1
|
Wang X, Tse C, Singh A. Discovery and Development of CFTR Modulators for the Treatment of Cystic Fibrosis. J Med Chem 2025; 68:2255-2300. [PMID: 39882833 DOI: 10.1021/acs.jmedchem.4c02547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Cystic fibrosis (CF) is a genetic disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which regulates ion and fluid transport across epithelial cells. Mutations lead to complications, with life-limiting lung disease being the most severe manifestation. Traditional treatments focused on managing symptoms, but advances in understanding CF's molecular basis led to small-molecule CFTR modulators. Ivacaftor, which is a potentiator, was approved for gating mutations. Dual combinations like ivacaftor/lumacaftor and ivacaftor/tezacaftor brought together a potentiator and a class 1 corrector for F508del homozygous patients. Triple-combination CFTR modulators, including ivacaftor/tezacaftor/elexacaftor with an additional class 2 corrector, are now the standard of care for most CF patients, transforming the outlook for this disease. These drugs stabilize and potentiate the CFTR protein, improving lung function, sweat chloride levels, quality of life, and survival. This Perspective discusses CFTR structure and mutations, biological assays, medicinal chemistry research in identifying CFTR modulators, and clinical data of these agents.
Collapse
Affiliation(s)
- Xueqing Wang
- AbbVie Inc., 1000 Gateway Blvd, South San Francisco, California 94080, United States
| | - Chris Tse
- AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Ashvani Singh
- AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
2
|
Ha K, Loeb GB, Park M, Gupta M, Akiyama Y, Argiris J, Pinedo A, Park CH, Brandes N, Ritu F, Ye CJ, Reiter JF, Delling M. ADPKD-Causing Missense Variants in Polycystin-1 Disrupt Cell Surface Localization or Polycystin Channel Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.04.570035. [PMID: 38106161 PMCID: PMC10723288 DOI: 10.1101/2023.12.04.570035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the leading monogenic cause of kidney failure and affects millions of people worldwide. Despite the prevalence of this monogenic disorder, our limited mechanistic understanding of ADPKD has hindered therapeutic development. Here, we successfully developed bioassays that functionally classify missense variants in polycystin-1 (PC1). Strikingly, ADPKD pathogenic missense variants cluster into two major categories: 1) those that disrupt polycystin cell surface localization or 2) those that attenuate polycystin ion channel activity. We found that polycystin channels with defective surface localization could be rescued with a small molecule. We propose that small-molecule-based strategies to improve polycystin cell surface localization and channel function will be effective therapies for ADPKD patients.
Collapse
|
3
|
R S A, R M, Sastri KT, G S M, A R A, V B. Precision medicine advances in cystic fibrosis: Exploring genetic pathways for targeted therapies. Life Sci 2024; 358:123186. [PMID: 39471902 DOI: 10.1016/j.lfs.2024.123186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/14/2024] [Accepted: 10/24/2024] [Indexed: 11/01/2024]
Abstract
Personalized medicine has transformed the treatment of cystic fibrosis (CF), providing customized therapeutic approaches based on individual genetic profiles. This review explores the genetic foundations of CF, focusing on mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene and their implications for the development of the disease. The advent of genetic testing has enabled the association of specific mutations to disease severity, leading to the development of CFTR modulators like Ivacaftor, Lumacaftor, and Tezacaftor. Beyond CFTR mutations, genetic modifiers, including gene replacement therapy, genetic manipulation, lentivirus, and non-viral gene therapy formulations, along with environmental factors, play critical roles in influencing disease expression and outcomes. The identification of these modifiers is essential for optimizing therapeutic strategies. Emerging biomarkers, including inflammatory markers and pulmonary function indicators, aid in early disease detection and monitoring progression. Omics technologies are uncovering novel biomarkers, enabling more precise disease management. Pharmacogenomics has become integral to CF care, allowing for personalized approaches that consider genetic variations influencing drug metabolism, especially in antibiotics and anti-inflammatory therapies. The future of CF treatment lies in precision therapies, including CFTR modulators and cutting-edge techniques like gene therapy and CRISPR-Cas9 for mutation correction. As research evolves, these advances can improve patient outcomes while minimizing adverse effects. Ethical considerations and regulatory challenges remain critical as personalized medicine advances, ensuring equitable access and the long-term effectiveness of these innovative therapies.
Collapse
Affiliation(s)
- Abinesh R S
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Mysuru, India
| | - Madhav R
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Mysuru, India
| | - K Trideva Sastri
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Mysuru, India.
| | - Meghana G S
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Mysuru, India
| | - Akhila A R
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Mysuru, India
| | - Balamuralidhara V
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Mysuru, India
| |
Collapse
|
4
|
Li H, Rodrat M, Al-Salmani MK, Veselu DF, Han ST, Raraigh KS, Cutting GR, Sheppard DN. Two rare variants that affect the same amino acid in CFTR have distinct responses to ivacaftor. J Physiol 2024; 602:333-354. [PMID: 38186087 PMCID: PMC10872379 DOI: 10.1113/jp285727] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Some residues in the cystic fibrosis transmembrane conductance regulator (CFTR) channel are the site of more than one CFTR variant that cause cystic fibrosis. Here, we investigated the function of S1159F and S1159P, two variants associated with different clinical phenotypes, which affect the same pore-lining residue in transmembrane segment 12 that are both strongly potentiated by ivacaftor when expressed in CFBE41o- bronchial epithelial cells. To study the single-channel behaviour of CFTR, we applied the patch-clamp technique to Chinese hamster ovary cells heterologously expressing CFTR variants incubated at 27°C to enhance channel residence at the plasma membrane. S1159F- and S1159P-CFTR formed Cl- channels activated by cAMP-dependent phosphorylation and gated by ATP that exhibited thermostability at 37°C. Both variants modestly reduced the single-channel conductance of CFTR. By severely attenuating channel gating, S1159F- and S1159P-CFTR reduced the open probability (Po ) of wild-type CFTR by ≥75% at ATP (1 mM); S1159F-CFTR caused the greater decrease in Po consistent with its more severe clinical phenotype. Ivacaftor (10-100 nM) doubled the Po of both CFTR variants without restoring Po values to wild-type levels, but concomitantly, ivacaftor decreased current flow through open channels. For S1159F-CFTR, the reduction of current flow was marked at high (supersaturated) ivacaftor concentrations (0.5-1 μM) and voltage-independent, identifying an additional detrimental action of elevated ivacaftor concentrations. In conclusion, S1159F and S1159P are gating variants, which also affect CFTR processing and conduction, but not stability, necessitating the use of combinations of CFTR modulators to optimally restore their channel activity. KEY POINTS: Dysfunction of the ion channel cystic fibrosis transmembrane conductance regulator (CFTR) causes the genetic disease cystic fibrosis (CF). This study investigated two rare pathogenic CFTR variants, S1159F and S1159P, which affect the same amino acid in CFTR, to understand the molecular basis of disease and response to the CFTR-targeted therapy ivacaftor. Both rare variants diminished CFTR function by modestly reducing current flow through the channel and severely inhibiting ATP-dependent channel gating with S1159F exerting the stronger adverse effect, which correlates with its association with more severe disease. Ivacaftor potentiated channel gating by both rare variants without restoring their activity to wild-type levels, but concurrently reduced current flow through open channels, particularly those of S1159F-CFTR. Our data demonstrate that S1159F and S1159P cause CFTR dysfunction by multiple mechanisms that require combinations of CFTR-targeted therapies to fully restore channel function.
Collapse
Affiliation(s)
- Hongyu Li
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Mayuree Rodrat
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
- Center of Research and Development for Biomedical Instrumentation, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Majid K Al-Salmani
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Al Khoudh, Muscat, Sultanate of Oman
| | | | - Sangwoo T Han
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Karen S Raraigh
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Garry R Cutting
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David N Sheppard
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
5
|
Yeh HI, Sutcliffe KJ, Sheppard DN, Hwang TC. CFTR Modulators: From Mechanism to Targeted Therapeutics. Handb Exp Pharmacol 2024; 283:219-247. [PMID: 35972584 DOI: 10.1007/164_2022_597] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
People with cystic fibrosis (CF) suffer from a multi-organ disorder caused by loss-of-function variants in the gene encoding the epithelial anion channel cystic fibrosis transmembrane conductance regulator (CFTR). Tremendous progress has been made in both basic and clinical sciences over the past three decades since the identification of the CFTR gene. Over 90% of people with CF now have access to therapies targeting dysfunctional CFTR. This success was made possible by numerous studies in the field that incrementally paved the way for the development of small molecules known as CFTR modulators. The advent of CFTR modulators transformed this life-threatening illness into a treatable disease by directly binding to the CFTR protein and correcting defects induced by pathogenic variants. In this chapter, we trace the trajectory of structural and functional studies that brought CF therapies from bench to bedside, with an emphasis on mechanistic understanding of CFTR modulators.
Collapse
Affiliation(s)
- Han-I Yeh
- Department of Pharmacology, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Katy J Sutcliffe
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - David N Sheppard
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Tzyh-Chang Hwang
- Department of Pharmacology, National Yang Ming Chiao Tung University, Taipei City, Taiwan.
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA.
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
6
|
Bellacchio E. Exploring the Mechanism of Activation of CFTR by Curcuminoids: An Ensemble Docking Study. Int J Mol Sci 2023; 25:552. [PMID: 38203723 PMCID: PMC10778693 DOI: 10.3390/ijms25010552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Curcumin, a major constituent of turmeric (Curcuma longa L.), has beneficial effects against several diseases. In cystic fibrosis (CF), this compound improves patients' symptoms by recovering the activity of a number of mutants of the cystic fibrosis transmembrane conductance regulator (CFTR). Despite holding promise in the treatment of CF, the curcumin binding site in CFTR and the molecular mechanism of activation of this channel are still unknown. The results of this study, based on docking and molecular dynamics (MD) simulations, allow us to propose that curcumin binds the closed ATP-free CFTR near the nucleotide-binding domain 1 (NBD1)/ICl1/ICl4 interface. The bound ligand, once approached by the nucleotide-binding domain 2 (NBD2) during transient channel opening, lays at a multiple interdomain cross point. Thereafter, curcumin can bridge NBD1 and NBD2, and also ICL1/ICL4 and ICL2/ICL3, finally tightening the same interdomain interactions that normally uphold the open conformation in the wild-type ATP-bound CFTR. The proposed binding site is compatible with biochemical observations made in previous CFTR-curcumin interaction studies. These findings provide a framework for the design of novel drugs that activate CFTR mutants characterized by defects in ATP binding and/or NBD dimerization or even lacking NBD2.
