1
|
Bubić A, Mrnjavac N, Stuparević I, Łyczek M, Wielgus-Kutrowska B, Bzowska A, Luić M, Leščić Ašler I. In the quest for new targets for pathogen eradication: the adenylosuccinate synthetase from the bacterium Helicobacter pylori. J Enzyme Inhib Med Chem 2018; 33:1405-1414. [PMID: 30191734 PMCID: PMC6136348 DOI: 10.1080/14756366.2018.1506773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Adenylosuccinate synthetase (AdSS) is an enzyme at regulatory point of purine metabolism. In pathogenic organisms which utilise only the purine salvage pathway, AdSS asserts itself as a promising drug target. One of these organisms is Helicobacter pylori, a wide-spread human pathogen involved in the development of many diseases. The rate of H. pylori antibiotic resistance is on the increase, making the quest for new drugs against this pathogen more important than ever. In this context, we describe here the properties of H. pylori AdSS. This enzyme exists in a dimeric active form independently of the presence of its ligands. Its narrow stability range and pH-neutral optimal working conditions reflect the bacterium’s high level of adaptation to its living environment. Efficient inhibition of H. pylori AdSS with hadacidin and adenylosuccinate gives hope of finding novel drugs that aim at eradicating this dangerous pathogen.
Collapse
Affiliation(s)
- Ante Bubić
- a Division of Physical Chemistry , Ruđer Bošković Institute , Zagreb , Croatia
| | - Natalia Mrnjavac
- a Division of Physical Chemistry , Ruđer Bošković Institute , Zagreb , Croatia
| | - Igor Stuparević
- b Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology , University of Zagreb , Zagreb , Croatia
| | - Marta Łyczek
- c Division of Biophysics, Institute of Experimental Physics, Faculty of Physics , University of Warsaw , Warsaw , Poland.,d Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology , University of Warsaw , Warsaw , Poland
| | - Beata Wielgus-Kutrowska
- c Division of Biophysics, Institute of Experimental Physics, Faculty of Physics , University of Warsaw , Warsaw , Poland
| | - Agnieszka Bzowska
- c Division of Biophysics, Institute of Experimental Physics, Faculty of Physics , University of Warsaw , Warsaw , Poland
| | - Marija Luić
- a Division of Physical Chemistry , Ruđer Bošković Institute , Zagreb , Croatia
| | - Ivana Leščić Ašler
- a Division of Physical Chemistry , Ruđer Bošković Institute , Zagreb , Croatia
| |
Collapse
|
2
|
Blundell RD, Williams SJ, Arras SDM, Chitty JL, Blake KL, Ericsson DJ, Tibrewal N, Rohr J, Koh YQAE, Kappler U, Robertson AAB, Butler MS, Cooper MA, Kobe B, Fraser JA. Disruption of de Novo Adenosine Triphosphate (ATP) Biosynthesis Abolishes Virulence in Cryptococcus neoformans. ACS Infect Dis 2016; 2:651-663. [PMID: 27759389 DOI: 10.1021/acsinfecdis.6b00121] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Opportunistic fungal pathogens such as Cryptococcus neoformans are a growing cause of morbidity and mortality among immunocompromised populations worldwide. To address the current paucity of antifungal therapeutic agents, further research into fungal-specific drug targets is required. Adenylosuccinate synthetase (AdSS) is a crucial enzyme in the adeosine triphosphate (ATP) biosynthetic pathway, catalyzing the formation of adenylosuccinate from inosine monophosphate and aspartate. We have investigated the potential of this enzyme as an antifungal drug target, finding that loss of function results in adenine auxotrophy in C. neoformans, as well as complete loss of virulence in a murine model. Cryptococcal AdSS was expressed and purified in Escherichia coli and the enzyme's crystal structure determined, the first example of a structure of this enzyme from fungi. Together with enzyme kinetic studies, this structural information enabled comparison of the fungal enzyme with the human orthologue and revealed species-specific differences potentially exploitable via rational drug design. These results validate AdSS as a promising antifungal drug target and lay a foundation for future in silico and in vitro screens for novel antifungal compounds.
