1
|
Mishra S, Morshed N, Sidhu SB, Kinoshita C, Stevens B, Jayadev S, Young JE. The Alzheimer's Disease Gene SORL1 Regulates Lysosome Function in Human Microglia. Glia 2025. [PMID: 40183375 DOI: 10.1002/glia.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/31/2024] [Accepted: 02/21/2025] [Indexed: 04/05/2025]
Abstract
The SORL1 gene encodes the sortilin-related receptor protein SORLA, a sorting receptor that regulates endo-lysosomal trafficking of various substrates. Loss of function variants in SORL1 are causative for Alzheimer's disease (AD) and decreased expression of SORLA has been repeatedly observed in human AD brains. SORL1 is highly expressed in the central nervous system, including in microglia, the tissue-resident immune cells of the brain. Loss of SORLA leads to enlarged lysosomes in hiPSC-derived microglia-like cells (hMGLs). However, how SORLA deficiency contributes to lysosomal dysfunction in microglia and how this contributes to AD pathogenesis is not known. In this study, we show that loss of SORLA results in decreased lysosomal degradation and lysosomal enzyme activity due to altered trafficking of lysosomal enzymes in hMGLs. Phagocytic uptake of fibrillar amyloid beta 1-42 and synaptosomes is increased in SORLA-deficient hMGLs, but due to reduced lysosomal degradation, these substrates aberrantly accumulate in lysosomes. An alternative mechanism of lysosome clearance, lysosomal exocytosis, is also impaired in SORL1-deficient microglia, which may contribute to an altered immune response. Overall, these data suggest that SORLA has an important role in the proper trafficking of lysosomal hydrolases in hMGLs, which is critical for microglial function. This further substantiates the microglial endo-lysosomal network as a potential novel pathway through which SORL1 may increase AD risk and contribute to the development of AD. Additionally, our findings may inform the development of novel lysosome and microglia-associated drug targets for AD.
Collapse
Affiliation(s)
- Swati Mishra
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | - Nader Morshed
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, Massachusetts, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Sonia Beant Sidhu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | - Chizuru Kinoshita
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | - Beth Stevens
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, Massachusetts, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - Suman Jayadev
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
- Department of Neurology, University of Washington, Seattle, Washington, USA
| | - Jessica E Young
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Mishra S, Morshed N, Sindhu S, Kinoshita C, Stevens B, Jayadev S, Young JE. The Alzheimer's disease gene SORL1 regulates lysosome function in human microglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.25.600648. [PMID: 38979155 PMCID: PMC11230436 DOI: 10.1101/2024.06.25.600648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The SORL1 gene encodes the sortilin related receptor protein SORLA, a sorting receptor that regulates endo-lysosomal trafficking of various substrates. Loss of function variants in SORL1 are causative for Alzheimer's disease (AD) and decreased expression of SORLA has been repeatedly observed in human AD brains. SORL1 is highly expressed in the central nervous system, including in microglia, the tissue resident immune cells of the brain. Loss of SORLA leads to enlarged lysosomes in hiPSC-derived microglia like cells (hMGLs). However, how SORLA deficiency contributes to lysosomal dysfunction in microglia and how this contributes to AD pathogenesis is not known. In this study, we show that loss of SORLA results in decreased lysosomal degradation and lysosomal enzyme activity due to altered trafficking of lysosomal enzymes in hMGLs. Phagocytic uptake of fibrillar amyloid beta 1-42 and synaptosomes is increased in SORLA deficient hMGLs, but due to reduced lysosomal degradation, these substrates aberrantly accumulate in lysosomes. An alternative mechanism of lysosome clearance, lysosomal exocytosis, is also impaired in SORL1 deficient microglia, which may contribute to an altered immune response. Overall, these data suggest that SORLA has an important role in proper trafficking of lysosomal hydrolases in hMGLs, which is critical for microglial function. This further substantiates the microglial endo-lysosomal network as a potential novel pathway through which SORL1 may increase AD risk and contribute to development of AD. Additionally, our findings may inform development of novel lysosome and microglia associated drug targets for AD.
Collapse
Affiliation(s)
- Swati Mishra
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Nader Morshed
- Boston Children’s Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sonia Sindhu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Chizuru Kinoshita
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Beth Stevens
- Boston Children’s Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Suman Jayadev
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
- Department of Neurology, University of Washington, Seattle, WA
| | - Jessica E. Young
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| |
Collapse
|
3
|
Wang Y, Yang Y, Cai Y, Aobulikasimu A, Wang Y, Hu C, Miao Z, Shao Y, Zhao M, Hu Y, Xu C, Chen X, Li Z, Chen J, Wang L, Chen S. Endo-Lysosomal Network Disorder Reprograms Energy Metabolism in SorL1-Null Rat Hippocampus. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407709. [PMID: 39225620 PMCID: PMC11538633 DOI: 10.1002/advs.202407709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Indexed: 09/04/2024]
Abstract
Sortilin-related receptor 1 (SorL1) deficiency is a genetic predisposition to familial Alzheimer's disease (AD), but its pathology is poorly understood. In SorL1-null rats, a disorder of the global endosome-lysosome network (ELN) is found in hippocampal neurons. Deletion of amyloid precursor protein (APP) in SorL1-null rats could not completely rescue the neuronal abnormalities in the ELN of the hippocampus and the impairment of spatial memory in SorL1-null young rats. These in vivo observations indicated that APP is one of the cargoes of SorL1 in the regulation of the ELN, which affects hippocampal-dependent memory. When SorL1 is depleted, the endolysosome takes up more of the lysosome flux and damages lysosomal digestion, leading to pathological lysosomal storage and disturbance of cholesterol and iron homeostasis in the hippocampus. These disturbances disrupt the original homeostasis of the material-energy-subcellular structure and reprogram energy metabolism based on fatty acids in the SorL1-null hippocampus, instead of glucose. Although fatty acid oxidation increases ATP supply, it cannot reduce the levels of the harmful byproduct ROS during oxidative phosphorylation, as it does in glucose catabolism. Therefore, the SorL1-null rats exhibit hippocampal degeneration, and their spatial memory is impaired. Our research sheds light on the pathology of SorL1 deficiency in AD.
Collapse
Affiliation(s)
- Yajie Wang
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Yuting Yang
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Ying Cai
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Ayikaimaier Aobulikasimu
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Yuexin Wang
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Chuanwei Hu
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Zhikang Miao
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Yue Shao
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Mengna Zhao
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Yue Hu
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Chang Xu
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Xinjun Chen
- Brain Center, Department of Neurosurgery, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan UniversityWuhan430071China
| | - Zhiqiang Li
- Brain Center, Department of Neurosurgery, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan UniversityWuhan430071China
| | - Jincao Chen
- Brain Center, Department of Neurosurgery, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan UniversityWuhan430071China
| | - Lianrong Wang
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
- Department of Respiratory Diseases, Institute of PediatricsShenzhen Children's HospitalShenzhen518026China
| | - Shi Chen
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
- Department of Burn and Plastic SurgeryShenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and ApplicationShenzhen Institute of Translational MedicineMedical Innovation Technology Transformation CenterShenzhen University Medical School, Shenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityShenzhen518035China
| |
Collapse
|
4
|
Cooper JM, Lathuiliere A, Su EJ, Song Y, Torrente D, Jo Y, Weinrich N, Sales JD, Migliorini M, Sisson TH, Lawrence DA, Hyman BT, Strickland DK. SORL1 is a receptor for tau that promotes tau seeding. J Biol Chem 2024; 300:107313. [PMID: 38657864 PMCID: PMC11145553 DOI: 10.1016/j.jbc.2024.107313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/28/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Sortilin-related receptor 1 (SORL1) is an intracellular sorting receptor genetically implicated in Alzheimer's disease (AD) that impacts amyloid precursor protein trafficking. The objective of these studies was to test the hypothesis that SORL1 binds tau, modulates its cellular trafficking and impacts the aggregation of cytoplasmic tau induced by pathological forms of tau. Using surface plasmon resonance measurements, we observed high-affinity binding of tau to SORL1 and the vacuolar protein sorting 10 domain of SORL1. Interestingly, unlike LDL receptor-related protein 1, SORL1 binds tau at both pH 7.4 and pH 5.5, revealing its ability to bind tau at endosomal pH. Immunofluorescence studies confirmed that exogenously added tau colocalized with SORL1 in H4 neuroglioma cells, while overexpression of SORL1 in LDL receptor-related protein 1-deficient Chinese hamster ovary (CHO) cells resulted in a marked increase in the internalization of tau, indicating that SORL1 can bind and mediate the internalization of monomeric forms of tau. We further demonstrated that SORL1 mediates tau seeding when tau RD P301S FRET biosensor cells expressing SORL1 were incubated with high molecular weight forms of tau isolated from the brains of patients with AD. Seeding in H4 neuroglioma cells is significantly reduced when SORL1 is knocked down with siRNA. Finally, we demonstrate that the N1358S mutant of SORL1 significantly increases tau seeding when compared to WT SORL1, identifying for the first time a potential mechanism that connects this specific SORL1 mutation to Alzheimer's disease. Together, these studies identify SORL1 as a receptor that contributes to trafficking and seeding of pathogenic tau.
Collapse
Affiliation(s)
- Joanna M Cooper
- The Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Aurelien Lathuiliere
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA; Department of Rehabilitation and Geriatrics, Memory Center, Geneva University Hospital and University of Geneva, Geneva, Switzerland
| | - Enming J Su
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Yuyu Song
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Daniel Torrente
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, New York, USA
| | - Youhwa Jo
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Nicholas Weinrich
- The Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jennifer Diaz Sales
- The Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mary Migliorini
- The Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Thomas H Sisson
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Daniel A Lawrence
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Bradley T Hyman
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA.
| | - Dudley K Strickland
- The Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
5
|
Mishra S, Jayadev S, Young JE. Differential effects of SORL1 deficiency on the endo-lysosomal network in human neurons and microglia. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220389. [PMID: 38368935 PMCID: PMC10874699 DOI: 10.1098/rstb.2022.0389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/27/2023] [Indexed: 02/20/2024] Open
Abstract
The endosomal gene SORL1 is a strong Alzheimer's disease (AD) risk gene that harbours loss-of-function variants causative for developing AD. The SORL1 protein SORL1/SORLA is an endosomal receptor that interacts with the multi-protein sorting complex retromer to traffic various cargo through the endo-lysosomal network (ELN). Impairments in endo-lysosomal trafficking are an early cellular symptom in AD and a novel therapeutic target. However, the cell types of the central nervous system are diverse and use the ELN differently. If this pathway is to be effectively therapeutically targeted, understanding how key molecules in the ELN function in various cell types and how manipulating them affects cell-type specific responses relative to AD is essential. Here, we discuss an example where deficiency of SORL1 expression in a human model leads to stress on early endosomes and recycling endosomes in neurons, but preferentially leads to stress on lysosomes in microglia. The differences observed in these organelles could relate to the unique roles of these cells in the brain as neurons are professional secretory cells and microglia are professional phagocytic cells. Experiments to untangle these differences are fundamental to advancing the understanding of cell biology in AD and elucidating important pathways for therapeutic development. Human-induced pluripotent stem cell models are a valuable platform for such experiments. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.
Collapse
Affiliation(s)
- Swati Mishra
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Suman Jayadev
- Deparment of Neurology, University of Washington, Seattle, WA 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Jessica E. Young
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
6
|
Fazeli E, Child DD, Bucks SA, Stovarsky M, Edwards G, Rose SE, Yu CE, Latimer C, Kitago Y, Bird T, Jayadev S, Andersen OM, Young JE. A familial missense variant in the Alzheimer's disease gene SORL1 impairs its maturation and endosomal sorting. Acta Neuropathol 2024; 147:20. [PMID: 38244079 PMCID: PMC10799806 DOI: 10.1007/s00401-023-02670-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/11/2023] [Accepted: 12/16/2023] [Indexed: 01/22/2024]
Abstract
The SORL1 gene has recently emerged as a strong Alzheimer's Disease (AD) risk gene. Over 500 different variants have been identified in the gene and the contribution of individual variants to AD development and progression is still largely unknown. Here, we describe a family consisting of 2 parents and 5 offspring. Both parents were affected with dementia and one had confirmed AD pathology with an age of onset > 75 years. All offspring were affected with AD with ages at onset ranging from 53 years to 74 years. DNA was available from the parent with confirmed AD and 5 offspring. We identified a coding variant, p.(Arg953Cys), in SORL1 in 5 of 6 individuals affected by AD. Notably, variant carriers had severe AD pathology, and the SORL1 variant segregated with TDP-43 pathology (LATE-NC). We further characterized this variant and show that this Arginine substitution occurs at a critical position in the YWTD-domain of the SORL1 translation product, SORL1. Functional studies further show that the p.R953C variant leads to retention of the SORL1 protein in the endoplasmic reticulum which leads to decreased maturation and shedding of the receptor and prevents its normal endosomal trafficking. Together, our analysis suggests that p.R953C is a pathogenic variant of SORL1 and sheds light on mechanisms of how missense SORL1 variants may lead to AD.
