1
|
Sindhu R, Bhat SS, Sangta J, Dharmashekar C, Shreevatsa B, Shivamallu C, Devegowda D, Kollur SP, Ahmad SF, Attia SM, Sommano SR, Prasad SK. Gaining molecular insights towards inhibition of foodborne fungi Aspergillus fumigatus by a food colourant violacein via computational approach. Sci Rep 2024; 14:29905. [PMID: 39622982 PMCID: PMC11612196 DOI: 10.1038/s41598-024-81471-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
Filamentous Fungal Human Pathogens (FFHPs) such as Aspergillus fumigatus, are growing resistant to currently available antifungal drugs. One possible target, the Nucleoside diphosphate kinase (Ndk) is significant for nucleotide biosynthesis and crucial for fungal metabolism. Violacein, a natural food colorant, was examined for its antifungal effects against Aspergillus fumigatus via computational approach against the Ndk protein. Known and predicted interactions of Ndk with proteins was performed using the STRING application. Molecular docking was performed using Schrodinger Maestro software (V.14.1) under enhanced precision docking, with OPLS4 forcefield. MDS was performed for 500ns under OPLS4 forcefield and the TIP3P solvent system. The geometry optimization for DFT was performed using the Becke 3-parameter exchange functional (B3LYP) method. The Molecular Docking Studies revealed significant interactions with good binding energy between Violacein and Ndk. Subsequent MD Simulations confirmed the stability of Violacein-Ndk complex, compared to the reference ligand-complex, indicating a stable interaction between the protein and violacein. The energy band gap of violacein was found to be 0.072567 eV suggesting its softness with lower kinetic stability and higher chemical reactivity. The results suggest Violacein could potentially disrupt nucleotide metabolism by targeting Ndk, thus demonstrating antifungal activity. However, further experimental validation is required to confirm these computational findings and explore the practical use of Violacein in antifungal treatments.
Collapse
Affiliation(s)
- R Sindhu
- Department of Microbiology, JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570 015, India
| | - Smitha S Bhat
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570 015, India
| | - Jiraporn Sangta
- Interdisciplinary Program in Biotechnology, Graduate School, Chiang Mai University, Chiang Mai, 50200, Thailand
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Chandan Dharmashekar
- Department of Microbiology, JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570 015, India
| | - Bhargav Shreevatsa
- Department of Microbiology, JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570 015, India
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570 015, India
| | - Devananda Devegowda
- Centre of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, India
| | - Shiva Prasad Kollur
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru, Karnataka, 570 026, India
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Sarana Rose Sommano
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50100, Thailand.
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Shashanka K Prasad
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570 015, India.
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50100, Thailand.
| |
Collapse
|
2
|
Kleczkowski LA, Igamberdiev AU. Adenylate-driven equilibration of both ribo- and deoxyribonucleotides is under magnesium control: Quantification of the Mg 2+-signal. JOURNAL OF PLANT PHYSIOLOGY 2024; 304:154380. [PMID: 39709740 DOI: 10.1016/j.jplph.2024.154380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/28/2024] [Accepted: 11/12/2024] [Indexed: 12/24/2024]
Abstract
Nucleoside mono-, di- and triphosphates (NMP, NDP, and NTP) and their deoxy-counterparts (dNMP, dNDP, dNTP) are involved in energy metabolism and are the building blocks of RNA and DNA, respectively. The production of NTP and dNTP is carried out by several NMP kinases (NMPK) and NDP kinases (NDPK). All NMPKs are fully reversible and use defined Mg-free and Mg-complexed nucleotides in both directions of their reactions, with Mg2+ controlling the ratios of Mg-free and Mg-complexed reactants. Their activities are driven by adenylates produced by adenylate kinase which controls the direction of NMPK and NDPK reactions, depending on the energy status of a cell. This enzymatic machinery is localized in the cytosol, mitochondria, and plastids, i.e. compartments with high energy budgets and where (except for cytosol) RNA and DNA synthesis occur. Apparent equilibrium constants of NMPKs, based on total nucleotide contents, are [Mg2+]-dependent. This allows for an indirect estimation of internal [Mg2+], which constitutes a signal of the energetic status of a given tissue/cell/compartment. Adenylates contribute the most to this Mg2+-signal, followed by uridylates, guanylates, and cytidylates, with deoxynucleotides' contribution deemed negligible. A method to quantify the Mg2+-signal, using nucleotide datasets, is discussed.
Collapse
Affiliation(s)
- Leszek A Kleczkowski
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 901 87, Umeå, Sweden.
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1C5S7, Canada.
| |
Collapse
|
3
|
Huber N, Alcalá-Orozco EA, Rexer T, Reichl U, Klamt S. Model-based optimization of cell-free enzyme cascades exemplified for the production of GDP-fucose. Metab Eng 2023; 81:S1096-7176(23)00147-7. [PMID: 39492471 DOI: 10.1016/j.ymben.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 11/05/2024]
Abstract
Cell-free production systems are increasingly used for the synthesis of industrially relevant chemicals and biopharmaceuticals. Cell-free systems often utilize cell lysates, but biocatalytic cascades based on recombinant enzymes have emerged as a promising alternative strategy. However, implementing efficient enzyme cascades is a non-trivial task and mathematical modeling and optimization has become a key tool to improve their performance. In this work, we introduce a generic framework for the model-based optimization of cell-free enzyme cascades based on a given kinetic model of the system. We first formulate and systematize seven optimization problems relevant in the context of cell-free production processes including, for example, the maximization of productivity or product yield and the minimization of overall costs. We then present an approach that accounts for parameter uncertainties, not only during model calibration and model analysis but also when performing the actual optimization. After constructing a kinetic model of the enzyme cascade, experimental data are used to generate an ensemble of kinetic parameter sets reflecting their variabilities. For every parameter set, systems optimization is then performed and the resulting solution subsequently cross-validated for all other parameterizations to identify the solution with the highest overall performance under parameter uncertainty. We exemplify our approach for the cell-free synthesis of GDP-fucose, an important sugar nucleotide with various applications. We selected and solved three optimization problems based on a constructed dynamic model and validated two of them experimentally leading to significant improvements of the process (e.g., 50% increase of titer under identical total enzyme load). Overall, our results demonstrate the potential of model-driven optimization for the rational design and improvement of cell-free production systems. The developed approach for systems optimization under parameter uncertainty could also be relevant for the metabolic design of cell factories.
Collapse
Affiliation(s)
- Nicolas Huber
- Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
| | | | - Thomas Rexer
- Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany; eversyn, 39106, Magdeburg, Germany
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
| | - Steffen Klamt
- Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany.
| |
Collapse
|
4
|
Zhang J, Wang N, Chen W, Zhang W, Zhang H, Yu H, Yi Y. Integrated metabolomics and transcriptomics reveal metabolites difference between wild and cultivated Ophiocordyceps sinensis. Food Res Int 2023; 163:112275. [PMID: 36596185 DOI: 10.1016/j.foodres.2022.112275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
Ophiocordyceps sinensis is a traditional medicinal fungus endemic to the alpine and high-altitude areas of the Qinghai-Tibet plateau. The scarcity of the wild resource has led to increased attention to artificially cultivated O. sinensis. However, little is known about the metabolic differences and the regulatory mechanisms between cultivated and wild O. sinensis. This study exploited untargeted metabolomics and transcriptomics to uncover the differences in accumulated metabolites and expressed genes between wild and cultivated O. sinensis. Metabolomics results revealed that 368 differentially accumulated metabolites were mainly enriched in biosynthesis of amino acids, biosynthesis of plant secondary metabolites and purine nucleotide metabolism. Cultivated O. sinensis contained more amino acids and derivatives, carbohydrates and derivatives, and phenolic acids than wild O. sinensis, whereas the contents of most nucleosides and nucleotides in wild O. sinensis were significantly higher than in cultivated O. sinensis. Transcriptome analysis indicated that 4430 annotated differentially expressed genes were identified between two types. Integrated metabolomics and transcriptomics analyses suggested that IMPDH, AK, ADSS, guaA and GUK genes might be related to the synthesis of purine nucleotides and nucleosides. Our findings will provide a new insight into the molecular basis of metabolic variations of this medicinal fungus.
Collapse
Affiliation(s)
- Jianshuang Zhang
- The State Key Laboratory of Southwest Karst Mountain Biodiversity Conservation of Forestry Administration, School of life sciences, Guizhou Normal University, Guiyang 550025, China; The Key Laboratory of Plant Physiology and Development in Guizhou Province, School of life sciences, Guizhou Normal University, Guiyang 550025, China
| | - Na Wang
- The State Key Laboratory of Southwest Karst Mountain Biodiversity Conservation of Forestry Administration, School of life sciences, Guizhou Normal University, Guiyang 550025, China
| | - Wanxuan Chen
- The Key Laboratory of Plant Physiology and Development in Guizhou Province, School of life sciences, Guizhou Normal University, Guiyang 550025, China
| | - Weiping Zhang
- The State Key Laboratory of Southwest Karst Mountain Biodiversity Conservation of Forestry Administration, School of life sciences, Guizhou Normal University, Guiyang 550025, China
| | - Haoshen Zhang
- The Key Laboratory of Plant Physiology and Development in Guizhou Province, School of life sciences, Guizhou Normal University, Guiyang 550025, China
| | - Hao Yu
- The State Key Laboratory of Southwest Karst Mountain Biodiversity Conservation of Forestry Administration, School of life sciences, Guizhou Normal University, Guiyang 550025, China; The Key Laboratory of Plant Physiology and Development in Guizhou Province, School of life sciences, Guizhou Normal University, Guiyang 550025, China.
| | - Yin Yi
- The State Key Laboratory of Southwest Karst Mountain Biodiversity Conservation of Forestry Administration, School of life sciences, Guizhou Normal University, Guiyang 550025, China; The Key Laboratory of Plant Physiology and Development in Guizhou Province, School of life sciences, Guizhou Normal University, Guiyang 550025, China.
| |
Collapse
|
5
|
Kleczkowski LA, Igamberdiev AU. Magnesium and cell energetics: At the junction of metabolism of adenylate and non-adenylate nucleotides. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153901. [PMID: 36549033 DOI: 10.1016/j.jplph.2022.153901] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Free magnesium (Mg2+) represents a powerful signal arising from interconversions of adenylates (ATP, ADP and AMP). This is a consequence of the involvement of adenylate kinase (AK) which equilibrates adenylates and uses defined species of Mg-complexed and Mg-free adenylates in both directions of its reaction. However, cells contain also other reversible Mg2+-dependent enzymes that equilibrate non-adenylate nucleotides (uridylates, cytidylates and guanylates), i.e. nucleoside monophosphate kinases (NMPKs) and nucleoside diphosphate kinase (NDPK). Here, we propose that AK activity is tightly coupled to activities of NMPK and NDPK, linking adenylate equilibrium to equilibria of other nucleotides, and with [Mg2+] controlling the ratios of Mg-chelated and Mg-free nucleotides. This coupling establishes main hubs for adenylate-driven equilibration of non-adenylate nucleotides, with [Mg2+] acting as signal arising from all nucleotides rather than adenylates only. Further consequences involve an overall adenylate control of UTP-, GTP- and CTP-dependent pathways and the availability of substrates for RNA and DNA synthesis.
