1
|
Bautista E, Zarco N, Aguirre-Pineda N, Lara-Lozano M, Vergara P, González-Barrios JA, Aguilar-Roblero R, Segovia J. Expression of Gas1 in Mouse Brain: Release and Role in Neuronal Differentiation. Cell Mol Neurobiol 2018; 38:841-859. [PMID: 29110208 DOI: 10.1007/s10571-017-0559-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/14/2017] [Indexed: 10/18/2022]
Abstract
Growth arrest-specific 1 (Gas1) is a pleiotropic protein that induces apoptosis of tumor cells and has important roles during development. Recently, the presence of two forms of Gas1 was reported: one attached to the cell membrane by a GPI anchor; and a soluble extracellular form shed by cells. Previously, we showed that Gas1 is expressed in different areas of the adult mouse CNS. Here, we report the levels of Gas1 mRNA protein in different regions and analyzed its expressions in glutamatergic, GABAergic, and dopaminergic neurons. We found that Gas1 is expressed in GABAergic and glutamatergic neurons in the Purkinje-molecular layer of the cerebellum, hippocampus, thalamus, and fastigial nucleus, as well as in dopaminergic neurons of the substantia nigra. In all cases, Gas1 was found in the cell bodies, but not in the neuropil. The Purkinje and the molecular layers show the highest levels of Gas1, whereas the granule cell layer has low levels. Moreover, we detected the expression and release of Gas1 from primary cultures of Purkinje cells and from hippocampal neurons as well as from neuronal cell lines, but not from cerebellar granular cells. In addition, using SH-SY5Y cells differentiated with retinoic acid as a neuronal model, we found that extracellular Gas1 promotes neurite outgrowth, increases the levels of tyrosine hydroxylase, and stimulates the inhibition of GSK3β. These findings demonstrate that Gas1 is expressed and released by neurons and promotes differentiation, suggesting an important role for Gas1 in cellular signaling in the CNS.
Collapse
Affiliation(s)
- Elizabeth Bautista
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN # 2508, 07300, Mexico, DF, Mexico
| | - Natanael Zarco
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN # 2508, 07300, Mexico, DF, Mexico
| | - Nicolás Aguirre-Pineda
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN # 2508, 07300, Mexico, DF, Mexico
| | - Manuel Lara-Lozano
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN # 2508, 07300, Mexico, DF, Mexico
- Laboratorio de Medicina Genómica, Hospital Regional 1 de Octubre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Avenida Instituto Politécnico Nacional N° 1669, Gustavo A. Madero, Col. Magdalena de las Salinas, Del. Gustavo A. Madero, 07760, Mexico, DF, Mexico
| | - Paula Vergara
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN # 2508, 07300, Mexico, DF, Mexico
| | - Juan Antonio González-Barrios
- Laboratorio de Medicina Genómica, Hospital Regional 1 de Octubre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Avenida Instituto Politécnico Nacional N° 1669, Gustavo A. Madero, Col. Magdalena de las Salinas, Del. Gustavo A. Madero, 07760, Mexico, DF, Mexico
| | - Raúl Aguilar-Roblero
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacan, 04510, Mexico, DF, Mexico
| | - José Segovia
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN # 2508, 07300, Mexico, DF, Mexico.
| |
Collapse
|
2
|
Kolter T. Ganglioside biochemistry. ISRN BIOCHEMISTRY 2012; 2012:506160. [PMID: 25969757 PMCID: PMC4393008 DOI: 10.5402/2012/506160] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/09/2012] [Indexed: 01/21/2023]
Abstract
Gangliosides are sialic acid-containing glycosphingolipids. They occur especially on the cellular surfaces of neuronal cells, where they form a complex pattern, but are also found in many other cell types. The paper provides a general overview on their structures, occurrence, and metabolism. Key functional, biochemical, and pathobiochemical aspects are summarized.
Collapse
Affiliation(s)
- Thomas Kolter
- Program Unit Membrane Biology & Lipid Biochemistry, LiMES, University of Bonn, Gerhard-Domagk Straße 1, 53121 Bonn, Germany
| |
Collapse
|
3
|
Ariga T. The role of sulfoglucuronosyl glycosphingolipids in the pathogenesis of monoclonal IgM paraproteinemia and peripheral neuropathy. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2011; 87:386-404. [PMID: 21785257 PMCID: PMC3171285 DOI: 10.2183/pjab.87.386] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 05/13/2011] [Indexed: 05/31/2023]
Abstract
In IgM paraproteinemia and peripheral neuropathy, IgM M-protein secretion by B cells leads to a T helper cell response, suggesting that it is antibody-mediated autoimmune disease involving carbohydrate epitopes in myelin sheaths. An immune response against sulfoglucuronosyl glycosphingolipids (SGGLs) is presumed to participate in demyelination or axonal degeneration in the peripheral nervous system (PNS). SGGLs contain a 3-sulfoglucuronic acid residue that interacts with anti-myelin-associated glycoprotein (MAG) and the monoclonal antibody anti-HNK-1. Immunization of animals with sulfoglucuronosyl paragloboside (SGPG) induced anti-SGPG antibodies and sensory neuropathy, which closely resembles the human disease. These animal models might help to understand the disease mechanism and lead to more specific therapeutic strategies. In an in vitro study, destruction or malfunction of the blood-nerve barrier (BNB) was found, resulting in the leakage of circulating antibodies into the PNS parenchyma, which may be considered as the initial key step for development of disease.