Collapse
Affiliation(s)
- Elnaz Fazeli
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark
| | - Daniel D Child
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98109, USA
| | - Stephanie A Bucks
- Department of Neurology, University of Washington, Seattle, WA, 98195, USA
| | - Miki Stovarsky
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, 98195, USA
| | - Gabrielle Edwards
- Department of Neurology, University of Washington, Seattle, WA, 98195, USA
| | - Shannon E Rose
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98109, USA
| | - Chang-En Yu
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, 98195, USA
- Geriatric Research Education and Clinical Center (GRECC), Veterans Administration Health Care System, Seattle, WA, 98108, USA
| | - Caitlin Latimer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98109, USA
| | - Yu Kitago
- Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Thomas Bird
- Department of Neurology, University of Washington, Seattle, WA, 98195, USA
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, 98195, USA
- Geriatric Research Education and Clinical Center (GRECC), Veterans Administration Health Care System, Seattle, WA, 98108, USA
| | - Suman Jayadev
- Department of Neurology, University of Washington, Seattle, WA, 98195, USA.
| | - Olav M Andersen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark.
| | - Jessica E Young
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98109, USA.
| |
Collapse
|
7
|
Fazeli E, Child DD, Bucks SA, Stovarsky M, Edwards G, Rose SE, Yu CE, Latimer C, Kitago Y, Bird T, Jayadev S, Andersen OM, Young JE. A familial missense variant in the Alzheimer's Disease gene SORL1 impairs its maturation and endosomal sorting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.01.547348. [PMID: 37461597 PMCID: PMC10349966 DOI: 10.1101/2023.07.01.547348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
The SORL1 gene has recently emerged as a strong Alzheimer's Disease (AD) risk gene. Over 500 different variants have been identified in the gene and the contribution of individual variants to AD development and progression is still largely unknown. Here, we describe a family consisting of 2 parents and 5 offspring. Both parents were affected with dementia and one had confirmed AD pathology with an age of onset >75 years. All offspring were affected with AD with ages at onset ranging from 53yrs-74yrs. DNA was available from the parent with confirmed AD and 5 offspring. We identified a coding variant, p.(Arg953Cys), in SORL1 in 5 of 6 individuals affected by AD. Notably, variant carriers had severe AD pathology, and the SORL1 variant segregated with TDP-43 pathology (LATE-NC). We further characterized this variant and show that this Arginine substitution occurs at a critical position in the YWTD-domain of the SORL1 translation product, SORL1. Functional studies further show that the p.R953C variant leads to retention of the SORL1 protein in the endoplasmic reticulum which leads to decreased maturation and shedding of the receptor and prevents its normal endosomal trafficking. Together, our analysis suggests that p.R953C is a pathogenic variant of SORL1 and sheds light on mechanisms of how missense SORL1 variants may lead to AD.
Collapse
Affiliation(s)
- Elnaz Fazeli
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK8000 AarhusC, Denmark
| | - Daniel D. Child
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle Washington USA
| | - Stephanie A. Bucks
- Department of Neurology, University of Washington, Seattle Washington USA
| | - Miki Stovarsky
- Department of Medicine, Division of Medical Genetics University of Washington, Seattle Washington USA
| | - Gabrielle Edwards
- Department of Neurology, University of Washington, Seattle Washington USA
| | - Shannon E. Rose
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle Washington USA
| | - Chang-En Yu
- Department of Medicine, Division of Medical Genetics University of Washington, Seattle Washington USA
- Geriatric Research Education and Clinical Center (GRECC), Veterans Administration Health Care System
| | - Caitlin Latimer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle Washington USA
| | - Yu Kitago
- Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115
| | - Thomas Bird
- Department of Neurology, University of Washington, Seattle Washington USA
- Department of Medicine, Division of Medical Genetics University of Washington, Seattle Washington USA
- Geriatric Research Education and Clinical Center (GRECC), Veterans Administration Health Care System
| | - Suman Jayadev
- Department of Neurology, University of Washington, Seattle Washington USA
| | - Olav M. Andersen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK8000 AarhusC, Denmark
| | - Jessica E. Young
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle Washington USA
| |
Collapse
|
8
|
Salasova A, Monti G, Andersen OM, Nykjaer A. Finding memo: versatile interactions of the VPS10p-Domain receptors in Alzheimer’s disease. Mol Neurodegener 2022; 17:74. [PMID: 36397124 PMCID: PMC9673319 DOI: 10.1186/s13024-022-00576-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/17/2022] [Indexed: 11/19/2022] Open
Abstract
The family of VPS10p-Domain (D) receptors comprises five members named SorLA, Sortilin, SorCS1, SorCS2 and SorCS3. While their physiological roles remain incompletely resolved, they have been recognized for their signaling engagements and trafficking abilities, navigating a number of molecules between endosome, Golgi compartments, and the cell surface. Strikingly, recent studies connected all the VPS10p-D receptors to Alzheimer’s disease (AD) development. In addition, they have been also associated with diseases comorbid with AD such as diabetes mellitus and major depressive disorder. This systematic review elaborates on genetic, functional, and mechanistic insights into how dysfunction in VPS10p-D receptors may contribute to AD etiology, AD onset diversity, and AD comorbidities. Starting with their functions in controlling cellular trafficking of amyloid precursor protein and the metabolism of the amyloid beta peptide, we present and exemplify how these receptors, despite being structurally similar, regulate various and distinct cellular events involved in AD. This includes a plethora of signaling crosstalks that impact on neuronal survival, neuronal wiring, neuronal polarity, and synaptic plasticity. Signaling activities of the VPS10p-D receptors are especially linked, but not limited to, the regulation of neuronal fitness and apoptosis via their physical interaction with pro- and mature neurotrophins and their receptors. By compiling the functional versatility of VPS10p-D receptors and their interactions with AD-related pathways, we aim to further propel the AD research towards VPS10p-D receptor family, knowledge that may lead to new diagnostic markers and therapeutic strategies for AD patients.
Collapse
|
9
|
Binkle L, Klein M, Borgmeyer U, Kuhl D, Hermey G. The adaptor protein PICK1 targets the sorting receptor SorLA. Mol Brain 2022; 15:18. [PMID: 35183222 PMCID: PMC8858569 DOI: 10.1186/s13041-022-00903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/07/2022] [Indexed: 11/26/2022] Open
Abstract
SorLA is a member of the Vps10p-domain (Vps10p-D) receptor family of type-I transmembrane proteins conveying neuronal endosomal sorting. The extracellular/luminal moiety of SorLA has a unique mosaic domain composition and interacts with a large number of different and partially unrelated ligands, including the amyloid precursor protein as well as amyloid-β. Several studies support a strong association of SorLA with sporadic and familial forms of Alzheimer’s disease (AD). Although SorLA seems to be an important factor in AD, the large number of different ligands suggests a role as a neuronal multifunctional receptor with additional intracellular sorting capacities. Therefore, understanding the determinants of SorLA’s subcellular targeting might be pertinent for understanding neuronal endosomal sorting mechanisms in general. A number of cytosolic adaptor proteins have already been demonstrated to determine intracellular trafficking of SorLA. Most of these adaptors and several ligands of the extracellular/luminal moiety are shared with the Vps10p-D receptor Sortilin. Although SorLA and Sortilin show both a predominant intracellular and endosomal localization, they are targeted to different endosomal compartments. Thus, independent adaptor proteins may convey their differential endosomal targeting. Here, we hypothesized that Sortilin and SorLA interact with the cytosolic adaptors PSD95 and PICK1 which have been shown to bind the Vps10p-D receptor SorCS3. We observed only an interaction for SorLA and PICK1 in mammalian-two-hybrid, pull-down and cellular recruitment experiments. We demonstrate by mutational analysis that the C-terminal minimal PDZ domain binding motif VIA of SorLA mediates the interaction. Moreover, we show co-localization of SorLA and PICK1 at vesicular structures in primary neurons. Although the physiological role of the interaction between PICK1 and SorLA remains unsolved, our study suggests that PICK1 partakes in regulating SorLA’s intracellular itinerary.
Collapse
|
10
|
Szabo MP, Mishra S, Knupp A, Young JE. The role of Alzheimer's disease risk genes in endolysosomal pathways. Neurobiol Dis 2022; 162:105576. [PMID: 34871734 PMCID: PMC9071255 DOI: 10.1016/j.nbd.2021.105576] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 11/23/2021] [Accepted: 12/02/2021] [Indexed: 12/25/2022] Open
Abstract
There is ample pathological and biological evidence for endo-lysosomal dysfunction in Alzheimer's disease (AD) and emerging genetic studies repeatedly implicate endo-lysosomal genes as associated with increased AD risk. The endo-lysosomal network (ELN) is essential for all cell types of the central nervous system (CNS), yet each unique cell type utilizes cellular trafficking differently (see Fig. 1). Challenges ahead involve defining the role of AD associated genes in the functionality of the endo-lysosomal network (ELN) and understanding how this impacts the cellular dysfunction that occurs in AD. This is critical to the development of new therapeutics that will impact, and potentially reverse, early disease phenotypes. Here we review some early evidence of ELN dysfunction in AD pathogenesis and discuss the role of selected AD-associated risk genes in this pathway. In particular, we review genes that have been replicated in multiple genome-wide association studies(Andrews et al., 2020; Jansen et al., 2019; Kunkle et al., 2019; Lambert et al., 2013; Marioni et al., 2018) and reviewed in(Andrews et al., 2020) that have defined roles in the endo-lysosomal network. These genes include SORL1, an AD risk gene harboring both rare and common variants associated with AD risk and a role in trafficking cargo, including APP, through the ELN; BIN1, a regulator of clathrin-mediated endocytosis whose expression correlates with Tau pathology; CD2AP, an AD risk gene with roles in endosome morphology and recycling; PICALM, a clathrin-binding protein that mediates trafficking between the trans-Golgi network and endosomes; and Ephrin Receptors, a family of receptor tyrosine kinases with AD associations and interactions with other AD risk genes. Finally, we will discuss how human cellular models can elucidate cell-type specific differences in ELN dysfunction in AD and aid in therapeutic development.
Collapse
Affiliation(s)
- Marcell P Szabo
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, United States of America; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States of America
| | - Swati Mishra
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, United States of America; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States of America
| | - Allison Knupp
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, United States of America; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States of America
| | - Jessica E Young
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, United States of America; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States of America.
| |
Collapse
|
11
|
Choi YB, Lee MJ, Park JT, Han SH, Kang SW, Yoo TH, Kim HJ. Prognostic value of soluble ST2 and soluble LR11 on mortality and cardiovascular events in peritoneal dialysis patients. BMC Nephrol 2020; 21:228. [PMID: 32539731 PMCID: PMC7296670 DOI: 10.1186/s12882-020-01886-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 06/05/2020] [Indexed: 01/03/2023] Open
Abstract
Background Although the soluble form of suppression of tumorigenicity 2 (sST2) and soluble low-density lipoprotein receptor relative with 11 ligand-binding repeats (sLR11) have emerged as novel cardiovascular biomarkers in patients with cardiovascular disease, their prognostic value has not been fully investigated in peritoneal dialysis (PD) patients. Methods We included 74 prevalent PD patients from a prospective cohort and measured serum sST2 and sLR11 concentrations by an enzyme-linked immunosorbent assay. The association of these biomarkers and all-cause mortality and major adverse cardiac and cerebrovascular events (MACCEs) was evaluated. Results During a follow-up of 38.5 months, all-cause deaths and MACCEs were observed in 13 (17.6%) patients and 23 (31.3%) patients. Multivariable Cox analyses demonstrated that greater sST2 was independently associated with higher risk of all-cause mortality (≥75.8 ng/mL; hazard ratio [HR] = 5.551; 95% confidence interval [CI] = 1.360–22.660) and MACCEs (≥72.5 ng/mL; HR = 4.609; 95% CI = 1.608–13.208). Furthermore, sST2 showed additive predictive value for mortality to the base model including traditional risk factors (net reclassification index = 0.598, P = 0.04). sLR11 was not significantly associated with all-cause mortality or MACCE. Conclusions sST2, but not sLR11, indicated a significant prognostic value for all-cause mortality and cardiovascular events in PD patients. Further research is needed to validate emerging biomarkers in these populations.
