1
|
Gao Y, Xiong X, Wang H, Wang J, Bi Y, Yan Y, Cao Z, Li D, Song F. Ero1-Pdi1 module-catalysed dimerization of a nucleotide sugar transporter, FonNst2, regulates virulence of Fusarium oxysporum on watermelon. Environ Microbiol 2021; 24:1200-1220. [PMID: 34587346 DOI: 10.1111/1462-2920.15789] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/23/2021] [Indexed: 11/29/2022]
Abstract
Fusarium oxysporum f. sp. niveum (Fon) is a soil-borne fungus causing vascular Fusarium wilt on watermelon; however, the molecular network regulating Fon virulence remains to be elucidated. Here, we report the function and mechanism of nucleotide sugar transporters (Nsts) in Fon. Fon genome harbours nine FonNst genes with distinct functions in vegetative growth, asexual production, cell wall stress response and virulence. FonNst2 and FonNst3 are required for full virulence of Fon on watermelon and FonNst2 is mainly involved in fungal colonization of the plant tissues. FonNst2 and FonNst3 form homo- or hetero-dimers but function independently in Fon virulence. FonNst2, which has UDP-galactose transporter activity in yeast, interacts with FonEro1 and FonPdi1, both of which are required for full virulence of Fon. FonNst2, FonPdi1 and FonEro1 target to endoplasmic reticulum (ER) and are essential for ER homeostasis and function. FonEro1-FonPdi1 module catalyses the dimerization of FonNst2, which is critical for Fon virulence. Undimerized FonNst2 is unstable and degraded via ER-associated protein degradation in vivo. These data demonstrate that FonEro1-FonPdi1 module-catalysed dimerization of FonNst2 is critical for Fon virulence on watermelon and provide new insights into the regulation of virulence in plant fungal pathogens via disulfide bond formation of key pathogenicity factors.
Collapse
Affiliation(s)
- Yizhou Gao
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaohui Xiong
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Hui Wang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jiajing Wang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yan Bi
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yuqing Yan
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhongye Cao
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Dayong Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fengming Song
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
2
|
Cell wall integrity is compromised under temperature stress in Schizosaccharomyces pombe expressing a valproic acid-sensitive vas4 mutant. Sci Rep 2021; 11:13483. [PMID: 34188069 PMCID: PMC8242086 DOI: 10.1038/s41598-021-92466-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 06/03/2021] [Indexed: 11/17/2022] Open
Abstract
Valproic acid (VPA) is widely used as a eutherapeutic and safe anticonvulsant drug, but the mechanism is not well elucidated. Histone deacetylases (HDACs) were first identified as direct targets of VPA. Many loss-of function mutants in S. pombe have been shown to be VPA sensitive but not sensitive to other HDAC inhibitors, such as sodium butyrate or trichostatin A (TSA). This difference suggests that there are multiple VPA target genes. In the current study, we isolated a VPA-sensitive (vas) mutant, vas4-1, and cloned the VPA target gene vas4+/vrg4+ by performing complementation experiments. The vas4+/vrg4+ gene encodes a putative Golgi GDP-mannose transporter, Vrg4, which is highly homologous with ScVrg4p. Physiological experiments indicated that SpVrg4p is involved in maintaining cell wall integrity (CWI) under high- or low-temperature stress. The results of a coimmunoprecipitation assay suggested that SpVrg4p may be transferred from the ER to the Golgi through SpGot1p loaded COPII vesicles, and both single and double mutations (S263C and A271V) in SpVrg4p compromised this transfer. Our results suggested that CWI in S. pombe is compromised under temperature stress by the VPA-sensitive vas4 mutant.
Collapse
|
3
|
Fierros-Romero G, Gómez-Ramírez M, Sharma A, Pless RC, Rojas-Avelizapa NG. czcD gene from Bacillus megaterium and Microbacterium liquefaciens as a potential nickel-vanadium soil pollution biomarker. J Basic Microbiol 2019; 60:22-26. [PMID: 31692013 DOI: 10.1002/jobm.201900323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/09/2019] [Indexed: 01/22/2023]
Abstract
Metals are among the most prevalent pollutants released into the environment. For these reasons, the use of biomarkers for environmental monitoring of individuals and populations exposed to metal pollution has gained considerable attention, offering fast and sensitive detection of chemical stress in organisms. There are different metal resistance genes in bacteria that can be used as biomarkers, including cation diffusion facilitators carrying metal ions; the prototype is the cobalt-zinc-cadmium transporter (czcD). The present study reports the expression changes in the czcD gene in Bacillus megaterium and Microbacterium liquefaciens under nickel and vanadium exposure by real-time polymerase chain reaction. The nickel-vanadium-resistant strains of B. megaterium and M. liquefaciens used in this study were isolated from mine tailings in Guanajuato, Mexico. The czcD gene showed high expression under exposure to 200 ppm of Ni and 200 ppm of V during the logarithmic growth phase of M. liquefaciens in PHGII liquid media. In contrast, no changes were observed in B. megaterium during logarithmic and stationary growth, perhaps due to the gene having differential expression during the growth phases. The expression profiles obtained for czcD show the possibility of using this gene from M. liquefaciens as a biomarker of nickel and vanadium pollution in microorganisms.
Collapse
Affiliation(s)
- Grisel Fierros-Romero
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Instituto Politécnico Nacional, Querétaro, Mexico.,School of Engineering and Sciences, Tecnologico de Monterrey, Campus Querétaro, Querétaro, Mexico
| | - Marlenne Gómez-Ramírez
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Instituto Politécnico Nacional, Querétaro, Mexico
| | - Ashutosh Sharma
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Querétaro, Querétaro, Mexico
| | - Reynaldo C Pless
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Instituto Politécnico Nacional, Querétaro, Mexico
| | - Norma G Rojas-Avelizapa
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Instituto Politécnico Nacional, Querétaro, Mexico
| |
Collapse
|
4
|
William James A, Ravi C, Srinivasan M, Nachiappan V. Crosstalk between protein N-glycosylation and lipid metabolism in Saccharomyces cerevisiae. Sci Rep 2019; 9:14485. [PMID: 31597940 PMCID: PMC6785544 DOI: 10.1038/s41598-019-51054-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/04/2019] [Indexed: 11/09/2022] Open
Abstract
The endoplasmic reticulum (ER) is a multi functional organelle and plays a crucial role in protein folding and lipid biosynthesis. The SEC59 gene encodes dolichol kinase, required for protein glycosylation in the ER. The mutation of sec59-1 caused a protein N-glycosylation defect mediated ER stress resulting in increased levels of phospholipid, neutral lipid and sterol, whereas growth was reduced. In the sec59-1∆ cell, the N-glycosylation of vacuolar carboxy peptidase-Y (CPY) was significantly reduced; whereas the ER stress marker Kar2p and unfolded protein response (UPR) were significantly increased. Increased levels of Triacylglycerol (TAG), sterol ester (SE), and lipid droplets (LD) could be attributed to up-regulation of DPP1, LRO1, and ARE2 in the sec 59-1∆ cell. Also, the diacylglycerol (DAG), sterol (STE), and free fatty acids (FFA) levels were significantly increased, whereas the genes involved in peroxisome biogenesis and Pex3-EGFP levels were reduced when compared to the wild-type. The microarray data also revealed increased expression of genes involved in phospholipid, TAG, fatty acid, sterol synthesis, and phospholipid transport resulting in dysregulation of lipid homeostasis in the sec59-1∆ cell. We conclude that SEC59 dependent N-glycosylation is required for lipid homeostasis, peroxisome biogenesis, and ER protein quality control.