Collapse
Affiliation(s)
- Leszek A Kleczkowski
- Department of Plant Physiology, Umeå Plant Science Centre, University of Umeå, 901 87, Umeå, Sweden.
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B3X9, Canada.
| |
Collapse
|
6
|
Pedro L, Cross M, Hofmann A, Mak T, Quinn RJ. Development of an HPLC-based guanosine monophosphate kinase assay and application to Plasmodium vivax guanylate kinase. Anal Biochem 2019; 575:63-69. [PMID: 30943378 PMCID: PMC6494078 DOI: 10.1016/j.ab.2019.03.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/18/2019] [Accepted: 03/29/2019] [Indexed: 11/12/2022]
Abstract
The development of a high-performance liquid chromatography (HPLC)-based method, for guanosine monophosphate kinase activity assays, is presented. The method uses the intrinsic UV absorption (at 260 nm) of substrates and products of the enzymatic reaction (GMP, ATP, ADP and GDP) to unambiguously determine percent conversion of substrate into product. It uses a commercially available C18 column which can separate reaction samples by elution under isocratic conditions in 12 min per run. The kinetics of the forward reaction catalyzed by Plasmodium vivax guanylate kinase (PvGK), a potential drug target against malaria, was determined. The relative concentrations of the two substrates (GMP and ATP) have a distinct effect on reaction velocity. Kinetic analyses showed the PvGK-catalyzed reaction to be associated with atypical kinetics, where substrate inhibition kinetics and non-Michaelis-Menten (sigmoidal) kinetics were found with respect to GMP and ATP, respectively. Additionally, the method was used in inhibition assays to screen twenty fragment-like compounds. The assays were robust and reproducible, with a signal window of 3.8 and a Z’ factor of 0.6. For the best inhibitor, an IC50 curve was generated. Simple HPLC separation of nucleotides involved in the guanylate kinase reaction. Direct and unambiguous determination of percent conversion of substrate into product. Successful application to Plasmodium vivax guanylate kinase (PvGK) activity studies. Reaction catalyzed by PvGK found to be associated with atypical kinetics. Robust and reproducible inhibition assay for compound screening.
Collapse
Affiliation(s)
- Liliana Pedro
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Megan Cross
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Andreas Hofmann
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Tin Mak
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Ronald J Quinn
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia.
| |
Collapse
|
7
|
Khan N, Shah PP, Ban D, Trigo-Mouriño P, Carneiro MG, DeLeeuw L, Dean WL, Trent JO, Beverly LJ, Konrad M, Lee D, Sabo TM. Solution structure and functional investigation of human guanylate kinase reveals allosteric networking and a crucial role for the enzyme in cancer. J Biol Chem 2019; 294:11920-11933. [PMID: 31201273 DOI: 10.1074/jbc.ra119.009251] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/12/2019] [Indexed: 01/13/2023] Open
Abstract
Human guanylate kinase (hGMPK) is the only known enzyme responsible for cellular GDP production, making it essential for cellular viability and proliferation. Moreover, hGMPK has been assigned a critical role in metabolic activation of antiviral and antineoplastic nucleoside-analog prodrugs. Given that hGMPK is indispensable for producing the nucleotide building blocks of DNA, RNA, and cGMP and that cancer cells possess elevated GTP levels, it is surprising that a detailed structural and functional characterization of hGMPK is lacking. Here, we present the first high-resolution structure of hGMPK in the apo form, determined with NMR spectroscopy. The structure revealed that hGMPK consists of three distinct regions designated as the LID, GMP-binding (GMP-BD), and CORE domains and is in an open configuration that is nucleotide binding-competent. We also demonstrate that nonsynonymous single-nucleotide variants (nsSNVs) of the hGMPK CORE domain distant from the nucleotide-binding site of this domain modulate enzymatic activity without significantly affecting hGMPK's structure. Finally, we show that knocking down the hGMPK gene in lung adenocarcinoma cell lines decreases cellular viability, proliferation, and clonogenic potential while not altering the proliferation of immortalized, noncancerous human peripheral airway cells. Taken together, our results provide an important step toward establishing hGMPK as a potential biomolecular target, from both an orthosteric (ligand-binding sites) and allosteric (location of CORE domain-located nsSNVs) standpoint.
Collapse
Affiliation(s)
- Nazimuddin Khan
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202
| | - Parag P Shah
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202
| | - David Ban
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202
| | - Pablo Trigo-Mouriño
- Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Marta G Carneiro
- Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Lynn DeLeeuw
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202
| | - William L Dean
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202
| | - John O Trent
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202
| | - Levi J Beverly
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202
| | - Manfred Konrad
- Enzyme Biochemistry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Donghan Lee
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202
| | - T Michael Sabo
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202
| |
Collapse
|
8
|
Structural studies of the binding of an antagonistic cyclic peptide to the VEGFR1 domain 2. Eur J Med Chem 2019; 169:65-75. [DOI: 10.1016/j.ejmech.2019.02.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/19/2019] [Accepted: 02/25/2019] [Indexed: 12/17/2022]
|
9
|
Silva JK, Marques LM, Timenetsky J, de Farias ST. Ureaplasma diversum protein interaction networks: evidence of horizontal gene transfer and evolution of reduced genomes among Mollicutes. Can J Microbiol 2019; 65:596-612. [PMID: 31018106 DOI: 10.1139/cjm-2018-0688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ureaplasma diversum is a member of the Mollicutes class responsible for urogenital tract infection in cattle and small ruminants. Studies indicate that the process of horizontal gene transfer, the exchange of genetic material among different species, has a crucial role in mollicute evolution, affecting the group's characteristic genomic reduction process and simplification of metabolic pathways. Using bioinformatics tools and the STRING database of known and predicted protein interactions, we constructed the protein-protein interaction network of U. diversum and compared it with the networks of other members of the Mollicutes class. We also investigated horizontal gene transfer events in subnetworks of interest involved in purine and pyrimidine metabolism and urease function, chosen because of their intrinsic importance for host colonization and virulence. We identified horizontal gene transfer events among Mollicutes and from Ureaplasma to Staphylococcus aureus and Corynebacterium, bacterial groups that colonize the urogenital niche. The overall tendency of genome reduction and simplification in the Mollicutes is echoed in their protein interaction networks, which tend to be more generalized and less selective. Our data suggest that the process was permitted (or enabled) by an increase in host dependence and the available gene repertoire in the urogenital tract shared via horizontal gene transfer.
Collapse
Affiliation(s)
- Joana Kästle Silva
- a Department of Molecular Biology, Federal University of Paraíba, João Pessoa, Brazil
| | - Lucas Miranda Marques
- b Multidisciplinary Institute of Health, Universidade Federal da Bahia, Vitória da Conquista, Brazil.,c Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Jorge Timenetsky
- c Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
10
|
Chaudhary SK, Jeyakanthan J, Sekar K. Structural and functional roles of dynamically correlated residues in thymidylate kinase. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2018; 74:341-354. [PMID: 29652261 DOI: 10.1107/s2059798318002267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/07/2018] [Indexed: 11/10/2022]
Abstract
Thymidylate kinase is an important enzyme in DNA synthesis. It catalyzes the conversion of thymidine monophosphate to thymidine diphosphate, with ATP as the preferred phosphoryl donor, in the presence of Mg2+. In this study, the dynamics of the active site and the communication paths between the substrates, ATP and TMP, are reported for thymidylate kinase from Thermus thermophilus. Conformational changes upon ligand binding and the path for communication between the substrates and the protein are important in understanding the catalytic mechanism of the enzyme. High-resolution X-ray crystal structures of thymidylate kinase in apo and ligand-bound states were solved. This is the first report of structures of binary and ternary complexes of thymidylate kinase with its natural substrates ATP and ATP-TMP, respectively. Distinct conformations of the active-site residues, the P-loop and the LID region observed in the apo and ligand-bound structures revealed that their concerted motion is required for the binding and proper positioning of the substrate TMP. Structural analyses provide an insight into the mode of substrate binding at the active site. The residues involved in communication between the substrates were identified through network analysis using molecular-dynamics simulations. The residues identified showed high sequence conservation across species. Biochemical analyses show that mutations of these residues either resulted in a loss of activity or affected the thermal stability of the protein. Further, molecular-dynamics analyses of mutants suggest that the proper positioning of TMP is important for catalysis. These data also provide an insight into the phosphoryl-transfer mechanism.
Collapse
Affiliation(s)
| | | | - Kanagaraj Sekar
- Computational and Data Sciences, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
11
|
Ali S, Hoven A, Dress RJ, Schaal H, Alferink J, Scheu S. Identification of a novel Dlg2 isoform differentially expressed in IFNβ-producing plasmacytoid dendritic cells. BMC Genomics 2018; 19:194. [PMID: 29703139 PMCID: PMC6389146 DOI: 10.1186/s12864-018-4573-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/01/2018] [Indexed: 12/13/2022] Open
Abstract
Background The murine discs large homolog 2 (DLG2; post synaptic density 93 (PSD-93); Chapsyn-110) is a member of the membrane-associated guanylate kinase (MAGUK) protein family involved in receptor assembly and associated with signaling enzymes on cell membranes. In neurons, DLG2 protein isoforms derived from alternatively spliced transcripts have been described to bind to NMDA (N-methyl-aspartate) receptors and K channels and to mediate clustering of these channels in the postsynaptic membrane. In myeloid cells of the immune system, such as dendritic cells (DCs), a lack of data exists on the expression or function of DLG2. In cDNA microarray transcriptome analyses, we found Dlg2 highly expressed in a subpopulation of plasmacytoid DCs (pDCs) stimulated to produce type I interferons (IFNs) such as IFNβ. Results Using RACE- and RT-PCR as well as immunoprecipitation followed by Western blotting we characterised the differential expression of the Dlg2 splice variants in IFNβ-producing pDCs. Besides Dlg2ɣ this cell population expressed a novel short Dlg2η transcript we termed Dlg2η3. Our expression data were integrated into information from genome databases to obtain a novel and comprehensive overview of the mouse Dlg2 gene architecture. To elucidate the intracellular localisation pattern of protein isoforms, ectopical expression analysis of fluorescently tagged DLG2 splice variants was performed. Here we found an enrichment of the larger isoform DLG2α1 at the plasma membrane while the newly identified shorter (DLG2η) isoform as well as DLG2ɣ were equally distributed throughout the cytoplasm. Additionally, DLG2η was also found in the nucleus. Analysis of Dlg2-knockout mice previously generated by deleting exon 9 surprisingly revealed that the protein for the novel DLG2η isoform was still expressed in the brain and in bone marrow-derived pDCs from mice carrying the homozygous deletion (Dlg2ΔE9/ΔE9). Conclusion We describe a novel splice variant of the mouse Dlg2 gene termed Dlg2η and define the differential expression pattern of DLG2 isoforms in IFNβ-producing pDCs. The presence of DLG2η protein in the CNS of Dlg2ΔE9/ΔE9 mice might influence the phenotype of these mice and has to be taken into account in the interpretation of results regarding the functional role of DLG2 in neuronal postsynaptic membranes. Electronic supplementary material The online version of this article (10.1186/s12864-018-4573-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shafaqat Ali
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich, Heine University of Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany.,Cluster of Excellence EXC 1003, Cells in Motion, Waldeyerstraße 15, D-48149, Münster, Germany
| | - Alexander Hoven
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich, Heine University of Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| | - Regine J Dress
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich, Heine University of Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany.,Singapore Immunology Network, Agency for Science, Technology, and Research (A*STAR), Singapore, 138648, Singapore
| | - Heiner Schaal
- Institute of Virology, Heinrich Heine University of Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany.,BMFZ (Biologisch-Medizinisches Forschungszentrum), Heinrich Heine University of Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| | - Judith Alferink
- Cluster of Excellence EXC 1003, Cells in Motion, Waldeyerstraße 15, D-48149, Münster, Germany.,Department of Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, D-48149, Münster, Germany
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich, Heine University of Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany.