Collapse
Affiliation(s)
- Yu Bum Choi
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam-si, Korea
| | - Mi Jung Lee
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam-si, Korea.,Department of Medicine, Graduate School of Yonsei University College of Medicine, Seoul, Korea
| | - Jung Tak Park
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | - Seung Hyeok Han
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | - Shin-Wook Kang
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | - Tae-Hyun Yoo
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | - Hyung Jong Kim
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam-si, Korea.
| |
Collapse
|
12
|
Perdigão C, Barata MA, Araújo MN, Mirfakhar FS, Castanheira J, Guimas Almeida C. Intracellular Trafficking Mechanisms of Synaptic Dysfunction in Alzheimer's Disease. Front Cell Neurosci 2020; 14:72. [PMID: 32362813 PMCID: PMC7180223 DOI: 10.3389/fncel.2020.00072] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 03/12/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disease characterized by progressive memory loss. Although AD neuropathological hallmarks are extracellular amyloid plaques and intracellular tau tangles, the best correlate of disease progression is synapse loss. What causes synapse loss has been the focus of several researchers in the AD field. Synapses become dysfunctional before plaques and tangles form. Studies based on early-onset familial AD (eFAD) models have supported that synaptic transmission is depressed by β-amyloid (Aβ) triggered mechanisms. Since eFAD is rare, affecting only 1% of patients, research has shifted to the study of the most common late-onset AD (LOAD). Intracellular trafficking has emerged as one of the pathways of LOAD genes. Few studies have assessed the impact of trafficking LOAD genes on synapse dysfunction. Since endocytic traffic is essential for synaptic function, we reviewed Aβ-dependent and independent mechanisms of the earliest synaptic dysfunction in AD. We have focused on the role of intraneuronal and secreted Aβ oligomers, highlighting the dysfunction of endocytic trafficking as an Aβ-dependent mechanism of synapse dysfunction in AD. Here, we reviewed the LOAD trafficking genes APOE4, ABCA7, BIN1, CD2AP, PICALM, EPH1A, and SORL1, for which there is a synaptic link. We conclude that in eFAD and LOAD, the earliest synaptic dysfunctions are characterized by disruptions of the presynaptic vesicle exo- and endocytosis and of postsynaptic glutamate receptor endocytosis. While in eFAD synapse dysfunction seems to be triggered by Aβ, in LOAD, there might be a direct synaptic disruption by LOAD trafficking genes. To identify promising therapeutic targets and biomarkers of the earliest synaptic dysfunction in AD, it will be necessary to join efforts in further dissecting the mechanisms used by Aβ and by LOAD genes to disrupt synapses.
Collapse
Affiliation(s)
- Catarina Perdigão
- Laboratory Neuronal Trafficking in Aging, CEDOC Chronic Diseases Research Center, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Mariana A Barata
- Laboratory Neuronal Trafficking in Aging, CEDOC Chronic Diseases Research Center, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Margarida N Araújo
- Laboratory Neuronal Trafficking in Aging, CEDOC Chronic Diseases Research Center, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Farzaneh S Mirfakhar
- Laboratory Neuronal Trafficking in Aging, CEDOC Chronic Diseases Research Center, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Jorge Castanheira
- Laboratory Neuronal Trafficking in Aging, CEDOC Chronic Diseases Research Center, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Cláudia Guimas Almeida
- Laboratory Neuronal Trafficking in Aging, CEDOC Chronic Diseases Research Center, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
13
|
Gu XH, Li H, Zhang L, He T, Chai X, Wei H, Gao DS. Differential expression of glial cell line-derived neurotrophic factor splice variants in the mouse brain. Neural Regen Res 2020; 15:270-276. [PMID: 31552899 PMCID: PMC6905338 DOI: 10.4103/1673-5374.265561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) plays a critical role in neuronal survival and function. GDNF has two major splice variants in the brain, α-pro-GDNF and β-pro-GDNF, and both isoforms have strong neuroprotective effects on dopamine neurons. However, the expression of the GDNF splice variants in dopaminergic neurons in the brain remains unclear. Therefore, in this study, we investigated the mRNA and protein expression of α- and β-pro-GDNF in the mouse brain by real-time quantitative polymerase chain reaction, using splice variant-specific primers, and western blot analysis. At the mRNA level, β-pro-GDNF expression was significantly greater than that of α-pro-GDNF in the mouse brain. In contrast, at the protein level, α-pro-GDNF expression was markedly greater than that of β-pro-GDNF. To clarify the mechanism underlying this inverse relationship in mRNA and protein expression levels of the GDNF splice variants, we analyzed the expression of sorting protein-related receptor with A-type repeats (SorLA) by real-time quantitative polymerase chain reaction. At the mRNA level, SorLA was positively associated with β-pro-GDNF expression, but not with α-pro-GDNF expression. This suggests that the differential expression of α- and β-pro-GDNF in the mouse brain is related to SorLA expression. As a sorting protein, SorLA could contribute to the inverse relationship among the mRNA and protein levels of the GDNF isoforms. This study was approved by the Animal Ethics Committee of Xuzhou Medical University, China on July 14, 2016.
Collapse
Affiliation(s)
- Xiao-He Gu
- Department of Anatomy and Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Heng Li
- Department of Anatomy and Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Lin Zhang
- Department of Anatomy and Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Tao He
- Department of Anatomy and Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Xiang Chai
- Department of Anatomy and Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - He Wei
- Department of Neurosurgery, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Dian-Shuai Gao
- Department of Anatomy and Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| |
Collapse
|
14
|
Ishida H, Jiang M, Ebinuma H, Hiruta N, Schneider WJ, Kinoshita T, Bujo H. Circulating soluble LR11, a differentiation regulator for vascular cells, is increased during pregnancy and exaggerated in patients with pre-eclampsia. Clin Chim Acta 2019; 497:172-177. [PMID: 31299181 DOI: 10.1016/j.cca.2019.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 06/13/2019] [Accepted: 07/01/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND Pre-eclampsia is a pregnancy-specific disease characterized by onset of hypertension and proteinuria, sometimes progressing into damaging other organs. Here, we investigated the pathological significance of the soluble fragment of LR11 (sLR11), a cell differentiation regulator, in comparison to circulating IL-6 and TNF-α, in pre-eclampsia. METHODS The study was conducted in a cross-sectional research design with fourteen pre-eclampsia patients and fifty healthy pregnant subjects. Pre-eclampsia was defined as hypertensive disorders in pregnancy at over 20 weeks of gestation with proteinuria. RESULTS Plasma levels of sLR11 as well as IL-6 in pre-eclampsia were increased compared with those in the healthy pregnant subjects at the first, the second, and the third trimester. Receiver operating characteristic analysis for the detection of pre-eclampsia among third-trimester subjects showed that the areas under the curves of sLR11 and IL-6 were equivalent. sLR11 and IL-6 correlated positively with TNF-α in healthy pregnant subjects. In the pre-eclampsia patients, there was neither a correlation between sLR11 and IL-6 nor between sLR11 and TNF-α. CONCLUSIONS sLR11 increases during pregnancy, with levels further exaggerated in pre-eclampsia, and may be related to the pathology of pre-eclampsia.
Collapse
Affiliation(s)
- Hiroaki Ishida
- Department of Obstetrics and Gynecology, Toho University Sakura Medical Center, Sakura, Japan
| | - Meizi Jiang
- Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University Sakura Medical Center, Sakura, Japan
| | - Hiroyuki Ebinuma
- Tsukuba Research Institute, Sekisui Medical Co Ltd, Ryugasaki, Japan
| | - Nobuyuki Hiruta
- Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University Sakura Medical Center, Sakura, Japan; Department of Surgical Pathology, Toho University Sakura Medical Center, Sakura, Japan
| | - Wolfgang J Schneider
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Toshihiko Kinoshita
- Department of Obstetrics and Gynecology, Toho University Sakura Medical Center, Sakura, Japan
| | - Hideaki Bujo
- Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University Sakura Medical Center, Sakura, Japan.
| |
Collapse
|
15
|
Harada M, Jiang M, Terai K, Ebinuma H, Hiruta N, Schneider WJ, Sugo N, Nagao T, Bujo H. Levels of circulating soluble LR11, a regulator of smooth muscle cell migration, are highly associated with atherosclerotic plaques in patients with carotid artery stenosis. Clin Chim Acta 2018; 490:69-76. [PMID: 30550937 DOI: 10.1016/j.cca.2018.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/14/2018] [Accepted: 12/07/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND The levels of plasma sLR11, released from intimal SMCs, are positively associated with intima-media thickness (IMT) in asymptomatic subjects. We have evaluated the yet unknown pathological significance of sLR11 for plaque conditions in patients with carotid artery stenosis. METHODS The presence of LR11 in carotid plaques was investigated using autopsy specimens. A clinical ultrasonography study for elucidating relationships between sLR11 and plaque condition was performed in 46 patients. RESULTS Immunohistochemistry showed high levels of LR11 in SMCs within thickened intima and at the media-intima border of atherosclerotic carotid plaques. The levels of sLR11 in patients were clearly elevated compared to healthy controls. Univariate analysis of sLR11 revealed significant positive correlation with plaque score and a tendency to correlate with the stenotic fraction. Univariate and multiple regression analyses of plaque scores showed that sLR11, maximum IMT, and HDL-cholesterol independently determined plaque score. Finally, univariate analysis of initial sLR11 levels for changes in imaging markers after one-year follow-up showed that initial sLR11 levels significantly correlated with stenotic fraction progression. CONCLUSIONS The levels of sLR11, abundantly expressed in carotid atherosclerotic plaques, are highly associated with increased plaque score. sLR11 levels may be predictive of plaque conditions in patients with advanced carotid atherosclerosis.
Collapse
Affiliation(s)
- Masashi Harada
- Department of Neurosurgery, Toho University Sakura Medical Center, Sakura, Japan
| | - Meizi Jiang
- Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura 285-8741, Japan
| | - Kensuke Terai
- Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura 285-8741, Japan; Department of Surgical Pathology, Toho University Sakura Medical Center, Sakura, Japan
| | - Hiroyuki Ebinuma
- Sekisui Medical Co Ltd, Tsukuba Research Institute, Ryugasaki, Japan
| | - Nobuyuki Hiruta
- Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura 285-8741, Japan; Department of Surgical Pathology, Toho University Sakura Medical Center, Sakura, Japan
| | - Wolfgang J Schneider
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Nobuo Sugo
- Department of Neurosurgery, Toho University Omori Medical Center, Omori, Japan
| | - Takeki Nagao
- Department of Neurosurgery, Toho University Sakura Medical Center, Sakura, Japan
| | - Hideaki Bujo
- Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura 285-8741, Japan.
| |
Collapse
|
16
|
Yano K, Hirayama S, Misawa N, Furuta A, Ueno T, Motoi Y, Seino U, Ebinuma H, Ikeuchi T, Schneider WJ, Bujo H, Miida T. Soluble LR11 competes with amyloid β in binding to cerebrospinal fluid-high-density lipoprotein. Clin Chim Acta 2018; 489:29-34. [PMID: 30448281 DOI: 10.1016/j.cca.2018.11.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 11/06/2018] [Accepted: 11/14/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND LR11 is a member of the low-density lipoprotein (LDL) receptor family with high expression in neurons. Some cell surface LR11 is cleaved and secreted into the cerebrospinal fluid (CSF) as soluble LR11 (sLR11). Patients with Alzheimer's disease (AD), particularly apolipoprotein E4 carriers, have high CSF-sLR11 and low CSF-amyloid β (Aβ) concentrations. Therefore, we assessed whether sLR11 is bound to CSF-high-density lipoprotein (HDL) and whether sLR11 competes with Aβ in binding to apoE in CSF-HDL. METHODS We measured CSF-sLR11 concentrations (50 controls and 16 patients with AD) using enzyme immunoassay. sLR11 and apoE distribution in the CSF was evaluated using non-denaturing two-dimensional gel electrophoresis (N-2DGE). ApoE bound to sLR11 or Aβ was identified using co-immunoprecipitation assay. RESULTS CSF-sLR11 concentrations were higher in patients with AD than controls (adjusted for sLR11 using phospholipid). N-2DGE analysis showed that sLR11 and Aβ comigrated with a large apoE-containing CSF-HDL. Moreover, fewer apoE was bound to Aβ when a higher amount of apoE was bound to sLR11 in patients with AD who presented with ε4/4. CONCLUSION sLR11 binds to CSF-HDL and competes with Aβ in binding to apoE in CSF-HDL, indicating that sLR11 affects Aβ clearance via CSF-HDL.
