1
|
Maekawa M, Oda T, Hanai R. Biochemical analysis of the replication initiator protein of staphylococcal plasmid pC194. Biochimie 2022; 202:85-93. [PMID: 35988842 DOI: 10.1016/j.biochi.2022.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/07/2022] [Accepted: 08/15/2022] [Indexed: 11/26/2022]
Abstract
The staphylococcal plasmid pC194 is replicated through the rolling-circle mechanism. Its replication protein RepA has been proposed to initiate replication by making a bond between Y214 and DNA phosphate via transesterification and to terminate it by hydrolyzing DNA with E210 and carrying out strand transfer. We tested this model by examining the catalytic functions of the protein with purified RepA proteins and single-stranded DNA oligomers. The wild-type RepA formed a covalent bond with the DNA phosphate at the predicted initiation site. It hydrolyzed the phosphodiester bond at the site, which activity was found to depend on the presence of a large pseudopalindrome contained in the replication origin. The protein carried out a strand-transfer reaction which mimicked the termination step of replication. A Y214F and an E210A mutant respectively lacked the transesterification and the hydrolytic activity. These results are consistent with the previously proposed model, which was based solely on molecular genetics results. In addition, an E142A mutant was found to lack both activities, suggesting that the residue may coordinate the divalent cation necessary for them. A possible role of the pseudopalindrome in controlling the two activities of RepA during a replication cycle is also discussed.
Collapse
Affiliation(s)
- Michinari Maekawa
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Takashi Oda
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Ryo Hanai
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Tokyo, Japan.
| |
Collapse
|
2
|
Abstract
Plasmids are DNA entities that undergo controlled replication independent of the chromosomal DNA, a crucial step that guarantees the prevalence of the plasmid in its host. DNA replication has to cope with the incapacity of the DNA polymerases to start de novo DNA synthesis, and different replication mechanisms offer diverse solutions to this problem. Rolling-circle replication (RCR) is a mechanism adopted by certain plasmids, among other genetic elements, that represents one of the simplest initiation strategies, that is, the nicking by a replication initiator protein on one parental strand to generate the primer for leading-strand initiation and a single priming site for lagging-strand synthesis. All RCR plasmid genomes consist of a number of basic elements: leading strand initiation and control, lagging strand origin, phenotypic determinants, and mobilization, generally in that order of frequency. RCR has been mainly characterized in Gram-positive bacterial plasmids, although it has also been described in Gram-negative bacterial or archaeal plasmids. Here we aim to provide an overview of the RCR plasmids' lifestyle, with emphasis on their characteristic traits, promiscuity, stability, utility as vectors, etc. While RCR is one of the best-characterized plasmid replication mechanisms, there are still many questions left unanswered, which will be pointed out along the way in this review.
Collapse
|
3
|
Arbore C, Lewis LM, Webb MR. Kinetic mechanism of initiation by RepD as a part of asymmetric, rolling circle plasmid unwinding. Biochemistry 2012; 51:3684-93. [PMID: 22463759 PMCID: PMC3340939 DOI: 10.1021/bi300172p] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Some bacterial plasmids carry antibiotic resistance genes and replicate by an asymmetric, rolling circle mechanism, in which replication of the two strands is not concurrent. Initiation of this replication occurs via an initiator protein that nicks one DNA strand at the double-stranded origin of replication. In this work, RepD protein from the staphylococcal plasmid pC221 carries this function and allows PcrA helicase to bind and begin unwinding the plasmid DNA. This work uses whole plasmid constructs as well as oligonucleotide-based mimics of parts of the origin to examine the initiation reaction. It investigates the phenomenon that nicking, although required to open a single-stranded region at the origin and so allow PcrA to bind, is not required for another function of RepD, namely to increase the processivity of PcrA, allowing it to unwind plasmid lengths of DNA. A kinetic mechanism of RepD initiation is presented, showing rapid binding of the origin DNA. The rate of nicking varies with the structure of the DNA but can occur with a rate constant of >25 s(-1) at 30 °C. The equilibrium constant of the nicking reaction, which involves a transesterification to form a phosphotyrosine bond within the RepD active site, is close to unity.