Collapse
Affiliation(s)
- Toshio Ariga
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Georgia Health Sciences University, Augusta, Georgia 30912, USA.
| |
Collapse
|
4
|
Biellmann F, Hülsmeier AJ, Zhou D, Cinelli P, Hennet T. The Lc3-synthase gene B3gnt5 is essential to pre-implantation development of the murine embryo. BMC DEVELOPMENTAL BIOLOGY 2008; 8:109. [PMID: 19014510 PMCID: PMC2596124 DOI: 10.1186/1471-213x-8-109] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 11/12/2008] [Indexed: 12/17/2022]
Abstract
Background Glycosphingolipids (GSL) are integral components of mammalian cell membranes that are involved in cell adhesion and cell signaling processes. GSL are subdivided into structural series, like ganglio-, lacto/neolacto-, globo- and isoglo-series, which are defined by distinct trisaccharide cores. The β1,3 N-acetylglucosaminyltransferase-V (B3gnt5) enzyme catalyzes the formation of the Lc3 structure, which is the core of lactoseries derived GSL. Results The biological significance of the glycoconjugates produced by the B3gnt5 enzyme was investigated by inactivating the B3gnt5 gene in the mouse germline. The disruption of the B3gnt5 protein-coding region in mouse embryonic stem cells resulted in reduced Lc3-synthase activity, supporting its specific contribution to lactoseries derived GSL synthesis. Breeding of heterozygous mutant mice failed to produce any viable progeny homozygous for the B3gnt5-null allele. The genotypic examination of embryos from heterozygous crosses showed that the disruption of the B3gnt5 gene leads to pre-implantation lethality. This finding was compatible with the expression pattern of the B3gnt5 gene in the pre-implantation embryo as shown by in situ hybridization. The analysis of GSL profiles in embryonic stem cells heterozygous for the B3gnt5-null allele confirmed the reduced levels of lactoseries derived GSL levels and of other GSL species. Conclusion The disruption of the B3gnt5 gene in mice affected the expression of lactoseries derived GLS and possibly of protein-bound β3GlcNAc-linked glycans, thereby demonstrating an essential contribution of these glycoconjugates in early embryonic development, and supporting the importance of these glycoconjugates in cell differentiation and adhesion processes.
Collapse
Affiliation(s)
- Franziska Biellmann
- Institute of Physiology and Zürich Center for Integrative Human Physiology, University of Zürich, Switzerland.
| | | | | | | | | |
Collapse
|
5
|
Wang L, Li S, Jungalwala FB. Receptor for advanced glycation end products (RAGE) mediates neuronal differentiation and neurite outgrowth. J Neurosci Res 2008; 86:1254-66. [PMID: 18058943 DOI: 10.1002/jnr.21578] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The receptor for advanced glycation end products (RAGE) plays a crucial role in several disease processes, such as diabetes, inflammation, and neurodegeneration. In this article we report multiple roles of RAGE in neuronal differentiation and neurite outgrowth. In retinoic-induced P19 embryonic carcinoma stem cells, silencing the expression of RAGE by RNA interference (RNAi) blocked differentiation of the P19 cells into neuronal cells and enhanced the formation of vimentin-positive fibroblast-like cells. RAGE knockdown inhibited retinoic acid-induced activation and blocked nuclear translocation of NF-kappaB, suggesting RAGE regulates activation of NF-kappaB. RAGE was also shown to be involved in survival of P19 cells during retinoic acid differentiation. Additionally, knockdown of RAGE strongly inhibited neurite outgrowth in retinoic acid-differentiated P19 cells, indicating that RAGE is required for neurite outgrowth of differentiated P19 cells. Retinoic acid-treated P19 cells activated GTPases, Rac1, and Cdc42. This activation of the GTPases was inhibited in RAGE-knockdown cells. In primary cerebellar granule neurons, the knockdown of RAGE also inhibited neurite outgrowth. In these cells, overexpression of dominant-negative forms of Rac1 and Cdc42 inhibited neurite outgrowth, whereas overexpression of constitutively active forms of Rac1 and Cdc42 in RAGE-deficient neurons restored neurite outgrowth, indicating that RAGE mediated neurite outgrowth through the Rac1/Cdc42 pathway. This is the first report on the role of RAGE in cell lines and primary neurons, as determined by RNAi knockdown.
