Indexed: 12/19/2022] Open
Abstract
Hypercholesterolemia increases levels of beta-amyloid (Abeta), a peptide that accumulates in Alzheimer's disease brains. Because cholesterol in the blood does not cross the blood brain barrier (BBB), the link between circulating cholesterol and Abeta accumulation is not understood. In contrast to cholesterol, the oxidized cholesterol metabolite 27-hydroxycholesterol can cross the BBB, potentially increasing Abeta levels. However, the mechanisms by which cholesterol or 27-hydroxycholesterol regulate Abeta levels are not known. The insulin-like growth factor-1 (IGF-1) regulates the glycogen-synthase kinase-3alpha (GSK-3alpha) and the insulin degrading enzyme (IDE). While GSK-3alpha increases Abeta production, IDE is a major Abeta-degrading enzyme. We report here that feeding rabbits with a cholesterol-enriched diet increases Abeta levels in the hippocampus, an effect that is associated with reduced IGF-1 levels. 27-hydroxycholesterol also increases Abeta and reduces IGF-1 levels in organotypic hippocampal slices from adult rabbits. We suggest that hypercholesterolemia-induced Abeta accumulation may be mediated by 27-hydroxycholesterol, involving IGF-1 signaling.
Collapse
Affiliation(s)
- Sunita Sharma
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202
| | - R.P Jaya Prasanthi
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202
| | - Eric Schommer
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202
| | - Gwen Feist
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202
| | - Othman Ghribi
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202
| |
Collapse
|
21
|
Palumbo SL, Memmott RM, Uribe DJ, Krotova-Khan Y, Hurley LH, Ebbinghaus SW. A novel G-quadruplex-forming GGA repeat region in the c-myb promoter is a critical regulator of promoter activity. Nucleic Acids Res 2008; 36:1755-69. [PMID: 18252774 PMCID: PMC2330228 DOI: 10.1093/nar/gkm1069] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The c-myb promoter contains multiple GGA repeats beginning 17 bp downstream of the transcription initiation site. GGA repeats have been previously shown to form unusual DNA structures in solution. Results from chemical footprinting, circular dichroism and RNA and DNA polymerase arrest assays on oligonucleotides representing the GGA repeat region of the c-myb promoter demonstrate that the element is able to form tetrad:heptad:heptad:tetrad (T:H:H:T) G-quadruplex structures by stacking two tetrad:heptad G-quadruplexes formed by two of the three (GGA)(4) repeats. Deletion of one or two (GGA)(4) motifs destabilizes this secondary structure and increases c-myb promoter activity, indicating that the G-quadruplexes formed in the c-myb GGA repeat region may act as a negative regulator of the c-myb promoter. Complete deletion of the c-myb GGA repeat region abolishes c-myb promoter activity, indicating dual roles of the c-myb GGA repeat element as both a transcriptional repressor and an activator. Furthermore, we demonstrated that Myc-associated zinc finger protein (MAZ) represses c-myb promoter activity and binds to the c-myb T:H:H:T G-quadruplexes. Our findings show that the T:H:H:T G-quadruplex-forming region in the c-myb promoter is a critical cis-acting element and may repress c-myb promoter activity through MAZ interaction with G-quadruplexes in the c-myb promoter.
Collapse
Affiliation(s)
- SunMi L Palumbo
- Arizona Cancer Center, University of Arizona, 1515 N. Campbell Ave., Tucson, AZ 85724-5024, USA
| | | | | | | | | | | |
Collapse
|
22
|
Wang P, Yan H, Li JC. CREB-mediated Bcl-2 expression in trichosanthin-induced Hela cell apoptosis. Biochem Biophys Res Commun 2007; 363:101-5. [PMID: 17825790 DOI: 10.1016/j.bbrc.2007.08.141] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2007] [Accepted: 08/20/2007] [Indexed: 12/22/2022]
Abstract
Bcl-2 plays a pivotal role in the control of cell death and is down-regulated in trichosanthin (TCS)-induced cell apoptosis. Because Bcl-2 expression is regulated by the transcription factor cyclic AMP response element-binding protein (CREB), we investigated the role of CREB activation in TCS-induced Hela cells apoptosis. Our results showed that TCS-caused Hela cell apoptosis was accompanied by the decrease of Bcl-2 and phosphorylated CREB protein levels. Interesting, this inhibitive effect can be abolished by the combined treatment of TCS/cAMP agonists. Furthermore, TCS-mediated Bcl-2 protein was abrogated by the suppression of CREB expression with antisense treatment, and blocking the interaction between CREB-binding protein and the Bcl-2 cyclic AMP-responsive element (CRE) by a CRE decoy oligonucleotide. Therefore, these data support the hypothesis that CREB plays a critical role in the regulation of Bcl-2 expression in TCS-induced Hela cell death.
Collapse
Affiliation(s)
- Ping Wang
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, PR China
| | | | | |
Collapse
|
23
|
Cerhan JR, Ansell SM, Fredericksen ZS, Kay NE, Liebow M, Call TG, Dogan A, Cunningham JM, Wang AH, Liu-Mares W, Macon WR, Jelinek D, Witzig TE, Habermann TM, Slager SL. Genetic variation in 1253 immune and inflammation genes and risk of non-Hodgkin lymphoma. Blood 2007; 110:4455-63. [PMID: 17827388 PMCID: PMC2234796 DOI: 10.1182/blood-2007-05-088682] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Smaller-scale evaluations suggest that common genetic variation in candidate genes related to immune function may predispose to the development of non-Hodgkin lymphoma (NHL). We report an analysis of variants within genes associated with immunity and inflammation and risk of NHL using a panel of 9412 single-nucleotide polymorphisms (SNPs) from 1253 genes in a study of 458 patients with NHL and 484 frequency-matched controls. We modeled haplotypes and risk of NHL, as well as the main effects for all independent SNPs from a gene in multivariate logistic regression models; we separately report results for nonsynonymous (ns) SNPs. In gene-level analyses, the strongest findings (P < or = .001) were for CREB1, FGG, MAP3K5, RIPK3, LSP1, TRAF1, DUSP2, and ITGB3. In nsSNP analyses, the strongest findings (P < or = .01) were for ITGB3 L59P (odds ratio [OR] = 0.66; 95% confidence interval [CI] 0.52-0.85), TLR6 V427A (OR = 5.20; CI 1.77-15.3), SELPLG M264V (OR = 3.20; CI 1.48-6.91), UNC84B G671S (OR = 1.50; CI 1.12-2.00), B3GNT3 H328R (OR = 0.74; CI 0.59-0.93), and BAT2 V1883L (OR = 0.64; CI 0.45-0.90). Our results suggest that genetic variation in genes associated with immune response (TRAF1, RIPK3, BAT2, and TLR6), mitogen-activated protein kinase (MAPK) signaling (MAP3K5, DUSP2, and CREB1), lymphocyte trafficking and migration (B3GNT3, SELPLG, and LSP1), and coagulation pathways (FGG and ITGB3) may be important in the etiology of NHL, and should be prioritized in replication studies.
