1
|
Xie J, Ye F, Deng X, Tang Y, Liang JY, Huang X, Sun Y, Tang H, Lei J, Zheng S, Zou Y. Circular RNA: A promising new star of vaccine. J Transl Int Med 2023; 11:372-381. [PMID: 38130633 PMCID: PMC10732498 DOI: 10.2478/jtim-2023-0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of single-stranded RNAs with covalently closed structures. Owing to their not having 3' or 5' ends, circRNAs are highly durable and insusceptible to exonuclease-mediated degradation. Moreover, some circRNAs with certain structures are translatable, making them novel vaccines. Vaccines are efficient tools for immunotherapy, such as for the prevention of infectious diseases and cancer treatment. The immune system is activated during immunotherapy to fight against abnormal allies or invaders. CircRNA vaccines represent a potential new avenue in the vaccine era. Recently, several circRNA vaccines have been synthesized and tested in vitro and in vivo. Our review briefly introduces the current understanding of the biology and function of translatable circRNAs, molecular biology, synthetic methods, delivery of circRNA, and current circRNA vaccines. We also discussed the challenges and future directions in the field by summarizing the developments in circRNA vaccines in the past few years.
Collapse
Affiliation(s)
- Jindong Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510060, Guangdong Province, China
| | - Fengxi Ye
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou510060, Guangdong Province, China
| | - Xinpei Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510060, Guangdong Province, China
| | - Yuhui Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510060, Guangdong Province, China
| | - Jie-Ying Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou510000, Guangdong Province, China
| | - Xufeng Huang
- Department of Data Science and Visualization, Faculty of Informatics, University of Debrecen, Debrecen, Hungary
| | - Yuying Sun
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510060, Guangdong Province, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510060, Guangdong Province, China
| | - Jinsong Lei
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510060, Guangdong Province, China
| | - Shaoquan Zheng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510060, Guangdong Province, China
- Breast Disease Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou510000, Guangdong Province, China
| | - Yutian Zou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510060, Guangdong Province, China
| |
Collapse
|
2
|
Kameda S, Ohno H, Saito H. Synthetic circular RNA switches and circuits that control protein expression in mammalian cells. Nucleic Acids Res 2023; 51:e24. [PMID: 36642090 PMCID: PMC9976894 DOI: 10.1093/nar/gkac1252] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/10/2023] [Indexed: 01/17/2023] Open
Abstract
Synthetic messenger RNA (mRNA) has been focused on as an emerging application for mRNA-based therapies and vaccinations. Recently, synthetic circular RNAs (circRNAs) have shown promise as a new class of synthetic mRNA that enables superior stability and persistent gene expression in cells. However, translational control of circRNA remained challenging. Here, we develop 'circRNA switches' capable of controlling protein expression from circRNA by sensing intracellular RNA or proteins. We designed microRNA (miRNA) and protein-responsive circRNA switches by inserting miRNA-binding or protein-binding sequences into untranslated regions (UTRs), or Coxsackievirus B3 Internal Ribosome Entry Site (CVB3 IRES), respectively. Engineered circRNAs efficiently expressed reporter proteins without inducing severe cell cytotoxicity and immunogenicity, and responded to target miRNAs or proteins, controlling translation levels from circRNA in a cell type-specific manner. Moreover, we constructed circRNA-based gene circuits that selectively activated translation by detecting endogenous miRNA, by connecting miRNA and protein-responsive circRNAs. The designed circRNA circuits performed better than the linear mRNA-based circuits in terms of persistent expression levels. Synthetic circRNA devices provide new insights into RNA engineering and have a potential for RNA synthetic biology and therapies.