Collapse
Affiliation(s)
- Lingyan Wang
- Department of Neurobiology, E. K. Shriver Center, University of Massachusetts Medical School, Waltham, Massachusetts 02452, USA
| | | | | |
Collapse
|
6
|
Chou DKH, Evans JE, Jungalwala FB. Identity of nuclear high-mobility-group protein, HMG-1, and sulfoglucuronyl carbohydrate-binding protein, SBP-1, in brain. J Neurochem 2008. [DOI: 10.1046/j.1471-4159.2001.00209.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Dasgupta S, Yanagisawa M, Krishnamurthy K, Liour SS, Yu RK. Tumor necrosis factor-alpha up-regulates glucuronosyltransferase gene expression in human brain endothelial cells and promotes T-cell adhesion. J Neurosci Res 2007; 85:1086-94. [PMID: 17335072 DOI: 10.1002/jnr.21214] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Stimulation of human brain microvascular endothelial cells (SV-HCECs) with tumor necrosis factor-alpha (TNF-alpha) up-regulates sulfoglucuronosyl paragloboside (SGPG) synthesis in a dose- and time-dependent manner. After TNF-alpha exposure at a concentration of 50 ng/ml for 24 hr, we observed a seven- to tenfold elevation of SGPG concentration. Interleukin-1beta (IL-1beta) at a concentration of 10 ng/ml and the combined doses of TNF-alpha and IL-1beta were less effective than TNF-alpha alone. TNF-alpha also stimulated T-cell (Jurkat) adhesion with SV-HCECs via SGPG-L-selectin recognition: this was determined by double-label immunofluorescent staining with SGPG and L-selectin antibodies. The number of T cells bound to SV-HCECs after different cytokine stimulations was proportional to the SGPG concentration, and the cell attachment was inhibited by anti-SGPG and anti-L-selectin antibodies, respectively. Our data unequivocally establish that inflammatory cytokines, particularly TNF-alpha, stimulate the glucuronosyltransferse, GlcAT-P, and GlcAT-S, gene expression in brain endothelial cells and promote T-cell adhesion via SGPG-L-selectin recognition, a preliminary step for onset of neuroinflammation.
Collapse
Affiliation(s)
- Somsankar Dasgupta
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | | | |
Collapse
|
8
|
van Echten-Deckert G, Herget T. Sphingolipid metabolism in neural cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:1978-94. [PMID: 16843432 DOI: 10.1016/j.bbamem.2006.06.009] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 05/29/2006] [Accepted: 06/06/2006] [Indexed: 10/24/2022]
Abstract
Sphingolipids were discovered more than a century ago in the brain. Cerebrosides and sphingomyelins were named so because they were first isolated from neural tissue. Although glycosphingolipids and especially those containing sialic acid in their oligosaccharide moiety are particularly abundant in the brain, sphingolipids are ubiquitous cellular membrane components. They form cell- and species-specific profiles at the cell surfaces that characteristically change in development, differentiation, and oncogenic transformation, indicating the significance of these lipid molecules for cell-cell and cell-matrix interactions as well as for cell adhesion, modulation of membrane receptors and signal transduction. This review summarizes sphingolipid metabolism with emphasis on aspects particularly relevant in neural cell types, including neurons, oligodendrocytes and neuroblastoma cells. In addition, the reader is briefly introduced into the methodology of lipid evaluation techniques and also into the putative physiological functions of glycosphingolipids and their metabolites in neural tissue.
Collapse
Affiliation(s)
- Gerhild van Echten-Deckert
- Kekulé-Institute for Organic Chemistry and Biochemistry, University Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| | | |
Collapse
|
9
|
Chou DKH, Henion TR, Jungalwala FB. Regulation of expression of sulfoglucuronyl carbohydrate (HNK-1), Amphoterin and RAGE in retinoic acid-differentiated P19 embryonal carcinoma cells. J Neurochem 2003; 86:917-31. [PMID: 12887690 DOI: 10.1046/j.1471-4159.2003.01911.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
HNK-1 antibody reactive sulfoglucuronyl carbohydrate (SGC) and SSEA-1 antibody reactive Lewis X (Lex) epitope are expressed on several glycolipids, glycoproteins, and proteoglycans of the nervous system and have been implicated in cell-cell recognition, neurite outgrowth, and/or neuronal migration during development. Interaction of SGC with its binding protein Amphoterin and interaction of Amphoterin with a cell-signaling molecule, receptor for advance glycation end product (RAGE) have been suggested to regulate neurite outgrowth and neuronal migration. The regulation of expression of SGC, Lex, Amphoterin, and RAGE was studied in embryonal carcinoma P19 cells after treatment with retinoic acid (RA). The untreated proliferating P19 cells strongly expressed the Lex epitope, which was mostly due to Lex-glycoproteins. P19 cells, when differentiated into neuron-like cells by RA, did not express the Lex epitope, but expressed increasing levels of SGC, with time in culture. Quantitative biochemical analyses showed that in the P19 cells after RA treatment, the amount of SGC-glycoproteins increased at a significantly higher level than sulfoglucuronyl glycolipid-1 (SGGL-1). The increase in the levels of SGGL-1 was due to 16-fold upregulation in the activity of lactosylceramide: N-acetylglucosaminyl-transferase (Lc3 synthase), which synthesizes the key intermediate lactotriosylceramide (Lc3Cer), for lacto- and neolacto-glycolipids. The large increase in the activity of Lc3 synthase appeared to regulate the levels of other neolacto glycolipids, such as Lc3Cer, nLc4Cer, nLc6Cer, disialosyl-nLc4Cer (LD1), and Lex-glycolipids. Strong upregulation of glucuronyl-transferase and modest twofold enhancement in the activity of the glucuronyl-sulfotransferase, which catalyze the final steps in the SGC synthesis, also would account for the large increase in the synthesis SGC-glycoproteins. RA also upregulated the synthesis of Amphoterin and RAGE in P19 cells. SGC, RAGE, and Amphoterin were co-localized in the RA-differentiated neurons. The initiation of neurite outgrowth along with co-ordinated upregulation of Amphoterin, RAGE, SGC-glycoproteins, and SGGLs in RA-treated P19 cells support the hypothesis that these molecules are involved in the neuronal process formation.