Collapse
Affiliation(s)
- James R Cerhan
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kim DW, Lee JH, Park SK, Yang WM, Jeon GS, Lee YH, Chung CK, Cho SS. Astrocytic Expressions of Phosphorylated Akt, GSK3β and CREB Following an Excitotoxic Lesion in the Mouse Hippocampus. Neurochem Res 2007; 32:1460-8. [PMID: 17417726 DOI: 10.1007/s11064-007-9332-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Accepted: 03/15/2007] [Indexed: 01/07/2023]
Abstract
Glycogen synthase kinase 3beta (GSK3beta) is believed to play important roles in the regulation of synaptic plasticity, cell survival and circadian rhythms in the mature CNS. However, although several studies have been focused on the GSK3beta, little is known about GSK3beta changes in glial cells under neuropathological conditions. In this study, we evaluated the expressions of molecules associated with the GSK3beta signaling pathway, following the induction of an excitotoxic lesion in mouse brain by kainic acid (KA) injection, which caused pyramidal cell degeneration in the hippocampal CA3 region. In injured hippocampi, Ser47-Akt (protein kinase B, PKB) phosphorylation increased from 4 h until 1 day post-injection (PI). Ser9-GSK3beta and Ser133-cAMP responsive element-binding protein (CREB) phosphorylations showed similar spatiotemporal patterns in hippocampi at 1 day until 3 days PI. Double immunohistochemistry also showed that these phosphorylated forms of Akt, GSK3beta and CREB were expressed in astrocytes. For the first time, our data demonstrate the injury-induced astrocytic changes in the levels of phosphorylation of Akt, -GSK3beta and -CREB in vivo, which may reflect mechanisms of glial cells protection or adaptive response to damage.
Collapse
Affiliation(s)
- Dong Woon Kim
- Department of Anatomy, Chungnam National University College of Medicine, Daejeon 301-131, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
25
|
McCubrey JA, Steelman LS, Franklin RA, Abrams SL, Chappell WH, Wong EWT, Lehmann BD, Terrian DM, Basecke J, Stivala F, Libra M, Evangelisti C, Martelli AM. Targeting the RAF/MEK/ERK, PI3K/AKT and p53 pathways in hematopoietic drug resistance. ADVANCES IN ENZYME REGULATION 2007; 47:64-103. [PMID: 17382374 PMCID: PMC2696319 DOI: 10.1016/j.advenzreg.2006.12.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lalonde J, Chaudhuri A. Dynamic changes in CREB phosphorylation and neuroadaptive gene expression in area V1 of adult monkeys after monocular enucleation. Mol Cell Neurosci 2007; 35:24-37. [PMID: 17336089 DOI: 10.1016/j.mcn.2007.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2006] [Revised: 01/24/2007] [Accepted: 01/26/2007] [Indexed: 01/07/2023] Open
Abstract
Our understanding of the molecular events that emerge after change in sensory input remains elusive, especially with regard to mature area V1. Here, we characterized P-CREB expression in area V1 of monkeys at multiple time-points after monocular enucleation (ME) to assess the possible contribution of CREB in visually deprived neocortex. Immunoblot assays and immunostainings showed that P-CREB is dynamically regulated in adult area V1, reaching a peak level between 5 and 30 days after ME, and becoming reduced at the 90-day post-ME time-point. This striking temporal increase in P-CREB level was paralleled by a concomitant increase of two CREB-regulated pro-survival effectors, namely Bcl-2 and Bcl-w. We present our results in the context of recent advances about adult visual neocortex and propose that ME induces a multifaceted CREB-mediated response that favors intrinsic stability of neurons and facilitates mature cortical networks to reorganize over a prolonged period.
Collapse
Affiliation(s)
- Jasmin Lalonde
- Department of Psychology, McGill University, 1205 Dr. Penfield Avenue, Montréal, Québec, Canada H3A 1B1.
| | | |
Collapse
|
27
|
Duan H, Heckman CA, Boxer LM. The immunoglobulin heavy-chain gene 3′ enhancers deregulate bcl-2 promoter usage in t(14;18) lymphoma cells. Oncogene 2006; 26:2635-41. [PMID: 17043638 DOI: 10.1038/sj.onc.1210061] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In t(14;18) lymphomas, bcl-2 is juxtaposed to the immunoglobulin heavy-chain gene (IgH), resulting in increased bcl-2 transcription and resistance to apoptosis. Regulatory elements of both the bcl-2 promoter and the IgH enhancers are believed to play a role in the increased expression of bcl-2 in t(14;18) lymphoma cells. In addition, transcription of the translocated bcl-2 allele is deregulated with activation of the normally minor bcl-2 P2 promoter. The mechanisms involved in the promoter shift from P1 to P2 are not known. We found that the murine IgH 3' enhancers increased bcl-2 P2 promoter activity in an episomal model of the translocation, and IgH enhancer region HS12 had the greatest effect. Quantitative chromatin immunoprecipitation (ChIP) assays revealed that localized histone H3 hyperacetylation of the P2 promoter was observed on the translocated allele in t(14;18) DHL-4 cells and also on the stably transfected bcl-2 promoter-IgH enhancer episomal construct. Analysis of the HS12 enhancer region revealed that a previously identified nuclear factor-kappaB (NF-kappaB) site and a previously uncharacterized downstream Cdx site, both of which are conserved in the human and murine IgH enhancers, were important for its enhancer activity and promoter activation. ChIP assays showed that C/EBPbeta bound to the HS12 Cdx site in vivo, and mutation of this site abrogated the binding of C/EBPbeta. Reduced expression of C/EBPbeta by transfection of small interfering RNA or interference with NF-kappaB activity decreased transcription from the bcl-2 promoters. These results demonstrate that the IgH 3' enhancers, particularly HS12, are important for the deregulation of bcl-2 promoter usage in t(14;18) lymphomas.
Collapse
MESH Headings
- Acetylation
- Animals
- Chromatin Immunoprecipitation
- Chromosomes, Human, Pair 14/genetics
- Chromosomes, Human, Pair 18/genetics
- Enhancer Elements, Genetic/genetics
- Gene Expression Regulation, Neoplastic
- Genes, Immunoglobulin Heavy Chain/genetics
- Histones/metabolism
- Humans
- Lymphoma/genetics
- Lymphoma/pathology
- Mice
- Mutagenesis, Site-Directed
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Promoter Regions, Genetic/genetics
- Protein Binding
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Regulatory Sequences, Nucleic Acid
- Transcription, Genetic
- Translocation, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- H Duan
- Veterans Affairs Palo Alto Health Care System and the Department of Medicine, Center for Molecular Biology in Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | | |
Collapse
|
28
|
Dai J, Chen D, Jones RA, Hurley LH, Yang D. NMR solution structure of the major G-quadruplex structure formed in the human BCL2 promoter region. Nucleic Acids Res 2006; 34:5133-44. [PMID: 16998187 PMCID: PMC1636422 DOI: 10.1093/nar/gkl610] [Citation(s) in RCA: 305] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 08/03/2006] [Accepted: 08/03/2006] [Indexed: 01/22/2023] Open
Abstract
BCL2 protein functions as an inhibitor of cell apoptosis and has been found to be aberrantly expressed in a wide range of human diseases. A highly GC-rich region upstream of the P1 promoter plays an important role in the transcriptional regulation of BCL2. Here we report the NMR solution structure of the major intramolecular G-quadruplex formed on the G-rich strand of this region in K+ solution. This well-defined mixed parallel/antiparallel-stranded G-quadruplex structure contains three G-tetrads of mixed G-arrangements, which are connected with two lateral loops and one side loop, and four grooves of different widths. The three loops interact with the core G-tetrads in a specific way that defines and stabilizes the overall G-quadruplex structure. The loop conformations are in accord with the experimental mutation and footprinting data. The first 3-nt loop adopts a lateral loop conformation and appears to determine the overall folding of the BCL2 G-quadruplex. The third 1-nt double-chain-reversal loop defines another example of a stable parallel-stranded structural motif using the G3NG3 sequence. Significantly, the distinct major BCL2 promoter G-quadruplex structure suggests that it can be specifically involved in gene modulation and can be an attractive target for pathway-specific drug design.