Collapse
Affiliation(s)
- Emanuele Bellacchio
- Genetica Molecolare e Genomica Funzionale, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| |
Collapse
|
7
|
Simon MA, Iordanov I, Szollosi A, Csanády L. Estimating the true stability of the prehydrolytic outward-facing state in an ABC protein. eLife 2023; 12:e90736. [PMID: 37782012 PMCID: PMC10569789 DOI: 10.7554/elife.90736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/01/2023] [Indexed: 10/03/2023] Open
Abstract
CFTR, the anion channel mutated in cystic fibrosis patients, is a model ABC protein whose ATP-driven conformational cycle is observable at single-molecule level in patch-clamp recordings. Bursts of CFTR pore openings are coupled to tight dimerization of its two nucleotide-binding domains (NBDs) and in wild-type (WT) channels are mostly terminated by ATP hydrolysis. The slow rate of non-hydrolytic closure - which determines how tightly bursts and ATP hydrolysis are coupled - is unknown, as burst durations of catalytic site mutants span a range of ~200-fold. Here, we show that Walker A mutation K1250A, Walker B mutation D1370N, and catalytic glutamate mutations E1371S and E1371Q all completely disrupt ATP hydrolysis. True non-hydrolytic closing rate of WT CFTR approximates that of K1250A and E1371S. That rate is slowed ~15-fold in E1371Q by a non-native inter-NBD H-bond, and accelerated ~15-fold in D1370N. These findings uncover unique features of the NBD interface in human CFTR.
Collapse
Affiliation(s)
- Márton A Simon
- Department of Biochemistry, Semmelweis UniversityBudapestHungary
- HCEMM-SE Molecular Channelopathies Research GroupBudapestHungary
- HUN-REN-SE Ion Channel Research GroupBudapestHungary
| | - Iordan Iordanov
- Department of Biochemistry, Semmelweis UniversityBudapestHungary
- HCEMM-SE Molecular Channelopathies Research GroupBudapestHungary
- HUN-REN-SE Ion Channel Research GroupBudapestHungary
| | - Andras Szollosi
- Department of Biochemistry, Semmelweis UniversityBudapestHungary
- HCEMM-SE Molecular Channelopathies Research GroupBudapestHungary
- HUN-REN-SE Ion Channel Research GroupBudapestHungary
| | - László Csanády
- Department of Biochemistry, Semmelweis UniversityBudapestHungary
- HCEMM-SE Molecular Channelopathies Research GroupBudapestHungary
- HUN-REN-SE Ion Channel Research GroupBudapestHungary
| |
Collapse
|
8
|
Hunt WD, McCarty NA, Marin EM, Westafer RS, Yamin PR, Cui G, Eckford AW, Denison DR. A transistor model for the cystic fibrosis transmembrane conductance regulator. BIOPHYSICAL REPORTS 2023; 3:100108. [PMID: 37351179 PMCID: PMC10282560 DOI: 10.1016/j.bpr.2023.100108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/07/2023] [Indexed: 06/24/2023]
Abstract
In this paper we present a transistor circuit model for cystic fibrosis transmembrane conductance regulator (CFTR) that seeks to map the functional form of CFTR both in wild type and mutants. The circuit architecture is configured so that the function, and as much as possible the form, faithfully represents what is known about CFTR from cryo-electron microscopy and molecular dynamics. The model is a mixed analog-digital topology with an AND gate receiving the input from two separate ATP-nucleotide-binding domain binding events. The analog portion of the circuit takes the output from the AND gate as its input. The input to the circuit model and its noise characteristics are extracted from single-channel patch-clamp experiments. The chloride current predicted by the model is then compared with single-channel patch-clamp recordings for wild-type CFTR. We also consider the patch-clamp recordings from CFTR with a G551D point mutation, a clinically relevant mutant that is responsive to therapeutic management. Our circuit model approach enables bioengineering approaches to CFTR and allows biophysicists to use efficient circuit simulation tools to analyze its behavior.
Collapse
Affiliation(s)
| | | | | | | | | | - Guiying Cui
- Emory University School of Medicine, Atlanta, Georgia
| | | | | |
Collapse
|
9
|
Chen J, Thrasher K, Fu L, Wang W, Aghamohammadzadeh S, Wen H, Tang L, Keeling KM, Falk Libby E, Bedwell DM, Rowe SM. The synthetic aminoglycoside ELX-02 induces readthrough of G550X-CFTR producing superfunctional protein that can be further enhanced by CFTR modulators. Am J Physiol Lung Cell Mol Physiol 2023; 324:L756-L770. [PMID: 37014818 PMCID: PMC10202470 DOI: 10.1152/ajplung.00038.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023] Open
Abstract
Ten percent of cystic fibrosis (CF) patients carry a premature termination codon (PTC); no mutation-specific therapies exist for these individuals. ELX-02, a synthetic aminoglycoside, suppresses translation termination at PTCs (i.e., readthrough) by promoting the insertion of an amino acid at the PTC and restoring expression of full-length CFTR protein. The identity of amino acids inserted at PTCs affects the processing and function of the resulting full-length CFTR protein. We examined readthrough of the rare G550X-CFTR nonsense mutation due to its unique properties. We found that forskolin-induced swelling in G550X patient-derived intestinal organoids (PDOs) was significantly higher than in G542X PDOs (both UGA PTCs) with ELX-02 treatment, indicating greater CFTR function from the G550X allele. Using mass spectrometry, we identified tryptophan as the sole amino acid inserted in the G550X position during ELX-02- or G418-mediated readthrough, which differs from the three amino acids (cysteine, arginine, and tryptophan) inserted in the G542X position after treatment with G418. Compared with wild-type CFTR, Fischer rat thyroid (FRT) cells expressing the G550W-CFTR variant protein exhibited significantly increased forskolin-activated Cl- conductance, and G550W-CFTR channels showed increased PKA sensitivity and open probability. After treatment with ELX-02 and CFTR correctors, CFTR function rescued from the G550X allele in FRTs reached 20-40% of the wild-type level. These results suggest that readthrough of G550X produces greater CFTR function because of gain-of-function properties of the CFTR readthrough product that stem from its location in the signature LSGGQ motif found in ATP-binding cassette (ABC) transporters. G550X may be a particularly sensitive target for translational readthrough therapy.NEW & NOTEWORTHY We found that forskolin-induced swelling in G550X-CFTR patient-derived intestinal organoids (PDOs) was significantly higher than in G542X-CFTR PDOs after treatment with ELX-02. Tryptophan (W) was the sole amino acid inserted in the G550X position after readthrough. Resulting G550W-CFTR protein exhibited supernormal CFTR activity, PKA sensitivity, and open probability. These results show that aminoglycoside-induced readthrough of G550X produces greater CFTR function because of the gain-of-function properties of the CFTR readthrough product.
Collapse
Affiliation(s)
- Jianguo Chen
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Kari Thrasher
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Lianwu Fu
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Wei Wang
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | | | - Hui Wen
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Liping Tang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Kim M Keeling
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Emily Falk Libby
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - David M Bedwell
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Steven M Rowe
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
10
|
In Vitro Rescue of the Bile Acid Transport Function of ABCB11 Variants by CFTR Potentiators. Int J Mol Sci 2022; 23:ijms231810758. [PMID: 36142670 PMCID: PMC9502978 DOI: 10.3390/ijms231810758] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
ABCB11 is responsible for biliary bile acid secretion at the canalicular membrane of hepatocytes. Variations in the ABCB11 gene cause a spectrum of rare liver diseases. The most severe form is progressive familial intrahepatic cholestasis type 2 (PFIC2). Current medical treatments have limited efficacy. Here, we report the in vitro study of Abcb11 missense variants identified in PFIC2 patients and their functional rescue using cystic fibrosis transmembrane conductance regulator potentiators. Three ABCB11 disease-causing variations identified in PFIC2 patients (i.e., A257V, T463I and G562D) were reproduced in a plasmid encoding an Abcb11-green fluorescent protein. After transfection, the expression and localization of the variants were studied in HepG2 cells. Taurocholate transport activity and the effect of potentiators were studied in Madin–Darby canine kidney (MDCK) clones coexpressing Abcb11 and the sodium taurocholate cotransporting polypeptide (Ntcp/Slc10A1). As predicted using three-dimensional structure analysis, the three variants were expressed at the canalicular membrane but showed a defective function. Ivacaftor, GLP1837, SBC040 and SBC219 potentiators increased the bile acid transport of A257V and T463I and to a lesser extent, of G562D Abcb11 missense variants. In addition, a synergic effect was observed when ivacaftor was combined with SBC040 or SBC219. Such potentiators could represent new pharmacological approaches for improving the condition of patients with ABCB11 deficiency due to missense variations affecting the function of the transporter.
Collapse
|
11
|
Infield DT, Strickland KM, Gaggar A, McCarty NA. The molecular evolution of function in the CFTR chloride channel. J Gen Physiol 2021; 153:212705. [PMID: 34647973 PMCID: PMC8640958 DOI: 10.1085/jgp.202012625] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/11/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
The ATP-binding cassette (ABC) transporter superfamily includes many proteins of clinical relevance, with genes expressed in all domains of life. Although most members use the energy of ATP binding and hydrolysis to accomplish the active import or export of various substrates across membranes, the cystic fibrosis transmembrane conductance regulator (CFTR) is the only known animal ABC transporter that functions primarily as an ion channel. Defects in CFTR, which is closely related to ABCC subfamily members that bear function as bona fide transporters, underlie the lethal genetic disease cystic fibrosis. This article seeks to integrate structural, functional, and genomic data to begin to answer the critical question of how the function of CFTR evolved to exhibit regulated channel activity. We highlight several examples wherein preexisting features in ABCC transporters were functionally leveraged as is, or altered by molecular evolution, to ultimately support channel function. This includes features that may underlie (1) construction of an anionic channel pore from an anionic substrate transport pathway, (2) establishment and tuning of phosphoregulation, and (3) optimization of channel function by specialized ligand–channel interactions. We also discuss how divergence and conservation may help elucidate the pharmacology of important CFTR modulators.
Collapse
Affiliation(s)
- Daniel T Infield
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
| | | | - Amit Gaggar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL.,Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL.,Birmingham Veterans Administration Medical Center, Birmingham, AL
| | - Nael A McCarty
- Department of Pediatrics, Emory University, Atlanta, GA.,Children's Healthcare of Atlanta Center for Cystic Fibrosis and Airways Disease Research, Emory University, Atlanta, GA
| |
Collapse
|
12
|
Van der Plas SE, Kelgtermans H, Mammoliti O, Menet C, Tricarico G, De Blieck A, Joannesse C, De Munck T, Lambin D, Cowart M, Dropsit S, Martina SLX, Gees M, Wesse AS, Conrath K, Andrews M. Discovery of GLPG2451, a Novel Once Daily Potentiator for the Treatment of Cystic Fibrosis. J Med Chem 2021; 64:343-353. [PMID: 33399458 DOI: 10.1021/acs.jmedchem.0c01796] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cystic fibrosis (CF) is a life-threatening recessive genetic disease caused by mutations in the gene encoding for the cystic fibrosis transmembrane conductance regulator (CFTR). With the discovery of Ivacaftor and Lumacaftor, it has been shown that administration of one or more small molecules can partially restore the CFTR function. Correctors are small molecules that enhance the amount of CFTR on the cell surface, while potentiators improve the gating function of the CFTR channel. Herein, we describe the discovery and optimization of a novel potentiator series. Scaffold hopping, focusing on retaining the different intramolecular contacts, was crucial in the whole discovery process to identify a novel series devoid of genotoxic liabilities. From this series, the clinical candidate GLPG2451 was selected based on its pharmacokinetic properties, allowing QD dosing and based on its low CYP induction potential.