Collapse
Affiliation(s)
- Kouji Yano
- Center for Genomic and Regenerative Medicine, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Satoshi Hirayama
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Clinical Laboratory Medicine, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Naomi Misawa
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Ayaka Furuta
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Tsuyoshi Ueno
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yumiko Motoi
- Department of Diagnosis, Prevention and Treatment of Dementia, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Neurology, Juntendo University Graduate School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Utako Seino
- Bioscience Medical Research Center, Niigata University Medical & Dental Hospital, Asahimachi-Tohri 1-754, Chuo-ku, Niigata, Niigata 951-8510, Japan
| | - Hiroyuki Ebinuma
- Sekisui Medical Tsukuba Research Institute, Yoshiwara 3262-12, Ami-machi, Inashiki-gun, Ibaraki 301-1155, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Asahimachi-Tohri 1-757, Chuo-ku, Niigata, Niigata 951-8585, Japan
| | - Wolfgang J Schneider
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna 1090, Austria
| | - Hideaki Bujo
- Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University Sakura Medical Center, Shimoshizu 564-1, Sakura, Chiba 285-8741, Japan
| | - Takashi Miida
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Clinical Laboratory Medicine, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
17
|
Medoro A, Bartollino S, Mignogna D, Passarella D, Porcile C, Pagano A, Florio T, Nizzari M, Guerra G, Di Marco R, Intrieri M, Raimo G, Russo C. Complexity and Selectivity of γ-Secretase Cleavage on Multiple Substrates: Consequences in Alzheimer's Disease and Cancer. J Alzheimers Dis 2018; 61:1-15. [PMID: 29103038 DOI: 10.3233/jad-170628] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The processing of the amyloid-β protein precursor (AβPP) by β- and γ-secretases is a pivotal event in the genesis of Alzheimer's disease (AD). Besides familial mutations on the AβPP gene, or upon its overexpression, familial forms of AD are often caused by mutations or deletions in presenilin 1 (PSEN1) and 2 (PSEN2) genes: the catalytic components of the proteolytic enzyme γ-secretase (GS). The "amyloid hypothesis", modified over time, states that the aberrant processing of AβPP by GS induces the formation of specific neurotoxic soluble amyloid-β (Aβ) peptides which, in turn, cause neurodegeneration. This theory, however, has recently evidenced significant limitations and, in particular, the following issues are debated: 1) the concept and significance of presenilin's "gain of function" versus "loss of function"; and 2) the presence of several and various GS substrates, which interact with AβPP and may influence Aβ formation. The latter consideration is suggestive: despite the increasing number of GS substrates so far identified, their reciprocal interaction with AβPP itself, even in the AD field, is significantly unexplored. On the other hand, GS is also an important pharmacological target in the cancer field; inhibitors or GS activity are investigated in clinical trials for treating different tumors. Furthermore, the function of AβPP and PSENs in brain development and in neuronal migration is well known. In this review, we focused on a specific subset of GS substrates that directly interact with AβPP and are involved in its proteolysis and signaling, by evaluating their role in neurodegeneration and in cell motility or proliferation, as a possible connection between AD and cancer.
Collapse
Affiliation(s)
- Alessandro Medoro
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Silvia Bartollino
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Donatella Mignogna
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Daniela Passarella
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Carola Porcile
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Aldo Pagano
- Department of Experimental Medicine, University of Genoa and Ospedale Policlinico San Martino, IRCCS per l'Oncologia, Genoa, Italy
| | - Tullio Florio
- Department of Internal Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Mario Nizzari
- Department of Internal Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Roberto Di Marco
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Mariano Intrieri
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Gennaro Raimo
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Claudio Russo
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|
18
|
Du F, Li D, Piao LS, Yang KJ. Association of sLR11 gene polymorphism with T2DM and carotid atherosclerosis. Technol Health Care 2018; 26:391-400. [PMID: 29865095 DOI: 10.3233/thc-171040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Fei Du
- Department of Cell Biology and Medical Genetics, Yanbian University Medical College, Yanji, Jilin, China
| | - Dan Li
- Department of Endocrinology, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Lian-Shan Piao
- Department of Endocrinology, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Kang-Juan Yang
- Department of Cell Biology and Medical Genetics, Yanbian University Medical College, Yanji, Jilin, China
| |
Collapse
|
19
|
Krzeminski P, Corchete LA, García JL, López-Corral L, Fermiñán E, García EM, Martín AA, Hernández-Rivas JM, García-Sanz R, San Miguel JF, Gutiérrez NC. Integrative analysis of DNA copy number, DNA methylation and gene expression in multiple myeloma reveals alterations related to relapse. Oncotarget 2018; 7:80664-80679. [PMID: 27811368 PMCID: PMC5348347 DOI: 10.18632/oncotarget.13025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 10/21/2016] [Indexed: 12/27/2022] Open
Abstract
Multiple myeloma (MM) remains incurable despite the introduction of novel agents, and a relapsing course is observed in most patients. Although the development of genomic technologies has greatly improved our understanding of MM pathogenesis, the mechanisms underlying relapse have been less thoroughly investigated. In this study, an integrative analysis of DNA copy number, DNA methylation and gene expression was conducted in matched diagnosis and relapse samples from MM patients. Overall, the acquisition of abnormalities at relapse was much more frequent than the loss of lesions present at diagnosis, and DNA losses were significantly more frequent in relapse than in diagnosis samples. Interestingly, copy number abnormalities involving more than 100 Mb of DNA at relapse significantly affect the gene expression of these samples, provoking a particular deregulation of the IL-8 pathway. On the other hand, no significant modifications of gene expression were observed in those samples with less than 100 Mb affected by chromosomal changes. Although several statistical approaches were used to identify genes whose abnormal expression at relapse was regulated by methylation, only two genes that were significantly deregulated in relapse samples (SORL1 and GLT1D1) showed a negative correlation between methylation and expression. Further analysis revealed that DNA methylation was involved in regulating SORL1 expression in MM. Finally, relevant changes in gene expression observed in relapse samples, such us downregulation of CD27 and P2RY8, were most likely not preceded by alterations in the corresponding DNA. Taken together, these results suggest that the genomic heterogeneity described at diagnosis remains at relapse.
Collapse
Affiliation(s)
- Patryk Krzeminski
- Departamento de Hematología, Hospital Universitario, IBSAL, IBMCC (USAL-CSIC), Salamanca, Spain.,Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Luis A Corchete
- Departamento de Hematología, Hospital Universitario, IBSAL, IBMCC (USAL-CSIC), Salamanca, Spain
| | - Juan L García
- Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Lucía López-Corral
- Departamento de Hematología, Hospital Universitario, IBSAL, IBMCC (USAL-CSIC), Salamanca, Spain.,Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Encarna Fermiñán
- Unidad de Genómica y Proteómica, Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Eva M García
- Unidad de Genómica y Proteómica, Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Ana A Martín
- Departamento de Hematología, Hospital Universitario, IBSAL, IBMCC (USAL-CSIC), Salamanca, Spain
| | - Jesús M Hernández-Rivas
- Departamento de Hematología, Hospital Universitario, IBSAL, IBMCC (USAL-CSIC), Salamanca, Spain.,Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Ramón García-Sanz
- Departamento de Hematología, Hospital Universitario, IBSAL, IBMCC (USAL-CSIC), Salamanca, Spain.,Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Jesús F San Miguel
- Clínica Universidad de Navarra, Centro de Investigaciones Médicas Aplicadas (CIMA), Pamplona, Spain
| | - Norma C Gutiérrez
- Departamento de Hematología, Hospital Universitario, IBSAL, IBMCC (USAL-CSIC), Salamanca, Spain.,Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca, Spain
| |
Collapse
|
20
|
Trafficking in Alzheimer's Disease: Modulation of APP Transport and Processing by the Transmembrane Proteins LRP1, SorLA, SorCS1c, Sortilin, and Calsyntenin. Mol Neurobiol 2017; 55:5809-5829. [PMID: 29079999 DOI: 10.1007/s12035-017-0806-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/17/2017] [Indexed: 12/11/2022]
Abstract
The amyloid precursor protein (APP), one key player in Alzheimer's disease (AD), is extensively processed by different proteases. This leads to the generation of diverging fragments including the amyloid β (Aβ) peptide, which accumulates in brains of AD patients. Subcellular trafficking of APP is an important aspect for its proteolytic conversion, since the various secretases which cleave APP are located in different cellular compartments. As a consequence, altered subcellular targeting of APP is thought to directly affect the degree to which Aβ is generated. The mechanisms underlying intracellular APP transport are critical to understand AD pathogenesis and can serve as a target for future pharmacological interventions. In the recent years, a number of APP interacting proteins were identified which are implicated in sorting of APP, thereby influencing APP processing at different angles of the secretory or endocytic pathway. This review provides an update on the proteolytic processing of APP and the interplay of the transmembrane proteins low-density lipoprotein receptor-related protein 1, sortilin-receptor with A-type repeats, SorCS1c, sortilin, and calsyntenin. We discuss the specific interactions with APP, the capacity to modulate the intracellular itinerary and the proteolytic conversion of APP, a possible involvement in the clearance of Aβ, and the implications of these transmembrane proteins in AD and other neurodegenerative diseases.
Collapse
|
21
|
Nohara A. sLR11 as a novel predictor of vascular calcification. Atherosclerosis 2017; 265:242-243. [PMID: 28823527 DOI: 10.1016/j.atherosclerosis.2017.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 07/25/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Atsushi Nohara
- Cholesterol Clinic, Department of Cardiology, Kanazawa University Hospital, Kanazawa University Health Service Center, Takara-machi 13-1, Kanazawa 920-8641, Japan.
| |
Collapse
|
22
|
Pohlkamp T, Wasser CR, Herz J. Functional Roles of the Interaction of APP and Lipoprotein Receptors. Front Mol Neurosci 2017; 10:54. [PMID: 28298885 PMCID: PMC5331069 DOI: 10.3389/fnmol.2017.00054] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/16/2017] [Indexed: 11/24/2022] Open
Abstract
The biological fates of the key initiator of Alzheimer’s disease (AD), the amyloid precursor protein (APP), and a family of lipoprotein receptors, the low-density lipoprotein (LDL) receptor-related proteins (LRPs) and their molecular roles in the neurodegenerative disease process are inseparably interwoven. Not only does APP bind tightly to the extracellular domains (ECDs) of several members of the LRP group, their intracellular portions are also connected through scaffolds like the one established by FE65 proteins and through interactions with adaptor proteins such as X11/Mint and Dab1. Moreover, the ECDs of APP and LRPs share common ligands, most notably Reelin, a regulator of neuronal migration during embryonic development and modulator of synaptic transmission in the adult brain, and Agrin, another signaling protein which is essential for the formation and maintenance of the neuromuscular junction (NMJ) and which likely also has critical, though at this time less well defined, roles for the regulation of central synapses. Furthermore, the major independent risk factors for AD, Apolipoprotein (Apo) E and ApoJ/Clusterin, are lipoprotein ligands for LRPs. Receptors and ligands mutually influence their intracellular trafficking and thereby the functions and abilities of neurons and the blood-brain-barrier to turn over and remove the pathological product of APP, the amyloid-β peptide. This article will review and summarize the molecular mechanisms that are shared by APP and LRPs and discuss their relative contributions to AD.
Collapse
Affiliation(s)
- Theresa Pohlkamp
- Department of Molecular Genetics, UT Southwestern Medical CenterDallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical CenterDallas, TX, USA
| | - Catherine R Wasser
- Department of Molecular Genetics, UT Southwestern Medical CenterDallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical CenterDallas, TX, USA
| | - Joachim Herz
- Department of Molecular Genetics, UT Southwestern Medical CenterDallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical CenterDallas, TX, USA; Department of Neuroscience, UT Southwestern Medical CenterDallas, TX, USA; Department of Neurology and Neurotherapeutics, UT Southwestern Medical CenterDallas, TX, USA
| |
Collapse
|
23
|
Na JY, Song K, Lee JW, Kim S, Kwon J. Sortilin-related receptor 1 interacts with amyloid precursor protein and is activated by 6-shogaol, leading to inhibition of the amyloidogenic pathway. Biochem Biophys Res Commun 2017; 484:890-895. [PMID: 28188785 DOI: 10.1016/j.bbrc.2017.02.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 02/06/2017] [Indexed: 02/07/2023]
Abstract
Sortilin-related receptor 1 (SORL1) is a neuronal sorting protein that reduces amyloid precursor protein (APP) trafficking to secretases that generate amyloid beta (Aβ). Although 6-shogaol, a constituent of ginger, has been reported to have anti-inflammatory and anti-oxidant effects on neuronal cells, research regarding the activation of SORL1 has not yet been reported. Here, we aimed to investigate whether 6-shogaol contributes to the increases in SORL1 that are related to Alzheimer's disease (AD). To clarify the effect of 6-shogaol as a possible activator of SORL1, we used SORL1 siRNA as a blockade of SORL1 in hippocampal neuronal cells (HT22). We found that SORL1 siRNA treatment naturally inhibited SORL1 and led to increases in β-secretase APP cleaving enzyme (BACE), secreted APP-β (sAPPβ) and Aβ. In contrast, 6-shogaol-mediated activation of SORL1 significantly downregulated BACE, sAPPβ, and Aβ in both in vitro HT22 cells and in vivo APPSw/PS1-dE9 Tg mice. Therefore, SORL1 activation by 6-shogaol provides neuronal cell survival through the inhibition of Aβ production. These results indicate that 6-shogaol should be regarded as an SORL1 activator and a potential preventive agent for the treatment of AD.