Collapse
Affiliation(s)
- Jixun Dai
- College of Pharmacy, The University of Arizona1703 E. Mabel Street, Tucson, AZ 85721, USA
| | - Ding Chen
- College of Pharmacy, The University of Arizona1703 E. Mabel Street, Tucson, AZ 85721, USA
| | - Roger A. Jones
- Department of Chemistry and Chemical Biology, Rutgers University610 Taylor Road, Piscataway, NJ 08854, USA
| | - Laurence H. Hurley
- College of Pharmacy, The University of Arizona1703 E. Mabel Street, Tucson, AZ 85721, USA
- Arizona Cancer Center1515 N. Campbell Avenue, Tucson, AZ 85724, USA
- BIO5 Institute, The University of Arizona1140 E. South Campus Dr, Tucson, AZ 85721, USA
| | - Danzhou Yang
- College of Pharmacy, The University of Arizona1703 E. Mabel Street, Tucson, AZ 85721, USA
- Arizona Cancer Center1515 N. Campbell Avenue, Tucson, AZ 85724, USA
- BIO5 Institute, The University of Arizona1140 E. South Campus Dr, Tucson, AZ 85721, USA
| |
Collapse
|
29
|
Xiang H, Wang J, Boxer LM. Role of the cyclic AMP response element in the bcl-2 promoter in the regulation of endogenous Bcl-2 expression and apoptosis in murine B cells. Mol Cell Biol 2006; 26:8599-606. [PMID: 16982684 PMCID: PMC1636799 DOI: 10.1128/mcb.01062-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously shown for B-cell lines that the cyclic AMP response element (CRE) is a major positive regulatory site in the bcl-2 promoter. However, the role of the CRE in the regulation of endogenous bcl-2 expression in vivo has not been characterized. We used gene targeting to generate knock-in mice in which a mutated CRE was introduced into the bcl-2 promoter region (mutCRE-bcl2 mice). Quantitative chromatin immunoprecipitation assays revealed that mutation of the CRE abolished the binding of CREB/ATF and CBP transcription factors to the bcl-2 promoter and greatly diminished the binding of NF-kappaB factors. The mutant CRE significantly reduced the expression of Bcl-2 in B cells and rendered them susceptible to surface immunoglobulin- and chemotherapeutic agent-induced apoptosis. The low levels of Bcl-2 were not changed with activation of the cells. The numbers of pre-B, immature B, and mature B cells in the bone marrow were decreased, as were the numbers of splenic B cells in mutCRE-bcl2 mice. Our findings indicate that the CRE in the bcl-2 promoter has an important functional role in the regulation of endogenous Bcl-2 expression and plays a critical role in the coordination of signals that regulate B-cell survival.
Collapse
Affiliation(s)
- Hong Xiang
- Center for Molecular Biology in Medicine, Veterans Affairs Palo Alto Health Care System, and Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305-5156, USA
| | | | | |
Collapse
|
30
|
Dworet JH, Meinkoth JL. Interference with 3′,5′-Cyclic Adenosine Monophosphate Response Element Binding Protein Stimulates Apoptosis through Aberrant Cell Cycle Progression and Checkpoint Activation. Mol Endocrinol 2006; 20:1112-20. [PMID: 16410315 DOI: 10.1210/me.2005-0386] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abstract
We previously reported that protein kinase A activity is an important determinant of thyroid cell survival. Given the important role of cAMP response element binding protein (CREB) in mediating the transcriptional effects of protein kinase A, we explored whether interference with CREB family members impaired thyroid cell survival. Expression of A-CREB, a dominant-negative CREB mutant that inhibits CREB DNA binding activity, induced apoptosis in rat thyroid cells. A-CREB inhibited CRE-regulated gene expression but failed to alter the expression of bcl-2 family members or of well-characterized inhibitors of apoptosis. To elucidate the mechanism through which impaired CREB function triggered apoptosis, its effects on cell proliferation were examined. Expression of A-CREB inhibited cell number increases, in part due to delayed cell cycle transit. Protracted S-phase progression in A-CREB-expressing cells was sufficient to activate a checkpoint response characterized by Chk-1, histone H2A.X, and p53 phosphorylation. To determine whether cell cycle progression was required for apoptosis, the effects of p27 overexpression were investigated. Overexpression of p27 prevented cell cycle progression, checkpoint activation, and apoptosis in A-CREB-expressing cells. These data reveal a novel mechanism through which interference with CREB abrogates cell survival, through checkpoint activation secondary to cell cycle delay. This study may explain how interference with CREB induces apoptosis in cells where alterations in the expression of pro- and anti-survival genes are not detected.
Collapse
Affiliation(s)
- Jessica H Dworet
- Department of Pharmacology, University of Pennsylvania School of Medicine, 420 Curie Boulevard, Philadelphia, Pennsylvania 19104-6061, USA
| | | |
Collapse
|
31
|
Dexheimer TS, Sun D, Hurley LH. Deconvoluting the structural and drug-recognition complexity of the G-quadruplex-forming region upstream of the bcl-2 P1 promoter. J Am Chem Soc 2006; 128:5404-15. [PMID: 16620112 PMCID: PMC2580050 DOI: 10.1021/ja0563861] [Citation(s) in RCA: 314] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The human bcl-2 gene contains a GC-rich region upstream of the P1 promoter that has been shown to be critically involved in the regulation of bcl-2 gene expression. We have demonstrated that the guanine-rich strand of the DNA in this region can form any one of three distinct intramolecular G-quadruplex structures. Mutation and deletion analysis permitted isolation and identification of three overlapping DNA sequences within this element that formed the three individual G-quadruplexes. Each of these was characterized using nondenaturing gel analysis, DMS footprinting, and circular dichroism. The central G-quadruplex, which is the most stable, forms a mixed parallel/antiparallel structure consisting of three tetrads connected by loops of one, seven, and three bases. Three different G-quadruplex-interactive agents were found to further stabilize these structures, with individual selectivity toward one or more of these G-quadruplexes. Collectively, these results suggest that the multiple G-quadruplexes identified in the promoter region of the bcl-2 gene are likely to play a similar role to the G-quadruplexes in the c-myc promoter in that their formation could serve to modulate gene transcription. Last, we demonstrate that the complexity of the G-quadruplexes in the bcl-2 promoter extends beyond the ability to form any one of three separate G-quadruplexes to each having the capacity to form either three or six different loop isomers. These results are discussed in relation to the biological significance of this G-quadruplex-forming element in modulation of bcl-2 gene expression and the inherent complexity of the system where different G-quadruplexes and loop isomers are possible.