Collapse
Affiliation(s)
- Antonisamy William James
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamilnadu, India
| | - Chidambaram Ravi
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamilnadu, India
| | - Malathi Srinivasan
- Department of Lipid Science, CSIR-Central Food Technological Research Institute (CSIR-CFTRI), Mysore, 570020, India
| | - Vasanthi Nachiappan
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamilnadu, India.
| |
Collapse
|
5
|
Jiang L, Xu D, Hameed A, Fang T, Bakr Ahmad Fazili A, Asghar F. The plasma membrane protein Rch1 and the Golgi/ER calcium pump Pmr1 have an additive effect on filamentation in Candida albicans. Fungal Genet Biol 2018; 115:1-8. [PMID: 29621626 DOI: 10.1016/j.fgb.2018.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 03/18/2018] [Accepted: 04/01/2018] [Indexed: 12/17/2022]
Abstract
Pmr1 is the Golgi/ER calcium pump, while Rch1 is a newly identified negative regulator of calcium influx in the plasma membrane of yeast cells. We show here that CaRch1 plays a dominant role over CaPmr1 in response of Candida albicans to SDS and tunicamycin stresses, while CaPmr1 has a major role in cell wall stress. Deletion of CaRCH1 increases the calcium/calcineurin signaling level in cells lacking CaPMR1. Calcineurin function is required for the role of CaRch1 in SDS stresses, while it is required for the function of CaPmr1 under all conditions examined. Disruption of CaRCH1 alone does not reduce the cell wall chitin, mannan or β-glucan content, but lack of CaRCH1 slightly decreases the chitin content of cells lacking CaPMR1. Furthermore, CaRch1 and CaPmr1 have an additive effect on filamentation of C. albicans cells in vitro. Cells lacking both CaRCH1 and CaPMR1 and cells lacking CaPMR1 alone show a similar degree of virulence attenuation, being much more attenuated than cells lacking CaRCH1 alone. Therefore, CaRch1 genetically interacts with CaPmr1 in the regulation of in vitro filamentation in C. albicans.
Collapse
Affiliation(s)
- Linghuo Jiang
- Laboratory for Yeast Molecular and Cell Biology, The Research Center of Fermentation Technology, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China.
| | - Dayong Xu
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, Anhui, China
| | - Ahsan Hameed
- Laboratory for Yeast Molecular and Cell Biology, The Research Center of Fermentation Technology, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Tianshu Fang
- Laboratory for Yeast Molecular and Cell Biology, The Research Center of Fermentation Technology, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Abu Bakr Ahmad Fazili
- Laboratory for Yeast Molecular and Cell Biology, The Research Center of Fermentation Technology, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Faiza Asghar
- Laboratory for Yeast Molecular and Cell Biology, The Research Center of Fermentation Technology, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| |
Collapse
|
6
|
Fierros-Romero G, Wrosek-Cabrera JA, Gómez-Ramírez M, Pless RC, Rivas-Castillo AM, Rojas-Avelizapa NG. Expression Changes in Metal-Resistance Genes in Microbacterium liquefaciens Under Nickel and Vanadium Exposure. Curr Microbiol 2017; 74:840-847. [DOI: 10.1007/s00284-017-1252-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/11/2017] [Indexed: 02/04/2023]
|
7
|
Azevedo RVDM, Rizzo J, Rodrigues ML. Virulence Factors as Targets for Anticryptococcal Therapy. J Fungi (Basel) 2016; 2:jof2040029. [PMID: 29376946 PMCID: PMC5715936 DOI: 10.3390/jof2040029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/18/2016] [Accepted: 11/25/2016] [Indexed: 12/24/2022] Open
Abstract
The global mortality due to cryptococcosis caused by Cryptococcus neoformans or C. gattii is unacceptably high. Currently available therapies are decades old and may be impacted by drug resistance. Therefore, the need for more effective antifungal drugs for cryptococcosis is evident. A number of Cryptococcus virulence factors have been studied in detail, providing crucial information about the fungal biology and putative molecular targets for antifungals. This review focuses on the use of well-described virulence factors of Cryptococcus as potential anticryptococcal agents.
Collapse
Affiliation(s)
- Renata V D M Azevedo
- Fundação Oswaldo Cruz-Fiocruz, Centro de Desenvolvimento Tecnológico em Saúde (CDTS), 21040-361 Rio de Janeiro, Brazil.
| | - Juliana Rizzo
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.
- Instituto de Bioquímica Médica (IBqM), Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.
| | - Marcio L Rodrigues
- Fundação Oswaldo Cruz-Fiocruz, Centro de Desenvolvimento Tecnológico em Saúde (CDTS), 21040-361 Rio de Janeiro, Brazil.
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.
| |
Collapse
|
8
|
James AW, Gowsalya R, Nachiappan V. Dolichyl pyrophosphate phosphatase-mediated N -glycosylation defect dysregulates lipid homeostasis in Saccharomyces cerevisiae. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1705-1718. [DOI: 10.1016/j.bbalip.2016.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 08/05/2016] [Accepted: 08/09/2016] [Indexed: 12/28/2022]
|
9
|
Fierros Romero G, Rivas Castillo A, Gómez Ramírez M, Pless R, Rojas Avelizapa N. Expression Analysis of Ni- and V-Associated Resistance Genes in a Bacillus megaterium Strain Isolated from a Mining Site. Curr Microbiol 2016; 73:165-71. [PMID: 27107759 DOI: 10.1007/s00284-016-1044-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/12/2016] [Indexed: 11/30/2022]
Abstract
Bacillus megaterium strain MNSH1-9K-1 was isolated from a mining site in Guanajuato, Mexico. This B. megaterium strain presented the ability to remove Ni and V from a spent catalyst. Also, its associated metal resistance genes nccA, hant, VAN2, and smtAB were previously identified by a PCR approach. The present study reports for the first time, in B. megaterium, the changes in the expression of the genes nccA (Ni-Co-Cd resistance); hant (high-affinity nickel transporter); smtAB, a metal-binding protein gene; and VAN2 (V resistance) after exposure to 200 ppm of Ni and 200 ppm of V during the stationary phase of the microorganism in PHGII liquid media. The data presented here may contribute to the knowledge of the genes involved in the Ni and V resistances of B. megaterium, and the possible pathways implicated in the Ni-V removal processes, which may be potentiated for the biological treatment of high metal content residues.