Collapse
Affiliation(s)
| | - Hans Kelgtermans
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | - Oscar Mammoliti
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | - Christel Menet
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | | | - Ann De Blieck
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | | | - Tom De Munck
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | - Dominique Lambin
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | - Marlon Cowart
- Abbvie, Discovery Chemistry and Technology, North Chicago, Illinois 60064, United States
| | | | | | | | | | - Katja Conrath
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | - Martin Andrews
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| |
Collapse
|
13
|
Masood A, Jacob M, Gu X, Abdel Jabar M, Benabdelkamel H, Nizami I, Li L, Dasouki M, Abdel Rahman AM. Distinctive metabolic profiles between Cystic Fibrosis mutational subclasses and lung function. Metabolomics 2021; 17:4. [PMID: 33394183 DOI: 10.1007/s11306-020-01760-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/09/2020] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Cystic fibrosis (CF) is a lethal multisystemic disease of a monogenic origin with numerous mutations. Functional defects in the cystic fibrosis transmembrane conductance receptor (CFTR) protein based on these mutations are categorised into distinct classes having different clinical presentations and disease severity. OBJECTIVES The present study aimed to create a comprehensive metabolomic profile of altered metabolites in patients with CF, among different classes and in relation to lung function. METHODS A chemical isotope labeling liquid chromatography-mass spectrometry metabolomics was used to study the serum metabolic profiles of young and adult CF (n = 39) patients and healthy controls (n = 30). Comparisons were made at three levels, CF vs. controls, among mutational classes of CF, between CF class III and IV, and correlated the lung function findings. RESULTS A distinctive metabolic profile was observed in the three analyses. 78, 20, and 13 significantly differentially dysregulated metabolites were identified in the patients with CF, among the different classes and between class III and IV, respectively. The significantly identified metabolites included amino acids, di-, and tri-peptides, glutathione, glutamine, glutamate, and arginine metabolism. The top significant metabolites include 1-Aminopropan-2-ol, ophthalmate, serotonin, cystathionine, and gamma-glutamylglutamic acid. Lung function represented by an above-average FEV1% level was associated with decreased glutamic acid and increased guanosine levels. CONCLUSION Metabolomic profiling identified alterations in different amino acids and dipeptides, involved in regulating glutathione metabolism. Two metabolites, 3,4-dihydroxymandelate-3-O-sulfate and 5-Aminopentanoic acid, were identified in common between the three anlayses and may represent as highly sensitive biomarkers for CF.
Collapse
Affiliation(s)
- Afshan Masood
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, PO. Box 2925 (98), Riyadh, 11461, Saudi Arabia
| | - Minnie Jacob
- Metabolomics Section, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Zahrawi Street, Al Maather, PO. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Xinyun Gu
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Mai Abdel Jabar
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Hicham Benabdelkamel
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, PO. Box 2925 (98), Riyadh, 11461, Saudi Arabia
| | - Imran Nizami
- Lung Transplant Section, Organ Transplant Center, King Faisal Specialist Hospital and Research Center, Zahrawi Street, Al Maather, Riyadh, 11211, Saudi Arabia
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Majed Dasouki
- Metabolomics Section, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Zahrawi Street, Al Maather, PO. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Anas M Abdel Rahman
- Metabolomics Section, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Zahrawi Street, Al Maather, PO. Box 3354, Riyadh, 11211, Saudi Arabia.
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh, Saudi Arabia.
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X7, Canada.
| |
Collapse
|
14
|
Lee CS, Oh DE, Kim TH. Label-free assay of protein kinase A activity and inhibition in cancer cell using electrochemically-prepared AuNP/rGO nanohybrid electrode modified with C-Kemptide. Talanta 2020; 215:120899. [DOI: 10.1016/j.talanta.2020.120899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/01/2022]
|
15
|
Ahmadi S, Wu YS, Li M, Ip W, Lloyd-Kuzik A, Di Paola M, Du K, Xia S, Lew A, Bozoky Z, Forman-Kay J, Bear CE, Gonska T. Augmentation of Cystic Fibrosis Transmembrane Conductance Regulator Function in Human Bronchial Epithelial Cells via SLC6A14-Dependent Amino Acid Uptake. Implications for Treatment of Cystic Fibrosis. Am J Respir Cell Mol Biol 2020; 61:755-764. [PMID: 31189070 DOI: 10.1165/rcmb.2019-0094oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
SLC6A14-mediated l-arginine transport has been shown to augment the residual anion channel activity of the major mutant, F508del-CFTR, in the murine gastrointestinal tract. It is not yet known if this transporter augments residual and pharmacological corrected F508del-CFTR in primary airway epithelia. We sought to determine the role of l-arginine uptake via SLC6A14 in modifying F508del-CFTR channel activity in airway cells from patients with cystic fibrosis (CF). Human bronchial epithelial (HBE) cells from lung explants of patients without CF (HBE) and those with CF (CF-HBE) were used for H3-flux, airway surface liquid, and Ussing chamber studies. We used α-methyltryptophan as a specific inhibitor for SLC6A14. CFBE41o-, a commonly used CF airway cell line, was employed for studying the mechanism of the functional interaction between SLC6A14 and F508del-CFTR. SLC6A14 is functionally expressed in CF-HBE cells. l-arginine uptake via SLC6A14 augmented F508del-CFTR function at baseline and after treatment with lumacaftor. SLC6A14-mediated l-arginine uptake also increased the airway surface liquid in CF-HBE cells. Using CFBE41o cells, we showed that the positive SLC6A14 effect was mainly dependent on the nitric oxide (NO) synthase activity, nitrogen oxides, including NO, and phosphorylation by protein kinase G. These finding were confirmed in CF-HBE, as inducible NO synthase inhibition abrogated the functional interaction between SLC6A14 and pharmacological corrected F508del-CFTR. In summary, SLC6A14-mediated l-arginine transport augments residual F508del-CFTR channel function via a noncanonical, NO pathway. This effect is enhanced with increasing pharmacological rescue of F508del-CFTR to the membrane. The current study demonstrates how endogenous pathways can be used for the development of companion therapy in CF.
Collapse
Affiliation(s)
- Saumel Ahmadi
- Department of Physiology.,Programme in Molecular Medicine.,Programme in Genetics and Genome Biology, and
| | - Yu-Sheng Wu
- Department of Physiology.,Programme in Molecular Medicine
| | - Mingyuan Li
- Programme in Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Wan Ip
- Programme in Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Andrew Lloyd-Kuzik
- Department of Physiology.,Programme in Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Kai Du
- Department of Biochemistry, and
| | - Sunny Xia
- Department of Physiology.,Programme in Molecular Medicine
| | | | | | - Julie Forman-Kay
- Department of Biochemistry, and.,Programme in Molecular Medicine
| | - Christine E Bear
- Department of Physiology.,Department of Biochemistry, and.,Programme in Molecular Medicine
| | - Tanja Gonska
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada; and.,Programme in Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Chen JH. Protein kinase A phosphorylation potentiates cystic fibrosis transmembrane conductance regulator gating by relieving autoinhibition on the stimulatory C terminus of the regulatory domain. J Biol Chem 2020; 295:4577-4590. [PMID: 32102849 DOI: 10.1074/jbc.ra119.008427] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 02/25/2020] [Indexed: 01/12/2023] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel activated by protein kinase A (PKA) phosphorylation on the regulatory (R) domain. Phosphorylation at several R domain residues stimulates ATP-dependent channel openings and closings, termed channel gating. To explore the protein segment responsible for channel potentiation and PKA-dependent activation, deletion mutations were constructed by removing one to three protein segments of the R domain including residues 708-759 (ΔR708-759), R760-783, and R784-835, each of which contains one or two PKA phosphorylation sites. Deletion of R708-759 or R760-783 had little effect on CFTR gating, whereas all mutations lacking R784-835 reduced CFTR activity by decreasing the mean burst duration and increasing the interburst interval (IBI). The data suggest that R784-835 plays a major role in stimulating CFTR gating. For ATP-associated regulation, ΔR784-835 had minor impact on gating potentiation by 2'dATP, CaATP, and pyrophosphate. Interestingly, introducing a phosphorylated peptide matching R809-835 shortened the IBI of ΔR708-835-CFTR. Consistently, ΔR815-835, but not ΔR784-814, enhanced IBI, whereas both reduced mean burst duration. These data suggest that the entirety of R784-835 is required for stabilizing the open state of CFTR; however, R815-835, through interactions with the channel, is dominant for enhancing the opening rate. Of note, PKA markedly decreased the IBI of ΔR708-783-CFTR. Conversely, the IBI of ΔR708-814-CFTR was short and PKA-independent. These data reveal that for stimulating CFTR gating, PKA phosphorylation may relieve R784-814-mediated autoinhibition that prevents IBI shortening by R815-835 This mechanism may elucidate how the R domain potentiates channel gating and may unveil CFTR stimulation by other protein kinases.
Collapse
Affiliation(s)
- Jeng-Haur Chen
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang Province 321004, China .,University of Hong Kong Shenzhen Institute of Research and Innovation, Shenzhen 518057, China .,Department of Internal Medicine and Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
17
|
Farkas B, Tordai H, Padányi R, Tordai A, Gera J, Paragi G, Hegedűs T. Discovering the chloride pathway in the CFTR channel. Cell Mol Life Sci 2020; 77:765-778. [PMID: 31327045 PMCID: PMC7039865 DOI: 10.1007/s00018-019-03211-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/22/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022]
Abstract
Cystic fibrosis (CF), a lethal monogenic disease, is caused by pathogenic variants of the CFTR chloride channel. The majority of CF mutations affect protein folding and stability leading overall to diminished apical anion conductance of epithelial cells. The recently published cryo-EM structures of full-length human and zebrafish CFTR provide a good model to gain insight into structure-function relationships of CFTR variants. Although, some of the structures were determined in the phosphorylated and ATP-bound active state, none of the static structures showed an open pathway for chloride permeation. Therefore, we performed molecular dynamics simulations to generate a conformational ensemble of the protein and used channel detecting algorithms to identify conformations with an opened channel. Our simulations indicate a main intracellular entry at TM4/6, a secondary pore at TM10/12, and a bottleneck region involving numerous amino acids from TM1, TM6, and TM12 in accordance with experiments. Since chloride ions entered the pathway in our equilibrium simulations, but did not traverse the bottleneck region, we performed metadynamics simulations, which revealed two possible exits. One of the chloride ions exits includes hydrophobic lipid tails that may explain the lipid-dependency of CFTR function. In summary, our in silico study provides a detailed description of a potential chloride channel pathway based on a recent cryo-EM structure and may help to understand the gating of the CFTR chloride channel, thus contributing to novel strategies to rescue dysfunctional mutants.
Collapse
Affiliation(s)
- Bianka Farkas
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
- Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, Hungary
| | - Hedvig Tordai
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Rita Padányi
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
- MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Attila Tordai
- Department of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - János Gera
- Department of Medical Chemistry, University of Szeged, Szeged, Hungary
| | - Gábor Paragi
- MTA-SZTE Biomimetic System Research Group, Hungarian Academy of Sciences, Szeged, Hungary
- Institute of Physics, University of Pécs, Pecs, Hungary
| | - Tamás Hegedűs
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.
- MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
18
|
Bickers SC, Sayewich JS, Kanelis V. Intrinsically disordered regions regulate the activities of ATP binding cassette transporters. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183202. [PMID: 31972165 DOI: 10.1016/j.bbamem.2020.183202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/11/2022]
Abstract
ATP binding cassette (ABC) proteins are a large family of membrane proteins present in all kingdoms of life. These multi-domain proteins are comprised, at minimum, of two membrane-spanning domains (MSD1, MSD2) and two cytosolic nucleotide binding domains (NBD1, NBD2). ATP binding and hydrolysis at the NBDs enables ABC proteins to actively transport solutes across membranes, regulate activities of other proteins, or function as channels. Like most eukaryotic membrane proteins, ABC proteins contain intrinsically disordered regions (IDRs). These conformationally dynamic regions in ABC proteins possess residual structure, are sites of phosphorylation, and mediate protein-protein interactions. Here, we review the role of IDRs in regulating ABC protein activity.
Collapse
Affiliation(s)
- Sarah C Bickers
- Department of Chemistry, University of Toronto, Toronto, ON, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Jonathan S Sayewich
- Department of Chemistry, University of Toronto, Toronto, ON, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Voula Kanelis
- Department of Chemistry, University of Toronto, Toronto, ON, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
19
|
D’Alicandro V, Romania P, Melaiu O, Fruci D. Role of genetic variations on MHC class I antigen-processing genes in human cancer and viral-mediated diseases. Mol Immunol 2019; 113:11-15. [DOI: 10.1016/j.molimm.2018.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/11/2018] [Accepted: 03/29/2018] [Indexed: 01/09/2023]
|
20
|
Lai N, Kummitha C, Drumm M, Hoppel C. Alterations of skeletal muscle bioenergetics in a mouse with F508del mutation leading to a cystic fibrosis-like condition. Am J Physiol Endocrinol Metab 2019; 317:E327-E336. [PMID: 31211618 PMCID: PMC6732463 DOI: 10.1152/ajpendo.00064.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High energy expenditure is reported in cystic fibrosis (CF) animal models and patients. Alterations in skeletal muscle oxidative capacity, fuel utilization, and the creatine kinase-phosphocreatine system suggest mitochondrial dysfunction. Studies were performed on congenic C57BL/6J and F508del (Cftrtm1kth) mice. Indirect calorimetry was used to measure gas exchange to evaluate aerobic capacity during treadmill exercise. The bioenergetic function of skeletal muscle subsarcolemmal (SSM) and interfibrillar mitochondria (IFM) was evaluated using an integrated approach combining measurement of the rate of oxidative phosphorylation by polarography and of electron transport chain activities by spectrophotometry. CF mice have reduced maximal aerobic capacity. In SSM of these mice, oxidative phosphorylation was impaired in the presence of complex I, II, III, and IV substrates except when glutamate was used as substrate. This impairment appeared to be caused by a defect in complex V activity, whereas the oxidative system of the electron transport chain was unchanged. In IFM, oxidative phosphorylation and electron transport chain activities were preserved, whereas complex V activity was reduced, in CF. Furthermore, creatine kinase activity was reduced in both SSM and IFM of CF skeletal muscle. The decreased complex V activity in SSM resulted in reduced oxidative phosphorylation, which could explain the reduced skeletal muscle response to exercise in CF mice. The decrease in mitochondrial creatine kinase activity also contributed to this poor exercise response.
Collapse
Affiliation(s)
- Nicola Lai
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia
- Biomedical Engineering Institute, Old Dominion University, Norfolk, Virginia
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Chinna Kummitha
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia
- Biomedical Engineering Institute, Old Dominion University, Norfolk, Virginia
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Mitchell Drumm
- Department of Genetics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Charles Hoppel
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
- Center for Mitochondrial Disease, School of Medicine, Case Western Reserve University, Cleveland, Ohio
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
21
|
Cholesterol Interaction Directly Enhances Intrinsic Activity of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). Cells 2019; 8:cells8080804. [PMID: 31370288 PMCID: PMC6721619 DOI: 10.3390/cells8080804] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/23/2019] [Accepted: 07/29/2019] [Indexed: 12/15/2022] Open
Abstract
The recent cryo-electron microscopy structures of zebrafish and the human cystic fibrosis transmembrane conductance regulator (CFTR) provided unprecedented insights into putative mechanisms underlying gating of its anion channel activity. Interestingly, despite predictions based on channel activity measurements in biological membranes, the structure of the detergent purified, phosphorylated, and ATP-bound human CFTR protein did not reveal a stably open conduction pathway. This study tested the hypothesis that the functional properties of the detergent solubilized CFTR protein used for structural determinations are different from those exhibited by CFTR purified under conditions that retain associated lipids native to the membrane. It was found that CFTR purified together with phospholipids and cholesterol using amphipol: A8-35, exhibited higher rates of catalytic activity, phosphorylation dependent channel activation and potentiation by the therapeutic compound, ivacaftor, than did CFTR purified in detergent. The catalytic activity of phosphorylated CFTR detergent micelles was rescued by the addition of phospholipids plus cholesterol, but not by phospholipids alone, arguing for a specific role for cholesterol in modulating this function. In summary, these studies highlight the importance of lipid interactions in the intrinsic activities and pharmacological potentiation of CFTR.
Collapse
|
22
|
Csanády L, Töröcsik B. Cystic fibrosis drug ivacaftor stimulates CFTR channels at picomolar concentrations. eLife 2019; 8:46450. [PMID: 31205003 PMCID: PMC6594753 DOI: 10.7554/elife.46450] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/14/2019] [Indexed: 02/07/2023] Open
Abstract
The devastating inherited disease cystic fibrosis (CF) is caused by mutations of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) anion channel. The recent approval of the CFTR potentiator drug ivacaftor (Vx-770) for the treatment of CF patients has marked the advent of causative CF therapy. Currently, thousands of patients are being treated with the drug, and its molecular mechanism of action is under intensive investigation. Here we determine the solubility profile and true stimulatory potency of Vx-770 towards wild-type (WT) and mutant human CFTR channels in cell-free patches of membrane. We find that its aqueous solubility is ~200 fold lower (~60 nanomolar), whereas the potency of its stimulatory effect is >100 fold higher, than reported, and is unexpectedly fully reversible. Strong, but greatly delayed, channel activation by picomolar Vx-770 identifies multiple sequential slow steps in the activation pathway. These findings provide solid guidelines for the design of in vitro studies using Vx-770.
Collapse
Affiliation(s)
- László Csanády
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary.,MTA-SE Ion Channel Research Group, Semmelweis University, Budapest, Hungary
| | - Beáta Töröcsik
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary.,MTA-SE Ion Channel Research Group, Semmelweis University, Budapest, Hungary
| |
Collapse
|
23
|
Yeh HI, Qiu L, Sohma Y, Conrath K, Zou X, Hwang TC. Identifying the molecular target sites for CFTR potentiators GLPG1837 and VX-770. J Gen Physiol 2019; 151:912-928. [PMID: 31164398 PMCID: PMC6605684 DOI: 10.1085/jgp.201912360] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/29/2019] [Accepted: 05/10/2019] [Indexed: 01/14/2023] Open
Abstract
Identification of the binding sites for small molecules that alleviate gating
defects in CFTR would assist rational drug design for the treatment of cystic
fibrosis. Yeh et al. identify two potential binding sites for prototypical CFTR
potentiators at the interface of CFTR’s two transmembrane domains. The past two decades have witnessed major breakthroughs in developing compounds
that target the chloride channel CFTR for the treatment of patients with cystic
fibrosis. However, further improvement in affinity and efficacy for these CFTR
modulators will require insights into the molecular interactions between CFTR
modulators and their binding targets. In this study, we use in silico molecular
docking to identify potential binding sites for GLPG1837, a CFTR potentiator
that may share a common mechanism and binding site with VX-770, the FDA-approved
drug for patients carrying mutations with gating defects. Among the five binding
sites predicted by docking, the two top-scoring sites are located at the
interface between CFTR’s two transmembrane domains: site I consists of
D924, N1138, and S1141, and site IIN includes F229, F236, Y304, F312,
and F931. Using mutagenesis to probe the importance of these sites for GLPG187
binding, we find that disruption of predicted hydrogen-bonding interactions by
mutation of D924 decreases apparent affinity, while hydrophobic amino acids
substitutions at N1138 and introduction of positively charged amino acids at
S1141 improve the apparent affinity for GLPG1837. Alanine substitutions at Y304,
F312, and F931 (site IIN) decrease the affinity for GLPG1837, whereas
alanine substitutions at F229 and F236 (also site IIN), or at
residues in the other three lower-scoring sites, have little effect. In
addition, current relaxation analysis to assess the apparent dissociation rate
of VX-770 yields results consistent with the dose–response experiments
for GLPG8137, with the dissociation rate of VX-770 accelerated by D924N, F236A,
Y304A, and F312A, but decelerated by N1138L and S1141K mutations. Collectively,
these data identify two potential binding sites for GLPG1837 and VX-770 in CFTR.
We discuss the pros and cons of evidence for these two loci and the implications
for future drug design.
Collapse
Affiliation(s)
- Han-I Yeh
- Dalton Cardiovascular Research Center and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
| | - Liming Qiu
- Dalton Cardiovascular Research Center, Department of Physics and Astronomy, Department of Biochemistry, and Informatics Institute, University of Missouri, Columbia, MO
| | - Yoshiro Sohma
- Dalton Cardiovascular Research Center and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO.,Department of Pharmaceutical Sciences, School of Pharmacy and Center for Medical Science, International University of Health and Welfare, Tochigi, Japan
| | | | - Xiaoqin Zou
- Dalton Cardiovascular Research Center, Department of Physics and Astronomy, Department of Biochemistry, and Informatics Institute, University of Missouri, Columbia, MO
| | - Tzyh-Chang Hwang
- Dalton Cardiovascular Research Center and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
| |
Collapse
|
24
|
Habib ARR, Kajbafzadeh M, Desai S, Yang CL, Skolnik K, Quon BS. A Systematic Review of the Clinical Efficacy and Safety of CFTR Modulators in Cystic Fibrosis. Sci Rep 2019; 9:7234. [PMID: 31076617 PMCID: PMC6510767 DOI: 10.1038/s41598-019-43652-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 04/27/2019] [Indexed: 12/20/2022] Open
Abstract
Several placebo-controlled trials have been recently published evaluating novel therapies targeting the defective CFTR protein. This systematic review examines the clinical efficacy and safety of CFTR modulators in individuals with cystic fibrosis (CF) with specific genetic mutations. Online sources were searched for placebo-controlled, parallel-design clinical trials investigating CFTR modulators from January 1, 2005 to March 31, 2018. The primary outcome of interest was FEV1% predicted (ppFEV1). Fourteen RCTs met our eligibility criteria. The largest improvement in ppFEV1 favouring treatment was observed for ivacaftor (IVA) in G551D individuals (≥6 years old). Both tezacaftor-ivacaftor (TEZ-IVA) and lumacaftor-ivacaftor (LUM-IVA) also improved ppFEV1 in F508del homozygous individuals but there was increased reporting of respiratory adverse events with LUM-IVA compared to placebo. IVA also significantly improved ppFEV1 in a sub-group of individuals ≥18 years old with an R117H mutation. No significant improvements in ppFEV1 were observed for IVA, LUM, or TEZ in F508del homozygous individuals, LUM or LUM-IVA in F508del heterozygous individuals, or ataluren in individuals with a nonsense mutation. Significant improvements in ppFEV1 and other clinical outcomes were observed for IVA in G551D individuals, TEV-IVA and LUM-IVA in F508del homozygous individuals, and IVA in adults with a R117H mutation.