Collapse
Affiliation(s)
- Ji-Young Na
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Chonbuk National University, 79 Gobongro, Iksan 54596, Republic of Korea
| | - Kibbeum Song
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Chonbuk National University, 79 Gobongro, Iksan 54596, Republic of Korea
| | - Ju-Woon Lee
- Central Research and Development, Between Ltd, Iksan 54596, Republic of Korea
| | - Sokho Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Chonbuk National University, 79 Gobongro, Iksan 54596, Republic of Korea.
| | - Jungkee Kwon
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Chonbuk National University, 79 Gobongro, Iksan 54596, Republic of Korea; Central Research and Development, Between Ltd, Iksan 54596, Republic of Korea.
| |
Collapse
|
24
|
Christiansen GB, Andersen KH, Riis S, Nykjaer A, Bolcho U, Jensen MS, Holm MM. The sorting receptor SorCS3 is a stronger regulator of glutamate receptor functions compared to GABAergic mechanisms in the hippocampus. Hippocampus 2017; 27:235-248. [DOI: 10.1002/hipo.22689] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/15/2016] [Accepted: 11/30/2016] [Indexed: 12/28/2022]
Affiliation(s)
| | | | - Sarah Riis
- Department of Biomedicine; Aarhus University; Aarhus Denmark
| | - Anders Nykjaer
- DANDRITE, Department of Biomedicine; Aarhus University; Aarhus Denmark
| | - Ulrik Bolcho
- DANDRITE, Department of Biomedicine; Aarhus University; Aarhus Denmark
| | | | - Mai Marie Holm
- Department of Biomedicine; Aarhus University; Aarhus Denmark
| |
Collapse
|
25
|
Schmidt V, Subkhangulova A, Willnow TE. Sorting receptor SORLA: cellular mechanisms and implications for disease. Cell Mol Life Sci 2016; 74:1475-1483. [PMID: 27832290 PMCID: PMC5357279 DOI: 10.1007/s00018-016-2410-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/01/2016] [Accepted: 11/03/2016] [Indexed: 12/21/2022]
Abstract
Sorting-related receptor with A-type repeats (SORLA) is an intracellular sorting receptor that directs cargo proteins, such as kinases, phosphatases, and signaling receptors, to their correct location within the cell. The activity of SORLA assures proper function of cells and tissues, and receptor dysfunction is the underlying cause of common human malignancies, including Alzheimer’s disease, atherosclerosis, and obesity. Here, we discuss the molecular mechanisms that govern sorting of SORLA and its cargo in multiple cell types, and why genetic defects in this receptor results in devastating diseases.
Collapse
Affiliation(s)
- Vanessa Schmidt
- Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Str. 10, 13125, Berlin, Germany.
| | - Aygul Subkhangulova
- Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Str. 10, 13125, Berlin, Germany
| | - Thomas E Willnow
- Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Str. 10, 13125, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
26
|
Andersen OM, Rudolph IM, Willnow TE. Risk factor SORL1: from genetic association to functional validation in Alzheimer's disease. Acta Neuropathol 2016; 132:653-665. [PMID: 27638701 PMCID: PMC5073117 DOI: 10.1007/s00401-016-1615-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/12/2016] [Accepted: 09/05/2016] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) represents one of the most dramatic threats to healthy aging and devising effective treatments for this devastating condition remains a major challenge in biomedical research. Much has been learned about the molecular concepts that govern proteolytic processing of the amyloid precursor protein to amyloid-β peptides (Aβ), and how accelerated accumulation of neurotoxic Aβ peptides underlies neuronal cell death in rare familial but also common sporadic forms of this disease. Out of a plethora of proposed modulators of amyloidogenic processing, one protein emerged as a key factor in AD pathology, a neuronal sorting receptor termed SORLA. Independent approaches using human genetics, clinical pathology, or exploratory studies in animal models all converge on this receptor that is now considered a central player in AD-related processes by many. This review will provide a comprehensive overview of the evidence implicating SORLA-mediated protein sorting in neurodegenerative processes, and how receptor gene variants in the human population impair functional receptor expression in sporadic but possibly also in autosomal-dominant forms of AD.
Collapse
Affiliation(s)
- Olav M Andersen
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Ole Worms Alle 3, Aarhus C, 8000, Aarhus, Denmark.
| | - Ina-Maria Rudolph
- Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Strasse 10, 13125, Berlin, Germany
| | - Thomas E Willnow
- Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Strasse 10, 13125, Berlin, Germany.
| |
Collapse
|
27
|
Jiang L, Konishi H, Nurwidya F, Satoh K, Takahashi F, Ebinuma H, Fujimura K, Takasu K, Jiang M, Shimokawa H, Bujo H, Daida H. Deletion of LR11 Attenuates Hypoxia-Induced Pulmonary Arterial Smooth Muscle Cell Proliferation With Medial Thickening in Mice. Arterioscler Thromb Vasc Biol 2016; 36:1972-9. [PMID: 27493099 DOI: 10.1161/atvbaha.116.307900] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 07/19/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE We aimed to determine whether LR11 (low-density lipoprotein receptor with 11 binding repeats) is a potential key regulator of smooth muscle cell (SMC) proliferation during the progression of hypoxia-induced medial thickening in mice and whether sLR11 (soluble LR11) can serve as a biomarker in patients with pulmonary arterial hypertension. APPROACH AND RESULTS The role of LR11 in pulmonary arterial hypertension was investigated using mouse and cell models of induced hypoxia. The expression of LR11 and of hypoxia-inducible factor-1α was significantly increased in lung tissues from C57Bl/6 mice after 3 weeks of exposure to hypoxia compared with normoxia. Serum sLR11 levels were also increased. Physiological and histochemical analyses showed that increased right ventricular systolic pressure, right ventricular hypertrophy, and medial thickening induced under hypoxia in wild-type mice were attenuated in LR11(-/-) mice. The proliferation rates stimulated by hypoxia or platelet-derived growth factor-BB were attenuated in SMC derived from LR11(-/-) mice, compared with those from wild-type mice. Exogenous sLR11 protein increased the proliferation rates of SMC from wild-type mice. The expression of LR11 and hypoxia-inducible factor-1α was increased in cultured SMC under hypoxic conditions, and hypoxia-inducible factor-1α knockdown almost abolished the induction of LR11. Serum sLR11 levels were significantly higher in patients with, rather than without, pulmonary arterial hypertension. sLR11 levels positively correlated with pulmonary vascular resistance and mean pulmonary arterial pressure. CONCLUSIONS LR11 regulated SMC proliferation during the progression of hypoxia-induced medial thickening in mice. The findings obtained from mice, together with those in humans, indicate that sLR11 could serve as a novel biomarker that reflects the pathophysiology of proliferating medial SMC in pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Le Jiang
- From the Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan (L.J., H.K., K.T., H.D.); Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan (F.N., F.T.); Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (K.S., H.S.); Tsukuba Research Institute, Sekisui Medical Co Ltd, Ryugasaki, Japan (H.E., K.F.); and Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University Sakura Medical Center, Sakura, Japan (M.J., H.B.)
| | - Hakuoh Konishi
- From the Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan (L.J., H.K., K.T., H.D.); Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan (F.N., F.T.); Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (K.S., H.S.); Tsukuba Research Institute, Sekisui Medical Co Ltd, Ryugasaki, Japan (H.E., K.F.); and Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University Sakura Medical Center, Sakura, Japan (M.J., H.B.).
| | - Fariz Nurwidya
- From the Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan (L.J., H.K., K.T., H.D.); Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan (F.N., F.T.); Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (K.S., H.S.); Tsukuba Research Institute, Sekisui Medical Co Ltd, Ryugasaki, Japan (H.E., K.F.); and Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University Sakura Medical Center, Sakura, Japan (M.J., H.B.)
| | - Kimio Satoh
- From the Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan (L.J., H.K., K.T., H.D.); Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan (F.N., F.T.); Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (K.S., H.S.); Tsukuba Research Institute, Sekisui Medical Co Ltd, Ryugasaki, Japan (H.E., K.F.); and Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University Sakura Medical Center, Sakura, Japan (M.J., H.B.)
| | - Fumiyuki Takahashi
- From the Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan (L.J., H.K., K.T., H.D.); Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan (F.N., F.T.); Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (K.S., H.S.); Tsukuba Research Institute, Sekisui Medical Co Ltd, Ryugasaki, Japan (H.E., K.F.); and Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University Sakura Medical Center, Sakura, Japan (M.J., H.B.)
| | - Hiroyuki Ebinuma
- From the Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan (L.J., H.K., K.T., H.D.); Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan (F.N., F.T.); Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (K.S., H.S.); Tsukuba Research Institute, Sekisui Medical Co Ltd, Ryugasaki, Japan (H.E., K.F.); and Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University Sakura Medical Center, Sakura, Japan (M.J., H.B.)
| | - Kengo Fujimura
- From the Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan (L.J., H.K., K.T., H.D.); Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan (F.N., F.T.); Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (K.S., H.S.); Tsukuba Research Institute, Sekisui Medical Co Ltd, Ryugasaki, Japan (H.E., K.F.); and Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University Sakura Medical Center, Sakura, Japan (M.J., H.B.)
| | - Kiyoshi Takasu
- From the Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan (L.J., H.K., K.T., H.D.); Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan (F.N., F.T.); Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (K.S., H.S.); Tsukuba Research Institute, Sekisui Medical Co Ltd, Ryugasaki, Japan (H.E., K.F.); and Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University Sakura Medical Center, Sakura, Japan (M.J., H.B.)
| | - Meizi Jiang
- From the Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan (L.J., H.K., K.T., H.D.); Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan (F.N., F.T.); Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (K.S., H.S.); Tsukuba Research Institute, Sekisui Medical Co Ltd, Ryugasaki, Japan (H.E., K.F.); and Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University Sakura Medical Center, Sakura, Japan (M.J., H.B.)
| | - Hiroaki Shimokawa
- From the Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan (L.J., H.K., K.T., H.D.); Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan (F.N., F.T.); Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (K.S., H.S.); Tsukuba Research Institute, Sekisui Medical Co Ltd, Ryugasaki, Japan (H.E., K.F.); and Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University Sakura Medical Center, Sakura, Japan (M.J., H.B.)
| | - Hideaki Bujo
- From the Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan (L.J., H.K., K.T., H.D.); Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan (F.N., F.T.); Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (K.S., H.S.); Tsukuba Research Institute, Sekisui Medical Co Ltd, Ryugasaki, Japan (H.E., K.F.); and Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University Sakura Medical Center, Sakura, Japan (M.J., H.B.)
| | - Hiroyuki Daida
- From the Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan (L.J., H.K., K.T., H.D.); Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan (F.N., F.T.); Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (K.S., H.S.); Tsukuba Research Institute, Sekisui Medical Co Ltd, Ryugasaki, Japan (H.E., K.F.); and Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University Sakura Medical Center, Sakura, Japan (M.J., H.B.)
| |
Collapse
|
28
|
Schmidt V, Schulz N, Yan X, Schürmann A, Kempa S, Kern M, Blüher M, Poy MN, Olivecrona G, Willnow TE. SORLA facilitates insulin receptor signaling in adipocytes and exacerbates obesity. J Clin Invest 2016; 126:2706-20. [PMID: 27322061 DOI: 10.1172/jci84708] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 04/29/2016] [Indexed: 12/22/2022] Open
Abstract
In humans, genetic variation of sortilin-related receptor, L(DLR class) A repeats containing (SORL1), which encodes the intracellular sorting receptor SORLA, is a major genetic risk factor for familial and sporadic forms of Alzheimer's disease. Recent GWAS analysis has also associated SORL1 with obesity in humans and in mouse models, suggesting that this receptor may play a role in regulating metabolism. Here, using mouse models with genetic loss or tissue-specific overexpression of SORLA as well as data from obese human subjects, we observed a gene-dosage effect that links SORLA expression to obesity and glucose tolerance. Overexpression of human SORLA in murine adipose tissue blocked hydrolysis of triacylglycerides and caused excessive adiposity. In contrast, Sorl1 gene inactivation in mice accelerated breakdown of triacylglycerides in adipocytes and protected animals from diet-induced obesity. We then identified the underlying molecular mechanism whereby SORLA promotes insulin-induced suppression of lipolysis in adipocytes. Specifically, we determined that SORLA acts as a sorting factor for the insulin receptor (IR) that redirects internalized receptor molecules from endosomes to the plasma membrane, thereby enhancing IR surface expression and strengthening insulin signal reception in target cells. Our findings provide a molecular mechanism for the association of SORL1 with human obesity and confirm a genetic link between neurodegeneration and metabolism that converges on the receptor SORLA.