Collapse
Affiliation(s)
- Denise K H Chou
- Department of Neurobiology, Shriver Center at University of Massachusetts Medical School, Waltham, Massachussets 02452, USA
| | | | | |
Collapse
|
10
|
Affiliation(s)
- Thomas Kolter
- Kekulé-Institut für Organische Chemie und Biochemie, D-53121 Bonn, Germany
| | | | | |
Collapse
|
11
|
Baboval T, Liang S, Smith FI. Viral vector-mediated delivery of competing glycosyltransferases modifies epitope expression cell specifically. J Neurosci Res 2002; 67:583-94. [PMID: 11891771 DOI: 10.1002/jnr.10149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The glycoconjugate epitopes 3-fucosyl-N-acetyllactosamine (CD15) and sulfoglucuronylcarbohydrate (SGC) mediate cell adhesion events in several systems, and are regulated both spatially and temporally during cerebellar development. In cotransfection studies using COS-1 cells, competition between glycosyltransferases that utilize a common precursor involved in the final synthetic steps of these epitopes, can modulate epitope expression. For example, cotransfection of rat alpha1,3-fucosyltransferase IV (Fuc-TIV) and either rat glucuronic acid transferase P (GlcAT) or pig alpha1,3-galactosyltransferase (GalT) resulted in the dominance of either SGC or GalalphaGal epitope expression, respectively, with blockage of CD15 epitope expression. Viral vectors expressing these glycosyltransferases were used to determine whether competition plays a role in establishing epitope dominance in cerebellar cells, and whether overexpression of competing glycosyltransferases could be used to block epitope expression. Infection of cerebellar astrocytes with viral vectors expressing either Fuc-TIV, or Fuc-TIX, caused dramatic increases in CD15 expression in the presence of continued endogenous SGC epitope expression. Likewise, viral transduction with GalT resulted in GalalphaGal expression without affecting endogenous CD15 or SGC expression. Thus, competition between these enzymes does not appear to play a role in establishing epitope expression in astrocytes, and transduction of these enzymes does not provide a method of blocking the expression of endogenous epitopes. In contrast to what was observed for astrocytes, infection with viral vectors expressing either Fuc-T, GlcAT, or GalT did not result in significant expression of the relevant epitopes (CD15, SGC or GalalphaGal, respectively) on granule neurons. These results suggest a different complement of precursors are present in granule neurons and astrocytes, presumably due to the presence of different complements of glycosyltransferases in these cells.
Collapse
Affiliation(s)
- Thia Baboval
- Biomedical Sciences Department, E.K. Shriver Center for Mental Retardation, Waltham, Massachusetts 02452, USA
| | | | | |
Collapse
|
12
|
Chou DK, Jungalwala FB. Regulation of sulfoglucuronyl glycolipid synthesis in the developing rat sciatic nerve. Neurochem Res 2001; 26:1231-5. [PMID: 11874205 DOI: 10.1023/a:1013967323241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Sulfoglucuronyl glycolipids (SGGLs) have been considered as target antigens in demyelinating peripheral neuropathies associated with IgM monoclonal gammopathy. The regulation of expression of SGGLs in the rat sciatic nerve during development was studied by assaying the levels of SGGLs and activities of four glycosyltransferases sequentially involved in their synthesis from lactosylceramide. The levels of SGGLs in the sciatic nerve increased with development and reached a maximum at sixty days after birth. The rate of increase in the level of SGGLs between day 5 to 20 was similar to rate of deposition of myelin in the nerve. Analysis of the activities of the glycosyltransferases showed that only lactotriosylceramide galactosyltransferase (LcOse3Cer-GalTr) increased in parallel with the levels of SGGLs during development. The other three enzymes were not co-relative with the synthesis of SGGLs. The product of LcOse3Cer-GalTr reaction, nLcOse4Cer is the key intermediate for all neolactoglycolipids, particularly NeuAc alpha2-3nLcOse4Cer or nLM1, which is the major ganglioside (60%) of myelin in rat sciatic nerve. The results suggest that in the sciatic nerve SGGLs are mostly associated with Schwann cell myelin and their synthesis is regulated by LcOse3Cer-GalTr, unlike in the cerebral cortex and cerebellum where SGGLs are associated with the neuronal membranes and their synthesis is regulated by lactosylceramide N-acetylglucosaminyltransferase (LcOse2Cer-GlcNAcTr).