Collapse
Affiliation(s)
| | | | - Sameer Desai
- School of Population and Public Health, University of British Columbia, Vancouver, Canada
| | - Connie L Yang
- Division of Respiratory Medicine, Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Kate Skolnik
- Division of Respirology, Department of Medicine, University of Calgary, Alberta, Canada
| | - Bradley S Quon
- Centre for Heart Lung Innovation, St. Paul's Hospital, Department of Medicine, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
25
|
Strickland KM, Stock G, Cui G, Hwang H, Infield DT, Schmidt-Krey I, McCarty NA, Gumbart JC. ATP-Dependent Signaling in Simulations of a Revised Model of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). J Phys Chem B 2019; 123:3177-3188. [PMID: 30921517 DOI: 10.1021/acs.jpcb.8b11970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is a member of the ATP-binding cassette (ABC) transporter superfamily that has uniquely evolved to function as a chloride channel. It binds and hydrolyzes ATP at its nucleotide binding domains to form a pore providing a diffusive pathway within its transmembrane domains. CFTR is the only known protein from the ABC superfamily with channel activity, and its dysfunction causes the disease cystic fibrosis. While much is known about the functional aspects of CFTR, significant gaps remain, such as the structure-function relationship underlying signaling of ATP binding. In the present work, we refined an existing homology model using an intermediate-resolution (9 Å) published cryo-electron microscopy map. The newly derived models have been simulated in equilibrium molecular dynamics simulations for a total of 2.5 μs in multiple ATP-occupancy states. Putative conformational movements connecting ATP binding with pore formation are elucidated and quantified. Additionally, new interdomain interactions between E543, K968, and K1292 have been identified and confirmed experimentally; these interactions may be relevant for signaling ATP binding and hydrolysis to the transmembrane domains and induction of pore opening.
Collapse
Affiliation(s)
- Kerry M Strickland
- School of Chemistry and Biochemistry , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Gorman Stock
- School of Chemistry and Biochemistry , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Guiying Cui
- Division of Pulmonology, Allergy and Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Center for Cystic Fibrosis and Airways Disease Research, Emory+Children's Pediatric Research Center , Emory University School of Medicine and Children's Healthcare of Atlanta , Atlanta , Georgia 30322 , United States
| | - Hyea Hwang
- School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Daniel T Infield
- Division of Pulmonology, Allergy and Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Center for Cystic Fibrosis and Airways Disease Research, Emory+Children's Pediatric Research Center , Emory University School of Medicine and Children's Healthcare of Atlanta , Atlanta , Georgia 30322 , United States
| | - Ingeborg Schmidt-Krey
- School of Chemistry and Biochemistry , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States.,School of Biological Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States.,Parker H. Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Nael A McCarty
- Division of Pulmonology, Allergy and Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Center for Cystic Fibrosis and Airways Disease Research, Emory+Children's Pediatric Research Center , Emory University School of Medicine and Children's Healthcare of Atlanta , Atlanta , Georgia 30322 , United States.,Parker H. Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - James C Gumbart
- School of Chemistry and Biochemistry , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States.,School of Biological Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States.,Parker H. Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States.,School of Physics , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|
26
|
Csanády L, Vergani P, Gadsby DC. STRUCTURE, GATING, AND REGULATION OF THE CFTR ANION CHANNEL. Physiol Rev 2019; 99:707-738. [PMID: 30516439 DOI: 10.1152/physrev.00007.2018] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) belongs to the ATP binding cassette (ABC) transporter superfamily but functions as an anion channel crucial for salt and water transport across epithelial cells. CFTR dysfunction, because of mutations, causes cystic fibrosis (CF). The anion-selective pore of the CFTR protein is formed by its two transmembrane domains (TMDs) and regulated by its cytosolic domains: two nucleotide binding domains (NBDs) and a regulatory (R) domain. Channel activation requires phosphorylation of the R domain by cAMP-dependent protein kinase (PKA), and pore opening and closing (gating) of phosphorylated channels is driven by ATP binding and hydrolysis at the NBDs. This review summarizes available information on structure and mechanism of the CFTR protein, with a particular focus on atomic-level insight gained from recent cryo-electron microscopic structures and on the molecular mechanisms of channel gating and its regulation. The pharmacological mechanisms of small molecules targeting CFTR's ion channel function, aimed at treating patients suffering from CF and other diseases, are briefly discussed.
Collapse
Affiliation(s)
- László Csanády
- Department of Medical Biochemistry, Semmelweis University , Budapest , Hungary ; MTA-SE Ion Channel Research Group, Budapest , Hungary ; Department of Neuroscience, Physiology and Pharmacology, University College London , London , United Kingdom ; and Laboratory of Cardiac/Membrane Physiology, The Rockefeller University , New York, New York
| | - Paola Vergani
- Department of Medical Biochemistry, Semmelweis University , Budapest , Hungary ; MTA-SE Ion Channel Research Group, Budapest , Hungary ; Department of Neuroscience, Physiology and Pharmacology, University College London , London , United Kingdom ; and Laboratory of Cardiac/Membrane Physiology, The Rockefeller University , New York, New York
| | - David C Gadsby
- Department of Medical Biochemistry, Semmelweis University , Budapest , Hungary ; MTA-SE Ion Channel Research Group, Budapest , Hungary ; Department of Neuroscience, Physiology and Pharmacology, University College London , London , United Kingdom ; and Laboratory of Cardiac/Membrane Physiology, The Rockefeller University , New York, New York
| |
Collapse
|
27
|
Sooklal CR, López-Alonso JP, Papp N, Kanelis V. Phosphorylation Alters the Residual Structure and Interactions of the Regulatory L1 Linker Connecting NBD1 to the Membrane-Bound Domain in SUR2B. Biochemistry 2018; 57:6278-6292. [PMID: 30273482 DOI: 10.1021/acs.biochem.8b00503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
ATP-sensitive potassium (KATP) channels in vascular smooth muscle are comprised of four pore-forming Kir6.1 subunits and four copies of the sulfonylurea receptor 2B (SUR2B), which acts as a regulator of channel gating. Recent electron cryo-microscopy (cryo-EM) structures of the pancreatic KATP channel show a central Kir6.2 pore that is surrounded by the SUR1 subunits. Mutations in the L1 linker connecting the first membrane-spanning domain and the first nucleotide binding domain (NBD1) in SUR2B cause cardiac disease; however, this part of the protein is not resolved in the cryo-EM structures. Phosphorylation of the L1 linker, by protein kinase A, disrupts its interactions with NBD1, which increases the MgATP affinity of NBD1 and KATP channel gating. To elucidate the mode by which the L1 linker regulates KATP channels, we have probed the effects of phosphorylation on its structure and interactions using nuclear magnetic resonance (NMR) spectroscopy and other techniques. We demonstrate that the L1 linker is an intrinsically disordered region of SUR2B but possesses residual secondary and compact structure, both of which are disrupted with phosphorylation. NMR binding studies demonstrate that phosphorylation alters the mode by which the L1 linker interacts with NBD1. The data show that L1 linker residues with the greatest α-helical propensity also form the most stable interaction with NBD1, highlighting a hot spot within the L1 linker. This hot spot is the site of disease-causing mutations and is associated with other processes that regulate KATP channel gating. These data provide insights into the mode by which the phospho-regulatory L1 linker regulates KATP channels.
Collapse
Affiliation(s)
- Clarissa R Sooklal
- Department of Chemistry , University of Toronto , Toronto , ON , Canada M5S 3H8.,Department of Chemical and Physical Sciences , University of Toronto Mississauga , Mississauga , ON , Canada L5L 1C6
| | - Jorge P López-Alonso
- Department of Chemistry , University of Toronto , Toronto , ON , Canada M5S 3H8.,Department of Chemical and Physical Sciences , University of Toronto Mississauga , Mississauga , ON , Canada L5L 1C6
| | - Natalia Papp
- Department of Chemical and Physical Sciences , University of Toronto Mississauga , Mississauga , ON , Canada L5L 1C6
| | - Voula Kanelis
- Department of Chemistry , University of Toronto , Toronto , ON , Canada M5S 3H8.,Department of Chemical and Physical Sciences , University of Toronto Mississauga , Mississauga , ON , Canada L5L 1C6.,Department of Cell and Systems Biology , University of Toronto , Toronto , ON , Canada M5S 3G5
| |
Collapse
|
28
|
Webster MJ, Tarran R. Slippery When Wet: Airway Surface Liquid Homeostasis and Mucus Hydration. CURRENT TOPICS IN MEMBRANES 2018; 81:293-335. [PMID: 30243435 DOI: 10.1016/bs.ctm.2018.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ability to regulate cell volume is crucial for normal physiology; equally the regulation of extracellular fluid homeostasis is of great importance. Alteration of normal extracellular fluid homeostasis contributes to the development of several diseases including cystic fibrosis. With regard to the airway surface liquid (ASL), which lies apically on top of airway epithelia, ion content, pH, mucin and protein abundance must be tightly regulated. Furthermore, airway epithelia must be able to switch from an absorptive to a secretory state as required. A heterogeneous population of airway epithelial cells regulate ASL solute and solvent composition, and directly secrete large mucin molecules, antimicrobials, proteases and soluble mediators into the airway lumen. This review focuses on how epithelial ion transport influences ASL hydration and ASL pH, with a specific focus on the roles of anion and cation channels and exchangers. The role of ions and pH in mucin expansion is also addressed. With regard to fluid volume regulation, we discuss the roles of nucleotides, adenosine and the short palate lung and nasal epithelial clone 1 (SPLUNC1) as soluble ASL mediators. Together, these mechanisms directly influence ciliary beating and in turn mucociliary clearance to maintain sterility and to detoxify the airways. Whilst all of these components are regulated in normal airways, defective ion transport and/or mucin secretion proves detrimental to lung homeostasis as such we address how defective ion and fluid transport, and a loss of homeostatic mechanisms, contributes to the development of pathophysiologies associated with cystic fibrosis.
Collapse
Affiliation(s)
- Megan J Webster
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Robert Tarran
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
29
|
Aleksandrov LA, Fay JF, Riordan JR. R-Domain Phosphorylation by Protein Kinase A Stimulates Dissociation of Unhydrolyzed ATP from the First Nucleotide-Binding Site of the Cystic Fibrosis Transmembrane Conductance Regulator. Biochemistry 2018; 57:5073-5075. [PMID: 30109929 DOI: 10.1021/acs.biochem.8b00646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is an asymmetric ATP-binding cassette transporter in which ATP hydrolysis occurs only at the second of the two composite nucleotide-binding sites whereas there are noncanonical substitutions of key catalytic residues in the first site. Therefore, in widely accepted models of CFTR function, ATP is depicted as remaining bound at the first site while it is hydrolyzed at the second site. However, the long lifetime of ATP at nucleotide-binding domain 1 (NBD1) had been measured under conditions where the channel had not been activated by phosphorylation. Here we show that phosphorylation by protein kinase A (PKA), obligatory for channel activation, strongly accelerates dissociation of the unhydrolyzed ATP from NBD1 of both full-length and NBD2-deleted CFTR. This stimulation of nucleotide release results from phosphorylation of the CFTR regulatory domain (residues 634-835) (R-domain). Mimicking phosphorylation by mutating the eight phosphorylation sites in the R-domain (8SE) has the same robust effect on accelerating the dissociation of ATP from NBD1. These findings provide new insight into relationships between R-domain phosphorylation and ATP binding and hydrolysis, the two main CFTR regulatory pathways.