| |
Collapse
|
12
|
Cai X, Zhang X, Li X, Liu M, Liu X, Wang X, Zhang H, Zheng X, Zhang Z. The Atypical Guanylate Kinase MoGuk2 Plays Important Roles in Asexual/Sexual Development, Conidial Septation, and Pathogenicity in the Rice Blast Fungus. Front Microbiol 2017; 8:2467. [PMID: 29321770 PMCID: PMC5732230 DOI: 10.3389/fmicb.2017.02467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 11/28/2017] [Indexed: 01/28/2023] Open
Abstract
Guanylate kinases (GKs), which convert guanosine monophosphate into guanosine diphosphate (GDP), are important for growth and mannose outer chain elongation of cell wall N-linked glycoproteins in yeast. Here, we identified the ortholog of Saccharomyces cerevisiae GK Guk1, named MoGuk1 and a novel family of fungal GKs MoGuk2 in the rice blast fungus Magnaporthe oryzae. MoGuk1 contains 242 aa with an C-terminal GuKc domain that very similar to yeast Guk1. MoGuk2 contains 810 amino acids with a C-terminal GuKc domain and an additional N-terminal efThoc1 domain. Expression of either MoGuk1 or MoGuk2 in heterozygote yeast guk1 mutant could increase its GDP level. To investigate the biological role of MoGuk1 and MoGuk2 in M. oryzae, the gene replacement vectors were constructed. We obtained the ΔMoguk2 but not ΔMoguk1 mutant by screening over 1,000 transformants, indicating MoGuk1 might be essential for M. oryzae. The ΔMoguk2 mutant showed weak reductions in vegetative growth, conidial germination, appressorial formation, and appressorial turgor, and showed significant reductions in sporulation and pathogenicity. Moreover, the ΔMoguk2 mutant failed to produce perithecia and was sensitive to neomycin and a mixture of neomycin-tunicamycin. Exogenous GDP and ATP partially rescued the defects in conidial germination, appressorial formation, and infectious growth of the mutant. Further analysis revealed that intracellular GDP and GTP level was decreased, and GMP level was increased in the mutant, suggesting that MoGuk2 exhibits enzymatic activity. Structural analysis proved that the efThoc1, GuKc, and P-loop domains are essential for the full function of MoGuk2. Taken together, our data suggest that the guanylate kinase MoGuk2 is involved in the de novo GTP biosynthesis pathway and is important for infection-related morphogenesis in the rice blast fungus.
Collapse
Affiliation(s)
- Xingjia Cai
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Xi Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Xinrui Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Muxing Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Xinyu Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Xiaoli Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| |
Collapse
|
13
|
Biswas A, Shukla A, Chaudhary SK, Santhosh R, Jeyakanthan J, Sekar K. Structural studies of a hyperthermophilic thymidylate kinase enzyme reveal conformational substates along the reaction coordinate. FEBS J 2017. [PMID: 28627020 DOI: 10.1111/febs.14140] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Thymidylate kinase (TMK) is a key enzyme which plays an important role in DNA synthesis. It belongs to the family of nucleoside monophosphate kinases, several of which undergo structure-encoded conformational changes to perform their function. However, the absence of three-dimensional structures for all the different reaction intermediates of a single TMK homolog hinders a clear understanding of its functional mechanism. We herein report the different conformational states along the reaction coordinate of a hyperthermophilic TMK from Aquifex aeolicus, determined via X-ray diffraction and further validated through normal-mode studies. The analyses implicate an arginine residue in the Lid region in catalysis, which was confirmed through site-directed mutagenesis and subsequent enzyme assays on the wild-type protein and mutants. Furthermore, the enzyme was found to exhibit broad specificity toward phosphate group acceptor nucleotides. Our comprehensive analyses of the conformational landscape of TMK, together with associated biochemical experiments, provide insights into the mechanistic details of TMK-driven catalysis, for example, the order of substrate binding and the reaction mechanism for phosphate transfer. Such a study has utility in the design of potent inhibitors for these enzymes. DATABASE Structural data are available in the PDB under the accession numbers 2PBR, 4S2E, 5H5B, 5XAI, 4S35, 5XB2, 5H56, 5XB3, 5H5K, 5XB5, and 5XBH.
Collapse
Affiliation(s)
- Ansuman Biswas
- Department of Physics, Indian Institute of Science, Bangalore, India
| | - Arpit Shukla
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | | | | | | | - Kanagaraj Sekar
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India
| |
Collapse
|
14
|
Hackett SR, Zanotelli VRT, Xu W, Goya J, Park JO, Perlman DH, Gibney PA, Botstein D, Storey JD, Rabinowitz JD. Systems-level analysis of mechanisms regulating yeast metabolic flux. Science 2016; 354:aaf2786. [PMID: 27789812 PMCID: PMC5414049 DOI: 10.1126/science.aaf2786] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 09/23/2016] [Indexed: 07/25/2023]
Abstract
Cellular metabolic fluxes are determined by enzyme activities and metabolite abundances. Biochemical approaches reveal the impact of specific substrates or regulators on enzyme kinetics but do not capture the extent to which metabolite and enzyme concentrations vary across physiological states and, therefore, how cellular reactions are regulated. We measured enzyme and metabolite concentrations and metabolic fluxes across 25 steady-state yeast cultures. We then assessed the extent to which flux can be explained by a Michaelis-Menten relationship between enzyme, substrate, product, and potential regulator concentrations. This revealed three previously unrecognized instances of cross-pathway regulation, which we biochemically verified. One of these involved inhibition of pyruvate kinase by citrate, which accumulated and thereby curtailed glycolytic outflow in nitrogen-limited yeast. Overall, substrate concentrations were the strongest driver of the net rates of cellular metabolic reactions, with metabolite concentrations collectively having more than double the physiological impact of enzymes.
Collapse
Affiliation(s)
- Sean R Hackett
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | | | - Wenxin Xu
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA. Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Jonathan Goya
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Junyoung O Park
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - David H Perlman
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Patrick A Gibney
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA. Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - David Botstein
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA. Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - John D Storey
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA. Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA. Center for Statistics and Machine Learning, Princeton University, Princeton, NJ 08544, USA
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA. Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
15
|
Whitney DS, Volkman BF, Prehoda KE. Evolution of a Protein Interaction Domain Family by Tuning Conformational Flexibility. J Am Chem Soc 2016; 138:15150-15156. [PMID: 27502157 DOI: 10.1021/jacs.6b05954] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Conformational flexibility allows proteins to adopt multiple functionally important conformations but can also lead to nonfunctional structures. We analyzed the dynamic behavior of the enzyme guanylate kinase as it evolved into the GK protein interaction domain (GKPID) to investigate the role of flexibility in the evolution of new protein functions. We found that the ancestral enzyme is very flexible, allowing it to adopt open conformations that can bind nucleotide and closed ones that enable catalysis of phosphotransfer from ATP to GMP. Historical mutations that converted the GK from an enzyme to a protein interaction domain dramatically reduce flexibility, predominantly by inhibiting rotations of the protein backbone that are coupled to the global closing motion. Removing flexibility prevents adoption of conformations that cannot fit the protein partner in the binding site. Our results highlight the importance of mutations that optimize protein conformational flexibility with function during evolution.
Collapse
Affiliation(s)
- Dustin S Whitney
- Department of Biochemistry, Medical College of Wisconsin , Milwaukee, Wisconsin 53226, United States
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin , Milwaukee, Wisconsin 53226, United States
| | - Kenneth E Prehoda
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon , Eugene, Oregon 97403, United States
| |
Collapse
|
16
|
Anderson DP, Whitney DS, Hanson-Smith V, Woznica A, Campodonico-Burnett W, Volkman BF, King N, Thornton JW, Prehoda KE. Evolution of an ancient protein function involved in organized multicellularity in animals. eLife 2016; 5:e10147. [PMID: 26740169 PMCID: PMC4718807 DOI: 10.7554/elife.10147] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/09/2015] [Indexed: 12/30/2022] Open
Abstract
To form and maintain organized tissues, multicellular organisms orient their mitotic spindles relative to neighboring cells. A molecular complex scaffolded by the GK protein-interaction domain (GKPID) mediates spindle orientation in diverse animal taxa by linking microtubule motor proteins to a marker protein on the cell cortex localized by external cues. Here we illuminate how this complex evolved and commandeered control of spindle orientation from a more ancient mechanism. The complex was assembled through a series of molecular exploitation events, one of which - the evolution of GKPID's capacity to bind the cortical marker protein - can be recapitulated by reintroducing a single historical substitution into the reconstructed ancestral GKPID. This change revealed and repurposed an ancient molecular surface that previously had a radically different function. We show how the physical simplicity of this binding interface enabled the evolution of a new protein function now essential to the biological complexity of many animals.
Collapse
Affiliation(s)
- Douglas P Anderson
- Institute of Ecology and Evolution, University of Oregon, Eugene, United States.,Department of Chemistry and Biochemistry, University of Oregon, Eugene, United States.,Institute of Molecular Biology, University of Oregon, Eugene, United States
| | - Dustin S Whitney
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, United States
| | - Victor Hanson-Smith
- Institute of Ecology and Evolution, University of Oregon, Eugene, United States
| | - Arielle Woznica
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - William Campodonico-Burnett
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, United States.,Institute of Molecular Biology, University of Oregon, Eugene, United States
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, United States
| | - Nicole King
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | | | - Kenneth E Prehoda
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, United States.,Institute of Molecular Biology, University of Oregon, Eugene, United States
| |
Collapse
|
17
|
Joseph C, Tseng CY, Zocchi G, Tlusty T. Asymmetric effect of mechanical stress on the forward and reverse reaction catalyzed by an enzyme. PLoS One 2014; 9:e101442. [PMID: 25000118 PMCID: PMC4085160 DOI: 10.1371/journal.pone.0101442] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/06/2014] [Indexed: 01/22/2023] Open
Abstract
The concept of modulating enzymatic activity by exerting a mechanical stress on the enzyme has been established in previous work. Mechanical perturbation is also a tool for probing conformational motion accompanying the enzymatic cycle. Here we report measurements of the forward and reverse kinetics of the enzyme Guanylate Kinase from yeast (Saccharomyces cerevisiae). The enzyme is held in a state of stress using the DNA spring method. The observation that mechanical stress has different effects on the forward and reverse reaction kinetics suggests that forward and reverse reactions follow different paths, on average, in the enzyme's conformational space. Comparing the kinetics of the stressed and unstressed enzyme we also show that the maximum speed of the enzyme is comparable to the predictions of the relaxation model of enzyme action, where we use the independently determined dissipation coefficient for the enzyme's conformational motion. The present experiments provide a mean to explore enzyme kinetics beyond the static energy landscape picture of transition state theory.