Collapse
Affiliation(s)
- Ross D. Blundell
- Australian Infectious Diseases Research
Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Simon J. Williams
- Australian Infectious Diseases Research
Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
- Institute for Molecular
Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Samantha D. M. Arras
- Australian Infectious Diseases Research
Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jessica L. Chitty
- Australian Infectious Diseases Research
Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Kirsten L. Blake
- Australian Infectious Diseases Research
Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Daniel J. Ericsson
- Australian Infectious Diseases Research
Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
- Institute for Molecular
Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- MX Beamlines, Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Nidhi Tibrewal
- College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| | - Jurgen Rohr
- College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| | - Y. Q. Andre E. Koh
- Australian Infectious Diseases Research
Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ulrike Kappler
- Australian Infectious Diseases Research
Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
- Centre for Metals in Biology, School of
Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Avril A. B. Robertson
- Institute for Molecular
Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mark S. Butler
- Institute for Molecular
Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Matthew A. Cooper
- Institute for Molecular
Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Bostjan Kobe
- Australian Infectious Diseases Research
Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
- Institute for Molecular
Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - James A. Fraser
- Australian Infectious Diseases Research
Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
3
|
Abstract
We review literature on the metabolism of ribo- and deoxyribonucleotides, nucleosides, and nucleobases in Escherichia coli and Salmonella,including biosynthesis, degradation, interconversion, and transport. Emphasis is placed on enzymology and regulation of the pathways, at both the level of gene expression and the control of enzyme activity. The paper begins with an overview of the reactions that form and break the N-glycosyl bond, which binds the nucleobase to the ribosyl moiety in nucleotides and nucleosides, and the enzymes involved in the interconversion of the different phosphorylated states of the nucleotides. Next, the de novo pathways for purine and pyrimidine nucleotide biosynthesis are discussed in detail.Finally, the conversion of nucleosides and nucleobases to nucleotides, i.e.,the salvage reactions, are described. The formation of deoxyribonucleotides is discussed, with emphasis on ribonucleotidereductase and pathways involved in fomation of dUMP. At the end, we discuss transport systems for nucleosides and nucleobases and also pathways for breakdown of the nucleobases.
Collapse
|
4
|
Blundell RD, Williams SJ, Morrow CA, Ericsson DJ, Kobe B, Fraser JA. Purification, crystallization and preliminary X-ray analysis of adenylosuccinate synthetase from the fungal pathogen Cryptococcus neoformans. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1033-6. [PMID: 23989157 PMCID: PMC3758157 DOI: 10.1107/s1744309113021921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/06/2013] [Indexed: 03/16/2023]
Abstract
With increasingly large immunocompromised populations around the world, opportunistic fungal pathogens such as Cryptococcus neoformans are a growing cause of morbidity and mortality. To combat the paucity of antifungal compounds, new drug targets must be investigated. Adenylosuccinate synthetase is a crucial enzyme in the ATP de novo biosynthetic pathway, catalyzing the formation of adenylosuccinate from inosine monophosphate and aspartate. Although the enzyme is ubiquitous and well characterized in other kingdoms, no crystallographic studies on the fungal protein have been performed. Presented here are the expression, purification, crystallization and initial crystallographic analyses of cryptococcal adenylosuccinate synthetase. The crystals had the symmetry of space group P2(1)2(1)2(1) and diffracted to 2.2 Å resolution.
Collapse
Affiliation(s)
- Ross D. Blundell
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Simon J. Williams
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Carl A. Morrow
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Daniel J. Ericsson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Bostjan Kobe
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - James A. Fraser
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
5
|
Zhao Y, Niu C, Wen X, Xi Z. The minimum activation peptide from ilvH can activate the catalytic subunit of AHAS from different species. Chembiochem 2013; 14:746-52. [PMID: 23512804 DOI: 10.1002/cbic.201200680] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Indexed: 11/10/2022]
Abstract
Acetohydroxyacid synthases (AHASs), which catalyze the first step in the biosynthesis of branched-chain amino acids, are composed of a catalytic subunit (CSU) and a regulatory subunit (RSU). The CSU harbors the catalytic site, and the RSU is responsible for the activation and feedback regulation of the CSU. Previous results from Chipman and co-workers and our lab have shown that heterologous activation can be achieved among isozymes of Escherichia coli AHAS. It would be interesting to find the minimum peptide of ilvH (the RSU of E. coli AHAS III) that could activate other E. coli CSUs, or even those of ## species. In this paper, C-terminal, N-terminal, and C- and N-terminal truncation mutants of ilvH were constructed. The minimum peptide to activate ilvI (the CSU of E. coli AHAS III) was found to be ΔN 14-ΔC 89. Moreover, this peptide could not only activate its homologous ilvI and heterologous ilvB (CSU of E. coli AHAS I), but also heterologously activate the CSUs of AHAS from Saccharomyces cerevisiae, Arabidopsis thaliana, and Nicotiana plumbaginifolia. However, this peptide totally lost its ability for feedback regulation by valine, thus suggesting different elements for enzymatic activation and feedback regulation. Additionally, the apparent dissociation constant (Kd ) of ΔN 14-ΔC 89 when binding CSUs of different species was found to be 9.3-66.5 μM by using microscale thermophoresis. The ability of this peptide to activate different CSUs does not correlate well with its binding ability (Kd ) to these CSUs, thus implying that key interactions by specific residues is more important than binding ability in promoting enzymatic reactions. The high sequence similarity of the peptide ΔN 14-ΔC 89 to RSUs across species hints that this peptide represents the minimum activation motif in RSU and that it regulates all AHASs.