Collapse
Affiliation(s)
| | - Daekyu Sun
- College of Pharmacy, University of Arizona, Tucson, Arizona 85721
| | - Laurence H. Hurley
- College of Pharmacy, University of Arizona, Tucson, Arizona 85721
- Arizona Cancer Center, 1515 N. Campbell Ave., Tucson, Arizona 85724
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721
| |
Collapse
|
32
|
Heckman CA, Duan H, Garcia PB, Boxer LM. Oct transcription factors mediate t(14;18) lymphoma cell survival by directly regulating bcl-2 expression. Oncogene 2006; 25:888-98. [PMID: 16186795 DOI: 10.1038/sj.onc.1209127] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Oct-1 and Oct-2 are members of the POU homeodomain family of transcriptional regulators and are critical for normal embryonic development. Gene-targeting studies showed that Oct-1 and Oct-2 are largely dispensable for B-cell development and immunoglobulin production, although both Oct-2 and Bob-1 are required for a proper immune response and germinal center formation. In these studies, we investigated the role of Oct factors in B-cell lymphomas. Recent investigations have shown increased expression of Oct-2 and Bob-1 in lymphomas, and we observed greatly increased levels of Oct-2 in lymphoma cells with the t(14;18) translocation. Decreased expression of Oct-1, Oct-2, or Bob-1 by RNA interference resulted in apoptosis and down-regulation of bcl-2 expression. Furthermore, Oct-2 induced bcl-2 promoter activity and mediated this effect through three regions in the bcl-2 P2 promoter. Although these regions did not contain canonical octamer motifs, we observed the direct interaction of Oct-2 with all three sites both in vitro by EMSA and in vivo by chromatin immunoprecipitation assay. Moreover, by mutation analysis we found that the ability of Oct-2 to activate bcl-2 required C/EBP, Cdx, and TATA-binding sites. Oct-2, therefore, acts as a cell survival factor in t(14;18) lymphoma cells by directly activating the antiapoptotic gene bcl-2.
Collapse
Affiliation(s)
- C A Heckman
- Center for Molecular Biology in Medicine, Palo Alto VAHCS, Palo Alto, CA, USA
| | | | | | | |
Collapse
|
33
|
Shankar DB, Cheng JC, Sakamoto KM. Role of cyclic AMP response element binding protein in human leukemias. Cancer 2005; 104:1819-24. [PMID: 16196046 DOI: 10.1002/cncr.21401] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Acute myeloid leukemia (AML) in adults has a 20% 5-year disease-free survival despite treatment with aggressive cytotoxic chemotherapy. Previous work from our laboratory demonstrated that the majority of patients with acute lymphoid and myeloid leukemia overexpress CREB in the bone marrow. CREB overexpression is associated with poor initial outcome of clinical disease in AML patients. CREB is a transcription factor that functions in glucose homeostasis, growth-factor-dependent cell survival, and memory. Signaling by hematopoietic growth factors, such as GM-CSF, results in activation of CREB and up-regulation of CREB target genes. To study its role in hematopoiesis, we overexpressed CREB in leukemia cell lines and in mice. CREB overexpression resulted in increased survival and proliferation of myeloid cells and blast-transformation of bone marrow progenitor cells from transgenic mice expressing CREB in the myeloid lineage. CREB transgenic mice also develop myeloproliferative disease after 1 year. Thus, CREB acts as a protooncogene to regulate hematopoiesis and contributes to the leukemia phenotype. Our results suggest that CREB-dependent pathways may serve as targets for directed therapies in leukemia in the future.
Collapse
Affiliation(s)
- Deepa B Shankar
- Department of Pediatrics, Division of Hematology/Oncology, Gwynne Hazen Cherry Memorial Laboratories, and Mattel Children's Hospital, Jonsson Comprehensive Cancer Center, Los Angeles, California, USA
| | | | | |
Collapse
|
34
|
Kuan WL, Barker RA. New therapeutic approaches to Parkinson's disease including neural transplants. Neurorehabil Neural Repair 2005; 19:155-81. [PMID: 16093408 DOI: 10.1177/1545968305277219] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder of the brain and typically presents with a disorder of movement. The core pathological event underlying the condition is the loss of the dopaminergic nigrostriatal pathway with the formation of alpha-synuclein positive Lewy bodies. As a result, drugs that target the degenerating dopaminergic network within the brain work well at least in the early stages of the disease. Unfortunately, with time these therapies fail and produce their own unique side-effect profile, and this, coupled with the more diffuse pathological and clinical findings in advancing disease, has led to a search for more effective therapies. In this review, the authors will briefly discuss the emerging new drug therapies in PD before concentrating on a more detailed discussion on the state of cell therapies to cure PD.
Collapse
Affiliation(s)
- W-L Kuan
- Cambridge Centre for Brain Repair, Cambridge University, UK
| | | |
Collapse
|
35
|
Yano T, Itoh Y, Kubota T, Sendo T, Koyama T, Fujita T, Saeki K, Yuo A, Oishi R. A prostacyclin analog prevents radiocontrast nephropathy via phosphorylation of cyclic AMP response element binding protein. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:1333-42. [PMID: 15855635 PMCID: PMC1606389 DOI: 10.1016/s0002-9440(10)62352-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We reported previously that radiocontrast medium induces caspase-dependent apoptosis and that cAMP analogs inhibit cell injury in cultured renal tubular cells. In the present study, cellular mechanisms underlying the protective effects of cAMP were determined. Ioversol, a radiocontrast medium, caused cell injury accompanied by decreases in Bcl-2, increases in Bax, and caspase activation in LLC-PK1 cells. Both cell injury and cellular events induced by ioversol were inhibited by dibutyryl cAMP and the prostacyclin analog beraprost. Dibutyryl cAMP increased phosphorylation of Akt and CREB, both of which were reversed by H89, wortmannin and the Akt inhibitor SH-6. The protective effect of dibutyryl cAMP was also reversed by these kinase inhibitors. In dominant-negative CREB-transfected cells, dibutyryl cAMP no longer prevented cell injury or inhibited changes in mRNA expression of Bcl-2 and Bax. In mice with unilateral renal occlusion, ioversol increased urinary excretion of N-acetyl-beta-d-glucosaminidase with concomitant decreases in Bcl-2 mRNA, increases in Bax mRNA, activation of caspase-3, and induction of apoptosis in tubular and interstitial cells. Beraprost completely reversed these in vivo effects of ioversol. These findings suggest that elevation of endogenous cAMP effectively prevents radiocontrast nephropathy through activation of A kinase/PI 3-kinase/Akt followed by CREB phosphorylation and enhanced expression of Bcl-2.