Collapse
Affiliation(s)
- Shigetoshi Kameda
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyoku, Kyoto, 606-8507, Japan.,Graduate School of Medicine, Kyoto University,Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hirohisa Ohno
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyoku, Kyoto, 606-8507, Japan
| | - Hirohide Saito
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyoku, Kyoto, 606-8507, Japan
| |
Collapse
|
3
|
Liu L, Li W, Li J, Zhao D, Li S, Jiang G, Wang J, Chen X, Bi C, Zhang X. Circular Guide RNA for Improved Stability and CRISPR-Cas9 Editing Efficiency in Vitro and in Bacteria. ACS Synth Biol 2023; 12:350-359. [PMID: 36538017 DOI: 10.1021/acssynbio.2c00381] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Due to its intrinsic RNA properties, guide RNA (gRNA) is the least stable component of the CRISPR-Cas9 complex and is a major target for modification and engineering to increase the stability of the system. While most strategies involve chemical modification and special processes, we created a more stable gRNA with an easy-to-use biological technique. Since circular RNAs are theoretically immune to all RNA exonucleases, we attempted to construct a circular gRNA (cgRNA) employing the autocatalytic splicing mechanism of the RNA cyclase ribozyme. First, the formation of the cgRNA, which has a length requirement, was optimized in vivo in E. coli cells. It was found that a cgRNA with an insert length of 251 bp, designated 251cgRNA, was functional. More importantly, cgRNA increased the editing efficiency of the tested base editors relative to normal linear gRNA. The cgRNAs were more stable in vitro under all tested temperature conditions and maintained their function for 24 h at 37 °C, while linear gRNAs completely lost their activity within 8 h. Enzymatically purified 251cgRNA demonstrated even higher stability, which was obviously presented on gels after 48 h at 37 °C, and maintained partial function. By inserting a homologous arm into the 251cgRNA to 251HAcgRNA cassette, the circularization efficiency reached 88.2%, and the half-life of 251HAcgRNA was 30 h, very similar to that of purified 251cgRNA. This work provides a simple innovative strategy to greatly increase the stability of gRNA both in vivo in E. coli and in vitro, with no additional cost or labor. We think this work is very interesting and might revolutionize the form of gRNAs people are using in research and therapeutic applications.
Collapse
Affiliation(s)
- Li Liu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300453, China.,China Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,Department of Biomedical Sciences, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Wenbo Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300453, China.,China Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ju Li
- College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Dongdong Zhao
- China Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,China Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Siwei Li
- China Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,China Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Guo Jiang
- China Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,China Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jie Wang
- China Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,China Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xuxu Chen
- Guangxi Normal University, Guilin 541001, China
| | - Changhao Bi
- China Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,China Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xueli Zhang
- China Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,China Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
4
|
Gnanamony M, Demirkhanyan L, Ge L, Sojitra P, Bapana S, Norton JA, Gondi CS. Circular dumbbell miR-34a-3p and -5p suppresses pancreatic tumor cell-induced angiogenesis and activates macrophages. Oncol Lett 2021; 21:75. [PMID: 33365086 PMCID: PMC7716711 DOI: 10.3892/ol.2020.12336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 10/02/2020] [Indexed: 12/18/2022] Open
Abstract
Angiogenesis is a tightly regulated biological process by which new blood vessels are formed from pre-existing blood vessels. This process is also critical in diseases such as cancer. Therefore, angiogenesis has been explored as a drug target for cancer therapy. The future of effective anti-angiogenic therapy lies in the intelligent combination of multiple targeting agents with novel modes of delivery to maximize therapeutic effects. Therefore, a novel approach is proposed that utilizes dumbbell RNA (dbRNA) to target pathological angiogenesis by simultaneously targeting multiple molecules and processes that contribute to angiogenesis. In the present study, a plasmid expressing miR-34a-3p and -5p dbRNA (db34a) was constructed using the permuted intron-exon method. A simple protocol to purify dbRNA from bacterial culture with high purity was also developed by modification of the RNASwift method. To test the efficacy of db34a, pancreatic cancer cell lines PANC-1 and MIA PaCa-2 were used. Functional validation of the effect of db34a on angiogenesis was performed on human umbilical vein endothelial cells using a tube formation assay, in which cells transfected with db34a exhibited a significant reduction in tube formation compared with cells transfected with scrambled dbRNA. These results were further validated in vivo using a zebrafish angiogenesis model. In conclusion, the present study demonstrates an approach for blocking angiogenesis using db34a. The data also show that this approach may be used to targeting multiple molecules and pathways.