Collapse
Affiliation(s)
- Grisel Fierros Romero
- Centro de Investigación de Ciencia Aplicada y Tecnología Avanzada, Instituto Politecnico Nacional, Querétaro, Mexico
| | - Andrea Rivas Castillo
- Centro de Investigación de Ciencia Aplicada y Tecnología Avanzada, Instituto Politecnico Nacional, Querétaro, Mexico
| | - Marlenne Gómez Ramírez
- Centro de Investigación de Ciencia Aplicada y Tecnología Avanzada, Instituto Politecnico Nacional, Querétaro, Mexico
| | - Reynaldo Pless
- Centro de Investigación de Ciencia Aplicada y Tecnología Avanzada, Instituto Politecnico Nacional, Querétaro, Mexico
| | - Norma Rojas Avelizapa
- Centro de Investigación de Ciencia Aplicada y Tecnología Avanzada, Instituto Politecnico Nacional, Querétaro, Mexico.
| |
Collapse
|
10
|
Fierros-Romero G, Gómez-Ramírez M, Arenas-Isaac GE, Pless RC, Rojas-Avelizapa NG. Identification of Bacillus megaterium and Microbacterium liquefaciens genes involved in metal resistance and metal removal. Can J Microbiol 2016; 62:505-13. [PMID: 27210016 DOI: 10.1139/cjm-2015-0507] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacillus megaterium MNSH1-9K-1 and Microbacterium liquefaciens MNSH2-PHGII-2, 2 nickel- and vanadium-resistant bacteria from mine tailings located in Guanajuato, Mexico, are shown to have the ability to remove 33.1% and 17.8% of Ni, respectively, and 50.8% and 14.0% of V, respectively, from spent petrochemical catalysts containing 428 ± 30 mg·kg(-1) Ni and 2165 ± 77 mg·kg(-1) V. In these strains, several Ni resistance determinants were detected by conventional PCR. The nccA (nickel-cobalt-cadmium resistance) was found for the first time in B. megaterium. In M. liquefaciens, the above gene as well as the czcD gene (cobalt-zinc-cadmium resistance) and a high-affinity nickel transporter were detected for the first time. This study characterizes the resistance of M. liquefaciens and B. megaterium to Ni through the expression of genes conferring metal resistance.
Collapse
Affiliation(s)
- Grisel Fierros-Romero
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del IPN, Cerro Blanco 141, Col. Colinas del Cimatario, Querétaro, Querétaro 76090, Mexico.,Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del IPN, Cerro Blanco 141, Col. Colinas del Cimatario, Querétaro, Querétaro 76090, Mexico
| | - Marlenne Gómez-Ramírez
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del IPN, Cerro Blanco 141, Col. Colinas del Cimatario, Querétaro, Querétaro 76090, Mexico.,Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del IPN, Cerro Blanco 141, Col. Colinas del Cimatario, Querétaro, Querétaro 76090, Mexico
| | - Ginesa E Arenas-Isaac
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del IPN, Cerro Blanco 141, Col. Colinas del Cimatario, Querétaro, Querétaro 76090, Mexico.,Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del IPN, Cerro Blanco 141, Col. Colinas del Cimatario, Querétaro, Querétaro 76090, Mexico
| | - Reynaldo C Pless
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del IPN, Cerro Blanco 141, Col. Colinas del Cimatario, Querétaro, Querétaro 76090, Mexico.,Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del IPN, Cerro Blanco 141, Col. Colinas del Cimatario, Querétaro, Querétaro 76090, Mexico
| | - Norma G Rojas-Avelizapa
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del IPN, Cerro Blanco 141, Col. Colinas del Cimatario, Querétaro, Querétaro 76090, Mexico.,Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del IPN, Cerro Blanco 141, Col. Colinas del Cimatario, Querétaro, Querétaro 76090, Mexico
| |
Collapse
|
11
|
Baptista CG, Rodrigues EC, Morking P, Klinke A, Zardo ML, Soares MJ, de Aguiar AM, Goldenberg S, Ramos ASP. Identification of a Golgi-localized UDP-N-acetylglucosamine transporter in Trypanosoma cruzi. BMC Microbiol 2015; 15:269. [PMID: 26589870 PMCID: PMC4654811 DOI: 10.1186/s12866-015-0601-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/06/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nucleotide sugar transporters (NSTs) play an essential role in translocating nucleotide sugars into the lumen of the endoplasmic reticulum and Golgi apparatus to be used as substrates in glycosylation reactions. This intracellular transport is an essential step in the biosynthesis of glycoconjugates. RESULTS We have identified a family of 11 putative NSTs in Trypanosoma cruzi, the etiological agent of Chagas' disease. A UDP-N-acetylglucosamine transporter, TcNST1, was identified by a yeast complementation approach. Based on a phylogenetic analysis four candidate genes were selected and used for complementation assays in a Kluyveromyces lactis mutant strain. The transporter is likely expressed in all stages of the parasite life cycle and during differentiation of epimastigotes to infective metacyclics. Immunofluorescence analyses of a GFP-TcNST1 fusion protein indicate that the transporter is localized to the Golgi apparatus. As many NSTs are multisubstrate transporters, we also tested the capacity of TcNST1 to transport GDP-Man. CONCLUSIONS We have identified a UDP-N-acetylglucosamine transporter in T. cruzi, which is specifically localized to the Golgi apparatus and seems to be expressed, at the mRNA level, throughout the parasite life cycle. Functional studies of TcNST1 will be important to unravel the role of NSTs and specific glycoconjugates in T. cruzi survival and infectivity.
Collapse
Affiliation(s)
- Carlos Gustavo Baptista
- Present address: Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, 05508-000, SP, Brazil.
| | - Elizabeth Cristina Rodrigues
- Present address: Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, 05508-900, SP, Brazil.
| | - Patricia Morking
- Instituto Carlos Chagas, Fiocruz Paraná, Curitiba, 81350-010, PR, Brazil.
| | - Amanda Klinke
- Instituto Carlos Chagas, Fiocruz Paraná, Curitiba, 81350-010, PR, Brazil.
| | - Maria Luiza Zardo
- Instituto Carlos Chagas, Fiocruz Paraná, Curitiba, 81350-010, PR, Brazil.
| | | | | | - Samuel Goldenberg
- Instituto Carlos Chagas, Fiocruz Paraná, Curitiba, 81350-010, PR, Brazil.
| | | |
Collapse
|
12
|
Molecular Mechanisms of the Localization of Membrane Proteins in the Yeast Golgi Compartments. Biosci Biotechnol Biochem 2014; 77:435-45. [DOI: 10.1271/bbb.120982] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Cryptococcus neoformans dual GDP-mannose transporters and their role in biology and virulence. EUKARYOTIC CELL 2014; 13:832-42. [PMID: 24747214 DOI: 10.1128/ec.00054-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cryptococcus neoformans is an opportunistic yeast responsible for lethal meningoencephalitis in humans. This pathogen elaborates a polysaccharide capsule, which is its major virulence factor. Mannose constitutes over one-half of the capsule mass and is also extensively utilized in cell wall synthesis and in glycosylation of proteins and lipids. The activated mannose donor for most biosynthetic reactions, GDP-mannose, is made in the cytosol, although it is primarily consumed in secretory organelles. This compartmentalization necessitates specific transmembrane transporters to make the donor available for glycan synthesis. We previously identified two cryptococcal GDP-mannose transporters, Gmt1 and Gmt2. Biochemical studies of each protein expressed in Saccharomyces cerevisiae showed that both are functional, with similar kinetics and substrate specificities in vitro. We have now examined these proteins in vivo and demonstrate that cells lacking Gmt1 show significant phenotypic differences from those lacking Gmt2 in terms of growth, colony morphology, protein glycosylation, and capsule phenotypes. Some of these observations may be explained by differential expression of the two genes, but others suggest that the two proteins play overlapping but nonidentical roles in cryptococcal biology. Furthermore, gmt1 gmt2 double mutant cells, which are unexpectedly viable, exhibit severe defects in capsule synthesis and protein glycosylation and are avirulent in mouse models of cryptococcosis.