Collapse
Affiliation(s)
- Yuefang Zhao
- Department of Chemical Biology and State Key Laboratory of Elemento-organic Chemistry, Nankai University, Weijin 94, Tianjin 300071, China
| | | | | | | |
Collapse
|
6
|
Studies on active site mutants of P. falciparum adenylosuccinate synthetase: Insights into enzyme catalysis and activation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1996-2002. [DOI: 10.1016/j.bbapap.2010.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Revised: 07/11/2010] [Accepted: 07/13/2010] [Indexed: 11/20/2022]
|
7
|
de Queiroz MS, Waldrop GL. Modeling and numerical simulation of biotin carboxylase kinetics: implications for half-sites reactivity. J Theor Biol 2006; 246:167-75. [PMID: 17266990 DOI: 10.1016/j.jtbi.2006.12.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 12/05/2006] [Accepted: 12/15/2006] [Indexed: 11/17/2022]
Abstract
Biotin carboxylase catalyzes the ATP-dependent carboxylation of biotin and is one component of the multienzyme complex acetyl-CoA carboxylase that catalyzes the first committed step in fatty acid synthesis in all organisms. In Escherichia coli, biotin carboxylase exists as a homodimer where each subunit contains a complete active site. In a previous study (Janiyani, K., Bordelon, T., Waldrop, G.L., Cronan Jr., J.E., 2001. J. Biol. Chem. 276, 29864-29870), hybrid dimers were constructed where one subunit was wild-type and the other contained an active site mutation that reduced activity at least 100-fold. The activity of the hybrid dimers was only slightly greater than the activity of the mutant homodimers and far less than the expected 50% activity for completely independent active sites. Thus, there is communication between the two subunits of biotin carboxylase. The dominant negative effect of the mutations on the wild-type active site was interpreted as alternating catalytic cycles of the active sites in the homodimer. In order to test the hypothesis of oscillating catalytic cycles, mathematical modeling and numerical simulations of the kinetics of wild-type, hybrid dimers, and mutant homodimers of biotin carboxylase were performed. Numerical simulations of biotin carboxylase kinetics were the most similar to the experimental data when an oscillating active site model was used. In contrast, alternative models where the active sites were independent did not agree with the experimental data. Thus, the numerical simulations of the proposed kinetic model support the hypothesis that the two active sites of biotin carboxylase alternate their catalytic cycles.
Collapse
Affiliation(s)
- Marcio S de Queiroz
- Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70803-6413, USA.
| | | |
Collapse
|
8
|
|
9
|
Rodríguez-Pombo P, Pérez-Cerdá C, Pérez B, Desviat LR, Sánchez-Pulido L, Ugarte M. Towards a model to explain the intragenic complementation in the heteromultimeric protein propionyl-CoA carboxylase. Biochim Biophys Acta Mol Basis Dis 2004; 1740:489-98. [PMID: 15949719 DOI: 10.1016/j.bbadis.2004.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Revised: 09/29/2004] [Accepted: 10/13/2004] [Indexed: 11/29/2022]
Abstract
Mutations in the PCCA or PCCB genes coding for alpha and beta subunits of propionyl CoA carboxylase can cause propionic acidemia. To understand the molecular basis of the intragenic complementation previously reported at the PCCB locus, we now examine the complementation behaviour of four carboxy-terminal and 11 amino-terminal naturally occurring mutant alleles both using cell fusion and reconstructing the complementation event by transfecting the mutant cDNAs to generate multimeric hybrid proteins. Alleles carrying mutations p.R410W and p.W531X are able to complement with 10 out of 11 amino-terminal mutations assayed. Only the unstable p.R512C, p.L519P and p.G112D mutants fail to complement. The results analyzed in the framework of the crystal structure of the homologous 12S transcarboxylase from Propionibacterium shermanii show that all mutant alleles studied are located at beta subunits interfaces, complementing alleles at the inter-trimer interface, where the catalysis probably happens, and non-complementing alleles at the intra-trimer interface, probably disrupting the trimer formation. Our results also show a remarkable stabilization effect when p.R410W is cotransfected with p.G246V. We propose a model for intragenic complementation requiring the production of two different beta subunits carrying carboxy and amino-terminal mutations that allow regenerating functional active sites and in which a stabilization effect between subunits could be relevant to ameliorate the biochemical phenotype of each mutation separately.