Collapse
Affiliation(s)
- Manu Gnanamony
- Department of Pediatrics, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
| | - Lusine Demirkhanyan
- Department of Internal Medicine, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
| | - Liang Ge
- University of Pittsburgh Medical Center, Presbyterian University Hospital, Pittsburgh, PA 15213, USA
| | - Paresh Sojitra
- Sanford Center for Digestive Health, Sioux Falls, SD 57105, USA
| | - Sneha Bapana
- Department of Internal Medicine, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
| | - Joseph A. Norton
- Department of Internal Medicine, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
| | - Christopher S. Gondi
- Department of Internal Medicine, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
- Department of Surgery, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
- Department of Pathology, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
- Correspondence to: Dr Christopher S. Gondi, Department of Internal Medicine, University of Illinois College of Medicine Peoria, 1 Illini Drive, Peoria, IL 61605, USA, E-mail:
| |
Collapse
|
5
|
Kikuchi Y, Umekage S. Extracellular nucleic acids of the marine bacterium Rhodovulum sulfidophilum and recombinant RNA production technology using bacteria. FEMS Microbiol Lett 2019; 365:4705897. [PMID: 29228187 DOI: 10.1093/femsle/fnx268] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 12/05/2017] [Indexed: 12/21/2022] Open
Abstract
Extracellular nucleic acids of high molecular weight are detected ubiquitously in seawater. Recent studies have indicated that these nucleic acids are, at least in part, derived from active production by some bacteria. The marine bacterium Rhodovulum sulfidophilum is one of those bacteria. Rhodovulumsulfidophilum is a non-sulfur phototrophic marine bacterium that is known to form structured communities of cells called flocs, and to produce extracellular nucleic acids in culture media. Recently, it has been revealed that this bacterium produces gene transfer agent-like particles and that this particle production may be related to the extracellular nucleic acid production mechanism. This review provides a summary of recent physiological and genetic studies of these phenomena and also introduces a new method for extracellular production of artificial and biologically functional RNAs using this bacterium. In addition, artificial RNA production using Escherichia coli, which is related to this topic, will also be described.
Collapse
Affiliation(s)
- Yo Kikuchi
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - So Umekage
- Department of Environmental and Life Sciences, Toyohashi University of Technology, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
| |
Collapse
|
6
|
Abstract
Over the past 2 decades, different types of circular RNAs have been discovered in all kingdoms of life, and apparently, those circular species are more abundant than previously thought. Apart from circRNAs in viroids and viruses, circular transcripts have been discovered in rodents more than 20 y ago and recently have been reported to be abundant in many organisms including humans. Their exact function remains still unknown, although one may expect extensive functional studies to follow the currently dominant research into identification and discovery of circRNA by sophisticated sequencing techniques and bioinformatics. Functional studies require models and as such methods for preparation of circRNA in vitro. Here, we will review current protocols for RNA circularization and discuss future prospects in the field.
Collapse
Affiliation(s)
- Sabine Müller
- a Universität Greifswald, Institut für Biochemie , Greifswald , Germany
| | - Bettina Appel
- a Universität Greifswald, Institut für Biochemie , Greifswald , Germany
| |
Collapse
|
7
|
Abstract
In this commentary we briefly summarize early work on circular RNAs derived from spliceosome mediated circularization. We highlight how this early work inspired work on the basic mechanisms of nuclear RNA splicing, the possible function of circular RNAs and the potential uses of circular RNAs as tools in biomedicine. Recent developments in the study of circular RNAs, summarized in this volume, have brought these questions back to the foreground.
Collapse
Affiliation(s)
- Zvi Pasman
- a Department of Chemistry , Illinois College , Jacksonville , Illinois , USA
| | - Mariano A Garcia-Blanco
- b Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , Texas , USA.,c Programme of Emerging Infectious Diseases, Duke-NUS Medical School , Singapore
| |
Collapse
|
8
|
Petkovic S, Müller S. RNA circularization strategies in vivo and in vitro. Nucleic Acids Res 2015; 43:2454-65. [PMID: 25662225 PMCID: PMC4344496 DOI: 10.1093/nar/gkv045] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 01/07/2015] [Accepted: 01/12/2015] [Indexed: 12/30/2022] Open
Abstract
In the plenitude of naturally occurring RNAs, circular RNAs (circRNAs) and their biological role were underestimated for years. However, circRNAs are ubiquitous in all domains of life, including eukaryotes, archaea, bacteria and viruses, where they can fulfill diverse biological functions. Some of those functions, as for example playing a role in the life cycle of viral and viroid genomes or in the maturation of tRNA genes, have been elucidated; other putative functions still remain elusive. Due to the resistance to exonucleases, circRNAs are promising tools for in vivo application as aptamers, trans-cleaving ribozymes or siRNAs. How are circRNAs generated in vivo and what approaches do exist to produce ring-shaped RNAs in vitro? In this review we illustrate the occurrence and mechanisms of RNA circularization in vivo, survey methods for the generation of circRNA in vitro and provide appropriate protocols.