Collapse
Affiliation(s)
- Collin Joseph
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California, United States of America
| | - Chiao-Yu Tseng
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California, United States of America
| | - Giovanni Zocchi
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| | - Tsvi Tlusty
- Institute for Advanced Study, Princeton, New Jersey, United States of America
| |
Collapse
|
18
|
Purification and characterization of guanylate kinase, a nucleoside monophosphate kinase of Brugia malayi. Parasitology 2014; 141:1341-52. [DOI: 10.1017/s0031182014000675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYGuanylate kinase, a nucleoside monophosphate kinase of Brugia malayi which is involved in reversible transfer of phosphate groups from ATP to GMP, was cloned, expressed and characterized. The native molecular mass of BmGK was found to be 45 kDa as determined by size exclusion chromatography and glutaraldehyde cross-linking which revealed that the protein is homodimer in nature. This is a unique characteristic among known eukaryotic GKs. GMP and ATP served as the most effective phosphate acceptor and donor, respectively. Recombinant BmGK utilized both GMP and dGMP, as substrates showing Km values of 30 and 38 μm, respectively. Free Mg+2 (un-complexed to ATP) and GTP play a regulatory role in catalysis of BmGK. The enzyme showed higher catalytic efficiency as compared with human GK and showed ternary complex (BmGK-GMP-ATP) formation with sequential substrate binding. The secondary structure of BmGK consisted of 45% α-helices, 18% β-sheets as revealed by CD analysis. Homology modelling and docking with GMP revealed conserved substrate binding residues with slight differences. Differences in kinetic properties and oligomerization of BmGK compared with human GK can provide the way for design of parasite-specific inhibitors.
Collapse
|
19
|
Zhu J, Shang Y, Chen J, Zhang M. Structure and function of the guanylate kinase-like domain of the MAGUK family scaffold proteins. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11515-012-1244-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
20
|
Sundd M. Conformational and dynamic changes at the interface contribute to ligand binding by ubiquitin. Biochemistry 2012; 51:8111-24. [PMID: 23035694 DOI: 10.1021/bi3004268] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ubiquitin interacts with numerous domains and motifs in its lifetime that vary in structure but bind the same hydrophobic patch. To identify the structural features of ubiquitin that make it an exceptional protein-protein interaction partner, we have studied the interaction of ubiquitin with the signal transducing adaptor molecule-1 ubiquitin interacting motif (UIM) using nuclear magnetic resonance. Our studies bring to light the role of the inherent backbone flexibility of ubiquitin in its interactions with a large array of binding partners, revealed from the changes in C(α) chemical shifts, backbone dynamics, and hydrogen bond lengths upon UIM binding. The crystal structures of ubiquitin complexes lend further support to our findings, underscoring the importance of the unique and flexible hydrogen bond network within ubiquitin and simultaneously providing insights into the nature of the slow motions. Taken together, our studies provide an in-depth view of the molecular changes associated with ligand recognition by ubiquitin.
Collapse
Affiliation(s)
- Monica Sundd
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India.
| |
Collapse
|
21
|
Delalande O, Sacquin-Mora S, Baaden M. Enzyme closure and nucleotide binding structurally lock guanylate kinase. Biophys J 2011; 101:1440-9. [PMID: 21943425 DOI: 10.1016/j.bpj.2011.07.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 07/15/2011] [Accepted: 07/28/2011] [Indexed: 02/02/2023] Open
Abstract
We investigate the conformational dynamics and mechanical properties of guanylate kinase (GK) using a multiscale approach combining high-resolution atomistic molecular dynamics and low-resolution Brownian dynamics simulations. The GK enzyme is subject to large conformational changes, leading from an open to a closed form, which are further influenced by the presence of nucleotides. As suggested by recent work on simple coarse-grained models of apo-GK, we primarily focus on GK's closure mechanism with the aim to establish a detailed picture of the hierarchy and chronology of structural events essential for the enzymatic reaction. We have investigated open-versus-closed, apo-versus-holo, and substrate-versus-product-loaded forms of the GK enzyme. Bound ligands significantly modulate the mechanical and dynamical properties of GK and rigidity profiles of open and closed states hint at functionally important differences. Our data emphasizes the role of magnesium, highlights a water channel permitting active site hydration, and reveals a structural lock that stabilizes the closed form of the enzyme.
Collapse
Affiliation(s)
- Olivier Delalande
- Institut de Biologie Physico-Chimique, Laboratoire de Biochimie Théorique, Centre National de la Recherche Scientifique, UPR9080, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | | | | |
Collapse
|
22
|
Kandeel M, Kitade Y. Binding dynamics and energetic insight into the molecular forces driving nucleotide binding by guanylate kinase. J Mol Recognit 2010; 24:322-32. [PMID: 21360614 DOI: 10.1002/jmr.1074] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 07/16/2010] [Accepted: 07/16/2010] [Indexed: 11/11/2022]
Abstract
Plasmodium deoxyguanylate pathways are an attractive area of investigation for future metabolic and drug discovery studies due to their unique substrate specificities. We investigated the energetic contribution to guanylate kinase substrate binding and the forces underlying ligand recognition. In the range from 20 to 35°C, the thermodynamic profiles displayed marked decrease in binding enthalpy, while the free energy of binding showed little changes. GMP produced a large binding heat capacity change of -356 cal mol(-1) K(-1), indicating considerable conformational changes upon ligand binding. Interestingly, the calculated ΔCp was -32 cal mol(-1) K(-1), indicating that the accessible surface area is not the central change in substrate binding, and that other entropic forces, including conformational changes, are more predominant. The thermodynamic signature for GMP is inconsistent with rigid-body association, while dGMP showed more or less rigid-body association. These binding profiles explain the poor catalytic efficiency and low affinity for dGMP compared with GMP. At low temperature, the ligands bind to the receptor site under the effect of hydrophobic forces. Interestingly, by increasing the temperature, the entropic forces gradually vanish and proceed to a nonfavorable contribution, and the interaction occurs mainly through bonding, electrostatic forces, and van der Waals interactions.
Collapse
Affiliation(s)
- Mahmoud Kandeel
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafr El-Shikh University, Kafr El-Shikh 33516, Egypt.
| | | |
Collapse
|
23
|
Gogolin L, Seidel R, Engelhard M, Goody RS, Becker CFW. Semisynthesis of human thymidine monophosphate kinase. Biopolymers 2010; 94:433-40. [PMID: 20593468 DOI: 10.1002/bip.21398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Protein semisynthesis based on native chemical ligation has become a major protein engineering tool that allows manipulation of domains of proteins of all sizes. It helps to overcome limitations in chemical protein synthesis set by the inherent size limits of solid phase peptide synthesis. Here we present a semisynthesis approach that provides access to N-terminally-modified variants of human thymidine monophosphate kinase (TMPK). This enzyme is intimately involved in activating nucleoside-based drugs directed against viral infections such as HIV and against certain types of cancers. The option to chemically synthesize and manipulate the first 30 amino acids of this enzyme via protein semisynthesis allows direct substitution of vital amino acids in the P-loop of this enzyme for probing the mechanism of phosphate transfer and direct observation of substrate or inhibitor binding. Efficient native chemical ligation of two N-terminal segments, one comprising the wild type sequence and one containing a small fluorescent probe, provides milligram amounts of two semisynthetic TMPK variants. An efficient folding procedure in the presence of substrate nucleotides provides access to active semisynthetic TMPK variants.
Collapse
Affiliation(s)
- Lars Gogolin
- Center of Integrated Protein Science Munich and Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, 85747 Garching b. München, Germany
| | | | | | | | | |
Collapse
|
24
|
Auvynet C, Topalis D, Caillat C, Munier-Lehmann H, Seclaman E, Balzarini J, Agrofoglio LA, Kaminski PA, Meyer P, Deville-Bonne D, El Amri C. Phosphorylation of dGMP analogs by vaccinia virus TMP kinase and human GMP kinase. Biochem Biophys Res Commun 2009; 388:6-11. [PMID: 19631609 DOI: 10.1016/j.bbrc.2009.07.089] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 07/17/2009] [Indexed: 11/19/2022]
Abstract
Vaccinia virus thymidylate kinase, although similar in sequence to human TMP kinase, has broader substrate specificity and phosphorylates (E)-5-(2-bromovinyl)-dUMP and dGMP. Modified guanines such as glyoxal-dG, 8-oxo-dG, O(6)-methyl-dG, N(2)-ethyl-dG and N(7)-methyl-dG were found present in cancer cell DNA. Alkylated and oxidized dGMP analogs were examined as potential substrates for vaccinia TMP kinase and also for human TMP and GMP kinases. Molecular models obtained from structure-based docking rationalized the enzymatic data. All tested nucleotides are found surprisingly substrates of vaccinia TMP kinase and also of human GMP kinase. Interestingly, O(6)-methyl-dGMP is the only analog specific for the vaccinia enzyme. Thus, O(6)-Me-dGMP could be useful for designing new compounds of medical interest either in antipoxvirus therapy or in experimental combined gene/chemotherapy of cancer. These results also provide new insights regarding dGMP analog reaction with human GMP kinase and their slow recycling by salvage pathway nucleotide kinases.
Collapse
|
25
|
Ray BD, Scott J, Yan H, Nageswara Rao B. Productive versus unproductive nucleotide binding in yeast guanylate kinase mutants: comparison of R41M with K14M by proton two dimensional transferred NOESY. Biochemistry 2009; 48:5532-40. [PMID: 19419194 PMCID: PMC2772131 DOI: 10.1021/bi900139a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The R41M and K14M mutant enzymes of yeast guanylate kinase (GKy) were studied to investigate the effects of these site-directed mutations on bound-substrate conformations. Published X-ray crystal structures of yeast guanylate kinase indicate that K14 is part of the "P" loop involved in ATP and ADP binding, while R41 is suggested as a hydrogen bonding partner for the phosphoryl moiety of GMP. Both of these residues might be involved in transition state stabilization. Adenosine conformations of ATP and ADP and guanosine conformations of GMP bound to R41M and K14M mutant yeast guanylate kinase in the complexes GKy.MgATP, GKy.MgADP, and GKy.MgADP.[u-(13)C]GMP were determined by two-dimensional transferred nuclear Overhauser effect (TRNOESY) measurements combined with molecular dynamics simulations, and these conformations were compared with previously published conformations for the wild type. In the fully constrained, two substrate complexes, GKy.MgADP.[u-(13)C]GMP, the guanyl glycosidic torsion angle, chi, is 51 +/- 5 degrees for R41M and 47 +/- 5 degrees for K14M. Both are similar to the published 50 +/- 5 degrees published for wild type. For R41M with adenyl nucleotides, the glycosidic torsion angle, chi, was 55 +/- 5 degrees with MgATP, and 47 +/- 5 degrees with MgADP, which compares well to the 54 +/- 5 degrees published for wild type. However, for K14M with adenyl nucleotides, the glycosidic torsion angle was 30 +/- 5 degrees with MgATP and 28 +/- 5 degrees with MgADP. The results indicate that bound adenyl-nucleotides have significantly different conformations in the wild-type and K14M mutant enzymes, suggesting that K14 plays an important role in orienting the triphosphate of MgATP for catalysis.