Collapse
Affiliation(s)
- Pilar Rodríguez-Pombo
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa CSIC-UAM, Universidad Autónoma de Madrid, Cantoblanco, Spain
| | | | | | | | | | | |
Collapse
|
10
|
Borza T, Iancu CV, Pike E, Honzatko RB, Fromm HJ. Variations in the response of mouse isozymes of adenylosuccinate synthetase to inhibitors of physiological relevance. J Biol Chem 2003; 278:6673-9. [PMID: 12482871 DOI: 10.1074/jbc.m210838200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vertebrates have acidic and basic isozymes of adenylosuccinate synthetase, which participate in the first committed step of de novo AMP biosynthesis and/or the purine nucleotide cycle. These isozymes differ in their kinetic properties and N-leader sequences, and their regulation may vary with tissue type. Recombinant acidic and basic synthetases from mouse, in the presence of active site ligands, behave in analytical ultracentrifugation as dimers. Active site ligands enhance thermal stability of both isozymes. Truncated forms of both isozymes retain the kinetic parameters and the oligomerization status of the full-length proteins. AMP potently inhibits the acidic isozyme competitively with respect to IMP. In contrast, AMP weakly inhibits the basic isozyme noncompetitively with respect to all substrates. IMP inhibition of the acidic isozyme is competitive, and that of the basic isozyme noncompetitive, with respect to GTP. Fructose 1,6-bisphosphate potently inhibits both isozymes competitively with respect to IMP but becomes noncompetitive at saturating substrate concentrations. The above, coupled with structural information, suggests antagonistic interactions between the active sites of the basic isozyme, whereas active sites of the acidic isozyme seem functionally independent. Fructose 1,6-bisphosphate and IMP together may be dynamic regulators of the basic isozyme in muscle, causing potent inhibition of the synthetase under conditions of high AMP deaminase activity.
Collapse
Affiliation(s)
- Tudor Borza
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 5011, USA
| | | | | | | | | |
Collapse
|
11
|
Phillips RS, Johnson N, Kamath AV. Formation in vitro of hybrid dimers of H463F and Y74F mutant Escherichia coli tryptophan indole-lyase rescues activity with L-tryptophan. Biochemistry 2002; 41:4012-9. [PMID: 11900544 DOI: 10.1021/bi015838t] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Y74F and H463F mutant forms of Escherichia coli tryptophan indole-lyase (Trpase) have been prepared. These mutant proteins have very low activity with L-Trp as substrate (kcat and kcat/Km values less than 0.1% of wild-type Trpase). In contrast, these mutant enzymes exhibit much higher activity with S-(o-nitrophenyl)-L-cysteine and S-ethyl-L-cysteine (kcat/Km values about 1-50% of wild-type Trpase). Thus, Tyr-74 and His-463 are important for the substrate specificity of Trpase for L-Trp. H463F Trpase is not inhibited by a potent inhibitor of wild-type Trpase, oxindolyl-L-alanine, and does not exhibit the pK(a) of 6.0 seen in previous pH dependence studies [Kiick, D. M., and Phillips, R. S. (1988) Biochemistry 27, 7333]. These results suggest that His-463 may be the catalytic base with a pK(a) of 6.0 and Tyr-74 may be a general acid catalyst for the elimination step, as we found previously with tyrosine phenol-lyase [Chen, H., Demidkina, T. V., and Phillips, R. S. (1995) Biochemistry 34, 12776]. H463F Trpase reacts with L-Trp and S-ethyl-L-cysteine in rapid-scanning stopped-flow experiments to form equilibrating mixtures of external aldimine and quinonoid intermediates, similar to those observed with wild-type Trpase. In contrast to the results with wild-type Trpase, the addition of benzimidazole to reactions of H463F Trpase with L-Trp does not result in the formation of an aminoacrylate intermediate. However, addition of benzimidazole with S-ethyl-L-cysteine results in the formation of an aminoacrylate intermediate, with lambda(max) at 345 nm, as was seen previously with wild-type Trpase [Phillips, R. S. (1991) Biochemistry 30, 5927]. This suggests that His-463 plays a specific role in the elimination step of the reaction of L-Trp. Refolding of equimolar mixtures of H463F and Y74F Trpase after unfolding in 4 M guanidine hydrochloride results in a dramatic increase in activity with L-Trp, indicating the formation of a hybrid H463F/Y74F dimer with one normal active site.