Collapse
|
14
|
Mortimer JC, Yu X, Albrecht S, Sicilia F, Huichalaf M, Ampuero D, Michaelson LV, Murphy AM, Matsunaga T, Kurz S, Stephens E, Baldwin TC, Ishii T, Napier JA, Weber AP, Handford MG, Dupree P. Abnormal glycosphingolipid mannosylation triggers salicylic acid-mediated responses in Arabidopsis. THE PLANT CELL 2013; 25:1881-94. [PMID: 23695979 PMCID: PMC3694712 DOI: 10.1105/tpc.113.111500] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The Arabidopsis thaliana protein GOLGI-LOCALIZED NUCLEOTIDE SUGAR TRANSPORTER (GONST1) has been previously identified as a GDP-d-mannose transporter. It has been hypothesized that GONST1 provides precursors for the synthesis of cell wall polysaccharides, such as glucomannan. Here, we show that in vitro GONST1 can transport all four plant GDP-sugars. However, gonst1 mutants have no reduction in glucomannan quantity and show no detectable alterations in other cell wall polysaccharides. By contrast, we show that a class of glycosylated sphingolipids (glycosylinositol phosphoceramides [GIPCs]) contains Man and that this mannosylation is affected in gonst1. GONST1 therefore is a Golgi GDP-sugar transporter that specifically supplies GDP-Man to the Golgi lumen for GIPC synthesis. gonst1 plants have a dwarfed phenotype and a constitutive hypersensitive response with elevated salicylic acid levels. This suggests an unexpected role for GIPC sugar decorations in sphingolipid function and plant defense signaling. Additionally, we discuss these data in the context of substrate channeling within the Golgi.
Collapse
Affiliation(s)
- Jenny C. Mortimer
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Xiaolan Yu
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Sandra Albrecht
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Francesca Sicilia
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Mariela Huichalaf
- Department of Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago, Chile
| | - Diego Ampuero
- Department of Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago, Chile
| | - Louise V. Michaelson
- Biological Chemistry Department, Rothamsted Research, Harpenden AL5 2JQ, United Kingdom
| | - Alex M. Murphy
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Toshiro Matsunaga
- Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan
- National Agricultural Research Center, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8666, Japan
| | - Samantha Kurz
- Institute of Plant Biochemistry, Heinrich-Heine-Universität, 40225 Duesseldorf, Germany
| | - Elaine Stephens
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Timothy C. Baldwin
- School of Applied Sciences, University of Wolverhampton, Wolverhampton WV1 1SB, United Kingdom
| | - Tadashi Ishii
- Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan
| | - Johnathan A. Napier
- Biological Chemistry Department, Rothamsted Research, Harpenden AL5 2JQ, United Kingdom
| | - Andreas P.M. Weber
- Institute of Plant Biochemistry, Heinrich-Heine-Universität, 40225 Duesseldorf, Germany
| | - Michael G. Handford
- Department of Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago, Chile
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
- Address correspondence to
| |
Collapse
|
15
|
Bowman BJ, Abreu S, Johl JK, Bowman EJ. The pmr gene, encoding a Ca2+-ATPase, is required for calcium and manganese homeostasis and normal development of hyphae and conidia in Neurospora crassa. EUKARYOTIC CELL 2012; 11:1362-70. [PMID: 22983986 PMCID: PMC3486030 DOI: 10.1128/ec.00105-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 09/06/2012] [Indexed: 12/17/2022]
Abstract
The pmr gene is predicted to encode a Ca(2+)-ATPase in the secretory pathway. We examined two strains of Neurospora crassa that lacked PMR: the Δpmr strain, in which pmr was completely deleted, and pmr(RIP), in which the gene was extensively mutated. Both strains had identical, complex phenotypes. Compared to the wild type, these strains required high concentrations of calcium or manganese for optimal growth and had highly branched, slow-growing hyphae. They conidiated poorly, and the shape and size of the conidia were abnormal. Calcium accumulated in the Δpmr strains to only 20% of the wild-type level. High concentrations of MnCl(2) (1 to 5 mM) in growth medium partially suppressed the morphological defects but did not alter the defect in calcium accumulation. The Δpmr Δnca-2 double mutant (nca-2 encodes a Ca(2+)-ATPase in the plasma membrane) accumulated 8-fold more calcium than the wild type, and the morphology of the hyphae was more similar to that of wild-type hyphae. Previous experiments failed to show a function for nca-1, which encodes a SERCA-type Ca(2+)-ATPase in the endoplasmic reticulum (B. J. Bowman, S. Abreu, E. Margolles-Clark, M. Draskovic, and E. J. Bowman, Eukaryot. Cell 10:654-661, 2011). The pmr(RIP) Δnca-1 double mutant accumulated small amounts of calcium, like the Δpmr strain, but exhibited even more extreme morphological defects. Thus, PMR can apparently replace NCA-1 in the endoplasmic reticulum, but NCA-1 cannot replace PMR. The morphological defects in the Δpmr strain are likely caused, in part, by insufficient concentrations of calcium and manganese in the Golgi compartment; however, PMR is also needed to accumulate normal levels of calcium in the whole cell.
Collapse
Affiliation(s)
- Barry J Bowman
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA, USA.
| | | | | | | |
Collapse
|
16
|
Carvalho NDSP, Arentshorst M, Weenink XO, Punt PJ, van den Hondel CAMJJ, Ram AFJ. Functional YFP-tagging of the essential GDP-mannose transporter reveals an important role for the secretion related small GTPase SrgC protein in maintenance of Golgi bodies in Aspergillus niger. Fungal Biol 2010; 115:253-64. [PMID: 21354532 DOI: 10.1016/j.funbio.2010.12.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 12/08/2010] [Accepted: 12/19/2010] [Indexed: 11/26/2022]
Abstract
The addition of mannose residues to glycoproteins and glycolipids in the Golgi is carried out by mannosyltransferases. Their activity depends on the presence of GDP-mannose in the lumen of the Golgi. The transport of GDP-mannose (mannosyl donor) into the Golgi requires a specific nucleotide sugar transport present in the Golgi membrane. Here, we report the identification and functional characterization of the putative GDP-mannose transporter in Aspergillus niger, encoded by the gmtA gene (An17g02140). The single GDP-mannose transporter was identified in the A. niger genome and deletion analysis showed that gmtA is an essential gene. The lethal phenotype of the gmtA could be fully complemented by expressing an YFP-GmtA fusion protein from the endogenous gmtA promoter. Fluorescence studies revealed that, as in other fungal species, GmtA localized as punctate dots throughout the hyphal cytoplasm, representing Golgi bodies or Golgi equivalents. SrgC encodes a member of the Rab6/Ypt6 subfamily of secretion-related GTPases and is predicted to be required for the Golgi to vacuole transport. Loss of function of the srgC gene in A. niger resulted in strongly reduced growth and the inability to form conidiospores at 37°C and higher. Furthermore, the srgC disruption in the A. niger strain expressing the functional YFP-GmtA fusion protein led to an apparent 'disappearance' of the Golgi-like structures. The analysis suggests that SrgC has an important role in maintaining the integrity of Golgi-like structures in A. niger.