Collapse
Affiliation(s)
- Bruce D. Ray
- Department of Physics, Indiana University - Purdue University at Indianapolis (IUPUI), 402 N. Blackford Street, Indianapolis, IN 46202-3273
| | - Joshua Scott
- Department of Physics, Indiana University - Purdue University at Indianapolis (IUPUI), 402 N. Blackford Street, Indianapolis, IN 46202-3273
| | - Honggao Yan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - B.D. Nageswara Rao
- Department of Physics, Indiana University - Purdue University at Indianapolis (IUPUI), 402 N. Blackford Street, Indianapolis, IN 46202-3273
| |
Collapse
|
26
|
Kandeel M, Nakanishi M, Ando T, El-Shazly K, Yosef T, Ueno Y, Kitade Y. Molecular cloning, expression, characterization and mutation of Plasmodium falciparum guanylate kinase. Mol Biochem Parasitol 2008; 159:130-3. [PMID: 18374996 DOI: 10.1016/j.molbiopara.2008.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 01/31/2008] [Accepted: 02/11/2008] [Indexed: 11/19/2022]
Abstract
The present work describes cloning, expression, purification, characterization, and mutation of Plasmodium falciparum guanylate kinase (PlasmoDB ID PFI1420w). Amino-acid sequence alignment revealed important differences especially in K42-V51, Y73-A77, and F100-L110, which include residues important for kinase activity, and at helix 3, which is important for domain movements. The catalytic efficiency for dGMP was 22-fold lower than that for GMP, whose value is the lowest among known guanylate kinases. dGMP was found to a competitive inhibitor for GMP with K(i)=0.148 mM and a mixed-type inhibitor with regard to ATP with measured K(i)=0.4 mM. The specificity constant (K(cat)/K(m)) of the four examined mutants varied for natural substrate GMP/dGMP, indicating the involvement of different mechanisms in substrate recognition and subsequent loop-domain movement. These results show that P. falciparum guanylate kinase is structurally and biochemically distinct from other guanylate kinases and could be a possible target in drug development.
Collapse
Affiliation(s)
- Mahmoud Kandeel
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Interactions governing protein folding, stability, recognition, and activity are mediated by hydration. Here, we use small-angle neutron scattering coupled with osmotic stress to investigate the hydration of two proteins, lysozyme and guanylate kinase (GK), in the presence of solutes. By taking advantage of the neutron contrast variation that occurs upon addition of these solutes, the number of protein-associated (solute-excluded) water molecules can be estimated from changes in both the zero-angle scattering intensity and the radius of gyration. Poly(ethylene glycol) exclusion varies with molecular weight. This sensitivity can be exploited to probe structural features such as the large internal GK cavity. For GK, small-angle neutron scattering is complemented by isothermal titration calorimetry with osmotic stress to also measure hydration changes accompanying ligand binding. These results provide a framework for studying other biomolecular systems and assemblies using neutron scattering together with osmotic stress.
Collapse
|
28
|
Jeudy S, Claverie JM, Abergel C. The nucleoside diphosphate kinase from mimivirus: a peculiar affinity for deoxypyrimidine nucleotides. J Bioenerg Biomembr 2007; 38:247-54. [PMID: 16957983 DOI: 10.1007/s10863-006-9045-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The first viral Nucleoside Diphosphate Kinase was recently identified in the giant double-stranded DNA virus Acanthamoeba polyphag a Mimivirus (ApM). Here we report its expression and detailed biochemical characterization. NDK(apm) exhibits unique features such as a shorter Kpn-loop, a structural motif previously reported to be part of the active site and involved in oligomer formation. Enzymatic activity measurements on the recombinant NDK(apm) revealed its preferential affinity for deoxypyrimidine nucleotides. This property might represent an adaptation of NDK(apm) to the production of the limiting TTP deoxynucleotide required for the replication of the large A+T rich (72%) viral genome. The NDK(apm) might also assume a role in dUTP detoxification to compensate for the surprising absence of Mimivirus dUTPase (deoxyuridine triphosphate pyrophosphatase) an important enzyme conserved in most viruses. Although the phylogenetic analysis of NDK sequences sampled through organisms from the three domains of life is only partially informative, it favors an ancestral origin for NDK(apm) over a recent acquisition from a eukaryotic organism by horizontal gene transfer.
Collapse
Affiliation(s)
- Sandra Jeudy
- Information Génomique & Structurale, CNRS UPR 2589, IBSM, 163 Avenue de Luminy, 13288, Marseille cedex 9, France
| | | | | |
Collapse
|
29
|
Evrin C, Straut M, Slavova-Azmanova N, Bucurenci N, Onu A, Assairi L, Ionescu M, Palibroda N, Bârzu O, Gilles AM. Regulatory mechanisms differ in UMP kinases from gram-negative and gram-positive bacteria. J Biol Chem 2007; 282:7242-53. [PMID: 17210578 DOI: 10.1074/jbc.m606963200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this work, we examined the regulation by GTP and UTP of the UMP kinases from eight bacterial species. The enzyme from Gram-positive organisms exhibited cooperative kinetics with ATP as substrate. GTP decreased this cooperativity and increased the affinity for ATP. UTP had the opposite effect, as it decreased the enzyme affinity for ATP. The nucleotide analogs 5-bromo-UTP and 5-iodo-UTP were 5-10 times stronger inhibitors than the parent compound. On the other hand, UMP kinases from the Gram-negative organisms did not show cooperativity in substrate binding and catalysis. Activation by GTP resulted mainly from the reversal of inhibition caused by excess UMP, and inhibition by UTP was accompanied by a strong increase in the apparent K(m) for UMP. Altogether, these results indicate that, depending on the bacteria considered, GTP and UTP interact with different enzyme recognition sites. In Gram-positive bacteria, GTP and UTP bind to a single site or largely overlapping sites, shifting the T R equilibrium to either the R or T form, a scenario corresponding to almost all regulatory proteins, commonly called K systems. In Gram-negative organisms, the GTP-binding site corresponds to the unique allosteric site of the Gram-positive bacteria. In contrast, UTP interacts cooperatively with a site that overlaps the catalytic center, i.e. the UMP-binding site and part of the ATP-binding site. These characteristics make UTP an original regulator of UMP kinases from Gram-negative organisms, beyond the common scheme of allosteric control.
Collapse
Affiliation(s)
- Cécile Evrin
- UnitédeGénétique des Génomes Bactériens, Institut Pasteur, 75724 Paris Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Since the introduction of the induced-fit theory by D. E. Koshland Jr., it has been established that conformational motion invariably accompanies the execution of protein function. The catalytic activity of kinases, specifically, is associated with large conformational changes ( approximately 1 nm amplitude). In the case of guanylate kinase, upon substrate binding, the LID and nucleotide-monophosphate-binding domains are brought together and toward the CORE with large concerted movements about the alpha3 (helix 3) axis. However, whether the change in conformation mostly affects the catalytic rate or mostly increases binding affinities for one or the other substrate is unclear. We investigate this question using a nanotechnology approach based on mechanical stress. Using an "allosteric spring probe", we bias conformational states in favor of the "open" (substrate-free) conformation of the enzyme; the result is that the binding constant for the substrate guanosine monophosphate (GMP) is reduced by up to a factor of 10, whereas the binding constant for adenosine triphosphate (ATP) and the catalytic rate are essentially unaffected. The results show that the GMP-induced conformational change, which promotes catalysis, does not promote ATP binding, consistent with previous mutagenesis studies. Furthermore, they show that this conformational change is of the induced-fit type with respect to GMP binding (but not ATP binding). We elaborate on this point by proposing a quantitative criterion for the classification of conformational changes with respect to the induced-fit theory. More generally, these results show that the allosteric spring probe can be used to affect enzymatic activity in a continuously controlled manner, and also to affect specific steps of the reaction mechanism while leaving others unaffected. It is presumed that this will enable informative comparisons with the results of future molecular dynamics or statistical mechanics computations.
Collapse
Affiliation(s)
- Brian Choi
- Department of Physics and Astronomy, University of California, Los Angeles, California, USA
| | | |
Collapse
|
31
|
Abergel C, Blanc G, Monchois V, Renesto P, Sigoillot C, Ogata H, Raoult D, Claverie JM. Impact of the excision of an ancient repeat insertion on Rickettsia conorii guanylate kinase activity. Mol Biol Evol 2006; 23:2112-22. [PMID: 16891376 DOI: 10.1093/molbev/msl082] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The genomic sequencing of Rickettsia conorii revealed a new family of Rickettsia-specific palindromic elements (RPEs) capable of in-frame insertion in preexisting open reading frames (ORFs). Many of these altered ORFs correspond to proteins with well-characterized or essential functions in other microorganisms. Previous experiments indicated that RPE-containing genes are normally transcribed and that no excision of the repeat occurs at the mRNA level. Using mass spectrometry, we now confirmed the retention of the RPE-derived amino acid residues in 4 proteins successfully expressed in Escherichia coli, raising the general question of the consequences of this common insertion event on the fitness of Rickettsia enzymes. The predicted guanylate kinase activity of the R. conorii gmk gene product was measured both on the RPE-containing and RPE-excised recombinant proteins. We show that the 2 proteins are active but exhibit substantial differences in their affinity for adenosine triphosphate, guanosine monophosphate, and catalytic constants. The distribution of the RPEgmk insert among Rickettsia species indicates that the insertion event is ancient and occurred after the divergence of Rickettsia felis and R. conorii but before that of Rickettsia helvetica and R. conorii. We found no evidence that the gmk gene fixed adaptive changes to compensate the RPE peptide insertion. Furthermore, the analysis of the rates of divergence in 23 RPE-containing genes indicates that coding RPE repeats tend to evolve under weak selective constraint, at a rate similar to intergenic noncoding RPE sequences. Altogether, these results suggest that the insertion of RPE-encoded "selfish peptides," although respecting the original fold and activity of the host proteins, might be slightly detrimental to the enzyme efficiency within limits tolerable for slow-growing intracellular parasites such as Rickettsia.