Collapse
Affiliation(s)
- Robert S Phillips
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia 30602-2556, USA.
| | | | | |
Collapse
|
12
|
Gorrell A, Wang W, Underbakke E, Hou Z, Honzatko RB, Fromm HJ. Determinants of L-aspartate and IMP recognition in Escherichia coli adenylosuccinate synthetase. J Biol Chem 2002; 277:8817-21. [PMID: 11781326 DOI: 10.1074/jbc.m111810200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adenylosuccinate synthetase governs the first committed step in the de novo synthesis of AMP. Mutations of conserved residues in the synthetase from Escherichia coli reveal significant roles for Val(273) and Thr(300) in the recognition of l-aspartate, even though these residues do not or cannot hydrogen bond with the substrate. The mutation of Thr(300) to alanine increases the K(m) for l-aspartate by 30-fold. In contrast, its mutation to valine causes no more than a 4-fold increase in the K(m) for l-aspartate, while increasing k(cat) by 3-fold. Mutations of Val(273) to alanine, threonine, or asparagine increase the K(m) for l-aspartate from 15- to 40-fold, and concomitantly decrease the K(i) for dicarboxylate analogues of l-aspartate by up to 40-fold. The above perturbations are comparable with those resulting from the elimination of a hydrogen bond between the enzyme and substrate: alanine mutations of Thr(128) and Thr(129) increase the K(m) for IMP by up to 30-fold and the alanine mutation of Thr(301) abolishes catalysis supported by l-aspartate, but has no effect on catalysis supported by hydroxylamine. Structure-based mechanisms, by which the above residues influence substrate recognition, are presented.
Collapse
Affiliation(s)
- Andrea Gorrell
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | | | |
Collapse
|
13
|
Nelson SW, Honzatko RB, Fromm HJ. Spontaneous subunit exchange in porcine liver fructose-1,6-bisphosphatase. FEBS Lett 2001; 492:254-8. [PMID: 11257504 DOI: 10.1016/s0014-5793(01)02262-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
No evidence to date suggests the possibility of subunit exchange between tetramers of mammalian fructose-1,6-bisphosphatase. An engineered fructose-1,6-bisphosphatase, with subunits of altered electrostatic charge, exhibits spontaneous subunit exchange with wild-type enzyme in the absence of ligands. The exchange process reaches equilibrium in approximately 5 h at 4 degrees C, as monitored by non-denaturing gel electrophoresis and anion exchange chromatography. Active site ligands, such as fructose 6-phosphate, abolish subunit exchange at the level of the monomer, but permit dimer-dimer exchanges. AMP, alone or in the presence of active site ligands, abolishes all exchange processes. Exchange phenomena may play a role in the kinetic mechanism of allosteric regulation of fructose-1,6-bisphosphatase.
Collapse
Affiliation(s)
- S W Nelson
- Department of Biochemistry, Biophysics, and Molecular Biology, 1210 Molecular Biology Bldg., Iowa State University, Ames, IA 50011, USA
| | | | | |
Collapse
|
14
|
Honzatko RB, Fromm HJ. Structure-function studies of adenylosuccinate synthetase from Escherichia coli. Arch Biochem Biophys 1999; 370:1-8. [PMID: 10496970 DOI: 10.1006/abbi.1999.1383] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adenylosuccinate synthetase catalyzes the first committed step in the de novo biosynthesis of AMP, thermodynamically coupling the hydrolysis of GTP to the formation of adenylosuccinate from l-aspartate and IMP. The enzyme from Esherichia coli undergoes a ligand-induced dimerization, which leads to the assembly of a complete active site. The binding of IMP causes conformational changes over distances of 30 A, the end result of which is the activation of essential catalytic elements and the organization of the binding pocket for Mg(2+)-GTP. The enzyme promotes first a phosphoryl transfer from GTP to the 6-oxygen atom of IMP, by way of a transition state that has characteristics of both associative and dissociative reaction pathways. Following the formation of 6-phosphoryl-IMP, the enzyme then catalyzes the nucleophilic displacement of the 6-phosphoryl group by the alpha-amino group of l-aspartate in a transition state, which requires two metal cations.