Collapse
Affiliation(s)
- D K Chou
- Department of Biomedical Sciences, Eunice Kennedy Shriver Center at University of Massachusetts Medical School, Waltham 02452, USA
| | | |
Collapse
|
13
|
Henion TR, Zhou D, Wolfer DP, Jungalwala FB, Hennet T. Cloning of a mouse beta 1,3 N-acetylglucosaminyltransferase GlcNAc(beta 1,3)Gal(beta 1,4)Glc-ceramide synthase gene encoding the key regulator of lacto-series glycolipid biosynthesis. J Biol Chem 2001; 276:30261-9. [PMID: 11384981 DOI: 10.1074/jbc.m102979200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The distinction between the different classes of glycolipids is conditioned by the action of specific core transferases. The entry point for lacto-series glycolipids is catalyzed by the beta1,3 N-acetylglucosaminyltransferase GlcNAc(beta1,3)Gal(beta1,4)Glc-ceramide (Lc3) synthase enzyme. The Lc3 synthase activity has been shown to be regulated during development, especially during brain morphogenesis. Here, we report the molecular cloning of a mouse gene encoding an Lc3 synthase enzyme. The mouse cDNA included an open reading frame of 1131 base pairs encoding a protein of 376 amino acids. The Lc3 synthase protein shared several structural motifs previously identified in the members of the beta1,3 glycosyltransferase superfamily. The Lc3 synthase enzyme efficiently utilized the lactosyl ceramide glycolipid acceptor. The identity of the reaction products of Lc3 synthase-transfected CHOP2/1 cells was confirmed by thin-layer chromatography immunostaining using antibodies TE-8 and 1B2 that recognize Lc3 and Gal(beta1,4)GlcNAc(beta1,3)Gal(beta1,4)Glc-ceramide (nLc4) structures, respectively. In addition to the initiating activity for lacto-chain synthesis, the Lc3 synthase could extend the terminal N-acetyllactosamine unit of nLc4 and also had a broad specificity for gangliosides GA1, GM1, and GD1b to generate neolacto-ganglio hybrid structures. The mouse Lc3 synthase gene was mainly expressed during embryonic development. In situ hybridization analysis revealed that that the Lc3 synthase was expressed in most tissues at embryonic day 11 with elevated expression in the developing central nervous system. Postnatally, the expression was restricted to splenic B-cells, the placenta, and cerebellar Purkinje cells where it colocalized with HNK-1 reactivity. These data support a key role for the Lc3 synthase in regulating neolacto-series glycolipid synthesis during embryonic development.
Collapse
Affiliation(s)
- T R Henion
- Eunice Kennedy Shriver Center, University of Massachusetts Medical School, Waltham, Massachusetts 02452, USA
| | | | | | | | | |
Collapse
|
14
|
Togayachi A, Akashima T, Ookubo R, Kudo T, Nishihara S, Iwasaki H, Natsume A, Mio H, Inokuchi J, Irimura T, Sasaki K, Narimatsu H. Molecular cloning and characterization of UDP-GlcNAc:lactosylceramide beta 1,3-N-acetylglucosaminyltransferase (beta 3Gn-T5), an essential enzyme for the expression of HNK-1 and Lewis X epitopes on glycolipids. J Biol Chem 2001; 276:22032-40. [PMID: 11283017 DOI: 10.1074/jbc.m011369200] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A new member of the UDP-N-acetylglucosamine:beta-galactose beta1,3-N-acetylglucosaminyltransferase (beta3Gn-T) family having the beta3Gn-T motifs was cloned from rat and human cDNA libraries and named beta3Gn-T5 based on its position in a phylogenetic tree. We concluded that beta3Gn-T5 is the most feasible candidate for lactotriaosylceramide (Lc(3)Cer) synthase, an important enzyme which plays a key role in the synthesis of lacto- or neolacto-series carbohydrate chains on glycolipids. beta3Gn-T5 exhibited strong activity to transfer GlcNAc to glycolipid substrates, such as lactosylceramide (LacCer) and neolactotetraosylceramide (nLc(4)Cer; paragloboside), resulting in the synthesis of Lc(3)Cer and neolactopentaosylceramide (nLc(5)Cer), respectively. A marked decrease in LacCer and increase in nLc(4)Cer was detected in Namalwa cells stably expressing beta3Gn-T5. This indicated that beta3Gn-T5 exerted activity to synthesize Lc(3)Cer and decrease LacCer, followed by conversion to nLc(4)Cer via endogenous galactosylation. The following four findings further supported that beta3Gn-T5 is Lc(3)Cer synthase. 1) The beta3Gn-T5 transcript levels in various cells were consistent with the activity levels of Lc(3)Cer synthase in those cells. 2) The beta3Gn-T5 transcript was presented in various tissues and cultured cells. 3) The beta3Gn-T5 expression was up-regulated by stimulation with retinoic acid and down-regulated with 12-O-tetradecanoylphorbol-13-acetate in HL-60 cells. 4) The changes in beta3Gn-T5 transcript levels during the rat brain development were determined. Points 2, 3, and 4 were consistent with the Lc(3)Cer synthase activity reported previously.