Collapse
Affiliation(s)
- Chantal Abergel
- Information Génomique & Structurale, CNRS UPR 2589, IBSM, Marseille cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Hible G, Christova P, Renault L, Seclaman E, Thompson A, Girard E, Munier-Lehmann H, Cherfils J. Unique GMP-binding site in Mycobacterium tuberculosis guanosine monophosphate kinase. Proteins 2006; 62:489-500. [PMID: 16288457 DOI: 10.1002/prot.20662] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Bacterial nucleoside monophosphate (NMP) kinases, which convert NMPs to nucleoside diphosphates (NDP), are investigated as potential antibacterial targets against pathogenic bacteria. Herein, we report the biochemical and structural characterization of GMP kinase from Mycobacterium tuberculosis (GMPKMt). GMPKMt is a monomer with an unusual specificity for ATP as a phosphate donor, a lower catalytic efficiency compared with eukaryotic GMPKs, and it carries two redox-sensitive cysteines in the central CORE domain. These properties were analyzed in the light of the high-resolution crystal structures of unbound, GMP-bound, and GDP-bound GMPKMt. The latter structure was obtained in both an oxidized form, in which the cysteines form a disulfide bridge, and a reduced form which is expected to correspond to the physiological enzyme. GMPKMt has a modular domain structure as most NMP kinases. However, it departs from eukaryotic GMPKs by the unusual conformation of its CORE domain, and by its partially open LID and GMP-binding domains which are the same in the apo-, GMP-bound, and GDP-bound forms. GMPKMt also features a unique GMP binding site which is less close-packed than that of mammalian GMPKs, and in which the replacement of a critical tyrosine by a serine removes a catalytic interaction. In contrast, the specificity of GMPKMt for ATP may be a general feature of GMPKs because of an invariant structural motif that recognizes the adenine base. Altogether, differences in domain dynamics and GMP binding between GMPKMt and mammalian GMPKs should reveal clues for the design of GMPKMt-specific inhibitors.
Collapse
Affiliation(s)
- Guillaume Hible
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Gif sur Yvette, France
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Bao J, Ryu DDY. Cloning of deoxynucleoside monophosphate kinase genes and biosynthesis of deoxynucleoside diphosphates. Biotechnol Bioeng 2006; 93:572-80. [PMID: 16240436 DOI: 10.1002/bit.20747] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The genes encoding four deoxynucleoside monophosphate kinase (dNMP kinase) enzymes, including ADK1 for deoxyadenylate monophosphate kinase (AK), GUK1 for deoxyguanylate monophosphate kinase (GK), URA6 for deoxycytidylate monophosphate kinase (CK), and CDC8 for deoxythymidylate monophosphate kinase (TK), were isolated from the genome of Saccharomyces cerevisiae ATCC 2610 strain and cloned into E. coli strain BL21(DE3). Four recombinant plasmids, pET17b-JB1 containing ADK1, pET17b-JB2 containing GUK1, pET17b-JB3 containing URA6, and pET17b-JB4 containing CDC8, were constructed and transformed into E. coli strain for over-expression of AK, GK, CK, and TK. The amino acid sequences of these enzymes were analyzed and a putative conserved peptide sequence for the ATP active site was proposed. The four deoxynucleoside diphosphates (dNDP) including deoxyadenosine diphosphate (dADP), deoxyguanosine diphosphate (dGDP), deoxycytidine diphosphate (dCDP), and deoxythymidine diphosphate (dTDP), were synthesized from the corresponding deoxynucleoside monophosphates (dNMP) using the purified AK, GK, CK, and TK, respectively. The effects of pH and magnesium ion concentration on the dNDP biosynthesis were found to be important. A kinetic model for the synthetic reactions of dNDP was developed based on the Bi-Bi random rapid equilibrium mechanism. The kinetic parameters including the maximum reaction velocity and Michaelis-Menten constants were experimentally determined. The study on dNDP biosynthesis reported in this article are important to the proposed bioprocess for production of deoxynucleoside triphosphates (dNTP) that are used as precursors for in vitro DNA synthesis. There is a significant advantage of using enzymatic biosyntheses of dNDP as compared to the chemical method that has been in commercial use.
Collapse
Affiliation(s)
- Jie Bao
- Biochemical Engineering Program, University of California, Davis, 95616, USA
| | | |
Collapse
|
34
|
Funke L, Dakoji S, Bredt DS. MEMBRANE-ASSOCIATED GUANYLATE KINASES REGULATE ADHESION AND PLASTICITY AT CELL JUNCTIONS. Annu Rev Biochem 2005; 74:219-45. [PMID: 15952887 DOI: 10.1146/annurev.biochem.74.082803.133339] [Citation(s) in RCA: 374] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tissue development, differentiation, and physiology require specialized cellular adhesion and signal transduction at sites of cell-cell contact. Scaffolding proteins that tether adhesion molecules, receptors, and intracellular signaling enzymes organize macromolecular protein complexes at cellular junctions to integrate these functions. One family of such scaffolding proteins is the large group of membrane-associated guanylate kinases (MAGUKs). Genetic studies have highlighted critical roles for MAGUK proteins in the development and physiology of numerous tissues from a variety of metazoan organisms. Mutation of Drosophila discs large (dlg) disrupts epithelial septate junctions and causes overgrowth of imaginal discs. Similarly, mutation of lin-2, a related MAGUK in Caenorhabditis elegans, blocks vulval development, and mutation of the postsynaptic density protein PSD-95 impairs synaptic plasticity in mammalian brain. These diverse roles are explained by recent biochemical and structural analyses of MAGUKs, which demonstrate their capacity to assemble well--efined--yet adaptable--protein complexes at cellular junctions.
Collapse
Affiliation(s)
- Lars Funke
- Department of Physiology, University of California at San Francisco, California 94143, USA.
| | | | | |
Collapse
|
35
|
Velkov T, Chuang S, Wielens J, Sakellaris H, Charman WN, Porter CJH, Scanlon MJ. The Interaction of Lipophilic Drugs with Intestinal Fatty Acid-binding Protein. J Biol Chem 2005; 280:17769-76. [PMID: 15722357 DOI: 10.1074/jbc.m410193200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intestinal fatty acid-binding protein (I-FABP) is a small protein that binds long-chain dietary fatty acids in the cytosol of the columnar absorptive epithelial cells (enterocytes) of the intestine. The binding cavity of I-FABP is much larger than is necessary to bind a fatty acid molecule, which suggests that the protein may be able to bind other hydrophobic and amphipathic ligands such as lipophilic drugs. Herein we describe the binding of three structurally diverse lipophilic drugs, bezafibrate, ibuprofen (both R- and S-isomers) and nitrazepam to I-FABP. The rank order of affinity for I-FABP determined for these compounds was found to be R-ibuprofen approximately bezafibrate > S-ibuprofen >> nitrazepam. The binding affinities were not directly related to aqueous solubility or partition coefficient of the compounds; however, the freely water-soluble drug diltiazem showed no affinity for I-FABP. Drug-I-FABP interaction interfaces were defined by analysis of chemical shift perturbations in NMR spectra, which revealed that the drugs bound within the central fatty acid binding cavity. Each drug participated in a different set of interactions within the cavity; however, a number of common contacts were observed with residues also involved in fatty acid binding. These data suggest that the binding of non-fatty acid lipophilic drugs to I-FABP may increase the cytosolic solubility of these compounds and thereby facilitate drug transport from the intestinal lumen across the enterocyte to sites of distribution and metabolism.
Collapse
Affiliation(s)
- Tony Velkov
- Department of Medicinal Chemistry, Pharmaceutics, and Microbiology, Monash University, Parkville 3052, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
36
|
Castellanos M, Wilson DB, Shuler ML. A modular minimal cell model: purine and pyrimidine transport and metabolism. Proc Natl Acad Sci U S A 2004; 101:6681-6. [PMID: 15090651 PMCID: PMC404105 DOI: 10.1073/pnas.0400962101] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2003] [Indexed: 12/27/2022] Open
Abstract
A more complete understanding of the relationship of cell physiology to genomic structure is desirable. Because of the intrinsic complexity of biological organisms, only the simplest cells will allow complete definition of all components and their interactions. The theoretical and experimental construction of a minimal cell has been suggested as a tool to develop such an understanding. Our ultimate goal is to convert a "coarse-grain" lumped parameter computer model of Escherichia coli into a genetically and chemically detailed model of a "minimal cell." The base E. coli model has been converted into a generalized model of a heterotrophic bacterium. This coarse-grain minimal cell model is functionally complete, with growth rate, composition, division, and changes in cell morphology as natural outputs from dynamic simulations where only the initial composition of the cell and of the medium are specified. A coarse-grain model uses pseudochemical species (or modules) that are aggregates of distinct chemical species that share similar chemistry and metabolic dynamics. This model provides a framework in which these modules can be "delumped" into chemical and genetic descriptions while maintaining connectivity to all other functional elements. Here we demonstrate that a detailed description of nucleotide precursors transport and metabolism is successfully integrated into the whole-cell model. This nucleotide submodel requires fewer (12) genes than other theoretical predictions in minimal cells. The demonstration of modularity suggests the possibility of developing modules in parallel and recombining them into a fully functional chemically and genetically detailed model of a prokaryote cell.
Collapse
Affiliation(s)
- M. Castellanos
- School of Chemical and Biomolecular Engineering and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-5201
| | - D. B. Wilson
- School of Chemical and Biomolecular Engineering and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-5201
| | - M. L. Shuler
- School of Chemical and Biomolecular Engineering and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-5201
| |
Collapse
|
37
|
Beck BJ, Huelsmeyer M, Paul S, Downs DM. A mutation in the essential gene gmk (encoding guanlyate kinase) generates a requirement for adenine at low temperature in Salmonella enterica. J Bacteriol 2003; 185:6732-5. [PMID: 14594851 PMCID: PMC262127 DOI: 10.1128/jb.185.22.6732-6735.2003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Salmonella enterica serovar Typhimurium, gmk encodes guanylate kinase, an essential enzyme involved in the synthesis and salvage of guanine nucleotides. Here we report the isolation of a mutation in gmk that results in a nutritional requirement for adenine at low temperature. Comparisons of kinetic parameters from the wild-type and mutant Gmk enzymes revealed that the mutant enzyme had a more than 20-fold-higher Km for ATP than the wild-type enzyme. The growth dependence of the mutant on temperature and/or adenine could not be explained as a direct result of this kinetic difference. We propose a model in which previously described regulatory effects of GMP are responsible for these phenotypes.