Collapse
Affiliation(s)
- Neuza D S P Carvalho
- Department Molecular Microbiology and Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
17
|
Ueki N, Nishii I. Controlled enlargement of the glycoprotein vesicle surrounding a volvox embryo requires the InvB nucleotide-sugar transporter and is required for normal morphogenesis. THE PLANT CELL 2009; 21:1166-81. [PMID: 19346464 PMCID: PMC2685634 DOI: 10.1105/tpc.109.066159] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Here, we report our analysis of a mutant of Volvox carteri, InvB, whose embryos fail to execute inversion, the process in which each Volvox embryo normally turns itself inside-out at the end of embryogenesis, thereby achieving the adult configuration. The invB gene encodes a nucleotide-sugar transporter that exhibits GDP-mannose transport activity when expressed in yeast. In wild-type embryos, the invB transcript is maximally abundant before and during inversion. A mannoside probe (fluorescent concanavalin A) stains the glycoprotein-rich gonidial vesicle (GV) surrounding wild-type embryos much more strongly than it stains the GV surrounding InvB embryos. Direct measurements revealed that throughout embryogenesis the GV surrounding a wild-type embryo increases in size much more than the GV surrounding an InvB embryo does, and the fully cleaved InvB embryo is much more tightly packed within its GV than a wild-type embryo is. To test the hypothesis that the restraint imposed by a smaller than normal GV directly causes the inversion defect in the mutant, we released InvB embryos from their GVs microsurgically. The resulting embryos inverted normally, demonstrating that controlled enlargement of the GV, by a process in which requires the InvB nucleotide-sugar transporter, is essential to provide the embryo sufficient space to complete inversion.
Collapse
Affiliation(s)
- Noriko Ueki
- Nishii Initiative Research Unit, RIKEN Advanced Science Institute, Wako-shi, 351-0198, Japan.
| | | |
Collapse
|
18
|
Esther CR, Sesma JI, Dohlman HG, Ault AD, Clas ML, Lazarowski ER, Boucher RC. Similarities between UDP-glucose and adenine nucleotide release in yeast: involvement of the secretory pathway. Biochemistry 2008; 47:9269-78. [PMID: 18693752 DOI: 10.1021/bi800855k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Extracellular UDP-glucose is a natural purinergic receptor agonist, but its mechanisms of cellular release remain unclear. We studied these mechanisms in Saccharomyces cerevisiae, a simple model organism that releases ATP, another purinergic agonist. Similar to ATP, UDP-glucose was released by S. cerevisiae at a rate that was linear over time. However, unlike ATP release, UDP-glucose release was not dependent on glucose stimulation. This discrepancy was resolved by demonstrating the apparent glucose stimulation of ATP release reflected glucose-dependent changes in the intracellular pattern of adenine nucleotides, with AMP release dominating in the absence of glucose. Indeed, total adenine nucleotide release, like UDP-glucose release, did not vary with glucose concentration over the short term. The genetic basis of UDP-glucose release was explored through analysis of deletion mutants, aided by development of a novel bioassay for UDP-glucose based on signaling through heterologously expressed human P2Y 14 receptors. Using this assay, an elevated rate of UDP-glucose release was demonstrated in mutants lacking the putative Golgi nucleotide sugar transporter YMD8. An increased rate of UDP-glucose release in ymd8Delta was reduced by deletion of the YEA4 UDP- N-acetylglucosamine or the HUT1 UDP-galactose transporters, and overexpression of YEA4 or HUT1 increased the rate of UDP-glucose release. These findings suggest an exocytotic release mechanism similar to that of ATP, a conclusion supported by decreased rates of ATP, AMP, and UDP-glucose release in response to the secretory inhibitor Brefeldin A. These studies demonstrate the involvement of the secretory pathway in nucleotide and nucleotide sugar efflux in yeast and offer a powerful model system for further investigation.
Collapse
Affiliation(s)
- Charles R Esther
- Division of Pediatric Pulmonology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Zhao W, Colley KJ. Nucleotide sugar transporters of the Golgi apparatus. THE GOLGI APPARATUS 2008. [PMCID: PMC7119966 DOI: 10.1007/978-3-211-76310-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The Golgi apparatus is the major site of protein, lipid and proteoglycan glycosylation. The glycosylation enzymes, as well as kinases and sulfatases that catalyze phosphorylation and sulfation, are localized within the Golgi cisternae in characteristic distributions that frequently reflect their order in a particular pathway (Kornfeld and Kornfeld 1985; Colley 1997). The glycosyl-transferases, sulfotransferases and kinases are “transferases” that require activated donor molecules for the reactions they catalyze. For eukaryotic, fungal and protozoan glycosyltransferases these are the nucleotide sugars UDP-N-acetylglucosamine (UDP-GlcNAc), UDP-galactose (UDP-Gal), GDP-fucose (GDP-Fuc), CMP-sialicacid (CMP-Sia), UDP-glucuronicacid (UDP-GlcA), GDP-mannose (GDP-Man), and UDP-xylose (UDP-Xyl) (Hirschberg et al. 1998). For the kinases, ATP functions as the donor, while for the sulfotransferases, adenosine 3′-phosphate 5′-phosphate (PAPS) acts as the donor (Hirschberg et al. 1998). The active sites of all these enzymes are oriented towards the lumen of the Golgi cisternae. This necessitates the translocation of their donors from the cytosol into the lumenal Golgi compartments. In this chapter we will focus on the structure, function and localization of the Golgi nucleotide sugar transporters (NSTs), and highlight the diseases and developmental defects associated with defective transporters. We direct the reader to several excellent reviews on Golgi transporters for additional details and references (Hirschberg et al. 1998; Berninsone and Hirschberg 2000; Gerardy-Schahn et al. 2001; Handford et al. 2006; Caffaro and Hirschberg 2006).
Collapse
|
20
|
Zhou J, Zhang H, Liu X, Wang PG, Qi Q. Influence of N-Glycosylation on Saccharomyces cerevisiae Morphology: A Golgi Glycosylation Mutant Shows Cell Division Defects. Curr Microbiol 2007; 55:198-204. [PMID: 17661134 DOI: 10.1007/s00284-006-0585-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 04/23/2007] [Indexed: 11/24/2022]
Abstract
The N-glycosylation mutants (mnn1 and mnn1 och1) show different morphological characteristics at the restrictive and nonpermissive temperature. We deleted the MNN1 to eliminate the terminal alpha1, 3-linked mannose of hypermannosylation and deleted the OCH1 to block the elongation of the main backbone chain. The mnn1 cells exhibited no observable change with respect to the wild-type strain at 28 degrees C and 37 degrees C, but the mnn1 och1 double mutant exhibited defects in cell cytokinesis, showed a slower growth rate, and became temperature-sensitive. Meanwhile, the mnn1 och1 mutant tended to aggregate, which was probably due to the glycolsylation defect. Loss of mannosyl-phosphate-accepting sites in this mutant migth result in reduced charge repulsion between cell surfaces. Pyridylaminated glycans were profiled and purified through an NH(2) column by size-fractionation high-performance liquid chromatography. Matrix assisted laser desoption/ionization time of flight mass spectrometry (MALDI TOF/MS) analysis of the N-glycan structure of the mnn1 och1 mutant revealed that the main component is Man(8)GlcNAc(2).