Collapse
Affiliation(s)
- Takahisa Yano
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sanz C, Calasanz M, Andreu E, Richard C, Prosper F, Fernandez-Luna J. NALP1 is a transcriptional target for cAMP-response-element-binding protein (CREB) in myeloid leukaemia cells. Biochem J 2005; 384:281-6. [PMID: 15285719 PMCID: PMC1134111 DOI: 10.1042/bj20040867] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
NALP1 (also called DEFCAP, NAC, CARD7) has been shown to play a central role in the activation of inflammatory caspases and processing of pro-IL1b (pro-interleukin-1b). Previous studies showed that NALP1 is highly expressed in peripheral blood mononuclear cells. In the present study, we report that expression of NALP1 is absent from CD34+ haematopoietic blast cells, and its levels are upregulated upon differentiation of CD34+ cells into granulocytes and to a lesser extent into monocytes. In peripheral blood cells, the highest levels of NALP1 were observed in CD3+ (T-lymphocytes), CD15+ (granulocytes) and CD14+ (monocytes) cell populations. Notably, the expression of NALP1 was significantly increased in the bone marrow blast cell population of some patients with acute leukaemia, but not among tissue samples from thyroid and renal cancer. A search for consensus sites within the NALP1 promoter revealed a sequence for CREB (cAMP-response-element-binding protein) that was required for transcriptional activity. Moreover, treatment of TF1 myeloid leukaemia cells with protein kinase C and protein kinase A activators induced CREB phosphorylation and upregulated the mRNA and protein levels of NALP1. Conversely, ectopic expression of a dominant negative form of CREB in TF1 cells blocked the transcriptional activity of the NALP1 promoter and significantly reduced the expression of NALP1. Thus NALP1 is transcriptionally regulated by CREB in myeloid cells, a mechanism that may contribute to modulate the response of these cells to pro-inflammatory stimuli.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/biosynthesis
- Adaptor Proteins, Signal Transducing/genetics
- Apoptosis Regulatory Proteins
- Base Sequence
- Binding Sites/genetics
- Cell Line, Tumor
- Cyclic AMP Response Element-Binding Protein/physiology
- Gene Expression Regulation, Neoplastic/genetics
- Hematopoietic Stem Cells/chemistry
- Hematopoietic Stem Cells/metabolism
- Humans
- K562 Cells/chemistry
- K562 Cells/metabolism
- K562 Cells/pathology
- Leukemia, Erythroblastic, Acute/genetics
- Leukemia, Erythroblastic, Acute/metabolism
- Leukemia, Erythroblastic, Acute/pathology
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/metabolism
- Leukemia, Myeloid/pathology
- Molecular Sequence Data
- NLR Proteins
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/genetics
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Tetradecanoylphorbol Acetate/pharmacology
- Transcription, Genetic/physiology
Collapse
Affiliation(s)
- Cristina Sanz
- *Unidad de Genetica Molecular, Hospital Universitario Marques de Valdecilla, 39008 Santander, Spain
| | - Maria J. Calasanz
- †Departamento de Genetica, Universidad de Navarra, 31080 Pamplona, Spain
| | - Enrique Andreu
- ‡Clinica Universitaria de Navarra, 31080 Pamplona, Spain
| | - Carlos Richard
- §Servicio de Hematología, Hospital Universitario Marques de Valdecilla, 39008 Santander, Spain
| | - Felipe Prosper
- ‡Clinica Universitaria de Navarra, 31080 Pamplona, Spain
| | - Jose L. Fernandez-Luna
- *Unidad de Genetica Molecular, Hospital Universitario Marques de Valdecilla, 39008 Santander, Spain
- To whom correspondence should be addressed (email )
| |
Collapse
|
37
|
Duan H, Heckman CA, Boxer LM. Histone deacetylase inhibitors down-regulate bcl-2 expression and induce apoptosis in t(14;18) lymphomas. Mol Cell Biol 2005; 25:1608-19. [PMID: 15713621 PMCID: PMC549348 DOI: 10.1128/mcb.25.5.1608-1619.2005] [Citation(s) in RCA: 204] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Histone deacetylase (HDAC) inhibitors are promising antitumor agents, but they have not been extensively explored in B-cell lymphomas. Many of these lymphomas have the t(14;18) translocation, which results in increased bcl-2 expression and resistance to apoptosis. In this study, we examined the effects of two structurally different HDAC inhibitors, trichostatin A (TSA) and sodium butyrate (NaB), on the cell cycle, apoptosis, and bcl-2 expression in t(14;18) lymphoma cells. We found that in addition to potent cell cycle arrest, TSA and NaB also dramatically induced apoptosis and down-regulated bcl-2 expression, and overexpression of bcl-2 inhibited TSA-induced apoptosis. The repression of bcl-2 by TSA occurred at the transcriptional level. Western blot analysis and quantitative chromatin immunoprecipitation (ChIP) assay showed that even though HDAC inhibitors increased overall acetylation of histones, localized histone H3 deacetylation occurred at both bcl-2 promoters. TSA treatment increased the acetylation of the transcription factors Sp1 and C/EBPalpha and decreased their binding as well as the binding of CBP and HDAC2 to the bcl-2 promoters. Mutation of Sp1 and C/EBPalpha binding sites reduced the TSA-induced repression of bcl-2 promoter activity. This study provides a mechanistic rationale for the use of HDAC inhibitors in the treatment of human t(14;18) lymphomas.
Collapse
MESH Headings
- Acetylation/drug effects
- Apoptosis
- Barbiturates/pharmacology
- Binding Sites/genetics
- CCAAT-Enhancer-Binding Proteins/metabolism
- Cell Cycle/drug effects
- Cell Line, Tumor
- Chromosomes, Human, Pair 14
- Chromosomes, Human, Pair 18
- Down-Regulation
- Enzyme Inhibitors/pharmacology
- Histone Deacetylase 2
- Histone Deacetylase Inhibitors
- Histone Deacetylases/metabolism
- Histone Deacetylases/physiology
- Histones/metabolism
- Humans
- Hydroxamic Acids/pharmacology
- Lymphoma, B-Cell/enzymology
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/metabolism
- Mutation/genetics
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/genetics
- Protein Kinases/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- Repressor Proteins/antagonists & inhibitors
- Repressor Proteins/metabolism
- Repressor Proteins/physiology
- Translocation, Genetic
Collapse
Affiliation(s)
- Hong Duan
- Center for Molecular Biology in Medicine, Veterans Affairs, Palo Alto Health Care System, Palo Alto, CA, USA
| | | | | |
Collapse
|
38
|
Meller R, Minami M, Cameron JA, Impey S, Chen D, Lan JQ, Henshall DC, Simon RP. CREB-mediated Bcl-2 protein expression after ischemic preconditioning. J Cereb Blood Flow Metab 2005; 25:234-46. [PMID: 15647742 DOI: 10.1038/sj.jcbfm.9600024] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bcl-2 plays a pivotal role in the control of cell death and is upregulated by ischemic tolerance. Because Bcl-2 expression is regulated by the transcription factor cyclic AMP response element-binding protein (CREB), we investigated the role of CREB activation in two models of ischemic preconditioning: focal ischemic tolerance after middle cerebral artery occlusion (MCAO) and in vitro ischemic tolerance modeled by oxygen-glucose deprivation (OGD). After preconditioning ischemia (30 minutes MCAO or 30 minutes OGD), phosphorylation of CREB was increased, and there was an increased interaction between the bcl-2 cyclic AMP-responsive element (CRE) promoter and nuclear proteins after preconditioning ischemia in vivo and in vitro. Chromatin immunoprecipitation revealed an increased interaction between CREB-binding protein and the bcl-2 CRE rather than CREB, after preconditioning ischemia. Ischemic tolerance was blocked by a CRE decoy oligonucleotide, which also blocked Bcl-2 expression. The protein kinase A inhibitor H89, the calcium/calmodulin kinase inhibitor KN62, and the MEK inhibitor U0126 blocked ischemic tolerance, but not the phosphatidylinositol 3-kinase inhibitor LY294002. H89, KN62, and U0126 reduced CREB activation and Bcl-2 expression. Taken together, these data suggest that after ischemic preconditioning CREB activation regulates the expression of the prosurvival protein Bcl-2.