Collapse
Affiliation(s)
- R B Honzatko
- Department of Biochemistry, Iowa State University, Ames, Iowa, 50011, USA.
| | | |
Collapse
|
15
|
Wang W, Gorrell A, Hou Z, Honzatko RB, Fromm HJ. Ambiguities in mapping the active site of a conformationally dynamic enzyme by directed mutation. Role of dynamics in structure-function correlations in Escherichia coli adenylosuccinate synthetase. J Biol Chem 1998; 273:16000-4. [PMID: 9632649 DOI: 10.1074/jbc.273.26.16000] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
On the basis of ligated crystal structures, Asn21, Asn38, Thr42, and Arg419 are not involved in the chemical mechanism of adenylosuccinate synthetase from Escherichia coli, yet these residues are well conserved across species. Purified mutants (Asp21 --> Ala, Asn38 --> Ala, Asn38 --> Asp, Asn38 --> Glu, Thr42 --> Ala, and Arg419 --> Leu) were studied by kinetics, circular dichroism spectroscopy, and equilibrium ultracentrifugation. Asp21 and Arg419 are not part of the active site, yet mutations at positions 21 and 419 lower kcat 20- and 10-fold, respectively. Thr42 interacts only through its backbone amide with the guanine nucleotide, yet its mutation to alanine significantly increases Km for all substrates. Asn38 hydrogen-bonds directly to the 5'-phosphoryl group of IMP, yet its mutation to alanine and glutamate has no effect on Km values, but reduces kcat by 100-fold. The mutation Asn38 --> Asp causes 10-57-fold increases in Km for all substrates along with a 30-fold decrease in kcat. At pH 5.6, however, the Asn38 --> Asp mutant is more active, yet binds IMP 100-fold more weakly, than the wild-type enzyme. Proposed mechanisms of ligand-induced conformational change and subunit aggregation can account for the properties of mutant enzymes reported here. The results underscore the difficulty of using directed mutations alone as a means of mapping the active site of an enzyme.
Collapse
Affiliation(s)
- W Wang
- Department of Biochemistry and Biophysics, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | |
Collapse
|
16
|
Kang C, Sun N, Poland BW, Gorrell A, Honzatko RB, Fromm HJ. Residues essential for catalysis and stability of the active site of Escherichia coli adenylosuccinate synthetase as revealed by directed mutation and kinetics. J Biol Chem 1997; 272:11881-5. [PMID: 9115248 DOI: 10.1074/jbc.272.18.11881] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Examined here by directed mutation, circular dichroism spectroscopy, and kinetics are the relationships of five residues, Asp13, Glu14, Lys16, His41, and Arg131, to the catalytic function and structural organization of adenylosuccinate synthetase from Escherichia coli. The D13A mutant has no measurable activity. Mutants E14A and H41N exhibit 1% of the activity of the wild-type enzyme and 2-7-fold increases in the Km of substrates. The mutant K16Q has 34% of the activity of wild-type enzyme and Km values for substrates virtually unchanged from those of the wild-type system. Mutation of Arg131 to leucine caused only a 4-fold increase in the Km for aspartate relative to the wild-type enzyme. The dramatic effects of the D13A, E14A, and H41N mutations on kcat are consistent with the putative roles assigned to Asp13 (catalytic base), His41 (catalytic acid), and Glu14 (structural organization of the active site). The modest effect of the R131L mutation on the binding of aspartate is also in harmony with recent crystallographic investigations, which suggests that Arg131 stabilizes the conformation of the loop that binds the beta-carboxylate of aspartate. The modest effect of the K16Q mutation, however, contrasts with significant changes brought about by the mutation of the corresponding lysines in the P-loop of other GTP- and ATP-binding proteins. Crystallographic structures place Lys16 in a position of direct interaction with the gamma-phosphate of GTP. Furthermore, lysine is present at corresponding positions in all known sequences of adenylosuccinate synthetase. We suggest that along with a modest role in stabilizing the transition state of the phosphotransfer reaction, Lys16 may stabilize the enzyme structurally. In addition, the modest loss of catalytic activity of the K16Q mutant may confer such a selective disadvantage to E. coli that this seemingly innocuous mutation is not tolerated in nature.
Collapse
Affiliation(s)
- C Kang
- Department of Biochemistry and Biophysics, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | | | |
Collapse
|