Collapse
Affiliation(s)
- Jungang Zhou
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, 250100, Jinan, People's Republic of China
| | | | | | | | | |
Collapse
|
21
|
Handford M, Rodriguez-Furlán C, Orellana A. Nucleotide-sugar transporters: structure, function and roles in vivo. Braz J Med Biol Res 2007; 39:1149-58. [PMID: 16981043 DOI: 10.1590/s0100-879x2006000900002] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Accepted: 06/06/2006] [Indexed: 11/21/2022] Open
Abstract
The glycosylation of glycoconjugates and the biosynthesis of polysaccharides depend on nucleotide-sugars which are the substrates for glycosyltransferases. A large proportion of these enzymes are located within the lumen of the Golgi apparatus as well as the endoplasmic reticulum, while many of the nucleotide-sugars are synthesized in the cytosol. Thus, nucleotide-sugars are translocated from the cytosol to the lumen of the Golgi apparatus and endoplasmic reticulum by multiple spanning domain proteins known as nucleotide-sugar transporters (NSTs). These proteins were first identified biochemically and some of them were cloned by complementation of mutants. Genome and expressed sequence tag sequencing allowed the identification of a number of sequences that may encode for NSTs in different organisms. The functional characterization of some of these genes has shown that some of them can be highly specific in their substrate specificity while others can utilize up to three different nucleotide-sugars containing the same nucleotide. Mutations in genes encoding for NSTs can lead to changes in development in Drosophila melanogaster or Caenorhabditis elegans, as well as alterations in the infectivity of Leishmania donovani. In humans, the mutation of a GDP-fucose transporter is responsible for an impaired immune response as well as retarded growth. These results suggest that, even though there appear to be a fair number of genes encoding for NSTs, they are not functionally redundant and seem to play specific roles in glycosylation.
Collapse
Affiliation(s)
- M Handford
- Department of Biology, Faculty of Science, University of Chile, Santiago, Chile
| | | | | |
Collapse
|
22
|
Cottrell TR, Griffith CL, Liu H, Nenninger AA, Doering TL. The pathogenic fungus Cryptococcus neoformans expresses two functional GDP-mannose transporters with distinct expression patterns and roles in capsule synthesis. EUKARYOTIC CELL 2007; 6:776-85. [PMID: 17351078 PMCID: PMC1899245 DOI: 10.1128/ec.00015-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cryptococcus neoformans is a fungal pathogen that is responsible for life-threatening disease, particularly in the context of compromised immunity. This organism makes extensive use of mannose in constructing its cell wall, glycoproteins, and glycolipids. Mannose also comprises up to two-thirds of the main cryptococcal virulence factor, a polysaccharide capsule that surrounds the cell. The glycosyltransfer reactions that generate cellular carbohydrate structures usually require activated donors such as nucleotide sugars. GDP-mannose, the mannose donor, is produced in the cytosol by the sequential actions of phosphomannose isomerase, phosphomannomutase, and GDP-mannose pyrophosphorylase. However, most mannose-containing glycoconjugates are synthesized within intracellular organelles. This topological separation necessitates a specific transport mechanism to move this key precursor across biological membranes to the appropriate site for biosynthetic reactions. We have discovered two GDP-mannose transporters in C. neoformans, in contrast to the single such protein reported previously for other fungi. Biochemical studies of each protein expressed in Saccharomyces cerevisiae show that both are functional, with similar kinetics and substrate specificities. Microarray experiments indicate that the two proteins Gmt1 and Gmt2 are transcribed with distinct patterns of expression in response to variations in growth conditions. Additionally, deletion of the GMT1 gene yields cells with small capsules and a defect in capsule induction, while deletion of GMT2 does not alter the capsule. We suggest that C. neoformans produces two GDP-mannose transporters to satisfy its enormous need for mannose utilization in glycan synthesis. Furthermore, we propose that the two proteins have distinct biological roles. This is supported by the different expression patterns of GMT1 and GMT2 in response to environmental stimuli and the dissimilar phenotypes that result when each gene is deleted.
Collapse
Affiliation(s)
- Tricia R Cottrell
- Department of Molecular Microbiology, Washington University School of Medicine, Campus Box 8230, 600 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
23
|
Arakawa K, Abe M, Noda Y, Adachi H, Yoda K. Molecular cloning and characterization of a Pichia pastoris ortholog of the yeast Golgi GDP-mannose transporter gene. J GEN APPL MICROBIOL 2006; 52:137-45. [PMID: 16960330 DOI: 10.2323/jgam.52.137] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
There are two structural profiles in the yeast Golgi. The Golgi of Saccharomyces cerevisiae is composed of a number of vesicular compartments dispersed in the cytoplasm as recognized by a large number of Golgi marker proteins. In contrast, the Golgi of Pichia pastoris was reported to be organized in a small number of stacked cisternae located near the transitional endoplasmic reticulum (tER) sites by electron microscopy and immunofluorescent staining of a few marker proteins. The guanosine diphosphate (GDP)-mannose transporter (GMT) is an essential component in the yeast Golgi apparatus. We isolated an ortholog of the GMT gene of P. pastoris and visualized the gene product by epitope tagging to verify the structural characteristics of the Golgi. The tagged product in P. pastoris cell was observed in rod-like compartments in which Och1 mannosyltransferase was also found and the tER marker Sec12 and Sec13 proteins localized very close to them. The present results add further evidence of the restricted localization of the Golgi in P. pastoris cell.
Collapse
|
24
|
Yoda K, Noda Y. Vesicular transport and the Golgi apparatus in yeast. J Biosci Bioeng 2005; 91:1-11. [PMID: 16232937 DOI: 10.1263/jbb.91.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2000] [Accepted: 11/21/2000] [Indexed: 01/26/2023]
Abstract
Eukaryotic cells have developed a complex intracellular membrane system to divide the cell into various compartments where specific biochemical reactions are efficiently conducted locally. They also have developed systems to deliver appropriate materials to each specific compartment. Vesicular transport is a delivery system that also links most of the main organelles in the cell. The Golgi apparatus occupies the central position of the traffic between the endoplasmic reticulum and the endosome/vacuole/plasma membrane by maturating and sorting delivery of materials. Every important feature of vesicular transport has been identified by studying the Golgi apparatus, and the unicellular microorganism Saccharomyces cerevisiae has been an extremely excellent material for this study. Cycles of production and consumption of the transport vesicles by sorting the cargo, budding from the donor, tethering, docking and fusion to the target can now be explained to a large extent at the molecular level. The functional and structural aspects of the Golgi have also been well studied in the last decade.
Collapse
Affiliation(s)
- K Yoda
- Department of Biotechnology, University of Tokyo, Yayoi, Tokyo 113-8657, Japan.
| | | |
Collapse
|
25
|
Bates S, MacCallum DM, Bertram G, Munro CA, Hughes HB, Buurman ET, Brown AJP, Odds FC, Gow NAR. Candida albicans Pmr1p, a secretory pathway P-type Ca2+/Mn2+-ATPase, is required for glycosylation and virulence. J Biol Chem 2005; 280:23408-15. [PMID: 15843378 DOI: 10.1074/jbc.m502162200] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cell surface of Candida albicans is the immediate point of contact with the host. The outer layer of the cell wall is enriched in highly glycosylated mannoproteins that are implicated in many aspects of the host-fungus interaction. Glycosylation of cell wall proteins is initiated in the endoplasmic reticulum and then elaborated in the Golgi as the protein passes through the secretory pathway. Golgi-bound mannosyltransferases require Mn(2+) as an essential cofactor. In Saccharomyces cerevisiae, the P-type ATPase Pmr1p transports Ca(2+) and Mn(2+) ions into the Golgi. To determine the effect of a gross defect in glycosylation on host-fungus interactions of C. albicans, we disrupted the PMR1 homolog, CaPMR1. This mutation would simultaneously inhibit many Golgi-located, Mn(2+)-dependent mannosyltransferases. The Capmr1Delta null mutant was viable in vitro and had no growth defect even on media containing low Ca(2+)/Mn(2+) ion concentrations. However, cells grown in these media progressively lost viability upon entering stationary phase. Phosphomannan was almost completely absent, and O-mannan was severely truncated in the null mutant. A defect in N-linked outer chain glycosylation was also apparent, demonstrated by the underglycosylation of surface acid phosphatase. Consistent with the glycosylation defect, the null mutant had a weakened cell wall, exemplified by hypersensitivity to Calcofluor white, Congo red, and hygromycin B and constitutive activation of the cell integrity pathway. In a murine model of systemic infection, the null mutant was severely attenuated in virulence. These results demonstrate the importance of glycosylation for cell wall structure and virulence of C. albicans.