Collapse
|
29
|
Sassi C, Ridge PG, Nalls MA, Gibbs R, Ding J, Lupton MK, Troakes C, Lunnon K, Al-Sarraj S, Brown KS, Medway C, Lord J, Turton J, Morgan K, Powell JF, Kauwe JS, Cruchaga C, Bras J, Goate AM, Singleton AB, Guerreiro R, Hardy J. Influence of Coding Variability in APP-Aβ Metabolism Genes in Sporadic Alzheimer's Disease. PLoS One 2016; 11:e0150079. [PMID: 27249223 PMCID: PMC4889076 DOI: 10.1371/journal.pone.0150079] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 02/09/2016] [Indexed: 01/20/2023] Open
Abstract
The cerebral deposition of Aβ42, a neurotoxic proteolytic derivate of amyloid precursor protein (APP), is a central event in Alzheimer's disease (AD)(Amyloid hypothesis). Given the key role of APP-Aβ metabolism in AD pathogenesis, we selected 29 genes involved in APP processing, Aβ degradation and clearance. We then used exome and genome sequencing to investigate the single independent (single-variant association test) and cumulative (gene-based association test) effect of coding variants in these genes as potential susceptibility factors for AD, in a cohort composed of 332 sporadic and mainly late-onset AD cases and 676 elderly controls from North America and the UK. Our study shows that common coding variability in these genes does not play a major role for the disease development. In the single-variant association analysis, the main hits, none of which statistically significant after multiple testing correction (1.9e-4
Collapse
Affiliation(s)
- Celeste Sassi
- Reta Lila, Weston Research Laboratories, Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States of America
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charite’ Universitätmedizin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin site, Germany
| | - Perry G. Ridge
- Departments of Biology, Neuroscience, Brigham Young University, Provo, UT, United States of America
| | - Michael A. Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States of America
| | - Raphael Gibbs
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States of America
| | - Jinhui Ding
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States of America
| | - Michelle K. Lupton
- King's College London Institute of Psychiatry, London, United Kingdom
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Claire Troakes
- King's College London Institute of Psychiatry, London, United Kingdom
| | - Katie Lunnon
- King's College London Institute of Psychiatry, London, United Kingdom
| | - Safa Al-Sarraj
- King's College London Institute of Psychiatry, London, United Kingdom
| | - Kristelle S. Brown
- Translation Cell Sciences-Human Genetics, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Christopher Medway
- Translation Cell Sciences-Human Genetics, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Jenny Lord
- Translation Cell Sciences-Human Genetics, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - James Turton
- Translation Cell Sciences-Human Genetics, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | | | - Kevin Morgan
- Translation Cell Sciences-Human Genetics, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - John F. Powell
- King's College London Institute of Psychiatry, London, United Kingdom
| | - John S. Kauwe
- Departments of Biology, Neuroscience, Brigham Young University, Provo, UT, United States of America
| | - Carlos Cruchaga
- Washington University, Division of Biology and Biomedical Sciences St. Louis, MO, United States of America
| | - Jose Bras
- Reta Lila, Weston Research Laboratories, Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | - Alison M. Goate
- Icahn School of Medicine at Mount Sinai, Icahn Medical Institute, New York, NY, United States of America
| | - Andrew B. Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States of America
| | - Rita Guerreiro
- Reta Lila, Weston Research Laboratories, Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | - John Hardy
- Reta Lila, Weston Research Laboratories, Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom
| |
Collapse
|
30
|
Circulating soluble form of LR11, a regulator of smooth muscle cell migration, is a novel marker for intima-media thickness of carotid arteries in type 2 diabetes. Clin Chim Acta 2016; 457:137-41. [PMID: 27095609 DOI: 10.1016/j.cca.2016.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/18/2016] [Accepted: 04/14/2016] [Indexed: 01/17/2023]
Abstract
BACKGROUND Smooth muscle cell (SMC) migration from the media to the intima, a process affecting plaque stability in advanced-stage atherosclerosis, is under the control of LR11. To delineate the clinical significance of the circulating soluble form of LR11 (sLR11) in patients with type 2 diabetes (T2D), we analyzed the correlation of sLR11 levels with intima-media thickness (IMT) of carotid arteries. METHODS Plasma sLR11 levels were measured in 165 patients with T2D (mean age 56.2±10.4 y, 58.2% males, and BMI 24.6±3.6) by ELISA. Averaged IMT levels of common carotid arteries were determined by ultrasonography. RESULTS Circulating sLR11 levels were 9.8±3.5ng/ml, and correlated positively with the classical atherosclerosis risk factors age, sex, systolic blood pressure, low-density lipoprotein-cholesterol (LDL-C), fasting plasma-glucose (FPG), and glycosylated hemoglobin. Multivariate linear regression analysis indicated that only FPG was associated with sLR11; sLR11 correlated positively with IMT, together with age and FPG, but less with LDL-C. Among the serum risk factors for IMT, multivariate linear regression analysis uncovered that sLR11 was independently associated with IMT. Subsequent logistic analysis revealed that FPG correlated best with IMT values at a cut-off of 0.80mm and sLR11 at a cut-off of 0.90mm, respectively, while LDL-C showed lower discriminatory power at any IMT cut-off values. CONCLUSION Increased sLR11 concentrations are highly associated with increased IMT as well as with FPG in middle-aged, non-obese patients with T2D. Circulating sLR11 may be a novel marker representing the pathophysiology of intimal SMCs in patients with T2D.
Collapse
|
31
|
Terai K, Jiang M, Tokuyama W, Murano T, Takada N, Fujimura K, Ebinuma H, Kishimoto T, Hiruta N, Schneider WJ, Bujo H. Levels of soluble LR11/SorLA are highly increased in the bile of patients with biliary tract and pancreatic cancers. Clin Chim Acta 2016; 457:130-6. [PMID: 27079357 DOI: 10.1016/j.cca.2016.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/24/2016] [Accepted: 04/07/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND The utility of molecules derived from cancer cells as biomarkers of the pathological status in biliary tract and pancreatic cancers is still limited. Soluble LDL receptor relative with 11 ligand-binding repeats (sLR11), a molecule released from immature cells, has been shown to be a circulating biomarker for early stage hematological malignancies. METHODS We have evaluated the pathological significance of bile sLR11 levels in 147 samples from 72 patients with biliary tract cancer (BTC), pancreatic cancer (PC), or benign diseases. RESULTS The bile sLR11 levels in the cancer patients were significantly increased compared with those in patients without cancer, independent of cytological detection of cancer cells in bile. The average bile sLR11 levels in cancer patients were significantly higher than in those with benign diseases, while levels of bile carbohydrate antigen 19-9 (CA19-9) and carcinoembryonic antigen (CEA) were not different. LR11 protein was found to be highly expressed in the BTC and PC cells. The LR11 transcript levels in cholangiocarcinoma and pancreatic cancer cell lines were sharply induced during proliferation and significantly increased under hypoxic conditions. CONCLUSIONS Therefore, sLR11 levels in bile may be indicative of cancer cell conditions and may serve as potential novel biomarker in patients with BTC and PC.
Collapse
Affiliation(s)
- Kensuke Terai
- Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University Sakura Medical Center, Sakura, Japan; Department of Surgical Pathology, Toho University Sakura Medical Center, Sakura, Japan; Department of Biomolecular Science, Toho University Graduate School of Science, Funabashi, Japan
| | - Meizi Jiang
- Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University Sakura Medical Center, Sakura, Japan
| | - Wataru Tokuyama
- Department of Surgical Pathology, Toho University Sakura Medical Center, Sakura, Japan
| | - Takeyoshi Murano
- Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University Sakura Medical Center, Sakura, Japan
| | - Nobuo Takada
- Department of Internal Medicine, Toho University Sakura Medical Center, Sakura, Japan
| | - Kengo Fujimura
- Tsukuba Research Institute, Sekisui Medical Co Ltd, Ryugasaki, Japan
| | - Hiroyuki Ebinuma
- Tsukuba Research Institute, Sekisui Medical Co Ltd, Ryugasaki, Japan
| | - Toshihiko Kishimoto
- Department of Biomolecular Science, Toho University Graduate School of Science, Funabashi, Japan
| | - Nobuyuki Hiruta
- Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University Sakura Medical Center, Sakura, Japan; Department of Surgical Pathology, Toho University Sakura Medical Center, Sakura, Japan
| | - Wolfgang J Schneider
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Hideaki Bujo
- Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University Sakura Medical Center, Sakura, Japan.
| |
Collapse
|
32
|
LR11/SorLA links triglyceride-rich lipoproteins to risk of developing cardiovascular disease in FH patients. Atherosclerosis 2015; 243:429-37. [DOI: 10.1016/j.atherosclerosis.2015.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 09/22/2015] [Accepted: 10/05/2015] [Indexed: 12/18/2022]
|
33
|
Kitago Y, Nagae M, Nakata Z, Yagi-Utsumi M, Takagi-Niidome S, Mihara E, Nogi T, Kato K, Takagi J. Structural basis for amyloidogenic peptide recognition by sorLA. Nat Struct Mol Biol 2015; 22:199-206. [PMID: 25643321 DOI: 10.1038/nsmb.2954] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 12/15/2014] [Indexed: 11/09/2022]
Abstract
SorLA is a neuronal sorting receptor considered to be a major risk factor for Alzheimer's disease. We have recently reported that it directs lysosomal targeting of nascent neurotoxic amyloid-β (Aβ) peptides by directly binding Aβ. Here, we determined the crystal structure of the human sorLA domain responsible for Aβ capture, Vps10p, in an unbound state and in complex with two ligands. Vps10p assumes a ten-bladed β-propeller fold with a large tunnel at the center. An internal ligand derived from the sorLA propeptide bound inside the tunnel to extend the β-sheet of one of the propeller blades. The structure of the sorLA Vps10p-Aβ complex revealed that the same site is used. Peptides are recognized by sorLA Vps10p in redundant modes without strict dependence on a particular amino acid sequence, thus suggesting a broad specificity toward peptides with a propensity for β-sheet formation.
Collapse
Affiliation(s)
- Yu Kitago
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Masamichi Nagae
- Institute for Protein Research, Osaka University, Suita, Japan
| | | | - Maho Yagi-Utsumi
- 1] Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Japan. [2] Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | | | - Emiko Mihara
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Terukazu Nogi
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Koichi Kato
- 1] Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Japan. [2] Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Junichi Takagi
- Institute for Protein Research, Osaka University, Suita, Japan
| |
Collapse
|
34
|
Mehmedbasic A, Christensen SK, Nilsson J, Rüetschi U, Gustafsen C, Poulsen ASA, Rasmussen RW, Fjorback AN, Larson G, Andersen OM. SorLA complement-type repeat domains protect the amyloid precursor protein against processing. J Biol Chem 2014; 290:3359-76. [PMID: 25525276 DOI: 10.1074/jbc.m114.619940] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SorLA is a neuronal sorting receptor that is genetically associated with Alzheimer disease. SorLA interacts directly with the amyloid precursor protein (APP) and affects the processing of the precursor, leading to a decreased generation of the amyloid-β peptide. The SorLA complement-type repeat (CR) domains associate in vitro with APP, but the precise molecular determinants of SorLA·APP complex formation and the mechanisms responsible for the effect of binding on APP processing have not yet been elucidated. Here, we have generated protein expression constructs for SorLA devoid of the 11 CR-domains and for two SorLA mutants harboring substitutions of the fingerprint residues in the central CR-domains. We generated SH-SY5Y cell lines that stably express these SorLA variants to study the binding and processing of APP using co-immunoprecipitation and Western blotting/ELISAs, respectively. We found that the SorLA CR-cluster is essential for interaction with APP and that deletion of the CR-cluster abolishes the protection against APP processing. Mutation of identified fingerprint residues in the SorLA CR-domains leads to changes in the O-linked glycosylation of APP when expressed in SH-SY5Y cells. Our results provide novel information on the mechanisms behind the influence of SorLA activity on APP metabolism by controlling post-translational glycosylation in the Golgi, suggesting new strategies against amyloidogenesis in Alzheimer disease.