Collapse
Affiliation(s)
- Luba A Aleksandrov
- University of North Carolina , Chapel Hill , North Carolina 27599 , United States
| | - Jonathan F Fay
- University of North Carolina , Chapel Hill , North Carolina 27599 , United States
| | - John R Riordan
- University of North Carolina , Chapel Hill , North Carolina 27599 , United States
| |
Collapse
|
30
|
Hwang TC, Yeh JT, Zhang J, Yu YC, Yeh HI, Destefano S. Structural mechanisms of CFTR function and dysfunction. J Gen Physiol 2018; 150:539-570. [PMID: 29581173 PMCID: PMC5881446 DOI: 10.1085/jgp.201711946] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/05/2018] [Indexed: 12/18/2022] Open
Abstract
Hwang et al. integrate new structural insights with prior functional studies to reveal the functional anatomy of CFTR chloride channels. Cystic fibrosis (CF) transmembrane conductance regulator (CFTR) chloride channel plays a critical role in regulating transepithelial movement of water and electrolyte in exocrine tissues. Malfunction of the channel because of mutations of the cftr gene results in CF, the most prevalent lethal genetic disease among Caucasians. Recently, the publication of atomic structures of CFTR in two distinct conformations provides, for the first time, a clear overview of the protein. However, given the highly dynamic nature of the interactions among CFTR’s various domains, better understanding of the functional significance of these structures requires an integration of these new structural insights with previously established biochemical/biophysical studies, which is the goal of this review.
Collapse
Affiliation(s)
- Tzyh-Chang Hwang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO .,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO.,Department of Biological Engineering, University of Missouri, Columbia, MO
| | - Jiunn-Tyng Yeh
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO
| | - Jingyao Zhang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO.,Department of Biological Engineering, University of Missouri, Columbia, MO
| | - Ying-Chun Yu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
| | - Han-I Yeh
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
| | - Samantha Destefano
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
| |
Collapse
|
31
|
Kym PR, Wang X, Pizzonero M, Van der Plas SE. Recent Progress in the Discovery and Development of Small-Molecule Modulators of CFTR. PROGRESS IN MEDICINAL CHEMISTRY 2018; 57:235-276. [PMID: 29680149 DOI: 10.1016/bs.pmch.2018.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cystic fibrosis (CF) is a genetic disorder driven by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. While different mutations lead to varying levels of disease severity, the most common CFTR F508del mutation leads to defects in protein stability, trafficking to the cell membrane and gating of chloride ions. Recently, advances in medicinal chemistry have led to the identification small-molecule drugs that result in significant clinical efficacy in improving lung function in CF patients. Multiple CFTR modulators are required to fix the various defects in the CFTR protein. Small-molecule potentiators increase the open-channel probability and improve the gating of ions through CFTR. Small-molecule correctors stabilize the protein fold of the mutant channel, facilitating protein maturation and translocation to the cellular membrane. Recent data suggest that triple-combination therapy consisting of a potentiator and two correctors that operate through distinct mechanisms will be required to deliver highly significant clinical efficacy for most CF patients. The progress in medicinal chemistry that has led to the identification of novel CFTR potentiators and correctors is presented in this chapter.
Collapse
Affiliation(s)
- Phil R Kym
- AbbVie Discovery Chemistry and Technology, North Chicago, IL, United States
| | - Xueqing Wang
- AbbVie Discovery Chemistry and Technology, North Chicago, IL, United States
| | | | | |
Collapse
|
32
|
Van der Plas SE, Kelgtermans H, De Munck T, Martina SLX, Dropsit S, Quinton E, De Blieck A, Joannesse C, Tomaskovic L, Jans M, Christophe T, van der Aar E, Borgonovi M, Nelles L, Gees M, Stouten P, Van Der Schueren J, Mammoliti O, Conrath K, Andrews M. Discovery of N-(3-Carbamoyl-5,5,7,7-tetramethyl-5,7-dihydro-4H-thieno[2,3-c]pyran-2-yl)-lH-pyrazole-5-carboxamide (GLPG1837), a Novel Potentiator Which Can Open Class III Mutant Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Channels to a High Extent. J Med Chem 2018; 61:1425-1435. [DOI: 10.1021/acs.jmedchem.7b01288] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Hans Kelgtermans
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | - Tom De Munck
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | | | | | - Evelyne Quinton
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | - Ann De Blieck
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | | | - Linda Tomaskovic
- Fidelta Ltd., Prilaz Baruna Filipovića 29, Zagreb HR-10000, Croatia
| | - Mia Jans
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | | | | | - Monica Borgonovi
- Galapagos SASU, 102
Avenue Gaston Roussel, 93230 Romainville, France
| | - Luc Nelles
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | - Maarten Gees
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | - Pieter Stouten
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | | | - Oscar Mammoliti
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | - Katja Conrath
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | - Martin Andrews
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| |
Collapse
|
33
|
Sorum B, Töröcsik B, Csanády L. Asymmetry of movements in CFTR's two ATP sites during pore opening serves their distinct functions. eLife 2017; 6:29013. [PMID: 28944753 PMCID: PMC5626490 DOI: 10.7554/elife.29013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/25/2017] [Indexed: 11/13/2022] Open
Abstract
CFTR, the chloride channel mutated in cystic fibrosis (CF) patients, is opened by ATP binding to two cytosolic nucleotide binding domains (NBDs), but pore-domain mutations may also impair gating. ATP-bound NBDs dimerize occluding two nucleotides at interfacial binding sites; one site hydrolyzes ATP, the other is inactive. The pore opens upon tightening, and closes upon disengagement, of the catalytic site following ATP hydrolysis. Extent, timing, and role of non-catalytic-site movements are unknown. Here we exploit equilibrium gating of a hydrolysis-deficient mutant and apply Φ value analysis to compare timing of opening-associated movements at multiple locations, from the cytoplasmic ATP sites to the extracellular surface. Marked asynchrony of motion in the two ATP sites reveals their distinct roles in channel gating. The results clarify the molecular mechanisms of functional cross-talk between canonical and degenerate ATP sites in asymmetric ABC proteins, and of the gating defects caused by two common CF mutations.
Collapse
Affiliation(s)
- Ben Sorum
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - Beáta Töröcsik
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary.,MTA-SE Ion Channel Research Group, Semmelweis University, Budapest, Hungary
| | - László Csanády
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary.,MTA-SE Ion Channel Research Group, Semmelweis University, Budapest, Hungary
| |
Collapse
|
34
|
Peripheral muscle abnormalities in cystic fibrosis: Etiology, clinical implications and response to therapeutic interventions. J Cyst Fibros 2017; 16:538-552. [DOI: 10.1016/j.jcf.2017.02.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 02/10/2017] [Accepted: 02/12/2017] [Indexed: 12/14/2022]
|
35
|
Zhang Z, Chen J. Atomic Structure of the Cystic Fibrosis Transmembrane Conductance Regulator. Cell 2017; 167:1586-1597.e9. [PMID: 27912062 DOI: 10.1016/j.cell.2016.11.014] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 10/28/2016] [Accepted: 11/04/2016] [Indexed: 02/07/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel evolved from the ATP-binding cassette (ABC) transporter family. In this study, we determined the structure of zebrafish CFTR in the absence of ATP by electron cryo-microscopy to 3.7 Å resolution. Human and zebrafish CFTR share 55% sequence identity, and 42 of the 46 cystic-fibrosis-causing missense mutational sites are identical. In CFTR, we observe a large anion conduction pathway lined by numerous positively charged residues. A single gate near the extracellular surface closes the channel. The regulatory domain, dephosphorylated, is located in the intracellular opening between the two nucleotide-binding domains (NBDs), preventing NBD dimerization and channel opening. The structure also reveals why many cystic-fibrosis-causing mutations would lead to defects either in folding, ion conduction, or gating and suggests new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Zhe Zhang
- The Rockefeller University and Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065, USA
| | - Jue Chen
- The Rockefeller University and Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
36
|
Abstract
Csanády discusses a new study that provides insight into the unique conductance properties of the CFTR chloride channel.
Collapse
Affiliation(s)
- László Csanády
- Department of Medical Biochemistry, Semmelweis University, Budapest H-1094, Hungary .,MTA-SE Ion Channel Research Group, Semmelweis University, Budapest H-1094, Hungary
| |
Collapse
|
37
|
Chen JH, Xu W, Sheppard DN. Altering intracellular pH reveals the kinetic basis of intraburst gating in the CFTR Cl - channel. J Physiol 2017; 595:1059-1076. [PMID: 27779763 DOI: 10.1113/jp273205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/21/2016] [Indexed: 01/14/2023] Open
Abstract
KEY POINTS The cystic fibrosis transmembrane conductance regulator (CFTR), which is defective in the genetic disease cystic fibrosis (CF), forms a gated pathway for chloride movement regulated by intracellular ATP. To understand better CFTR function, we investigated the regulation of channel openings by intracellular pH. We found that short-lived channel closures during channel openings represent subtle changes in the structure of CFTR that are regulated by intracellular pH, in part, at ATP-binding site 1 formed by the nucleotide-binding domains. Our results provide a framework for future studies to understand better the regulation of channel openings, the dysfunction of CFTR in CF and the action of drugs that repair CFTR gating defects. ABSTRACT Cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP-gated Cl- channel defective in the genetic disease cystic fibrosis (CF). The gating behaviour of CFTR is characterized by bursts of channel openings interrupted by brief, flickery closures, separated by long closures between bursts. Entry to and exit from an open burst is controlled by the interaction of ATP with two ATP-binding sites, sites 1 and 2, in CFTR. To understand better the kinetic basis of CFTR intraburst gating, we investigated the single-channel activity of human CFTR at different intracellular pH (pHi ) values. When compared with the control (pHi 7.3), acidifying pHi to 6.3 or alkalinizing pHi to 8.3 and 8.8 caused small reductions in the open-time constant (τo ) of wild-type CFTR. By contrast, the fast closed-time constant (τcf ), which describes the short-lived closures that interrupt open bursts, was greatly increased at pHi 5.8 and 6.3. To analyse intraburst kinetics, we used linear three-state gating schemes. All data were satisfactorily modelled by the C1 ↔ O ↔ C2 kinetic scheme. Changing the intracellular ATP concentration was without effect on τo , τcf and their responses to pHi changes. However, mutations that disrupt the interaction of ATP with ATP-binding site 1, including K464A, D572N and the CF-associated mutation G1349D all abolished the prolongation of τcf at pHi 6.3. Taken together, our data suggest that the regulation of CFTR intraburst gating is distinct from the ATP-dependent mechanism that controls channel opening and closing. However, our data also suggest that ATP-binding site 1 modulates intraburst gating.