Collapse
Affiliation(s)
- Claudia Arbore
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | |
Collapse
|
4
|
Khan SA. DNA–Protein Interactions during the Initiation and Termination of Plasmid pT181 Rolling-Circle Replication. ACTA ACUST UNITED AC 2003; 75:113-37. [PMID: 14604011 DOI: 10.1016/s0079-6603(03)75004-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Initiation of DNA replication requires the generation of a primer at the origin of replication that can be utilized by a DNA polymerase for DNA synthesis. This can be accomplished by several means, including the synthesis of an RNA primer by a DNA primase or RNA polymerase, by nicking of one strand of the DNA to generate a free 3'-OH end that can be used as a primer, and by the utilization of the OH group present in an amino acid such as serine within an initiation protein as a primer. Furthermore, some single-stranded DNA genomes can utilize a snap-back 3'-OH end generated due to self-complementarity as a primer for DNA replication. The different modes of initiation require the generation of highly organized DNA-protein complexes at the origin that trigger the initiation of replication. A large majority of small, multicopy plasmids of Gram-positive bacteria and some of Gram-negative bacteria replicate by a rolling-circle (RC) mechanism (for previous reviews, see Refs.). More than 200 rolling-circle replicating (RCR) plasmids have so far been identified and, based on sequence homologies in their replication regions, can be grouped into approximately seven families (Refs., and http://www.essex.ac.uk/bs/staff/osborn/DPR-home.htm). This review will focus on plasmids of the pT181 family that replicate by an RC mechanism. So far, approximately 25 plasmids have been identified as belonging to this family based on the sequence homology in their double-strand origins (dsos) and the genes encoding the initiator (Rep) proteins. This review will highlight our current understanding of the structural features of the origins of replication, and the DNA-protein and protein-protein interactions that result in the generation of a replication-initiation complex that triggers replication. It will discuss the molecular events that result in the precise termination of replication once the leading-strand DNA synthesis has been completed. This review will also discuss the various biochemical activities of the initiator proteins encoded by the plasmids of the pT181 family and the mechanism of inactivation of the Rep activity after supporting one round of leading-strand replication. Finally, the review will outline the mechanism of replication of the lagging strand of the pT181 plasmid as well as the limited information that is available on the role of host proteins in pT181 leading- and lagging-strand replication.
Collapse
Affiliation(s)
- Saleem A Khan
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
5
|
Abstract
pT181 is a small rolling-circle plasmid from Staphylococcus aureus whose initiator protein, RepC, melts the plasmid's double-strand origin (DSO) and extrudes a cruciform involving IR II, a palindrome flanking the initiation nick site. We have hypothesized that the cruciform is required for initiation, providing a single-stranded region for the assembly of the replisome (R. Jin et al., 1997, EMBO J. 16, 4456-4566). In this study, we have tested the requirement for cruciform extrusion by disrupting the symmetry of the IR II palindrome or by increasing its length. The modified DSOs were tested for replication with RepC in trans. Rather surprisingly, disruption of the IR II symmetry had no detectable effect on replication or on competitivity of the modified DSO, though plasmids with IR II disrupted were less efficiently relaxed than the wild type by RepC. However, in conjunction with IR II disruption, modification of the tight RepC binding site IR III blocked replication. These results define two key elements of the pT181 initiation mechanism--the IR II conformation and the RepC binding site (IR III)--and they indicate that pT181 replication initiation is sufficiently robust to be able to compensate for significant modifications in the configuration of the DSO.
Collapse
Affiliation(s)
- R Jin
- Molecular Pathogenesis Program, Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|
6
|
Abstract
It is now well established that a large majority of small, multicopy plasmids of Gram-positive bacteria use the rolling-circle (RC) mechanism for their replication. Furthermore, the host range of RC plasmids now includes Gram-negative organisms as well as archaea. RC plasmids can be broadly classified into at least five families, individual members of which are spread among widely different bacteria. There is significant homology in the basic replicons of plasmids belonging to a particular family, and there is compelling evidence that such plasmids have evolved from common ancestors. Major advances have recently been made in our understanding of plasmid RC replication, including the characterization of the biochemical activities of the plasmid initiator proteins and their interaction with the double-strand origin, the domain structure of the initiator proteins and the molecular basis for the function of single-strand origins in plasmid lagging strand synthesis. Over the past several years, there has been a 'renaissance' in studies on RC replication as a result of the discovery that many plasmids replicate by this mechanism, and studies in the next few years are likely to reveal new and novel mechanisms used by RC plasmids for their regulated replication.