Collapse
Affiliation(s)
- A Togayachi
- Division of Cell Biology, Institute of Life Science, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Baboval T, Henion T, Kinnally E, Smith FI. Molecular cloning of rat alpha1,3-fucosyltransferase IX (Fuc-TIX) and comparison of the expression of Fuc-TIV and Fuc-TIX genes during rat postnatal cerebellum development. J Neurosci Res 2000; 62:206-15. [PMID: 11020213 DOI: 10.1002/1097-4547(20001015)62:2<206::aid-jnr5>3.0.co;2-e] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fucosylated glycoconjugates play an essential role in central nervous system development, but the regulation of expression of these molecules is not well understood. The final biosynthetic step for a major group of cerebellar fucosylated glycoconjugates (those bearing the developmentally regulated epitope 3-fucosyl-N-acetyllactosamine, CD15, and related fucosylated epitopes) is catalyzed by an alpha-1,3-fucosyltransferase (FucT). The major FucT activity in postnatal rat cerebellum has a specificity consistent with that encoded by either a Fuc-TIV- or Fuc-TIX-like gene, and thus the expression of these genes was investigated during postnatal rat cerebellar development. A rFuc-TIX cDNA was cloned and a comparison of its enzymatic activity with rFuc-TIV revealed similar results on oligosaccharides, but strikingly higher activity on lipid acceptors, suggesting a greater role for rFuc-TIX than rFuc-TIV in the synthesis of CD15 glycolipids. rFuc-TIX mRNA levels were much higher than those of rFuc-TIV in neonatal cerebellum. Whereas rFuc-TIX mRNA levels remained relatively constant, rFuc-TIV mRNA levels declined during postnatal cerebellar development. In situ hybridization of postnatal rat cerebella also revealed different patterns of expression for these two genes. The rFuc-TIV gene was expressed predominantly in Purkinje cells and the deep cerebellar nuclei throughout postnatal development, but was expressed in granule neurons only in the neonatal, and not the adult, rat. In contrast, the rFuc-TIX gene was expressed in cells in the granule cell layers in both neonatal and in the adult rat. The potential implications of the different enzymatic activities and cell localization of rFuc-TIV and rFuc-TIX expression for the regulation of fucosylated glycoconjugates during cerebellar development are discussed.
Collapse
Affiliation(s)
- T Baboval
- Biomedical Sciences Department, E.K. Shriver Center, Waltham, Massachusetts 02452, USA
| | | | | | | |
Collapse
|
16
|
Zhao Z, Nair SM, Chou DK, Tobet SA, Jungalwala FB. Expression and role of sulfoglucuronyl (HNK-1) carbohydrate and its binding protein SBP-1 in developing rat cerebral cortex. J Neurosci Res 2000; 62:186-205. [PMID: 11020212 DOI: 10.1002/1097-4547(20001015)62:2<186::aid-jnr4>3.0.co;2-c] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Developmental expression of sulfoglucuronyl carbohydrate (SGC) and its binding protein, SBP-1 was studied in the rat cerebral cortex to understand their function. Between embryonic day (ED) 14-19, SBP-1 was strongly expressed in neurons of the ventricular zone and migrating neurons throughout the cortex. SBP-1 declined at birth and by postnatal day (PD) 3 only the latest arriving neurons in the most superficial segment of the cortical plate expressed SBP-1. Between ED 14-16, SGC was expressed in a thin row of glial cells near the ventricles and on their radial processes. Between ED 16-PD 3, SGC was not in neuronal cell soma, but was in neuronal plasma membranes and processes surrounding the neuronal perikarya. The expression of SGC declined similar to SBP-1 and both of them disappeared by PD 7. The expression of SBP-1 and SGC was chronologically coordinated with neuronal migration. SBP-1 was specifically expressed in immature neuronal nuclei and plasma membranes. SBP-1 and SGC were colocalized and were available for interaction with each other on neuronal cell membranes and processes. This was confirmed with isolated neurons in culture. As in vivo, the expression of SBP-1 in neurons declined with time in culture. The dissociated cortical neurons when plated on SBP-1 as a substratum produced extensive neuritic outgrowth. HNK-1, anti-SBP-1 antibodies and sulfoglucuronyl glycolipid, SGGL specifically and severely reduced neurite outgrowth. SBP-1-SGC interactions provide a potential mechanism for guidance and cell signaling, in the processes of neuronal migration and terminal differentiation.