Collapse
Affiliation(s)
- Brian J Beck
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
38
|
Fioravanti E, Haouz A, Ursby T, Munier-Lehmann H, Delarue M, Bourgeois D. Mycobacterium tuberculosis thymidylate kinase: structural studies of intermediates along the reaction pathway. J Mol Biol 2003; 327:1077-92. [PMID: 12662932 DOI: 10.1016/s0022-2836(03)00202-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mycobacterium tuberculosis TMP kinase (TMPK(Mtub)) represents a promising target for developing drugs against tuberculosis because the configuration of its active site is unique in the TMPK family. To help elucidate the phosphorylation mechanism employed by this enzyme, structural changes occurring upon binding of substrates and subsequent catalysis were investigated by protein crystallography. Six new structures of TMPK(Mtub) were solved at a resolution better than 2.3A, including the first structure of an apo-TMPK, obtained by triggering catalysis in a crystal of a TMPK(Mtub)-TMP complex, which resulted in the release of the TDP product. A series of snapshots along the reaction pathway is obtained, revealing the closure of the active site in going from an empty to a fully occupied state, suggestive of an induced-fit mechanism typical of NMPKs. However, in TMPK(Mtub) the LID closure couples to the binding with an unusual location for a magnesium ion coordinating TMP in the active site. Our data suggest strongly that this ion is required for catalysis, acting as a clamp, possibly in concert with Arg95, to neutralise electrostatic repulsion between the anionic substrates, optimise their proper alignment and activate them through direct and water-mediated interactions. The 3'-hydroxyl moiety of TMP, critical to metal stabilisation, appears to be a target of choice for the design of potent inhibitors. On the other hand, the usual NTP-bound magnesium is not seen in our structures and Arg14, a P-loop residue unique to TMPK(Mtub), may take over its role. Therefore, TMPK(Mtub) seems to have swapped the use of a metal ion as compared with e.g. human TMPK. Finally, TTP was observed in crystals of TMPK(Mtub), locked by Arg14, thus providing a structural explanation for the observed inhibitory effect of TTP putatively involved in a mechanism of feedback regulation of the enzymatic activity.
Collapse
Affiliation(s)
- E Fioravanti
- LCCP, UMR 9015, IBS, 41 avenue Jules Horowitz, 38027 1, Grenoble, Cedex, France
| | | | | | | | | | | |
Collapse
|
39
|
Olsen O, Bredt DS. Functional analysis of the nucleotide binding domain of membrane-associated guanylate kinases. J Biol Chem 2003; 278:6873-8. [PMID: 12482754 DOI: 10.1074/jbc.m210165200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Membrane-associated guanylate kinases (MAGUKs) regulate cellular adhesion and signal transduction at sites of cell-cell contact. MAGUKs are composed of modular protein-protein interaction motifs including L27, PDZ, Src homology (SH) 3, and guanylate kinase domains that aggregate adhesion molecules and receptors. Genetic analyses reveal that lethal mutations of MAGUKs often occur in the guanylate kinase domain, indicating a critical role for this domain. Here, we explored whether GMP binding to the guanylate kinase domain regulates MAGUK function. Surprisingly, and in contrast to previously published studies, we failed to detect GMP binding to the MAGUKs postsynaptic density-95 (PSD-95) and CASK. Two amino acid residues in the GMP binding pocket that differ between MAGUKs and authentic guanylate kinase explain this lack of binding, as swapping these residues largely prevent GMP binding to yeast guanylate kinase. Conversely, these mutations restore GMP binding but not catalytic activity to PSD-95. Protein ligands for the PSD-95 guanylate kinase domain, guanylate kinase-associated protein (GKAP) and MAP1A, appear not to interact with the canonical GMP binding pocket, and GMP binding does not influence the intramolecular SH3/guanylate kinase (GK) interaction within PSD-95. These studies indicate that MAGUK proteins have lost affinity for GMP but may have retained the guanylate kinase structure to accommodate a related regulatory ligand.
Collapse
Affiliation(s)
- Olav Olsen
- Department of Physiology and Program in Neuroscience, University of California at San Francisco, San Francisco, California 94143-0444, USA
| | | |
Collapse
|
40
|
Sekulic N, Shuvalova L, Spangenberg O, Konrad M, Lavie A. Structural characterization of the closed conformation of mouse guanylate kinase. J Biol Chem 2002; 277:30236-43. [PMID: 12036965 DOI: 10.1074/jbc.m204668200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Guanylate kinase (GMPK) is a nucleoside monophosphate kinase that catalyzes the reversible phosphoryl transfer from ATP to GMP to yield ADP and GDP. In addition to phosphorylating GMP, antiviral prodrugs such as acyclovir, ganciclovir, and carbovir and anticancer prodrugs such as the thiopurines are dependent on GMPK for their activation. Hence, structural information on mammalian GMPK could play a role in the design of improved antiviral and antineoplastic agents. Here we present the structure of the mouse enzyme in an abortive complex with the nucleotides ADP and GMP, refined at 2.1 A resolution with a final crystallographic R factor of 0.19 (R(free) = 0.23). Guanylate kinase is a member of the nucleoside monophosphate (NMP) kinase family, a family of enzymes that despite having a low primary structure identity share a similar fold, which consists of three structurally distinct regions termed the CORE, LID, and NMP-binding regions. Previous studies on the yeast enzyme have shown that these parts move as rigid bodies upon substrate binding. It has been proposed that consecutive binding of substrates leads to "closing" of the active site bringing the NMP-binding and LID regions closer to each other and to the CORE region. Our structure, which is the first of any guanylate kinase with both substrates bound, supports this hypothesis. It also reveals the binding site of ATP and implicates arginines 44, 137, and 148 (in addition to the invariant P-loop lysine) as candidates for catalyzing the chemical step of the phosphoryl transfer.
Collapse
Affiliation(s)
- Nikolina Sekulic
- University of Illinois at Chicago, Department of Biochemistry and Molecular Biology, Chicago, Illinois 60612 and the Max Planck Institute for Biophysical Chemistry, Department of Molecular Genetics, Am Fassberg 11, 37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
41
|
Gu Y, Reshetnikova L, Li Y, Wu Y, Yan H, Singh S, Ji X. Crystal structure of shikimate kinase from Mycobacterium tuberculosis reveals the dynamic role of the LID domain in catalysis. J Mol Biol 2002; 319:779-89. [PMID: 12054870 DOI: 10.1016/s0022-2836(02)00339-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Shikimate kinase (SK) and other enzymes in the shikimate pathway are potential targets for developing non-toxic antimicrobial agents, herbicides, and anti-parasite drugs, because the pathway is essential in the above species but is absent from mammals. The crystal structure of Mycobacterium tuberculosis SK (MtSK) in complex with MgADP has been determined at 1.8 A resolution, revealing critical information for the structure-based design of novel anti-M. tuberculosis agents. MtSK, with a five-stranded parallel beta-sheet flanked by eight alpha-helices, has three domains: the CORE domain, the shikimate-binding domain (SB), and the LID domain. The ADP molecule is bound with its adenine moiety sandwiched between the side-chains of Arg110 and Pro155, its beta-phosphate group in the P-loop, and the alpha and beta-phosphate groups hydrogen bonded to the guanidinium group of Arg117. Arg117 is located in the LID domain, is strictly conserved in SK sequences, is observed for the first time to interact with any bound nucleotide, and appears to be important in both substrate binding and catalysis. The crystal structure of MtSK (this work) and that of Erwinia chrysanthemi SK suggest a concerted conformational change of the LID and SB domains upon nucleotide binding.
Collapse
Affiliation(s)
- Yijun Gu
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Petit CM, Koretke KK. Characterization of Streptococcus pneumoniae thymidylate kinase: steady-state kinetics of the forward reaction and isothermal titration calorimetry. Biochem J 2002; 363:825-31. [PMID: 11964185 PMCID: PMC1222537 DOI: 10.1042/0264-6021:3630825] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Thymidylate kinase (TMK) catalyses the phosphorylation of dTMP to form dTDP in both the de novo and salvage pathways of dTTP synthesis. The tmk gene from the bacterial pathogen Streptococcus pneumoniae was identified. The gene, encoding a 212-amino-acid polypeptide (23352 Da), was cloned and overexpressed in Escherichia coli with an N-terminal hexahistidine tag. The enzyme was purified to homogeneity, and characterized in the forward reaction. The pH profile of TMK indicates that its activity is optimal at pH 8.5. The substrate specificity of the enzyme was examined; it was found that not only ATP, but also dATP and to a lesser extent CTP, could act as phosphate donors, and dTMP and dUMP could serve as phosphate acceptors. Furthermore, AZT-MP (3'-azido-3'-deoxythymidine 5'-monophosphate) was shown not to be a substrate for S. pneumoniae TMK. Steady-state kinetics and inhibition studies with adenosine 5'-[beta-thio]diphosphate and dTDP in addition to isothermal titration calorimetry were performed. The data showed that binding follows an ordered pathway, in which ATP binds first with a K(m) of 235 +/- 46 microM and a K(d) of 116 +/- 3 microM, and dTMP binds secondly with a K(m) of 66 +/- 12 microM and a K(d) of 53 +/- 2 microM.
Collapse
Affiliation(s)
- Chantal M Petit
- Microbial Musculoskeletal and Proliferative Diseases, GlaxoSmithKline Pharmaceuticals, 1250 S. Collegeville Road, UP1345, Collegeville, PA 19426-0989, USA.
| | | |
Collapse
|
43
|
McGee AW, Dakoji SR, Olsen O, Bredt DS, Lim WA, Prehoda KE. Structure of the SH3-guanylate kinase module from PSD-95 suggests a mechanism for regulated assembly of MAGUK scaffolding proteins. Mol Cell 2001; 8:1291-301. [PMID: 11779504 DOI: 10.1016/s1097-2765(01)00411-7] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Membrane-associated guanylate kinases (MAGUKs), such as PSD-95, are modular scaffolds that organize signaling complexes at synapses and other cell junctions. MAGUKs contain PDZ domains, which recruit signaling proteins, as well as a Src homology 3 (SH3) and a guanylate kinase-like (GK) domain, implicated in scaffold oligomerization. The crystal structure of the SH3-GK module from PSD-95 reveals that these domains form an integrated unit: the SH3 fold comprises noncontiguous sequence elements divided by a hinge region and the GK domain. These elements compose two subdomains that can assemble in either an intra- or intermolecular fashion to complete the SH3 fold. We propose a model for MAGUK oligomerization in which complementary SH3 subdomains associate by 3D domain swapping. This model provides a possible mechanism for ligand regulation of oligomerization.
Collapse
Affiliation(s)
- A W McGee
- Department of Physiology, University of California-San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
44
|
Blaszczyk J, Li Y, Yan H, Ji X. Crystal structure of unligated guanylate kinase from yeast reveals GMP-induced conformational changes. J Mol Biol 2001; 307:247-57. [PMID: 11243817 DOI: 10.1006/jmbi.2000.4427] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The crystal structure of guanylate kinase (GK) from yeast (Saccharomyces cerevisiae) with a non-acetylated N terminus has been determined in its unligated form (apo-GK) as well as in complex with GMP (GK.GMP). The structure of apo-GK was solved with multiwavelength anomalous diffraction data and refined to an R-factor of 0.164 (R(free)=0.199) at 2.3 A resolution. The structure of GK.GMP was determined using the crystal structure of GK with an acetylated N terminus as the search model and refined to an R-factor of 0.156 (R(free)=0.245) at 1.9 A. GK belongs to the family of nucleoside monophosphate (NMP) kinases and catalyzes the reversible phosphoryl transfer from ATP to GMP. Like other NMP kinases, GK consists of three dynamic domains: the CORE, LID, and NMP-binding domains. Dramatic movements of the GMP-binding domain and smaller but significant movements of the LID domain have been revealed by comparing the structures of apo-GK and GK.GMP. apo-GK has a much more open conformation than the GK.GMP complex. Systematic analysis of the domain movements using the program DynDom shows that the large movements of the GMP-binding domain involve a rotation around an effective hinge axis approximately parallel with helix 3, which connects the GMP-binding and CORE domains. The C-terminal portion of helix 3, which connects to the CORE domain, has strikingly higher temperature factors in GK.GMP than in apo-GK, indicating that these residues become more mobile upon GMP binding. The results suggest that helix 3 plays an important role in domain movement. Unlike the GMP-binding domain, which moves toward the active center of the enzyme upon GMP binding, the LID domain moves away from the active center and makes the presumed ATP-binding site more open. Therefore, the LID domain movement may facilitate the binding of MgATP. The structure of the recombinant GK.GMP complex superimposes very well with that of the native GK.GMP complex, indicating that N-terminal acetylation does not have significant impact on the three-dimensional structure of GK.