Collapse
Affiliation(s)
- Robert Meller
- RS Dow Neurobiology Laboratories, Legacy Research, Portland, Oregon 97232, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Lang G, Gombert WM, Gould HJ. A transcriptional regulatory element in the coding sequence of the human Bcl-2 gene. Immunology 2005; 114:25-36. [PMID: 15606792 PMCID: PMC1782053 DOI: 10.1111/j.1365-2567.2004.02073.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We investigated the protein-binding sites in a DNAse I hypersensitive site associated with bcl-2 gene expression in human B cells. We mapped this hypersensitive site to the coding sequence of exon 2 of the bcl-2 gene in the bcl-2-expressing REH B-cell line. Electrophoretic mobility shift assays (EMSAs) with extracts from REH cells revealed three previously unrecognized B-Myb-binding sites in this sequence. The protein was identified as B-Myb by using a specific antibody and EMSAs. Accordingly, the levels of B-Myb and bcl-2 proteins, and of Myb EMSA activity, were correlated over a wide range of cell lines, representing different stages of B-cell development. Transfection of REH cells with antisense B-myb down-regulated EMSA activity and the level of bcl-2, and led to the apoptosis of REH cells. Transfection of the bcl-2-non-expressing RPMI 8226 cell line with a B-Myb expression vector induced B-Myb EMSA activity and the expression of bcl-2. Reporter assays indicated that the HSS8 sequence containing the three B-Myb sites may act as an enhancer when it is linked to the bcl-2 gene promoter. Interaction of B-Myb with HSS8 may enhance bcl-2 gene expression by co-operating with positive regulatory elements (e.g. previously identified B-Myb response elements) or silencing negative response elements in the bcl-2 gene promoter.
Collapse
Affiliation(s)
- Georgina Lang
- The Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | | | | |
Collapse
|
40
|
Itoh Y, Yano T, Sendo T, Oishi R. Clinical and Experimental Evidence for Prevention of Acute Renal Failure Induced by Radiographic Contrast Media. J Pharmacol Sci 2005; 97:473-88. [PMID: 15821342 DOI: 10.1254/jphs.crj05002x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Acute renal failure still occurs as a complication after radiographic examination using iodinated radiocontrast medium. The incidence rate of radiocontrast medium-induced nephropathy (radiocontrast nephropathy) is low (2 - 3%) in general. However, the rate is remarkably elevated in patients with pre-existing renal insufficiency. Radiocontrast nephropathy is associated with increased morbidity and mortality, particularly in patients with percutaneous coronary interventions. Although the reduction in renal blood flow and direct toxic action on renal tubular cells are considered to be involved, little is known about the etiology of radiocontrast nephropathy. A number of agents that improve renal circulation have been clinically tested for prevention of radiocontrast nephropathy, but none of them has succeeded. Protection of renal tubular cells against oxidative stress is another approach to avoid radiocontrast nephropathy. Prophylactic effects of antioxidants such as N-acetylcysteine and ascorbic acid have been reported by several investigators, although the effectiveness of these compounds is still a matter of debate. At present, hydration is regarded as the only effective, though incomplete, prophylactic regimen for radiocontrast nephropathy. Recently, we have shown that caspase-dependent apoptosis is an important factor in the pathogenesis of radiocontrast nephropathy and clarified cellular mechanisms underlying the radiocontrast media-induced apoptosis. This review summarizes clinical and experimental evidence for the etiology and prevention of radiocontrast nephropathy.
Collapse
Affiliation(s)
- Yoshinori Itoh
- Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan.
| | | | | | | |
Collapse
|
41
|
Cha-Molstad H, Keller DM, Yochum GS, Impey S, Goodman RH. Cell-type-specific binding of the transcription factor CREB to the cAMP-response element. Proc Natl Acad Sci U S A 2004; 101:13572-7. [PMID: 15342915 PMCID: PMC518796 DOI: 10.1073/pnas.0405587101] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cAMP-response element-binding protein (CREB) transcription factor was initially identified as a mediator of cAMP-induced gene expression. CREB binds to a target sequence termed the cAMP-response element (CRE) found in many cellular and viral gene promoters. One of the best-characterized CREs resides in the promoter of the gene encoding the neuropeptide somatostatin, and this element has served as a model for studies of CREB function. Phosphorylation of CREB by protein kinase A allows recruitment of the coactivator CREB-binding protein (CBP). A central tenet of the CREB-CBP model is that CREB binds constitutively to the CRE and that regulation occurs through the phosphorylation-dependent recruitment of CBP. In this report, we use chromatin immunoprecipitation assays to show that CREB does not interact in vivo with the somatostatin CRE, or similar elements in several other genes, in PC12 cells, a standard model for studies of CREB function. Rather, CREB binding in vivo is regulated in a cell-specific manner, a finding that was confirmed by using in vivo genomic footprinting assays. The CREs in other genes were also found to interact differentially with CREB in PC12 cells, hepatoma cells, and cortical neurons. We conclude that the family of CREB target genes differs from one cell type to another and that the ability of CREB to bind to a particular CRE represents an important component of gene regulation.
Collapse
Affiliation(s)
- Hyunjoo Cha-Molstad
- Vollum Institute, Oregon Health and Sciences University, Portland, OR 97239, USA
| | | | | | | | | |
Collapse
|
42
|
Dai Y, Rahmani M, Corey SJ, Dent P, Grant S. A Bcr/Abl-independent, Lyn-dependent form of imatinib mesylate (STI-571) resistance is associated with altered expression of Bcl-2. J Biol Chem 2004; 279:34227-34239. [PMID: 15175350 DOI: 10.1074/jbc.m402290200] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The relationship between the Src kinase Lyn and Bcl-2 expression was examined in chronic myelogenous leukemia cells (K562 and LAMA84) displaying a Bcr/Abl-independent form of imatinib mesylate resistance. K562-R and LAMA-R cells that were markedly resistant to induction of mitochondrial dysfunction (e.g. loss of mitochondrial membrane potential, Bax translocation, cytochrome c, and apoptosis-inducing factor release) and apoptosis by imatinib mesylate exhibited a pronounced reduction in expression of Bcr/Abl, Bcl-x(L), and STAT5 but a striking increase in levels of activated Lyn. Whereas basal expression of Bcl-2 protein was very low in parental cells, imatinib-resistant cells displayed a marked increase in Bcl-2 mRNA and/or protein levels. Treatment of LAMA-R cells with the Src kinase inhibitor PP2 significantly reduced Lyn activation as well as Bcl-2 mRNA and protein levels. Transient or stable transfection of LAMA84 or K562 cells with a constitutively active Lyn (Y508F), but not with a kinase-dead mutant (K275D), significantly increased Bcl-2 protein expression and protected cells from lethality of imatinib mesylate. Ectopic expression of Bcl-2 protected K562 and LAMA84 cells from imatinib mesylate- and PP2-mediated lethality. Conversely, interference with Bcl-2 function by co-administration of the small molecule Bcl-2 inhibitor HA14-1 or down-regulation of Bcl-2 expression by small interfering RNA or antisense strategies significantly increased mitochondrial dysfunction and apoptosis induced by imatinib mesylate and the topoisomerase inhibitor VP-16 in LAMA-R cells. In marked contrast, these interventions had little effect in parental LAMA84 cells that display low basal levels of Bcl-2. Together, these findings indicate that activation of Lyn in leukemia cells displaying a Bcr/Abl-independent form of imatinib mesylate resistance plays a functional role in Bcl-2 up-regulation and provide a theoretical basis for the development of therapeutic strategies targeting Bcl-2 in such a setting.