Collapse
Affiliation(s)
- Z Zhao
- Department of Biomedical Sciences, Eunice Kennedy Shriver Center for Mental Retardation, Waltham, Massachusetts 02452, USA
| | | | | | | | | |
Collapse
|
17
|
Baboval T, Crandall JE, Kinnally E, Chou DK, Smith FI. Restriction of high CD15 expression to a subset of rat cerebellar astroglial cells can be overcome by transduction with adenoviral vectors expressing the rat alpha 1,3-fucosyltransferase IV gene. Glia 2000; 31:144-54. [PMID: 10878601 DOI: 10.1002/1098-1136(200008)31:2<144::aid-glia60>3.0.co;2-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Glycoconjugates bearing the epitope 3-fucosyl-N-acetyllactosamine (CD15) are believed to be involved in cell-cell interactions and are temporally and spatially regulated in the brain. In the rat postnatal cerebellum, CD15 is predominantly expressed in the molecular layer by Bergmann glial cells, but little CD15 expression is seen in other astroglia, and the basis for this restricted expression is not known. Adenoviral vectors were shown to efficiently deliver transgenes to cerebellar glial cells and were used to determine whether manipulation of glycosyltransferase activities could enhance the expression of CD15 in these cells. In dissociated cerebellar cell cultures, few glial cells normally express CD15. However, transduction of these cells with an adenoviral vector (AdGFPCMVFucT) that expressed both green fluorescent protein (GFP) and FLAG-tagged rat alpha 1, 3-fucosyltransferase IV (rFuc-TIV) resulted in high CD15 expression on the surface of all transduced glial cells. Likewise, infection of cerebellar slice cultures caused the appearance of CD15-positive transduced cells of glial cell morphology in the internal granule cell layer. Thus, enhancement of Fuc-T activity caused robust CD15 expression in cerebellar glial cells that normally show little expression of CD15, suggesting a role for Fuc-T levels in regulating CD15 expression in this cell type. The manipulation of levels of glycosyltransferases using adenoviral vectors may prove a useful tool to investigate questions of glycoconjugate regulation in glial cells in the developing rodent cerebellum.
Collapse
Affiliation(s)
- T Baboval
- E. K. Shriver Center for Mental Retardation, Waltham, MA 02452, USA
| | | | | | | | | |
Collapse
|
18
|
Zhao Z, Chou DK, Nair SM, Tobet S, Jungalwala FB. Expression of sulfoglucuronyl (HNK-1) carbohydrate and its binding protein (SBP-1) in developing rat cerebellum. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2000; 120:165-80. [PMID: 10775769 DOI: 10.1016/s0165-3806(00)00007-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sulfoglucuronyl carbohydrate (SGC) is expressed on several glycoproteins of the immunoglobulin superfamily of cell-adhesion molecules. Developmental expression of SGC and its binding protein, SBP-1, was studied in the rat cerebellum by immunocytochemistry to understand the function of SBP-1 and the significance of its interaction with SGC. During early postnatal development (postnatal day (PD) 3-10) SBP-1 was strongly expressed in the granule neurons of the external and internal granule cell layers (EGCL and IGCL). This expression declined by PD 15, and disappeared in the adult. Between PD 3 and 15, SGC was expressed in cellular processes surrounding the granule neurons in the IGCL, and it also declined and disappeared with development. SGC expression, however, continued in Purkinje cells and their dendrites in the molecular layer in adults. The expressions of SBP-1 and SGC were developmentally regulated and appeared to be chronologically co-ordinated with granule neuron migration from EGCL to IGCL. High magnification confocal microscopy showed that SBP-1 was primarily localized in nuclei and plasma membranes of granule neurons, whereas SGC in the IGCL was localized on neuronal plasma membranes, dendrites and glial processes, but not in cell soma. The relative localization of SBP and SGC was confirmed by cellular and subcellular markers in vivo and with dissociated cerebellar cells in culture. It is proposed that SBP-1 on plasma membranes of granule neurons interacts with SGC on the surrounding processes and membranes and this interaction could provide a potential mechanism for guidance and cell signaling, in the processes of granule neuron migration and differentiation.