Collapse
Affiliation(s)
- Arnela Mehmedbasic
- From the Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience Nordic-EMBL Partnership (DANDRITE), Department of Biomedicine, Aarhus University, Ole Worms Allé 3, DK-8000 AarhusC, Denmark and
| | - Sofie K Christensen
- From the Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience Nordic-EMBL Partnership (DANDRITE), Department of Biomedicine, Aarhus University, Ole Worms Allé 3, DK-8000 AarhusC, Denmark and
| | - Jonas Nilsson
- the Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Ulla Rüetschi
- the Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Camilla Gustafsen
- From the Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience Nordic-EMBL Partnership (DANDRITE), Department of Biomedicine, Aarhus University, Ole Worms Allé 3, DK-8000 AarhusC, Denmark and
| | - Annemarie Svane Aavild Poulsen
- From the Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience Nordic-EMBL Partnership (DANDRITE), Department of Biomedicine, Aarhus University, Ole Worms Allé 3, DK-8000 AarhusC, Denmark and
| | - Rikke W Rasmussen
- From the Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience Nordic-EMBL Partnership (DANDRITE), Department of Biomedicine, Aarhus University, Ole Worms Allé 3, DK-8000 AarhusC, Denmark and
| | - Anja N Fjorback
- From the Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience Nordic-EMBL Partnership (DANDRITE), Department of Biomedicine, Aarhus University, Ole Worms Allé 3, DK-8000 AarhusC, Denmark and
| | - Göran Larson
- the Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Olav M Andersen
- From the Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience Nordic-EMBL Partnership (DANDRITE), Department of Biomedicine, Aarhus University, Ole Worms Allé 3, DK-8000 AarhusC, Denmark and
| |
Collapse
|
35
|
Yajima R, Tokutake T, Koyama A, Kasuga K, Tezuka T, Nishizawa M, Ikeuchi T. ApoE-isoform-dependent cellular uptake of amyloid-β is mediated by lipoprotein receptor LR11/SorLA. Biochem Biophys Res Commun 2014; 456:482-8. [PMID: 25482438 DOI: 10.1016/j.bbrc.2014.11.111] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 11/28/2014] [Indexed: 11/30/2022]
Abstract
The formation of senile plaques composed of β-amyloid (Aβ) in the brain is likely the initial event in Alzheimer's disease (AD). Possession of the APOE ε4 allele, the strong genetic factor for AD, facilitates the Aβ deposition from the presymptomatic stage of AD in a gene-dosage-dependent manner. However, the precise mechanism by which apoE isoforms differentially induce the AD pathology is largely unknown. LR11/SorLA is a type I membrane protein that functions as the neuronal lipoprotein endocytic receptor of apoE and the sorting receptor of the amyloid precursor protein (APP) to regulate amyloidogenesis. Recently, LR11/SorLA has been reported to be involved in the lysosomal targeting of extracellular amyloid-β (Aβ) through the binding of Aβ to the vacuolar protein sorting 10 (VPS10) protein domain of LR11/SorLA. Here, we attempted to examine the human-apoE-isoform-dependent effect on the cellular uptake of Aβ through the formation of a complex between an apoE isoform and LR11/SorLA. Cell culture experiments using Neuro2a cells revealed that the cellular uptake of secreted apoE3 and apoE4 was enhanced by the overexpression of LR11/SorLA. In contrast, the cellular uptake of apoE2 was not affected by the expression of LR11/SorLA. Co-immunoprecipitation assay revealed that apoE-isoform-dependent differences were observed in the formation of an apoE-LR11 complex (apoE4>apoE3>apoE2). ApoE-isoform-dependent differences in cellular uptake of FAM-labeled Aβ were further investigated by coculture assay in which donor cells secrete one of the apoE isoforms and recipient cells express FL-LR11. The cellular uptake of extracellular Aβ into the recipient cells was most prominently accentuated when cocultured with the donor cells secreting apoE4 in the medium, followed by apoE3 and apoE2. Taken together, our results provide evidence for the mechanism whereby human-apoE-isoform-dependent differences modulate the cellular uptake of Aβ mediated by LR11/SorLA.
Collapse
Affiliation(s)
- Ryuji Yajima
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takayoshi Tokutake
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akihide Koyama
- Center for Transdisciplinary Research, Niigata University, Niigata, Japan
| | - Kensaku Kasuga
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan; Center for Transdisciplinary Research, Niigata University, Niigata, Japan; Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Toshiyuki Tezuka
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan; Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masatoyo Nishizawa
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan.
| |
Collapse
|
36
|
The Binding Receptors of Aβ: an Alternative Therapeutic Target for Alzheimer's Disease. Mol Neurobiol 2014; 53:455-471. [PMID: 25465238 DOI: 10.1007/s12035-014-8994-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/06/2014] [Indexed: 01/18/2023]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders, which causes the deterioration of memory and other cognitive abilities of the elderly. Previous lines of research have shown that Aβ is an essential factor in AD pathology and the soluble oligomeric species of Aβ peptide is presumed to be the drivers of synaptic impairment in AD. However, the exact mechanisms underlying Aβ-induced synapse dysfunction are still not fully understood. Recently, increasing evidence suggests that some potential receptors which bind specifically with Aβ may play important roles in inducing the toxicity of the neurons in AD pathology. These receptors include the cellular prion protein (PrPc), the α7 nicotinic acetylcholine receptor (α7nAChR), the p75 neurotrophin receptor (p75(NTR)), the beta-adrenergic receptors (β-ARs), the Eph receptors, the paired immunoglobulin-like receptor B (PirB), the PirB's human ortholog receptor (LilrB2), and the Fcγ receptor II-b (FcγRIIb). This review summarizes the characters of these prominent receptors and how the bindings of them with Aβ inhibit the LTP, decrease the number of dendritic spine, damage the neurons, and so on in AD pathogenesis. Blocking or rescuing these receptors may have significant importance for AD treatments.
Collapse
|
37
|
Caglayan S, Takagi-Niidome S, Liao F, Carlo AS, Schmidt V, Burgert T, Kitago Y, Füchtbauer EM, Füchtbauer A, Holtzman DM, Takagi J, Willnow TE. Lysosomal sorting of amyloid-β by the SORLA receptor is impaired by a familial Alzheimer's disease mutation. Sci Transl Med 2014; 6:223ra20. [PMID: 24523320 DOI: 10.1126/scitranslmed.3007747] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SORLA/SORL1 is a unique neuronal sorting receptor for the amyloid precursor protein that has been causally implicated in both sporadic and autosomal dominant familial forms of Alzheimer's disease (AD). Brain concentrations of SORLA are inversely correlated with amyloid-β (Aβ) in mouse models and AD patients, suggesting that increasing expression of this receptor could be a therapeutic option for decreasing the amount of amyloidogenic products in affected individuals. We characterize a new mouse model in which SORLA is overexpressed, and show a decrease in Aβ concentrations in mouse brain. We trace the underlying molecular mechanism to the ability of this receptor to direct lysosomal targeting of nascent Aβ peptides. Aβ binds to the amino-terminal VPS10P domain of SORLA, and this binding is impaired by a familial AD mutation in SORL1. Thus, loss of SORLA's Aβ sorting function is a potential cause of AD in patients, and SORLA may be a new therapeutic target for AD drug development.
Collapse
Affiliation(s)
- Safak Caglayan
- Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Nohara A, Kobayashi J, Kawashiri M, Tada H, Inazu A, Jiang M, Mabuchi H, Bujo H. Clinical significance of measuring soluble LR11, a circulating marker of atherosclerosis and HbA1c in familial hypercholesterolemia. Clin Biochem 2014; 47:1326-8. [DOI: 10.1016/j.clinbiochem.2014.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/30/2014] [Accepted: 05/03/2014] [Indexed: 10/25/2022]
|
39
|
Gill RL, Wang X, Tian F. A membrane proximal helix in the cytosolic domain of the human APP interacting protein LR11/SorLA deforms liposomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:323-8. [PMID: 24866012 DOI: 10.1016/j.bbamem.2014.05.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/08/2014] [Accepted: 05/15/2014] [Indexed: 12/20/2022]
Abstract
Over the last decade, compelling evidence has linked the development of Alzheimer's disease (AD) to defective intracellular trafficking of the amyloid precursor protein (APP). Faulty APP trafficking results in an overproduction of Aβ peptides, which is generally agreed to be the primary cause of AD-related pathogenesis. LR11 (SorLA), a type I transmembrane sorting receptor, has emerged as a key regulator of APP trafficking and processing. It directly interacts with APP and diverts it away from amyloidogenic processing. The 54-residue cytosolic domain of LR11 is essential for its proper intracellular localization and trafficking which, in turn, determines the fate of APP. Here, we have found a surprising membrane-proximal amphipathic helix in the cytosolic domain of LR11. Moreover, a peptide corresponding to this region folds into an α-helical structure in the presence of liposomes and transforms liposomes to small vesicles and tubule-like particles. We postulate that this amphipathic helix may contribute to the dynamic remodeling of membrane structure and facilitate LR11 intracellular transport.
Collapse
Affiliation(s)
- Richard L Gill
- Department of Biochemistry and Molecular Biology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Xingsheng Wang
- Department of Biochemistry and Molecular Biology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Fang Tian
- Department of Biochemistry and Molecular Biology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA.
| |
Collapse
|
40
|
Yin RH, Yu JT, Tan L. The Role of SORL1 in Alzheimer's Disease. Mol Neurobiol 2014; 51:909-18. [PMID: 24833601 DOI: 10.1007/s12035-014-8742-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/05/2014] [Indexed: 11/29/2022]
Abstract
Genetic variation in SORL1 gene, also known as LR11, has been identified to associate with Alzheimer's disease (AD) through replicated genetic studies. As a type I transmembrane protein, SORL1 is composed of several distinct domains and belongs to both the low-density lipoprotein receptor (LDLR) family and the vacuolar protein sorting 10 (VPS10) domain receptor family. The level of SORL1 was found to be decreased in the AD brain which positively correlated with β-amyloid (Aβ) accumulation. Emerging data suggests that SORL1 contributes to AD through various pathways, including emerging as a central regulator of the trafficking and processing of amyloid precursor protein (APP), involvement in Aβ destruction, and interaction with ApoE and tau protein. Primarily, SORL1 interacts with distinct sets of cytosolic adaptors for anterograde and retrograde movement of APP between the trans-Golgi network (TGN) and early endosomes, thereby restricting the delivery of the precursor to endocytic compartments that favor amyloidogenic breakdown. In this article, we review recent epidemiological and genetical findings of SORL1 that related with AD and speculate the possible roles of SORL1 in the progression of this disease. Finally, given the potential contributions of SORL1 to AD pathogenesis, targeting SORL1 might present novel opportunities for AD therapy.
Collapse
Affiliation(s)
- Rui-Hua Yin
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | | | | |
Collapse
|
41
|
Tsukamoto S, Takeuchi M, Kawaguchi T, Togasaki E, Yamazaki A, Sugita Y, Muto T, Sakai S, Takeda Y, Ohwada C, Sakaida E, Shimizu N, Nishii K, Jiang M, Yokote K, Bujo H, Nakaseko C. Tetraspanin CD9 modulates ADAM17-mediated shedding of LR11 in leukocytes. Exp Mol Med 2014; 46:e89. [PMID: 24699135 PMCID: PMC3944444 DOI: 10.1038/emm.2013.161] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 11/10/2013] [Accepted: 11/25/2013] [Indexed: 02/05/2023] Open
Abstract
LR11, also known as SorLA or SORL1, is a type-I membrane protein from which a large extracellular part, soluble LR11 (sLR11), is released by proteolytic shedding on cleavage with a disintegrin and metalloproteinase 17 (ADAM17). A shedding mechanism is presumed to have a key role in the functions of LR11, but the evidence for this has not yet been demonstrated. Tetraspanin CD9 has been recently shown to regulate the ADAM17-mediated shedding of tumor necrosis factor-α and intercellular adhesion molecule-1 on the cell surface. Here, we investigated the role of CD9 on the shedding of LR11 in leukocytes. LR11 was not expressed in THP-1 monocytes, but it was expressed and released in phorbol 12-myristate 13-acetate (PMA)-induced THP-1 macrophages (PMA/THP-1). Confocal microscopy showed colocalization of LR11 and CD9 proteins on the cell surface of PMA/THP-1. Ectopic neo-expression of CD9 in CCRF-SB cells, which are LR11-positive and CD9-negative, reduced the amount of sLR11 released from the cells. In contrast, incubation of LR11-transfected THP-1 cells with neutralizing anti-CD9 monoclonal antibodies increased the amount of sLR11 released from the cells. Likewise, the PMA-stimulated release of sLR11 increased in THP-1 cells transfected with CD9-targeted shRNAs, which was negated by treatment with the metalloproteinase inhibitor GM6001. These results suggest that the tetraspanin CD9 modulates the ADAM17-mediated shedding of LR11 in various leukemia cell lines and that the association between LR11 and CD9 on the cell surface has an important role in the ADAM17-mediated shedding mechanism.