Collapse
Affiliation(s)
- Steven Bates
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Scotland, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abe M, Noda Y, Adachi H, Yoda K. Localization of GDP-mannose transporter in the Golgi requires retrieval to the endoplasmic reticulum depending on its cytoplasmic tail and coatomer. J Cell Sci 2004; 117:5687-96. [PMID: 15494368 DOI: 10.1242/jcs.01491] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Saccharomyces cerevisiae GDP-mannose transporter (GMT) encoded by the essential gene VRG4/VIG4 is a member of the nucleotide-sugar transporter family in the Golgi apparatus. We examined GMT in the secretory mutant cells to investigate the mechanism of its localization in the Golgi. At the nonpermissive temperature, most GMT was found in the endoplasmic reticulum of sec23ts cells, which have defective COPII, and in the vacuole of sec21ts cells, which have defective COPI. The C-terminal hydrophilic peptide of GMT that is exposed to the cytosol binds to Ret2p, a subunit of the COPI coat. Mutant peptide derivatives that have lost a cluster of lysine in the vicinity of the transmembrane domain had reduced binding activity to Ret2p and the GMT with this sequence was delivered to the vacuole. Our results indicate that GMT escapes from delivery to the vacuole by recycling to the endoplasmic reticulum and retrieval requires the lysine-rich C-terminal tail that can bind to the COPI coat.
Collapse
Affiliation(s)
- Masato Abe
- Department of Biotechnology, University of Tokyo, Yayoi, Bunkyo-Ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
27
|
Handford MG, Sicilia F, Brandizzi F, Chung JH, Dupree P. Arabidopsis thaliana expresses multiple Golgi-localised nucleotide-sugar transporters related to GONST1. Mol Genet Genomics 2004; 272:397-410. [PMID: 15480787 DOI: 10.1007/s00438-004-1071-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Accepted: 09/16/2004] [Indexed: 10/26/2022]
Abstract
Transport of nucleotide-sugars across the Golgi membrane is required for the lumenal synthesis of a variety of essential cell surface components, and is mediated by nucleotide sugar transporters (NSTs) which are members of the large drug/metabolite superfamily of transporters. Despite the importance of these proteins in plants, so far only two have been described, GONST1 and AtUTr1 from Arabidopsis thaliana. In this work, our aim was to identify further Golgi nucleotide-sugar transporters from Arabidopsis. On the basis of their sequence similarity to GONST1, we found four additional proteins, which we named GONST2, 3, 4 and 5. These putative NSTs were grouped into three clades: GONST2 with GONST1; GONST3 with GONST4; and GONST5 with six further uncharacterized proteins. Transient expression in tobacco cells of a member of each clade, fused to the Green Fluorescent Protein (GFP), suggested that all these putative NSTs are localised in the Golgi. To obtain evidence for nucleotide sugar transport activity, we expressed these proteins, together with the previously characterised GONST1, in a GDP-mannose transport-defective yeast mutant (vrg4-2). We tested the transformants for rescue of two phenotypes associated with this mutation: sensitivity to hygromycin B and reduced glycosylation of extracellular chitinase. GONST1 and GONST2 complemented both phenotypes, indicating that GONST2, like the previously characterized GONST1, is a GDP-mannose transporter. GONST3, 4 and 5 also rescued the antibiotic sensitivity, but not the chitinase glycosylation defect, suggesting that they can also transport GDP-mannose across the yeast Golgi membrane but with a lower efficiency. RT-PCR and analysis of Affymetrix data revealed partially overlapping patterns of expression of GONST1-5 in a variety of organs. Because of the differences in ability to rescue the vrg4 - 2 phenotype, and the different expression patterns in plant organs, we speculate that GONST1 and GONST2 are both GDP-mannose transporters, whereas GONST3, GONST4 and GONST5 may transport other nucleotide-sugars in planta.
Collapse
Affiliation(s)
- M G Handford
- Department of Biochemistry, University of Cambridge, Building O, Downing Site, Cambridge, CB2 1QW, UK
| | | | | | | | | |
Collapse
|
28
|
Hashimoto H, Abe M, Hirata A, Noda Y, Adachi H, Yoda K. Progression of the stacked Golgi compartments in the yeast Saccharomyces cerevisiae by overproduction of GDP-mannose transporter. Yeast 2002; 19:1413-24. [PMID: 12478588 DOI: 10.1002/yea.925] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Golgi compartments of the yeast Saccharomyces cerevisiaeare dispersed within the cytoplasm, in contrast to the stacked cisternae in the mammalian cell, and consequently are observed as a punctate pattern by immunofluorescent staining of Golgi-marker proteins. The VIG4/VRG4 gene encodes the essential yeast GDP-mannose transporter, which is a polytopic membrane protein in the early and medial Golgi compartments. Upon overexpression of this gene by the aid of a strong promoter and multicopy vector, we found that stacked multivesicular structures, which resembled the cisternae of mammalian Golgi apparatus, had developed in S. cerevisiae. Immuno-electron microscopy showed that the GDP-mannose transporter was located on the stacked cisternae. Immuno-isolation and immunoblotting analyses of the vesicles showed that the overproduced GDP-mannose transporter also co-localized with the Golgi glycosyltransferases, but not with the ER- or late Golgi-marker proteins as in the control cell. We propose that the localization mechanism of the GDP-mannose transporter in the Golgi compartment would be efficient and hardly saturable, and therefore the overproduced protein induced a progression of Golgi-like compartments rather than being mislocalized in other compartments, such as the ER or a vacuole.
Collapse
Affiliation(s)
- Hitoshi Hashimoto
- Department of Biotechnology, University of Tokyo, Yayoi, Bunkyo-Ku, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Li H, Pagé N, Bussey H. Actin patch assembly proteins Las17p and Sla1p restrict cell wall growth to daughter cells and interact with cis-Golgi protein Kre6p. Yeast 2002; 19:1097-112. [PMID: 12237851 DOI: 10.1002/yea.904] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cytoplasmic tail of Kre6p, a Golgi membrane protein involved in cell wall synthesis, interacts with the actin patch assembly components Las17p and Sla1p in a two-hybrid assay, and Kre6p co-immunoprecipitates with Las17p. Kre6p showed extensive co-localization with Och1p-containing cis-Golgi vesicles. The correct localization of Kre6p requires its cytoplasmic tail, Las17p, Sla1p and Vrp1p, suggesting that the cytoplasmic tail of Kre6p acts as a receptor, linking this cis-Golgi protein to Las17p and Sla1p. The actin patch assembly mutants las17 delta, sla1delta and vrp1 delta showed elevated levels of cell wall beta-1,6-glucan, and mutant cells were capable of only a limited number of cell divisions compared to wild-type. EM image analysis and beta-1,6-glucan localization indicated abnormal wall proliferation in the mother cells of these mutants. The pattern of cell wall hypertrophy indicates a failure to restrict cell wall growth to the bud.