Collapse
Affiliation(s)
- Yun Dai
- Department of Medicine, Virginia Commonwealth University/Medical College of Virginia, Richmond, VA 23298, USA
| | | | | | | | | |
Collapse
|
43
|
Saini HS, Gorse KM, Boxer LM, Sato-Bigbee C. Neurotrophin-3 and a CREB-mediated signaling pathway regulate Bcl-2 expression in oligodendrocyte progenitor cells. J Neurochem 2004; 89:951-61. [PMID: 15140194 DOI: 10.1111/j.1471-4159.2004.02365.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Our previous results suggested that the transcription factor CREB mediates the actions of neuroligands and growth factor signals that coupled to different signaling pathways may play different roles along oligodendrocyte (OLG) development. We showed before that CREB phosphorylation in OLG progenitors is up-regulated by neurotrophin-3 (NT-3); and moreover CREB is required for NT-3 to stimulate the proliferation of these cells. We now show that treatment of OLG progenitors with NT-3 is also accompanied by an increase in the levels of the anti-apoptotic protein Bcl-2. Interestingly, the presence of a putative CREB binding site (CRE) in the Bcl-2 gene raised the possibility that CREB could also be involved in regulating Bcl-2 expression in the OLGs. Supporting this hypothesis, the NT-3 dependent increase in Bcl-2 levels is abolished by inhibition of CREB expression. In addition, transient transfection experiments using various regions of the Bcl-2 promoter and mutation of the CRE site indicate a direct role of CREB in regulating Bcl-2 gene activity in response to NT-3. Furthermore, protein-DNA binding assays show that the CREB protein from freshly isolated OLGs indeed binds to the Bcl-2 promoter CRE. Together with our previous results, these observations suggest that CREB may play an important role in linking proliferation and survival pathways in the OLG progenitors.
Collapse
Affiliation(s)
- Harsimran S Saini
- Department of Biochemistry, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, USA
| | | | | | | |
Collapse
|
44
|
Mora-Garcia P, Cheng J, Crans-Vargas HN, Countouriotis A, Shankar D, Sakamoto KM. Transcriptional regulators and myelopoiesis: the role of serum response factor and CREB as targets of cytokine signaling. Stem Cells 2003; 21:123-30. [PMID: 12634408 DOI: 10.1634/stemcells.21-2-123] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hematopoiesis is a complex process in which mature myeloid and lymphoid cells are produced from a small population of pluripotent stem cells within the bone marrow. Blood cell formation occurs, in part, by progenitor cell exposure to humoral growth regulators, known as hematopoietic cytokines, as well as by the regulated expression of genes by transcription factors. In this paper, we review two important nuclear proteins, the serum response factor and the cyclic adenosine monophosphate response element-binding protein, as downstream targets of mitogens, with a specific focus on hematopoietic cytokine signaling and the role these proteins play in gene regulation.
Collapse
Affiliation(s)
- Patricia Mora-Garcia
- Department of Pediatrics, Division of Hematology-Oncology, Mattel Children's Hospital, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
In follicular lymphomas with the t(14;18) translocation, there is increased expression of the bcl-2 gene, which is dependent upon regulatory elements within the bcl-2 5' flanking region and the immunoglobulin heavy-chain gene enhancers. We found that t(14;18) lymphomas expressed C/EBPalpha, which is not normally expressed in B lymphocytes. Expression of C/EBPalpha increased bcl-2 expression, and two regions of the bcl-2 P2 promoter that mediated this effect were identified. C/EBPbeta was also able to increase bcl-2 promoter activity through these sites. The 5' site was GC-rich and did not contain a C/EBP consensus sequence; however, C/EBP was observed to interact with this site both in vitro by EMSA and in vivo by chromatin immunoprecipitation assay. The 3' region contained the Cdx site, which mediates the effect of A-Myb on the bcl-2 promoter. In vivo binding studies revealed that C/EBP interacted with this region of the bcl-2 promoter as well. Decreased expression of C/EBP factors due to targeting of their transcripts by siRNA molecules resulted in downregulation of Bcl-2 protein. We conclude that C/EBPalpha and C/EBPbeta contribute to the deregulated expression of Bcl-2 in t(14;18) lymphoma cells.
Collapse
MESH Headings
- B-Lymphocytes/pathology
- B-Lymphocytes/physiology
- Base Composition
- Binding Sites
- CCAAT-Enhancer-Binding Protein-alpha/genetics
- CCAAT-Enhancer-Binding Protein-alpha/metabolism
- CCAAT-Enhancer-Binding Protein-beta/genetics
- CCAAT-Enhancer-Binding Protein-beta/metabolism
- CCAAT-Enhancer-Binding Proteins/genetics
- CCAAT-Enhancer-Binding Proteins/metabolism
- Chromosomes, Human, Pair 14
- Chromosomes, Human, Pair 18
- Gene Expression Regulation, Neoplastic
- Homeodomain Proteins/metabolism
- Humans
- Lymphoma, Follicular/genetics
- Mutation
- Promoter Regions, Genetic
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- RNA, Small Interfering
- Response Elements
- Transfection
- Translocation, Genetic/genetics
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Caroline A Heckman
- Center for Molecular Biology in Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | | | | |
Collapse
|
46
|
Cheema SK, Mishra SK, Rangnekar VM, Tari AM, Kumar R, Lopez-Berestein G. Par-4 transcriptionally regulates Bcl-2 through a WT1-binding site on the bcl-2 promoter. J Biol Chem 2003; 278:19995-20005. [PMID: 12644474 DOI: 10.1074/jbc.m205865200] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elevated expression levels of the bcl-2 proto-oncogene have been extensively correlated with the appearance of androgen independence in prostate cancer. Although bcl-2 was first cloned as the t(14:18) translocation breakpoint from human follicular B cell lymphoma, the mechanism of overexpression of bcl-2 is largely undefined for advanced prostate cancer because there are no gross alterations in the gene structure. We investigated the role of the product of the prostate apoptosis response gene-4 (Par-4) and the product of the Wilms' tumor 1 gene (WT1) in the regulation of Bcl-2 expression in prostate cancer cell lines. We observed growth arrest and apoptosis, upon decreasing Bcl-2 protein and transcript in the high Bcl-2-expressing, androgen-independent prostate cancer cell line, by all-trans-retinoic acid treatment (ATRA), but this did not occur in the androgen-dependent cell line expressing low levels of Bcl-2. The decrease in the Bcl-2 protein and transcript following all-trans-retinoic acid treatment was accompanied by changes in localization of Par-4 and an induction in the expression of WT1 protein. In stable clones expressing ectopic Par-4 and in ATRA-treated cells, we observed decreased Bcl-2 protein and transcript. This was accompanied by an induction in WT1 expression. The involvement of WT1 in the Par-4-mediated down-modulation of Bcl-2 was further defined by blocking endogenous WT1 expression, which resulted in an increase in Bcl-2 expression. Finally, we detected Par-4 and WT1 proteins binding to a previously identified WT1-binding site on the bcl-2 promoter both in vitro and in vivo leading to a decrease in transcription from the bcl-2 promoter. We conclude that Par-4 regulates Bcl-2 through a WT1-binding site on the bcl-2 promoter. These data also identify Par-4 nuclear localization as a novel mechanism for ATRA-mediated bcl-2 regulation.