Collapse
Affiliation(s)
- Sonja Petkovic
- Institut für Biochemie, Ernst Moritz Arndt Universität Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Sabine Müller
- Institut für Biochemie, Ernst Moritz Arndt Universität Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| |
Collapse
|
9
|
Umekage S, Kikuchi Y. In vivo circular RNA production using a constitutive promoter for high-level expression. J Biosci Bioeng 2010; 108:354-6. [PMID: 19716528 DOI: 10.1016/j.jbiosc.2009.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 04/09/2009] [Accepted: 04/13/2009] [Indexed: 11/16/2022]
Abstract
The permuted intron-exon (PIE) method based on group I intron self-splicing is the only methodology currently available for production of circular RNA in vivo. Here, we report improvement of the circular RNA expression method based on an induction-free vector system utilizing the highly efficient constitutive lpp promoter.
Collapse
Affiliation(s)
- So Umekage
- Department of Ecological Engineering, Toyohashi University of Technology, Tempaku-cho, Aichi, Japan.
| | | |
Collapse
|
10
|
Umekage S, Kikuchi Y. In vitro and in vivo production and purification of circular RNA aptamer. J Biotechnol 2008; 139:265-72. [PMID: 19138712 DOI: 10.1016/j.jbiotec.2008.12.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 12/09/2008] [Accepted: 12/15/2008] [Indexed: 10/21/2022]
Abstract
RNA aptamers are potential candidates for RNA therapeutics. They must be clinically modified for medical applications because they are vulnerable to indigenous ribonucleases. Since circular RNA molecules without any chemical modification are much more stable than linear ones in a cell extract, we report the production of a circular form of streptavidin RNA aptamer both in vitro and in vivo. Circularization was accomplished by self-splicing permuted intron-exon sequences derived from T4 bacteriophage gene td. This sequence was producible in both Escherichia coli cells and in vitro. The circularized streptavidin RNA aptamer retained its binding of streptavidin and was stabile in HeLa cell extracts compared to the linear form of the streptavidin aptamer. The self-spliced circular RNA from the transcribed permuted intron-exon transcripts in E. coli cells was purified from a total RNA fraction using the solid-phase DNA probe method following anion exchange chromatography that excluded gel electrophoresis. This study provides an alternative method for designing and purifying useful RNA aptamers.
Collapse
Affiliation(s)
- So Umekage
- Department of Ecological Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi 441-8580, Japan.
| | | |
Collapse
|
11
|
Dallas A, Balatskaya SV, Kuo TC, Ilves H, Vlassov AV, Kaspar RL, Kisich KO, Kazakov SA, Johnston BH. Hairpin ribozyme-antisense RNA constructs can act as molecular Lassos. Nucleic Acids Res 2008; 36:6752-66. [PMID: 18953032 PMCID: PMC2588507 DOI: 10.1093/nar/gkn637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We have developed a novel class of antisense agents, RNA Lassos, which are capable of binding to and circularizing around complementary target RNAs. The RNA Lasso consists of a fixed sequence derived from the hairpin ribozyme and an antisense segment whose size and sequence can be varied to base pair with accessible sites in the target RNA. The ribozyme catalyzes self-processing of the 5′- and 3′-ends of a transcribed Lasso precursor and ligates the processed ends to produce a circular RNA. The circular and linear forms of the self-processed Lasso coexist in an equilibrium that is dependent on both the Lasso sequence and the solution conditions. Lassos form strong, noncovalent complexes with linear target RNAs and form true topological linkages with circular targets. Lasso complexes with linear RNA targets were detected by denaturing gel electrophoresis and were found to be more stable than ordinary RNA duplexes. We show that expression of a fusion mRNA consisting of a sequence from the murine tumor necrosis factor-α (TNF-α) gene linked to luciferase reporter can be specifically and efficiently blocked by an anti-TNF Lasso. We also show in cell culture experiments that Lassos directed against Fas pre-mRNA were able to induce a change in alternative splicing patterns.