Collapse
Affiliation(s)
- J Blaszczyk
- National Cancer Institute, Macromolecular Crystallography Laboratory, Frederick, MD 21702, USA
| | | | | | | |
Collapse
|
45
|
Ali BR, Tjernberg A, Chait BT, Field MC. A microsomal GTPase is required for glycopeptide export from the mammalian endoplasmic reticulum. J Biol Chem 2000; 275:33222-30. [PMID: 10913137 DOI: 10.1074/jbc.m003845200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bidirectional transport of proteins via the Sec61p translocon across the endoplasmic reticulum (ER) membrane is a recognized component of the ER quality control machinery. Following translocation and engagement by the luminal quality control system, misfolded and unassembled proteins are exported from the ER lumen back to the cytosol for degradation by the proteasome. Additionally, other ER contents, including oligosaccharides, oligopeptides, and glycopeptides, are efficiently exported from mammalian and yeast systems, indicating that bidirectional transport across ER membranes is a general eukaryotic phenomenon. Glycopeptide and protein export from the ER in in vitro systems is both ATP- and cytosol-dependent. Using a well established system to study glycopeptide export and conventional liquid chromatography, we isolated a single polypeptide species of 23 kDa from rat liver cytosol that was capable of fully supporting glycopeptide export from rat microsomes in the presence of an ATP-regenerating system. The protein was identified by mass spectrometric sequence analysis as guanylate kinase (GK), a housekeeping enzyme critical in the regulation of cellular GTP levels. We confirmed the ability of GK to substitute for complete cytosol by reconstitution of glycopeptide export from rat liver microsomes using highly purified recombinant GK from Saccharomyces cerevisiae. Most significantly, we found that the GK (and hence the cytosolic component) requirement was fully bypassed by low micromolar concentrations of GDP or GTP. Similarly, export was inhibited by non-hydrolyzable analogues of GDP and GTP, indicating a requirement for GTP hydrolysis. Membrane integrity was fully maintained under assay conditions, as no ER luminal proteins were released. Competence for glycopeptide export was abolished by very mild protease treatment of microsomes, indicating the presence of an essential protein on the cytosolic face of the ER membrane. These data demonstrate that export of glycopeptide export is controlled by a microsomal GTPase and is independent of cytosolic protein factors.
Collapse
Affiliation(s)
- B R Ali
- Wellcome Trust Laboratories for Molecular Parasitology, Department of Biochemistry, Imperial College of Science, Technology, and Medicine, Exhibition Road, London SW7 2AY, United Kingdom
| | | | | | | |
Collapse
|
46
|
Ostermann N, Schlichting I, Brundiers R, Konrad M, Reinstein J, Veit T, Goody RS, Lavie A. Insights into the phosphoryltransfer mechanism of human thymidylate kinase gained from crystal structures of enzyme complexes along the reaction coordinate. Structure 2000; 8:629-42. [PMID: 10873853 DOI: 10.1016/s0969-2126(00)00149-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND Thymidylate kinase (TMPK) is a nucleoside monophosphate kinase that catalyzes the reversible phosphoryltransfer between ATP and TMP to yield ADP and TDP. In addition to its vital role in supplying precursors for DNA synthesis, human TMPK has an important medical role participating in the activation of a number of anti-HIV prodrugs. RESULTS Crystal structures of human TMPK in complex with TMP and ADP, TMP and the ATP analog AppNHp, TMP with ADP and the phosphoryl analog AlF(3), TDP and ADP, and the bisubstrate analog TP(5)A were determined. The conformations of the P-loop, the LID region, and the adenine-binding loop vary according to the nature of the complex. Substitution of ADP by AppNHp results in partial closure of the P-loop and the rotation of the TMP phosphate group to a catalytically unfavorable position, which rotates back in the AlF(3) complex to a position suitable for in-line attack. In the fully closed state observed in the TP(5)A and the TDP-ADP complexes, Asp15 interacts strongly with the 3'-hydroxyl group of TMP. CONCLUSIONS The observed changes of nucleotide state and conformation and the corresponding protein structural changes are correlated with intermediates occurring along the reaction coordinate and show the sequence of events occurring during phosphate transfer. The low catalytic activity of human TMPK appears to be determined by structural changes required to achieve catalytic competence and it is suggested that a mechanism might exist to accelerate the activity.
Collapse
Affiliation(s)
- N Ostermann
- Department of Physical Biochemistry, Max Planck Institute for Molecular Physiology, Dortmund, 44227, Germany
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Shi G, Gong Y, Savchenko A, Zeikus JG, Xiao B, Ji X, Yan H. Dissecting the nucleotide binding properties of Escherichia coli 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase with fluorescent 3'(2)'-o-anthraniloyladenosine 5'-triphosphate. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1478:289-99. [PMID: 10825540 DOI: 10.1016/s0167-4838(00)00043-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) catalyzes the transfer of pyrophosphate from ATP to 6-hydroxymethyl-7, 8-dihydropterin, the first reaction in the folate biosynthetic pathway. Like other enzymes in the folate pathway, HPPK is an ideal target for development of antimicrobial agents because the enzyme is essential for microorganisms but is absent from humans and animals. Using 3'(2')-o-anthraniloyladenosine 5'-triphosphate as a fluorescent probe, a fluorometric competitive binding assay has been developed for measuring the dissociation constants of various compounds that bind to the ATP site of HPPK. The fluorometric assay has been used to determine the nucleotide specificity and dissect the energetics of the binding of MgATP. The order of affinity of various nucleoside triphosphates for HPPK is MgATP>MgGTP>MgITP>MgXTP approximately MgUTP approximately MgCTP. The affinity of MgATP for HPPK (K(d)=2.6+/-0.06 microM) is 260-fold higher than that of MgGTP and more than 1000-fold higher than those of the other nucleoside triphosphates, indicating that HPPK is highly specific with respect to the base moiety of the nucleotide. The affinity of ATP for HPPK in the presence of Mg(2+) is 15 times that in the absence of Mg(2+), indicating that the metal ion is important for the binding of the nucleotide. Removal of the gamma-phosphate from MgATP reduces its affinity for HPPK by a factor of approximately 21. The affinity of AMP for HPPK is about one third that of ADP and almost the same as that of adenosine. The result suggests that among the three phosphoryl groups of MgATP, the gamma-phosphoryl group is most critical for binding to HPPK and the alpha-phosphoryl group contributes little to the binding of the nucleotide. The affinity of MgATP is 18 times that of MgdATP, indicating that the 2'-hydroxyl group of MgATP is also important for binding. van't Hoff analysis suggests that binding of MgATP is mainly driven by enthalpy at 25 degrees C and the entropy of binding is also in favor of the formation of the HPPK.MgATP complex.
Collapse
Affiliation(s)
- G Shi
- Department of Biochemistry, Michigan State University, East Lansing 48824, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Prinz H, Lavie A, Scheidig AJ, Spangenberg O, Konrad M. Binding of nucleotides to guanylate kinase, p21(ras), and nucleoside-diphosphate kinase studied by nano-electrospray mass spectrometry. J Biol Chem 1999; 274:35337-42. [PMID: 10585400 DOI: 10.1074/jbc.274.50.35337] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The binding of nucleotides to three different nucleotide-binding proteins and to a control protein was studied by means of nano-electrospray mass spectrometry applied to aqueous nondenaturing solutions. The method leads to unambiguous identification of enzyme complexes with substrates and products but does not allow the determination of dissociation constants or even stoichiometries relevant to the binding in solution. For guanylate kinase (EC 2.7.4. 8), the transfer of HPO(3) between nucleotides was observed whenever a ternary complex with adenylate or guanylate nucleotides was formed. Guanosine 5'-tetraphosphate was generated after prolonged incubation with GDP or GTP. Mg(2+) binding was considerably enhanced in functional high affinity complexes, such as observed between guanylate kinase and its bisubstrate inhibitor P(1)-(5'-guanosyl)-P(5)-(5'-adenosyl) pentaphosphate or with the tight nucleotide-binding protein p21(ras) and GDP. Nucleoside-diphosphate kinase (EC 2.7.4.6) itself was phosphorylated in accordance to its known ping-pong mechanism. All nucleotide-binding proteins were shown to bind sulfate (SO(4)(2-)) with presumably high affinity and slow exchange rate. The binding of phosphate (PO(4)(3-)) could be inferred indirectly from competition with SO(4)(2-).
Collapse
Affiliation(s)
- H Prinz
- Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Str. 11, D-44227 Dortmund, Germany.
| | | | | | | | | |
Collapse
|
49
|
Zhang Y, Li Y, Wu Y, Yan H. Structural and functional roles of tyrosine 78 of yeast guanylate kinase. J Biol Chem 1997; 272:19343-50. [PMID: 9235932 DOI: 10.1074/jbc.272.31.19343] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The hydroxyl group of Tyr-78 of yeast guanylate kinase (GK) is hydrogen-bonded to the phosphate of the bound GMP as revealed by x-ray crystallography. The structural and functional roles of Tyr-78 were evaluated by site-directed mutagenesis, kinetics, guanidine hydrochloride-induced denaturation, and nuclear magnetic resonance spectroscopy (NMR). Substitution of Tyr-78 with a phenylalanine resulted in a decrease in kcat by a factor of 131, an increase in Km(GMP) by a factor of 20 and an increase in Ki(GMP) by a factor of 18. Km(MgATP) and Ki(MgATP) were very similar to those of the wild-type (WT) GK. The conformational stability of the mutant was lower than that of the WT by 1.0 kcal/mol as measured by guanidine hydrochloride-induced denaturation. Detailed comparison of the TOCSY and NOESY spectra of the WT GK and the mutant indicated that the conformation of Y78F is little perturbed relative to that of the WT GK at the free state and the conformation of Y78F.GMP complex is also very similar to that of the WT.GMP complex. The results taken together showed that the hydrogen bond between Tyr-78 and GMP stabilizes the GK.GMP complex by 1.7 kcal/mol, the ternary complex by 1.8 kcal/mol, and the transition state by 4.6 kcal/mol. Tyr-78 is not essential for proper folding of the enzyme but it may contribute to the conformational stability. Solvent-accessible aromatic residues were identified by using the paramagnetic probe 4-hydroxy-2, 2,6,6-tetramethylpiperidine-1-oxyl. Comparison of the free and GMP-bound forms of the WT GK by NMR indicated that there are changes in conformation and dynamics upon binding of GMP.
Collapse
Affiliation(s)
- Y Zhang
- Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|