Collapse
Affiliation(s)
- Sangeeta K Cheema
- Department of Bioimmunotherapy, Section of Immunobiology and Drug Carrier, University of Texas M. D. Anderson Cancer Center, Houston 77030, USA
| | | | | | | | | | | |
Collapse
|
47
|
Zhang CY, Wu YL, Boxer LM. Impaired proliferation and survival of activated B cells in transgenic mice that express a dominant-negative cAMP-response element-binding protein transcription factor in B cells. J Biol Chem 2002; 277:48359-65. [PMID: 12374787 DOI: 10.1074/jbc.m209329200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cAMP-response element-binding protein (CREB) is activated by phosphorylation on serine 133 and mediates the proliferative response to a number of different signals. A mutant CREB with a serine to alanine substitution at position 133 (CREBM1) functions as a dominant-negative inhibitor. Transgenic mice that express the dominant-negative CREB protein in B lymphocytes were developed as a means to study the effects of the inhibition of CREB function on B-cell proliferation and survival. We have shown previously that CREB up-regulates Bcl-2 expression in B cells in response to activation signals. B cells from CREBM1 transgenic mice expressed lower levels of Bcl-2 with and without stimulation. Proliferation of B cells from the transgenic mice was impaired in part by lack of induction of activator protein 1 (AP1) transcription factors. B cells from the transgenic mice were more susceptible to induction of apoptosis with several different agents, consistent with the decreased expression of Bcl-2. These studies demonstrate that B-cell activation requires phosphorylation of CREB for the proliferative response and to protect against activation-induced apoptosis.
Collapse
Affiliation(s)
- Chun-yi Zhang
- Center for Molecular Biology in Medicine, Veterans Affairs Palo Alto Health Care System, California 94305, USA
| | | | | |
Collapse
|
48
|
|
49
|
Heckman CA, Mehew JW, Boxer LM. NF-kappaB activates Bcl-2 expression in t(14;18) lymphoma cells. Oncogene 2002; 21:3898-908. [PMID: 12032828 DOI: 10.1038/sj.onc.1205483] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2001] [Revised: 02/28/2002] [Accepted: 03/18/2002] [Indexed: 01/19/2023]
Abstract
The t(14;18) translocation, which is characteristic of follicular lymphoma, results in the overexpression of the bcl-2 gene dependent upon regulatory elements within the bcl-2 5' flanking region and the immunoglobulin heavy chain gene enhancers. Conflicting evidence exists on the effects of NF-kappaB expression on Bcl-2 levels in different cell types. Lymphoma cells with the t(14;18) translocation show high levels of nuclear NF-kappaB proteins. We observed decreased levels of endogenous Bcl-2 when the IkappaBalpha-super-repressor was expressed in a t(14;18) cell line. Deletion analysis of the bcl-2 promoter indicated that the repressive effect of the IkappaBalpha-super-repressor occurred through a region that contained no NF-kappaB consensus sequences. This highly active region contained a c-AMP response element (CRE) and several Sp1 binding sites. Chromatin immunoprecipitation assays with antibodies specific for the NF-kappaB and CREB/ATF family members, as well as Sp1, resulted in the isolation of this IkappaBalpha-super-repressor responsive region of the bcl-2 promoter. Mutation of the CRE and the two Sp1 sites in different combinations in bcl-2 reporter constructs resulted in the loss of bcl-2 promoter repression by the IkappaBalpha-super-repressor. We therefore conclude that the activation of bcl-2 by NF-kappaB in t(14;18) lymphoma cells is mediated through the CRE and Sp1 binding sites.
Collapse
MESH Headings
- Apoptosis
- Binding Sites
- Blotting, Western
- Cell Line
- Chromatin/metabolism
- Chromosomes, Human, Pair 14
- Chromosomes, Human, Pair 18
- Cyclic AMP/metabolism
- Dose-Response Relationship, Drug
- Electrophoresis, Polyacrylamide Gel
- Genetic Vectors
- Humans
- Immunoblotting
- Luciferases/metabolism
- Lymphoma/metabolism
- Models, Genetic
- Mutation
- NF-kappa B/metabolism
- Plasmids/metabolism
- Precipitin Tests
- Promoter Regions, Genetic
- Protein Binding
- Proto-Oncogene Proteins c-bcl-2/metabolism
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sp1 Transcription Factor/metabolism
- Transfection
- Translocation, Genetic
- Tumor Cells, Cultured
- Tumor Necrosis Factor-alpha/metabolism
- Ultraviolet Rays
Collapse
Affiliation(s)
- Caroline A Heckman
- Center for Molecular Biology in Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94305, USA
| | | | | |
Collapse
|
50
|
Abstract
In vivo footprinting techniques are useful for the identification of regulatory elements mediating transcriptional control of a gene. However, regulation of a gene can differ between the two alleles, and further steps must be taken to distinguish between the regulatory elements occupied on one allele and those used on the second allele. Many hematologic malignancies result from chromosomal translocations, which, in some cases, relocate a gene to a transcriptionally active region leading to the deregulated expression of that gene. This situation provides an example of differential expression between two alleles. In studying the t(14; 18) and t(8; 14) translocations, which involve the bcl-2 and c-myc proto-oncogenes, respectively, we have been able to identify regulatory elements important in mediating the activation of the translocated alleles and the silencing of the normal alleles. Following in vivo methylation and isolation of genomic DNA, we were able to separate the translocated and normal alleles by electrophoresis. Using the ligation-mediated polymerase chain reaction (LMPCR) technique, we could then assess protein interactions on the two different alleles. A detailed description of this methodology with examples from our studies are provided with a discussion of how these techniques may be applied to the study of other genes.
Collapse
Affiliation(s)
- Caroline A Heckman
- Center for Molecular Biology in Medicine, Veterans Affairs Palo Alto Health Care System and the Department of Medicine, Stanford University School of Medicine, CA 94305, USA
| | | |
Collapse
|