Collapse
Affiliation(s)
- S A Khan
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
7
|
Brister JR, Muzyczka N. Rep-mediated nicking of the adeno-associated virus origin requires two biochemical activities, DNA helicase activity and transesterification. J Virol 1999; 73:9325-36. [PMID: 10516041 PMCID: PMC112967 DOI: 10.1128/jvi.73.11.9325-9336.1999] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The single-stranded adeno-associated virus (AAV) genome is flanked by terminal hairpinned origins of DNA replication (terminal repeats [TRs]) that are nicked at the terminal resolution site (trs) by the AAV Rep protein in an ATP-dependent, site-specific manner. Here we determine the minimal trs sequence necessary for Rep cleavage, 3'-CCGGT/TG-5', and show that this 7-base core sequence is required only on the nicked strand. We also identify a potential stem-loop structure at the trs. Interestingly, Rep nicking on a TR substrate that fixes this trs stem-loop in the extruded form no longer requires ATP. This suggests that ATP-dependent Rep helicase activity is necessary to unwind the duplex trs and extrude the stem-loop structure, prior to the ATP-independent Rep transesterification reaction. The extrusion of origin stem-loop structures prior to nicking appears to be a general mechanism shared by plant and animal viruses and bacterial plasmids. In the case of AAV, this mechanism of TR nicking would provide a possible regulatory function.
Collapse
Affiliation(s)
- J R Brister
- Department of Molecular Genetics, University of Florida Gene Therapy Center, College of Medicine, Gainesville, Florida 32610, USA
| | | |
Collapse
|
8
|
Zhao AC, Ansari RA, Schmidt MC, Khan SA. An oligonucleotide inhibits oligomerization of a rolling circle initiator protein at the pT181 origin of replication. J Biol Chem 1998; 273:16082-9. [PMID: 9632660 DOI: 10.1074/jbc.273.26.16082] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A large number of plasmids have been shown to replicate by a rolling circle (RC) mechanism. The initiators encoded by these plasmids have origin-specific, nicking-closing activity that is required for the initiation and termination of RC replication. Since the initiators of many RC plasmids are rate-limiting for replication, these proteins are usually inactivated after supporting one round of replication. In the case of the pT181 plasmid, inactivation of the initiator RepC protein occurs by the attachment of an oligonucleotide to its active tyrosine residue. We have generated the inactivated form of RepC, termed RepC*, in vitro and investigated the effects of attachment of the oligonucleotide on its various biochemical activities. Our results demonstrate that while RepC* is inactive in nicking-closing and replication activities due to the blockage of its active tyrosine residue, it is competent in origin DNA binding and DNA religation activities. We have investigated the oligomeric state of RepC and RepC* and found that RepC exists as a dimer in solution and can oligomerize on the DNA. We have generated heterodimers in vitro between the wild-type and epitope-tagged RepC proteins. In electrophoretic mobility shift experiments, the initiator heterodimers generated a novel DNA-protein complex, demonstrating that it binds to DNA as a dimer. We have shown that a DNA binding mutant of RepC can be targeted to the origin in the presence of the wild-type protein primarily through a protein-protein interaction. Interestingly, RepC* is defective in its ability to oligomerize on the DNA. RepC* inhibited the DNA binding and replication activity of wild-type RepC to only a very limited extent, suggesting that it may play only a minor regulatory role in replication in vivo. Based on these and earlier results, we propose a model for the role of RepC during the initiation and termination of pT181 RC replication.