Collapse
Affiliation(s)
- Shokichi Tsukamoto
- 1] Department of Hematology, Chiba University Hospital, Chiba, Japan [2] Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masahiro Takeuchi
- 1] Department of Hematology, Chiba University Hospital, Chiba, Japan [2] Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takeharu Kawaguchi
- 1] Department of Hematology, Chiba University Hospital, Chiba, Japan [2] Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Emi Togasaki
- 1] Department of Hematology, Chiba University Hospital, Chiba, Japan [2] Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsuko Yamazaki
- 1] Department of Hematology, Chiba University Hospital, Chiba, Japan [2] Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasumasa Sugita
- 1] Department of Hematology, Chiba University Hospital, Chiba, Japan [2] Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomoya Muto
- 1] Department of Hematology, Chiba University Hospital, Chiba, Japan [2] Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shio Sakai
- 1] Department of Hematology, Chiba University Hospital, Chiba, Japan [2] Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan [3] Division of Transfusion Medicine and Cell Therapy, Chiba University Hospital, Chiba, Japan
| | - Yusuke Takeda
- 1] Department of Hematology, Chiba University Hospital, Chiba, Japan [2] Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Chikako Ohwada
- 1] Department of Hematology, Chiba University Hospital, Chiba, Japan [2] Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Emiko Sakaida
- 1] Department of Hematology, Chiba University Hospital, Chiba, Japan [2] Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naomi Shimizu
- 1] Department of Hematology, Chiba University Hospital, Chiba, Japan [2] Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan [3] Division of Transfusion Medicine and Cell Therapy, Chiba University Hospital, Chiba, Japan
| | - Keigo Nishii
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Meizi Jiang
- Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University Medical Center Sakura Hospital, Sakura, Japan
| | - Koutaro Yokote
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideaki Bujo
- Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University Medical Center Sakura Hospital, Sakura, Japan
| | - Chiaki Nakaseko
- 1] Department of Hematology, Chiba University Hospital, Chiba, Japan [2] Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
42
|
Jiang S, Li Y, Zhang X, Bu G, Xu H, Zhang YW. Trafficking regulation of proteins in Alzheimer's disease. Mol Neurodegener 2014; 9:6. [PMID: 24410826 PMCID: PMC3891995 DOI: 10.1186/1750-1326-9-6] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 12/15/2013] [Indexed: 12/12/2022] Open
Abstract
The β-amyloid (Aβ) peptide has been postulated to be a key determinant in the pathogenesis of Alzheimer’s disease (AD). Aβ is produced through sequential cleavage of the β-amyloid precursor protein (APP) by β- and γ-secretases. APP and relevant secretases are transmembrane proteins and traffic through the secretory pathway in a highly regulated fashion. Perturbation of their intracellular trafficking may affect dynamic interactions among these proteins, thus altering Aβ generation and accelerating disease pathogenesis. Herein, we review recent progress elucidating the regulation of intracellular trafficking of these essential protein components in AD.
Collapse
Affiliation(s)
| | | | | | | | | | - Yun-wu Zhang
- Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
43
|
Sortilin-related receptor SORCS3 is a postsynaptic modulator of synaptic depression and fear extinction. PLoS One 2013; 8:e75006. [PMID: 24069373 PMCID: PMC3777878 DOI: 10.1371/journal.pone.0075006] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 08/07/2013] [Indexed: 11/24/2022] Open
Abstract
SORCS3 is an orphan receptor of the VPS10P domain receptor family, a group of sorting and signaling receptors central to many pathways in control of neuronal viability and function. SORCS3 is highly expressed in the CA1 region of the hippocampus, but the relevance of this receptor for hippocampal activity remained absolutely unclear. Here, we show that SORCS3 localizes to the postsynaptic density and that loss of receptor activity in gene-targeted mice abrogates NMDA receptor-dependent and -independent forms of long-term depression (LTD). Consistent with a loss of synaptic retraction, SORCS3-deficient mice suffer from deficits in behavioral activities associated with hippocampal LTD, particularly from an accelerated extinction of fear memory. A possible molecular mechanism for SORCS3 in synaptic depression was suggested by targeted proteomics approaches that identified the ability of SORCS3 to functionally interact with PICK1, an adaptor that sorts glutamate receptors at the postsynapse. Faulty localization of PICK1 in SORCS3-deficient neurons argues for altered glutamate receptor trafficking as the cause of altered synaptic plasticity in the SORCS3-deficient mouse model. In conclusion, our studies have identified a novel function for VPS10P domain receptors in control of synaptic depression and suggest SORCS3 as a novel factor modulating aversive memory extinction.
Collapse
|
44
|
SORLA-dependent and -independent functions for PACS1 in control of amyloidogenic processes. Mol Cell Biol 2013; 33:4308-20. [PMID: 24001769 DOI: 10.1128/mcb.00628-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sorting-related receptor with A-type repeats (SORLA) is a sorting receptor for the amyloid precursor protein (APP) that prevents breakdown of APP into Aβ peptides, a hallmark of Alzheimer's disease (AD). Several cytosolic adaptors have been shown to interact with the cytoplasmic domain of SORLA, thereby controlling intracellular routing of SORLA/APP complexes in cell lines. However, the relevance of adaptor-mediated sorting of SORLA for amyloidogenic processes in vivo remained unexplored. We focused on the interaction of SORLA with phosphofurin acidic cluster sorting protein 1 (PACS1), an adaptor that shuttles proteins between the trans-Golgi network (TGN) and endosomes. By studying PACS1 knockdown in neuronal cell lines and investigating transgenic mice expressing a PACS1-binding-defective mutant form of SORLA, we found that disruption of SORLA and PACS1 interaction results in the inability of SORLA/APP complexes to sort to the TGN in neurons and in increased APP processing in the brain. Loss of PACS1 also impairs the proper expression of the cation-independent mannose 6-phosphate receptor and its target cathepsin B, a protease that breaks down Aβ. Thus, our data identified the importance of PACS1-dependent protein sorting for amyloidogenic-burden control via both SORLA-dependent and SORLA-independent mechanisms.
Collapse
|
45
|
Nishii K, Nakaseko C, Jiang M, Shimizu N, Takeuchi M, Schneider WJ, Bujo H. The soluble form of LR11 protein is a regulator of hypoxia-induced, urokinase-type plasminogen activator receptor (uPAR)-mediated adhesion of immature hematological cells. J Biol Chem 2013; 288:11877-86. [PMID: 23486467 DOI: 10.1074/jbc.m112.442491] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A key property of hematopoietic stem and progenitor cells (HSPCs) regarding differentiation from the self-renewing quiescent to the proliferating stage is their adhesion to the bone marrow (BM) niche. An important molecule involved in proliferation and pool size of HSPCs in the BM is the hypoxia-induced urokinase-type plasminogen activator receptor (uPAR). Here, we show that the soluble form (sLR11) of LR11 (also called SorLA or SORL1) modulates the uPAR-mediated attachment of HSPCs under hypoxic conditions. Immunohistochemical and mRNA expression analyses revealed that hypoxia increased LR11 expression in hematological c-Kit(+) Lin(-) cells. In U937 cells, hypoxia induced a transient rise in LR11 transcription, production of cellular protein, and release of sLR11. Attachment to stromal cells of c-Kit(+) Lin(-) cells of lr11(-/-) mice was reduced by hypoxia much more than of lr11(+/+) animals. sLR11 induced the adhesion of U937 and c-Kit(+) Lin(-) cells to stromal cells. Cell attachment was increased by sLR11 and reduced in the presence of anti-uPAR antibodies. Furthermore, the fraction of uPAR co-immunoprecipitated with LR11 in membrane extracts of U937 cells was increased by hypoxia. CoCl2, a chemical inducer of HIF-1α, enhanced the levels of LR11 and sLR11 in U937 cells. The decrease in hypoxia-induced attachment of HIF-1α-knockdown cells was largely prevented by exogenously added sLR11. Finally, hypoxia induced HIF-1α binding to a consensus binding site in the LR11 promoter. Thus, we conclude that sLR11 regulates the hypoxia-enhanced adhesion of HSPCs via an uPAR-mediated pathway that stabilizes the hematological pool size by controlling cell attachment to the BM niche.
Collapse
Affiliation(s)
- Keigo Nishii
- Department of Genome Research and Clinical Application, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Willnow TE, Andersen OM. Sorting receptor SORLA – a trafficking path to avoid Alzheimer disease. J Cell Sci 2013; 126:2751-60. [DOI: 10.1242/jcs.125393] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Excessive proteolytic breakdown of the amyloid precursor protein (APP) to neurotoxic amyloid β peptides (Aβ) by secretases in the brain is a molecular cause of Alzheimer disease (AD). According to current concepts, the complex route whereby APP moves between the secretory compartment, the cell surface and endosomes to encounter the various secretases determines its processing fate. However, the molecular mechanisms that control the intracellular trafficking of APP in neurons and their contribution to AD remain poorly understood. Here, we describe the functional elucidation of a new sorting receptor SORLA that emerges as a central regulator of trafficking and processing of APP. SORLA interacts with distinct sets of cytosolic adaptors for anterograde and retrograde movement of APP between the trans-Golgi network and early endosomes, thereby restricting delivery of the precursor to endocytic compartments that favor amyloidogenic breakdown. Defects in SORLA and its interacting adaptors result in transport defects and enhanced amyloidogenic processing of APP, and represent important risk factors for AD in patients. As discussed here, these findings uncovered a unique regulatory pathway for the control of neuronal protein transport, and provide clues as to why defects in this pathway cause neurodegenerative disease.
Collapse
|
47
|
Tsolakidou A, Alexopoulos P, Guo LH, Grimmer T, Westerteicher C, Kratzer M, Jiang M, Bujo H, Roselli F, Leante MR, Livrea P, Kurz A, Perneczky R. β-Site amyloid precursor protein-cleaving enzyme 1 activity is related to cerebrospinal fluid concentrations of sortilin-related receptor with A-type repeats, soluble amyloid precursor protein, and tau. Alzheimers Dement 2012; 9:386-91. [PMID: 23127467 DOI: 10.1016/j.jalz.2012.01.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 12/30/2011] [Accepted: 01/24/2012] [Indexed: 11/26/2022]
Abstract
BACKGROUND β-Site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) activity determines the rate of APP cleavage and is therefore the main driver of amyloid β production, which is a pathological hallmark of Alzheimer's disease (AD). METHODS The present study explored the correlation between BACE1 activity and cerebrospinal fluid (CSF) markers of APP metabolism and axonal degeneration in 63 patients with mild AD and 12 healthy control subjects. RESULTS In the AD group, positive correlations between BACE1 activity and soluble APP β, the APP sorting receptor sortilin-related receptor with A-type repeats (also known as SorLA or LR11), and tau were detected. BACE1 activity was not associated with amyloid β1-42 or soluble APP α concentrations in the AD group, and no associations between BACE1 activity and any of the protein concentrations were found in the control group. CONCLUSION Our results confirm the relevance of BACE1 and sortilin-related receptor with A-type repeats within the amyloid cascade and also provide a further piece of evidence for the link between amyloid and tau pathology in AD.
Collapse
Affiliation(s)
- Amalia Tsolakidou
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Sakai S, Nakaseko C, Takeuchi M, Ohwada C, Shimizu N, Tsukamoto S, Kawaguchi T, Jiang M, Sato Y, Ebinuma H, Yokote K, Iwama A, Fukamachi I, Schneider WJ, Saito Y, Bujo H. Circulating soluble LR11/SorLA levels are highly increased and ameliorated by chemotherapy in acute leukemias. Clin Chim Acta 2012; 413:1542-8. [DOI: 10.1016/j.cca.2012.06.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 06/21/2012] [Accepted: 06/21/2012] [Indexed: 01/30/2023]
|
49
|
Ciarlo E, Massone S, Penna I, Nizzari M, Gigoni A, Dieci G, Russo C, Florio T, Cancedda R, Pagano A. An intronic ncRNA-dependent regulation of SORL1 expression affecting Aβ formation is upregulated in post-mortem Alzheimer's disease brain samples. Dis Model Mech 2012; 6:424-33. [PMID: 22996644 PMCID: PMC3597024 DOI: 10.1242/dmm.009761] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Recent studies indicated that sortilin-related receptor 1 (SORL1) is a risk gene for late-onset Alzheimer's disease (AD), although its role in the aetiology and/or progression of this disorder is not fully understood. Here, we report the finding of a non-coding (nc) RNA (hereafter referred to as 51A) that maps in antisense configuration to intron 1 of the SORL1 gene. 51A expression drives a splicing shift of SORL1 from the synthesis of the canonical long protein variant A to an alternatively spliced protein form. This process, resulting in a decreased synthesis of SORL1 variant A, is associated with impaired processing of amyloid precursor protein (APP), leading to increased Aβ formation. Interestingly, we found that 51A is expressed in human brains, being frequently upregulated in cerebral cortices from individuals with Alzheimer's disease. Altogether, these findings document a novel ncRNA-dependent regulatory pathway that might have relevant implications in neurodegeneration.
Collapse
Affiliation(s)
- Eleonora Ciarlo
- Department of Experimental Medicine, University of Genoa, Genoa 16132, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Bertram L, Tanzi RE. The genetics of Alzheimer's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 107:79-100. [PMID: 22482448 DOI: 10.1016/b978-0-12-385883-2.00008-4] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Genetic factors play a major role in determining a person's risk to develop Alzheimer's disease (AD). Rare mutations transmitted in a Mendelian fashion within affected families, for example, APP, PSEN1, and PSEN2, cause AD. In the absence of mutations in these genes, disease risk is largely determined by common polymorphisms that, in concert with each other and nongenetic risk factors, modestly impact risk for AD (e.g., the ε4-allele in APOE). Recent genome-wide screening approaches have revealed several additional AD susceptibility loci and more are likely to be discovered over the coming years. In this chapter, we review the current state of AD genetics research with a particular focus on loci that now can be considered established disease genes. In addition to reviewing the potential pathogenic relevance of these genes, we provide an outlook into the future of AD genetics research based on recent advances in high-throughput sequencing technologies.
Collapse
Affiliation(s)
- Lars Bertram
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | |
Collapse
|