Collapse
|
12
|
Affiliation(s)
- T Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Illinois 60637, USA
| |
Collapse
|
13
|
Abstract
Ribozymes, or catalytic RNAs, were discovered a little more than 15 years ago. They are found in the organelles of plants and lower eukaryotes, in amphibians, in prokaryotes, in bacteriophages, and in viroids and satellite viruses that infect plants. An example is also known of a ribozyme in hepatitis delta virus, a serious human pathogen. Additional ribozymes are bound to be found in the future, and it is tempting to regard the RNA component(s) of various ribonucleoprotein complexes as the catalytic engine, while the proteins serve as mere scaffolding--an unheard-of notion 15 years ago! In nature, ribozymes are involved in the processing of RNA precursors. However, all the characterized ribozymes have been converted, with some clever engineering, into RNA enzymes that can cleave or modify targeted RNAs (or even DNAs) without becoming altered themselves. While their success in vitro is unquestioned, ribozymes are increasingly used in vivo as valuable tools for studying and regulating gene expression. This review is intended as a brief introduction to the characteristics of the different identified ribozymes and their properties.
Collapse
Affiliation(s)
- N K Tanner
- Département de Biochimie Médicale, Centre Médical Universitaire, Geneva, Switzerland.
| |
Collapse
|
14
|
Diegelman AM, Kool ET. Generation of circular RNAs and trans-cleaving catalytic RNAs by rolling transcription of circular DNA oligonucleotides encoding hairpin ribozymes. Nucleic Acids Res 1998; 26:3235-41. [PMID: 9628924 PMCID: PMC147673 DOI: 10.1093/nar/26.13.3235] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A simple new strategy for the in vitro synthesis of circular RNAs and hairpin ribozymes is described. Circular single-strand DNA oligonucleotides 67-79 nt in length are constructed to encode both hairpin ribozyme sequences and ribozyme-cleavable sequences. In vitro transcription of these small circles by Escherichia coli RNA polymerase produces long repeating RNAs by a rolling circle mechanism. These repetitive RNAsundergo self-processing, eventually yielding unit length circular and linear RNAs as the chief products. The transcription is efficient despite the absence of promoter sequences, with RNA being produced in up to 400 times the amount of DNA circle used. It is shown that the linear monomeric hairpin ribozymes are active in cleaving RNA targets in trans , including one from HIV-1. Several new findings are established: (i) that rolling circle transcription can be extended to the synthesis of catalytic RNAs outside the hammerhead ribozyme motif; (ii) that rolling circle transcription is potentially a very simple and useful strategy for the generation of circular RNAs in preparative amounts; and (iii) that self-processed hairpin ribozymes can be catalytically active in trans despite the presence of self-binding domains.
Collapse
Affiliation(s)
- A M Diegelman
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA
| | | |
Collapse
|
15
|
Feldstein PA, Levy L, Randles JW, Owens RA. Synthesis and two-dimensional electrophoretic analysis of mixed populations of circular and linear RNAs. Nucleic Acids Res 1997; 25:4850-4. [PMID: 9365267 PMCID: PMC147115 DOI: 10.1093/nar/25.23.4850] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Spontaneous cleavage of the less abundant form of tobacco ringspot virus satellite RNA is readily reversible. Capitalizing on earlier observations by Feldstein and Bruening that small 'mini-monomer' RNAs derived from this molecule and containing little more than covalently attached ribozyme and substrate cleavage products are able to efficiently circularize, we have constructed a series of self-circularizing RNAs of precisely known size. Mixtures of linear and circular RNAs synthesized in vitro and containing 225-1132 nt could be completely resolved using a novel two-dimensional denaturing polyacrylamide gel electrophoresis system. Similar analyses of a complex mixture of coconut cadang-cadang viroid RNAs revealed the presence of relatively large amounts of a previously undescribed 'fast-slow' heterodimeric RNA species in infected palms. Only a single DNA template is required to prepare each pair of circular and linear RNA markers.
Collapse
Affiliation(s)
- P A Feldstein
- Plant Biology Department, University of Maryland, College Park, MD 20742, USA
| | | | | | | |
Collapse
|