Collapse
Affiliation(s)
- A C Zhao
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
9
|
del Solar G, Giraldo R, Ruiz-Echevarría MJ, Espinosa M, Díaz-Orejas R. Replication and control of circular bacterial plasmids. Microbiol Mol Biol Rev 1998; 62:434-64. [PMID: 9618448 PMCID: PMC98921 DOI: 10.1128/mmbr.62.2.434-464.1998] [Citation(s) in RCA: 694] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
An essential feature of bacterial plasmids is their ability to replicate as autonomous genetic elements in a controlled way within the host. Therefore, they can be used to explore the mechanisms involved in DNA replication and to analyze the different strategies that couple DNA replication to other critical events in the cell cycle. In this review, we focus on replication and its control in circular plasmids. Plasmid replication can be conveniently divided into three stages: initiation, elongation, and termination. The inability of DNA polymerases to initiate de novo replication makes necessary the independent generation of a primer. This is solved, in circular plasmids, by two main strategies: (i) opening of the strands followed by RNA priming (theta and strand displacement replication) or (ii) cleavage of one of the DNA strands to generate a 3'-OH end (rolling-circle replication). Initiation is catalyzed most frequently by one or a few plasmid-encoded initiation proteins that recognize plasmid-specific DNA sequences and determine the point from which replication starts (the origin of replication). In some cases, these proteins also participate directly in the generation of the primer. These initiators can also play the role of pilot proteins that guide the assembly of the host replisome at the plasmid origin. Elongation of plasmid replication is carried out basically by DNA polymerase III holoenzyme (and, in some cases, by DNA polymerase I at an early stage), with the participation of other host proteins that form the replisome. Termination of replication has specific requirements and implications for reinitiation, studies of which have started. The initiation stage plays an additional role: it is the stage at which mechanisms controlling replication operate. The objective of this control is to maintain a fixed concentration of plasmid molecules in a growing bacterial population (duplication of the plasmid pool paced with duplication of the bacterial population). The molecules involved directly in this control can be (i) RNA (antisense RNA), (ii) DNA sequences (iterons), or (iii) antisense RNA and proteins acting in concert. The control elements maintain an average frequency of one plasmid replication per plasmid copy per cell cycle and can "sense" and correct deviations from this average. Most of the current knowledge on plasmid replication and its control is based on the results of analyses performed with pure cultures under steady-state growth conditions. This knowledge sets important parameters needed to understand the maintenance of these genetic elements in mixed populations and under environmental conditions.
Collapse
Affiliation(s)
- G del Solar
- Centro de Investigaciones Biológicas, CSIC, E-28006 Madrid, Spain
| | | | | | | | | |
Collapse
|
10
|
Abstract
Many bacterial plasmids replicate by a rolling-circle (RC) mechanism. Their replication properties have many similarities to as well as significant differences from those of single-stranded DNA (ssDNA) coliphages, which also replicate by an RC mechanism. Studies on a large number of RC plasmids have revealed that they fall into several families based on homology in their initiator proteins and leading-strand origins. The leading-strand origins contain distinct sequences that are required for binding and nicking by the Rep proteins. Leading-strand origins also contain domains that are required for the initiation and termination of replication. RC plasmids generate ssDNA intermediates during replication, since their lagging-strand synthesis does not usually initiate until the leading strand has been almost fully synthesized. The leading- and lagging-strand origins are distinct, and the displaced leading-strand DNA is converted to the double-stranded form by using solely the host proteins. The Rep proteins encoded by RC plasmids contain specific domains that are involved in their origin binding and nicking activities. The replication and copy number of RC plasmids, in general, are regulated at the level of synthesis of their Rep proteins, which are usually rate limiting for replication. Some RC Rep proteins are known to be inactivated after supporting one round of replication. A number of in vitro replication systems have been developed for RC plasmids and have provided insight into the mechanism of plasmid RC replication.
Collapse
Affiliation(s)
- S A Khan
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pennsylvania 15261, USA.
| |
Collapse
|
11
|
Jin R, Fernandez-Beros ME, Novick RP. Why is the initiation nick site of an AT-rich rolling circle plasmid at the tip of a GC-rich cruciform? EMBO J 1997; 16:4456-66. [PMID: 9250690 PMCID: PMC1170072 DOI: 10.1093/emboj/16.14.4456] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
pT181 and other closely related rolling circle plasmids have the nicking site for initiation of replication between the arms of a GC-rich inverted repeat sequence adjacent to the binding site for the dimeric initiator protein. Replication is initiated by the initiator-induced extrusion of this sequence as a cruciform, creating a single-stranded region for nicking by the protein. Nicking is followed by assembly of the replisome without relaxation of the secondary structure. Following termination, the initiator protein is released with a short oligonucleotide attached to one subunit, which prevents it from being recycled, a necessary feature of the plasmid's replication control system. The modified initiator can cleave single-stranded substrates and can nick and relax supercoiled plasmid DNA weakly. Although it can bind to its recognition sequence in the leading strand origin, the modified protein cannot induce cruciform extrusion, and it is proposed that this inability is the key to understanding the biological rationale for having the nicking site at the tip of a cruciform: the need to provide the functional initiator with a catalytic advantage over the modified one sufficient to offset the numerical advantage and metabolic stability of the latter.
Collapse
Affiliation(s)
- R Jin
- Skirball Institute of Biomolecular Medicine, New York University Medical School, NY 10016, USA
| | | | | |
Collapse
|