Collapse
Affiliation(s)
- Jeng-Haur Chen
- School of Biomedical Sciences, University of Hong Kong, Hong Kong.,The University of Hong Kong Shenzhen Institute of Research and Innovation, Shenzhen, China.,School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Weiyi Xu
- School of Biomedical Sciences, University of Hong Kong, Hong Kong.,The University of Hong Kong Shenzhen Institute of Research and Innovation, Shenzhen, China
| | - David N Sheppard
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
38
|
Chin S, Hung M, Bear CE. Current insights into the role of PKA phosphorylation in CFTR channel activity and the pharmacological rescue of cystic fibrosis disease-causing mutants. Cell Mol Life Sci 2017; 74:57-66. [PMID: 27722768 PMCID: PMC11107731 DOI: 10.1007/s00018-016-2388-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/21/2022]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) channel gating is predominantly regulated by protein kinase A (PKA)-dependent phosphorylation. In addition to regulating CFTR channel activity, PKA phosphorylation is also involved in enhancing CFTR trafficking and mediating conformational changes at the interdomain interfaces of the protein. The major cystic fibrosis (CF)-causing mutation is the deletion of phenylalanine at position 508 (F508del); it causes many defects that affect CFTR trafficking, stability, and gating at the cell surface. Due to the multiple roles of PKA phosphorylation, there is growing interest in targeting PKA-dependent signaling for rescuing the trafficking and functional defects of F508del-CFTR. This review will discuss the effects of PKA phosphorylation on wild-type CFTR, the consequences of CF mutations on PKA phosphorylation, and the development of therapies that target PKA-mediated signaling.
Collapse
Affiliation(s)
- Stephanie Chin
- Programme of Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Maurita Hung
- Programme of Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto, Canada
| | - Christine E Bear
- Programme of Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto, Canada.
- Department of Biochemistry, University of Toronto, Toronto, Canada.
- Department of Physiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
39
|
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel expressed in the apical membrane of epithelia. Mutations in the CFTR gene are the cause of cystsic fibrosis. CFTR is the only ABC-protein that constitutes an ion channel pore forming subunit. CFTR gating is regulated in complex manner as phosphorylation is mandatory for channel activity and gating is directly regulated by binding of ATP to specific intracellular sites on the CFTR protein. This review covers our current understanding on the gating mechanism in CFTR and illustrates the relevance of alteration of these mechanisms in the onset of cystic fibrosis.
Collapse
Affiliation(s)
- Oscar Moran
- Istituto di Biofisica, CNR. Via De Marini, 6, 16149, Genoa, Italy.
| |
Collapse
|
40
|
Absence of calf muscle metabolism alterations in active cystic fibrosis adults with mild to moderate lung disease. J Cyst Fibros 2017; 16:98-106. [DOI: 10.1016/j.jcf.2016.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 11/19/2022]
|
41
|
Hildebrandt E, Khazanov N, Kappes JC, Dai Q, Senderowitz H, Urbatsch IL. Specific stabilization of CFTR by phosphatidylserine. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:289-293. [PMID: 27913277 DOI: 10.1016/j.bbamem.2016.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/08/2016] [Accepted: 11/28/2016] [Indexed: 10/20/2022]
Abstract
The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR, ABCC7) is a plasma membrane chloride ion channel in the ABC transporter superfamily. CFTR is a key target for cystic fibrosis drug development, and its structural elucidation would advance those efforts. However, the limited in vivo and in vitro stability of the protein, particularly its nucleotide binding domains, has made structural studies challenging. Here we demonstrate that phosphatidylserine uniquely stimulates and thermally stabilizes the ATP hydrolysis function of purified human CFTR. Among several lipids tested, the greatest stabilization was observed with brain phosphatidylserine, which shifted the Tm for ATPase activity from 22.7±0.8°C to 35.0±0.2°C in wild-type CFTR, and from 26.6±0.7°C to 42.1±0.2°C in a more stable mutant CFTR having deleted regulatory insertion and S492P/A534P/I539T mutations. When ATPase activity was measured at 37°C in the presence of brain phosphatidylserine, Vmax for wild-type CFTR was 240±60nmol/min/mg, a rate higher than previously reported and consistent with rates for other purified ABC transporters. The significant thermal stabilization of CFTR by phosphatidylserine may be advantageous in future structural and biophysical studies of CFTR.
Collapse
Affiliation(s)
- Ellen Hildebrandt
- Department of Cell Biology and Biochemistry, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, 3601 4th Street, Stop 6540, Lubbock, TX 79430, USA.
| | - Netaly Khazanov
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| | - John C Kappes
- Department of Medicine, University of Alabama at Birmingham, 701 19th Street South, Birmingham, AL 35294-0007, USA; Birmingham Veterans Medical Center, Research Service, Birmingham, AL 35233, USA.
| | - Qun Dai
- Department of Medicine, University of Alabama at Birmingham, 701 19th Street South, Birmingham, AL 35294-0007, USA.
| | - Hanoch Senderowitz
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| | - Ina L Urbatsch
- Department of Cell Biology and Biochemistry, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, 3601 4th Street, Stop 6540, Lubbock, TX 79430, USA.
| |
Collapse
|
42
|
Huguet F, Calvez ML, Benz N, Le Hir S, Mignen O, Buscaglia P, Horgen FD, Férec C, Kerbiriou M, Trouvé P. Function and regulation of TRPM7, as well as intracellular magnesium content, are altered in cells expressing ΔF508-CFTR and G551D-CFTR. Cell Mol Life Sci 2016; 73:3351-73. [PMID: 26874684 PMCID: PMC11108291 DOI: 10.1007/s00018-016-2149-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 01/14/2016] [Accepted: 01/25/2016] [Indexed: 02/03/2023]
Abstract
Cystic fibrosis (CF), one of the most common fatal hereditary disorders, is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The CFTR gene product is a multidomain adenosine triphosphate-binding cassette (ABC) protein that functions as a chloride (Cl(-)) channel that is regulated by intracellular magnesium [Mg(2+)]i. The most common mutations in CFTR are a deletion of a phenylalanine residue at position 508 (ΔF508-CFTR, 70-80 % of CF phenotypes) and a Gly551Asp substitution (G551D-CFTR, 4-5 % of alleles), which lead to decreased or almost abolished Cl(-) channel function, respectively. Magnesium ions have to be finely regulated within cells for optimal expression and function of CFTR. Therefore, the melastatin-like transient receptor potential cation channel, subfamily M, member 7 (TRPM7), which is responsible for Mg(2+) entry, was studies and [Mg(2+)]i measured in cells stably expressing wildtype CFTR, and two mutant proteins (ΔF508-CFTR and G551D-CFTR). This study shows for the first time that [Mg(2+)]i is decreased in cells expressing ΔF508-CFTR and G551D-CFTR mutated proteins. It was also observed that the expression of the TRPM7 protein is increased; however, membrane localization was altered for both ΔF508del-CFTR and G551D-CFTR. Furthermore, both the function and regulation of the TRPM7 channel regarding Mg(2+) is decreased in the cells expressing the mutated CFTR. Ca(2+) influx via TRPM7 were also modified in cells expressing a mutated CFTR. Therefore, there appears to be a direct involvement of TRPM7 in CF physiopathology. Finally, we propose that the TRPM7 activator Naltriben is a new potentiator for G551D-CFTR as the function of this mutant increases upon activation of TRPM7 by Naltriben.
Collapse
Affiliation(s)
- F Huguet
- Inserm, UMR1078, 46, rue Félix le Dantec, CS 51819, 29218, Brest Cedex 2, France
- Faculté de Médecine et des sciences de la santé, Université de Bretagne Occidentale, Brest, 29200, France
| | - M L Calvez
- Inserm, UMR1078, 46, rue Félix le Dantec, CS 51819, 29218, Brest Cedex 2, France
- Faculté de Médecine et des sciences de la santé, Université de Bretagne Occidentale, Brest, 29200, France
- Association G. Saleun, Brest, 29218, France
| | - N Benz
- Inserm, UMR1078, 46, rue Félix le Dantec, CS 51819, 29218, Brest Cedex 2, France
- Association G. Saleun, Brest, 29218, France
| | - S Le Hir
- Inserm, UMR1078, 46, rue Félix le Dantec, CS 51819, 29218, Brest Cedex 2, France
- Laboratoire de Génétique Moléculaire, Hôpital Morvan, C.H.U. Brest, Brest, 29200, France
| | - O Mignen
- Inserm, UMR1078, 46, rue Félix le Dantec, CS 51819, 29218, Brest Cedex 2, France
- Faculté de Médecine et des sciences de la santé, Université de Bretagne Occidentale, Brest, 29200, France
| | - P Buscaglia
- Inserm, UMR1078, 46, rue Félix le Dantec, CS 51819, 29218, Brest Cedex 2, France
- Faculté de Médecine et des sciences de la santé, Université de Bretagne Occidentale, Brest, 29200, France
| | - F D Horgen
- Laboratory of Marine Biological Chemistry, Department of Natural Sciences, Hawaii Pacific University, Kaneohe, HI, 96744, USA
| | - C Férec
- Inserm, UMR1078, 46, rue Félix le Dantec, CS 51819, 29218, Brest Cedex 2, France.
- Faculté de Médecine et des sciences de la santé, Université de Bretagne Occidentale, Brest, 29200, France.
- Laboratoire de Génétique Moléculaire, Hôpital Morvan, C.H.U. Brest, Brest, 29200, France.
- Etablissement Français du Sang - Bretagne, Brest, 29200, France.
| | - M Kerbiriou
- Inserm, UMR1078, 46, rue Félix le Dantec, CS 51819, 29218, Brest Cedex 2, France
- Faculté de Médecine et des sciences de la santé, Université de Bretagne Occidentale, Brest, 29200, France
| | - P Trouvé
- Inserm, UMR1078, 46, rue Félix le Dantec, CS 51819, 29218, Brest Cedex 2, France.