Collapse
Affiliation(s)
- Z Zhao
- Department of Biomedical Sciences, Eunice Kennedy Shriver Center for Mental Retardation, 200 Trapelo Road, Waltham, MA, USA
| | | | | | | | | |
Collapse
|
19
|
Nair SM, Zhao Z, Chou DK, Tobet SA, Jungalwala FB. Expression of HNK-1 carbohydrate and its binding protein, SBP-1, in apposing cell surfaces in cerebral cortex and cerebellum. Neuroscience 1998; 85:759-71. [PMID: 9639270 DOI: 10.1016/s0306-4522(97)00666-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sulfoglucuronyl carbohydrate is the terminal moiety of neolacto-oligosaccharides, expressed on several glycoproteins of the immunoglobulin superfamily involved in cell-cell recognition and on two glycolipids. Sulfoglucuronyl carbohydrate is temporally and spatially regulated in the developing nervous system. It appears to be involved in neural cell recognition and in cell adhesion processes through its interaction with specific proteins on cell surfaces. Previously we have characterized a specific sulfoglucuronyl carbohydrate-binding protein in rat brain. Sulfoglucuronyl carbohydrate binding protein-1 is structurally similar to a 30,000 mol. wt adhesive and neurite outgrowth promoting protein amphoterin [Rauvala and Pihlaskari (1987) J. biol. Chem. 262, p. 16,625]. The pattern of expression of sulfoglucuronyl carbohydrate binding protein-1 in developing rat nervous system was studied to understand the significance of its interaction with sulfoglucuronyl carbohydrate-bearing molecules. Biochemical analyses showed that the expression of sulfoglucuronyl carbohydrate binding protein-1 was developmentally regulated similarly to sulfoglucuronyl carbohydrate. Immunocytochemical localization of sulfoglucuronyl carbohydrate binding protein-1 and sulfoglucuronyl carbohydrate was performed by bright-field and fluorescent confocal laser scanning microscopy. In postnatal day 7 rat cerebellum, sulfoglucuronyl carbohydrate binding protein-1 was primarily associated with neurons of the external and internal granule cell layers. The sulfoglucuronyl carbohydrate binding protein-1 immunoreactivity was absent in Purkinje cell bodies and their dendrites in the molecular layer, as well as in Bergmann glial fibres and in white matter. In contrast, sulfoglucuronyl carbohydrate (reactive with HNK-1 antibody) was localized in processes surrounding granule neurons in the internal granule cell layer. Sulfoglucuronyl carbohydrate was also expressed in Purkinje neurons and their dendrites in the molecular layer and their axonal processes in the white matter. To a lesser extent Bergmann glial fibres were also positive for sulfoglucuronyl carbohydrate. In the cerebral cortex, at embryonic day 21, sulfoglucuronyl carbohydrate binding protein-1 was mainly observed in immature neurons of the cortical plate and subplate and dividing cells near the ventricular zone. Whereas, sulfoglucuronyl carbohydrate was strongly expressed in the fibres of the subplate and marginal zone. Sulfoglucuronyl carbohydrate was also found in the processes surrounding the sulfoglucuronyl carbohydrate binding protein-1-expressing neuronal cell bodies in the cortical plate and in ventricular zone. The specific localization of sulfoglucuronyl carbohydrate binding protein- in cerebellar granule neurons and neurons of the cerebral cortex was also confirmed by immunocytochemistry of the dissociated tissue cell cultures. The complementary localization of sulfoglucuronyl carbohydrate and sulfoglucuronyl carbohydrate binding protein-1, both in cerebral cortex and cerebellum, in apposing cellular structures indicate possible interaction between the two and signalling during the process of cell migration and arrest of migration.
Collapse
Affiliation(s)
- S M Nair
- Department of Biomedical Sciences, Eunice Kennedy Shriver Center for Mental Retardation, Waltham, MA 02254, USA
| | | | | | | | | |
Collapse
|
20
|
Chou DK, Tobet SA, Jungalwala FB. Restoration of synthesis of sulfoglucuronylglycolipids in cerebellar granule neurons promotes dedifferentiation and neurite outgrowth. J Biol Chem 1998; 273:8508-15. [PMID: 9525965 DOI: 10.1074/jbc.273.14.8508] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Sulfoglucuronyl carbohydrate (SGC) linked to the terminal moiety of neolacto-oligosaccharides is expressed in several glycoproteins of the immunoglobulin superfamily involved in neural cell-cell recognition as well as in two sulfoglucuronylglycolipids (SGGLs) of the nervous system. SGGLs and SGC-containing glycoproteins are temporally and spatially regulated during development of the nervous system. In the cerebellum, the expression of SGC, particularly that of SGGLs, is biphasic. Several studies have suggested that the initial rise and decline in the levels of SGGLs and SGC-containing proteins correlated with the migration of granule neurons from the external granule cell layer to the internal granule cell layer and their subsequent maturation, whereas the later rise and continued expression of SGGLs in the adult was associated with their localization in the Purkinje neurons and their dendrites in the molecular layer. Here it is shown by immunocytochemical methods that the expression of SGC declined progressively in granule neurons isolated from cerebella of increasing age. The decline in the expression of SGC in granule neurons was also shown with time in culture. These results correlated with the previously shown declining activity of the regulatory enzyme lactosylceramide N-acetylglucosaminyltransferase (GlcNAc-Tr) with age in vivo and in isolated granule neurons in culture. GlcNAc-Tr synthesizes a key precursor, lactotriosylceramide, involved in the biosynthesis of SGGL-1. The down-regulated synthesis of SGGLs in the mature granule neurons was shown by immunocytochemical and biochemical methods to be restored when a precursor, glucuronylneolactotetraosylceramide (GGL-1), which is beyond the GlcNAc-Tr step, was exogenously provided to these cells. The biological effect of such restoration of the synthesis of SGGLs in the mature granule neurons leads to cell aggregation and enhanced proliferation of neurites, amounting to dedifferentiation.
Collapse
Affiliation(s)
- D K Chou
- Department of Biomedical Sciences, Eunice Kennedy Shriver Center for Mental Retardation, Waltham, Massachusetts 02254, USA
| | | | | |
Collapse
|