| |
Collapse
|
43
|
Iordanov I, Mihályi C, Tóth B, Csanády L. The proposed channel-enzyme transient receptor potential melastatin 2 does not possess ADP ribose hydrolase activity. eLife 2016; 5. [PMID: 27383051 PMCID: PMC4974056 DOI: 10.7554/elife.17600] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/05/2016] [Indexed: 11/21/2022] Open
Abstract
Transient Receptor Potential Melastatin 2 (TRPM2) is a Ca2+-permeable cation channel essential for immunocyte activation, insulin secretion, and postischemic cell death. TRPM2 is activated by ADP ribose (ADPR) binding to its C-terminal cytosolic NUDT9-homology (NUDT9H) domain, homologous to the soluble mitochondrial ADPR pyrophosphatase (ADPRase) NUDT9. Reported ADPR hydrolysis classified TRPM2 as a channel-enzyme, but insolubility of isolated NUDT9H hampered further investigations. Here we developed a soluble NUDT9H model using chimeric proteins built from complementary polypeptide fragments of NUDT9H and NUDT9. When expressed in E.coli, chimeras containing up to ~90% NUDT9H sequence remained soluble and were affinity-purified. In ADPRase assays the conserved Nudix-box sequence of NUDT9 proved essential for activity (kcat~4-9s-1), that of NUDT9H did not support catalysis. Replacing NUDT9H in full-length TRPM2 with soluble chimeras retained ADPR-dependent channel gating (K1/2~1-5 μM), confirming functionality of chimeric domains. Thus, TRPM2 is not a 'chanzyme'. Chimeras provide convenient soluble NUDT9H models for structural/biochemical studies. DOI:http://dx.doi.org/10.7554/eLife.17600.001 Ion channels are proteins that allow specific charged particles to move across the membranes of cells – for example to travel in or out of a cell, or between different parts of the same cell. Almost all ion channels are gated, meaning that they can open and close in response to different signals. For instance, so-called ligand gated channels open in response to binding of some small molecule, known as the "ligand". A small number of channel proteins are also enzymes, meaning that they are able to catalyze chemical reactions, and these channel-enzymes are often referred to as “chanzymes”. TRPM2 is an ion channel found in humans that opens when a small molecule called ADPR binds to a portion of the channel inside the cell. This channel is also thought to be a chanzyme because the part that binds to ADPR is similar to an enzyme called NUDT9. The NUDT9 enzyme converts ADPR into two other chemicals. When studied in biochemical assays, the enzyme-like part of TRPM2 – which contains a segment called a “Nudix box” – appeared to act in the same way, although this activity was not linked to the opening and closing of the TRPM2 channel. Iordanov et al. set out to re-examine whether TRPM2 is actually an enzyme by comparing the activity of NUDT9 to the enzyme-like part of TRPM2. To test an enzyme’s activity, it typically needs to be dissolved in water. However, the enzyme-like part of TRPM2 does not dissolve, and so it could not be tested directly. Instead, Iordanov et al. identified which parts of TRPM2 make it insoluble and replaced them with the equivalent parts from NUDT9 to create several new proteins. For all the proteins tested, only those with the Nudix box from NUDT9 were active enzymes, while those with the Nudix box from TRPM2 were not. Iordanov et al. conclude that TRPM2 is a ligand gated channel and not a chanzyme, and that the experimental conditions used in previous biochemical assays, and not TRPM2 activity, led to the breakdown of ADPR. Finally, the TRPM2 channel is involved in cell damage following heart attacks or stroke and may contribute to Alzheimer’s disease, Parkinson’s disease and bipolar disorder as well. As such, knowing how TRMP2 behaves could guide efforts to develop new drugs for these illnesses. DOI:http://dx.doi.org/10.7554/eLife.17600.002
Collapse
Affiliation(s)
- Iordan Iordanov
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary.,MTA-SE Ion Channel Research Group, Semmelweis University, Budapest, Hungary
| | - Csaba Mihályi
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary.,MTA-SE Ion Channel Research Group, Semmelweis University, Budapest, Hungary
| | - Balázs Tóth
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary.,MTA-SE Ion Channel Research Group, Semmelweis University, Budapest, Hungary
| | - László Csanády
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary.,MTA-SE Ion Channel Research Group, Semmelweis University, Budapest, Hungary
| |
Collapse
|
44
|
Zwick M, Esposito C, Hellstern M, Seelig A. How Phosphorylation and ATPase Activity Regulate Anion Flux though the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). J Biol Chem 2016; 291:14483-98. [PMID: 27226582 DOI: 10.1074/jbc.m116.721415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Indexed: 01/25/2023] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR, ABCC7), mutations of which cause cystic fibrosis, belongs to the ATP-binding cassette (ABC) transporter family and works as a channel for small anions, such as chloride and bicarbonate. Anion channel activity is known to depend on phosphorylation by cAMP-dependent protein kinase A (PKA) and CFTR-ATPase activity. Whereas anion channel activity has been extensively investigated, phosphorylation and CFTR-ATPase activity are still poorly understood. Here, we show that the two processes can be measured in a label-free and non-invasive manner in real time in live cells, stably transfected with CFTR. This study reveals three key findings. (i) The major contribution (≥90%) to the total CFTR-related ATP hydrolysis rate is due to phosphorylation by PKA and the minor contribution (≤10%) to CFTR-ATPase activity. (ii) The mutant CFTR-E1371S that is still conductive, but defective in ATP hydrolysis, is not phosphorylated, suggesting that phosphorylation requires a functional nucleotide binding domain and occurs in the post-hydrolysis transition state. (iii) CFTR-ATPase activity is inversely related to CFTR anion flux. The present data are consistent with a model in which CFTR is in a closed conformation with two ATPs bound. The open conformation is induced by ATP hydrolysis and corresponds to the post-hydrolysis transition state that is stabilized by phosphorylation and binding of chloride channel potentiators.
Collapse
Affiliation(s)
- Matthias Zwick
- From the Biophysical Chemistry, Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Cinzia Esposito
- From the Biophysical Chemistry, Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Manuel Hellstern
- From the Biophysical Chemistry, Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Anna Seelig
- From the Biophysical Chemistry, Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| |
Collapse
|
45
|
Abstract
Cystic fibrosis (CF) is a monogenic autosomal recessive disorder that affects about 70,000 people worldwide. The clinical manifestations of the disease are caused by defects in the cystic fibrosis transmembrane conductance regulator (CFTR) protein. The discovery of the CFTR gene in 1989 has led to a sophisticated understanding of how thousands of mutations in the CFTR gene affect the structure and function of the CFTR protein. Much progress has been made over the past decade with the development of orally bioavailable small molecule drugs that target defective CFTR proteins caused by specific mutations. Furthermore, there is considerable optimism about the prospect of gene replacement or editing therapies to correct all mutations in cystic fibrosis. The recent approvals of ivacaftor and lumacaftor represent the genesis of a new era of precision medicine in the treatment of this condition. These drugs are having a positive impact on the lives of people with cystic fibrosis and are potentially disease modifying. This review provides an update on advances in our understanding of the structure and function of the CFTR, with a focus on state of the art targeted drugs that are in development.
Collapse
Affiliation(s)
- Bradley S Quon
- Centre for Heart Lung Innovation and Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada, V6Z 1Y6
| | - Steven M Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, Department of Medicine, Pediatrics and Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
46
|
Abstract
The most prevalent form of cystic fibrosis arises from an amino acid deletion in the cystic fibrosis transmembrane conductance regulator, CFTR. A recently approved treatment for individuals homozygous for this mutation combines a chemical corrector, which helps CFTR fold, and a potentiator that increases CFTR channel activity.
Collapse
|
47
|
Wei S, Roessler BC, Icyuz M, Chauvet S, Tao B, Hartman JL, Kirk KL. Long-range coupling between the extracellular gates and the intracellular ATP binding domains of multidrug resistance protein pumps and cystic fibrosis transmembrane conductance regulator channels. FASEB J 2015; 30:1247-62. [PMID: 26606940 DOI: 10.1096/fj.15-278382] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/16/2015] [Indexed: 12/22/2022]
Abstract
The ABCC transporter subfamily includes pumps, the long and short multidrug resistance proteins (MRPs), and an ATP-gated anion channel, the cystic fibrosis transmembrane conductance regulator (CFTR). We show that despite their thermodynamic differences, these ABCC transporter subtypes use broadly similar mechanisms to couple their extracellular gates to the ATP occupancies of their cytosolic nucleotide binding domains. A conserved extracellular phenylalanine at this gate was a prime location for producing gain of function (GOF) mutants of a long MRP in yeast (Ycf1p cadmium transporter), a short yeast MRP (Yor1p oligomycin exporter), and human CFTR channels. Extracellular gate mutations rescued ATP binding mutants of the yeast MRPs and CFTR by increasing ATP sensitivity. Control ATPase-defective MRP mutants could not be rescued by this mechanism. A CFTR double mutant with an extracellular gate mutation plus a cytosolic GOF mutation was highly active (single-channel open probability >0.3) in the absence of ATP and protein kinase A, each normally required for CFTR activity. We conclude that all 3 ABCC transporter subtypes use similar mechanisms to couple their extracellular gates to ATP occupancy, and highly active CFTR channels that bypass defects in ATP binding or phosphorylation can be produced.
Collapse
Affiliation(s)
- Shipeng Wei
- *Department of Cell, Developmental, and Integrative Biology, Department of Genetics, and Department of Neurobiology, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Bryan C Roessler
- *Department of Cell, Developmental, and Integrative Biology, Department of Genetics, and Department of Neurobiology, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mert Icyuz
- *Department of Cell, Developmental, and Integrative Biology, Department of Genetics, and Department of Neurobiology, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sylvain Chauvet
- *Department of Cell, Developmental, and Integrative Biology, Department of Genetics, and Department of Neurobiology, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Binli Tao
- *Department of Cell, Developmental, and Integrative Biology, Department of Genetics, and Department of Neurobiology, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - John L Hartman
- *Department of Cell, Developmental, and Integrative Biology, Department of Genetics, and Department of Neurobiology, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kevin L Kirk
- *Department of Cell, Developmental, and Integrative Biology, Department of Genetics, and Department of Neurobiology, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
48
|
|
49
|
Thermal stability of purified and reconstituted CFTR in a locked open channel conformation. Protein Expr Purif 2015; 116:159-66. [PMID: 26384709 DOI: 10.1016/j.pep.2015.09.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/11/2015] [Accepted: 09/14/2015] [Indexed: 11/20/2022]
Abstract
CFTR is unique among ABC transporters as the only one functioning as an ion channel and from a human health perspective because mutations in its gene cause cystic fibrosis. Although considerable advances have been made towards understanding CFTR's mechanism of action and the impact of mutations, the lack of a high-resolution 3D structure has hindered progress. The large multi-domain membrane glycoprotein is normally present at low copy number and when over expressed at high levels it aggregates strongly, limiting the production of stable mono-disperse preparations. While the reasons for the strong self-association are not fully understood, its relatively low thermal stability seems likely to be one. The major CF causing mutation, ΔF508, renders the protein very thermally unstable and therefore a great deal of attention has been paid to this property of CFTR. Multiple second site mutations of CFTR in NBD1 where F508 normally resides and small molecule binders of the domain increase the thermal stability of the mutant. These manipulations also stabilize the wild-type protein. Here we have applied ΔF508-stabilizing changes and other modifications to generate wild-type constructs that express at much higher levels in scaled-up suspension cultures of mammalian cells. After purification and reconstitution into liposomes these proteins are active in a locked-open conformation at temperatures as high as 50 °C and remain monodisperse at 4 °C in detergent or lipid for at least a week. The availability of adequate amounts of these and related stable active preparations of homogeneous CFTR will enable stalled structural and ligand binding studies to proceed.
Collapse
|
50
|
Abstract
Bacteria secrete peptides and proteins to communicate, to poison competitors, and to manipulate host cells. Among the various protein-translocation machineries, the peptidase-containing ATP-binding cassette transporters (PCATs) are appealingly simple. Each PCAT contains two peptidase domains that cleave the secretion signal from the substrate, two transmembrane domains that form a translocation pathway, and two nucleotide-binding domains that hydrolyse ATP. In Gram-positive bacteria, PCATs function both as maturation proteases and exporters for quorum-sensing or antimicrobial polypeptides. In Gram-negative bacteria, PCATs interact with two other membrane proteins to form the type 1 secretion system. Here we present crystal structures of PCAT1 from Clostridium thermocellum in two different conformations. These structures, accompanied by biochemical data, show that the translocation pathway is a large α-helical barrel sufficient to accommodate small folded proteins. ATP binding alternates access to the transmembrane pathway and also regulates the protease activity, thereby coupling substrate processing to translocation.
Collapse
|