Collapse
Affiliation(s)
- Huijuan Li
- Department of Biology, McGill University, Montreal H3A 1B1, Canada
| | | | | |
Collapse
|
30
|
Norambuena L, Marchant L, Berninsone P, Hirschberg CB, Silva H, Orellana A. Transport of UDP-galactose in plants. Identification and functional characterization of AtUTr1, an Arabidopsis thaliana UDP-galactos/UDP-glucose transporter. J Biol Chem 2002; 277:32923-9. [PMID: 12042319 DOI: 10.1074/jbc.m204081200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The synthesis of non-cellulosic polysaccharides and glycoproteins in the plant cell Golgi apparatus requires UDP-galactose as substrate. The topology of these reactions is not known, although the orientation of a plant galactosyltransferase involved in the biosynthesis of galactomannans in fenugreek is consistent with a requirement for UDP-galactose in the lumen of the Golgi cisternae. Here we provide evidence that sealed, right-side-out Golgi vesicles isolated from pea stems transport UDP-galactose into their lumen and transfer galactose, likely to polysaccharides and other acceptors. In addition, we identified and cloned AtUTr1, a gene from Arabidopsis thaliana that encodes a multitransmembrane hydrophobic protein similar to nucleotide sugar transporters. Northern analysis showed that AtUTr1 is indeed expressed in Arabidopsis. AtUTr1 is able to complement the phenotype of MDCK ricin-resistant cells; a mammalian cell line deficient in transport of UDP-galactose into the Golgi. In vitro assays using a Golgi-enriched vesicle fraction obtained from Saccharomyces cerevisiae expressing AtUTr1-MycHis is able to transport UDP-galactose but also UDP-glucose. AtUTr1- MycHis does not transport GDP-mannose, GDP-fucose, CMP-sialic acid, UDP-glucuronic acid, or UDP-xylose when expressed in S. cerevisiae. AtUTr1 is the first transporter described that is able to transport UDP-galactose and UDP-glucose. Thus AtUTr1 may play an important role in the synthesis of glycoconjugates in Arabidopsis that contain galactose and glucose.
Collapse
Affiliation(s)
- Lorena Norambuena
- Department of Biology, Faculty of Sciences and the Millenium Institute in Cell Biology and Biotechnology, University of Chile, Las Palmeras 3425, Nuñoa, Casilla 653, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
31
|
Descoteaux A, Avila HA, Zhang K, Turco SJ, Beverley SM. Leishmania LPG3 encodes a GRP94 homolog required for phosphoglycan synthesis implicated in parasite virulence but not viability. EMBO J 2002; 21:4458-69. [PMID: 12198148 PMCID: PMC126187 DOI: 10.1093/emboj/cdf447] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Leishmania promastigotes express an abundant cell surface glycoconjugate, lipophosphoglycan (LPG). LPG contains a polymer of the disaccharide-phosphate repeat unit Galbeta1,4Manalpha1-PO4, shared by other developmentally regulated molecules implicated in parasite virulence. Functional complementation of a Leishmania donovani LPG-defective mutant (OB1) accumulating a truncated LPG containing only the Manalpha1-PO4 residue of the first repeat unit identified LPG3, the Leishmania homolog of the mammalian endoplasmic reticulum (ER) chaperone GRP94. LPG3 resembles GRP94, as it localizes to the parasite ER, and lpg3(-) mutants show defects including down-regulation of surface GPI-anchored proteins and mild effects on other glycoconjugates. LPG3 binds cellular proteins and its Leishmania infantum GRP94 ortholog is highly immunogenic, suggesting a potential role in directing the immune response. However, null lpg3(-) mutants grow normally, are completely defective in the synthesis of phosphoglycans, and the LPG3 mRNA is regulated developmentally but not by stress or heat. Thus the role of LPG3/GRP94 in Leishmania metabolism differs significantly from other eukaryotes. Like the other glycoconjugate synthetic pathways in this parasite, its activity is focused on molecules implicated in virulence rather than viability.
Collapse
Affiliation(s)
- Albert Descoteaux
- INRS–Institut Armand-Frappier, Université du Québec, 531 des Prairies, Laval, Québec, Canada H7V 1B7, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, Department of Biochemistry, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536 and Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA Corresponding author at: Department of Molecular Microbiology, Campus Box 8230, Washington University School of Medicine, 660 S. Euclid Avenue, St Louis, MO 63110, USA e-mail:
| | - Herbert A. Avila
- INRS–Institut Armand-Frappier, Université du Québec, 531 des Prairies, Laval, Québec, Canada H7V 1B7, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, Department of Biochemistry, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536 and Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA Corresponding author at: Department of Molecular Microbiology, Campus Box 8230, Washington University School of Medicine, 660 S. Euclid Avenue, St Louis, MO 63110, USA e-mail:
| | - Kai Zhang
- INRS–Institut Armand-Frappier, Université du Québec, 531 des Prairies, Laval, Québec, Canada H7V 1B7, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, Department of Biochemistry, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536 and Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA Corresponding author at: Department of Molecular Microbiology, Campus Box 8230, Washington University School of Medicine, 660 S. Euclid Avenue, St Louis, MO 63110, USA e-mail:
| | - Salvatore J. Turco
- INRS–Institut Armand-Frappier, Université du Québec, 531 des Prairies, Laval, Québec, Canada H7V 1B7, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, Department of Biochemistry, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536 and Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA Corresponding author at: Department of Molecular Microbiology, Campus Box 8230, Washington University School of Medicine, 660 S. Euclid Avenue, St Louis, MO 63110, USA e-mail:
| | - Stephen M. Beverley
- INRS–Institut Armand-Frappier, Université du Québec, 531 des Prairies, Laval, Québec, Canada H7V 1B7, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, Department of Biochemistry, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536 and Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA Corresponding author at: Department of Molecular Microbiology, Campus Box 8230, Washington University School of Medicine, 660 S. Euclid Avenue, St Louis, MO 63110, USA e-mail:
| |
Collapse
|
32
|
Nishikawa A, Mendez B, Jigami Y, Dean N. Identification of a Candida glabrata homologue of the S. cerevisiae VRG4 gene, encoding the Golgi GDP-mannose transporter. Yeast 2002; 19:691-8. [PMID: 12185838 DOI: 10.1002/yea.854] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mannoproteins on the cell wall of yeast and fungi help regulate cell shape, porosity, and cell-cell interactions, including those required for attachment to host cells by fungal pathogens. The mannose-containing oligosaccharides on proteins and lipids are extended in the Golgi by glycosyltransferases that use GDP-mannose as the sugar substrate. A membrane-bound transporter that, in Saccharomyces cerevisiae, is encoded by the VRG4 gene catalyses delivery of GDP-mannose into the lumen of the Golgi. We report here the cloning of the homologous VRG4 gene from the pathogenic yeast, Candida glabrata, by functional complementation of an S. cerevisiae vrg4 mutant. The sequence of the CgVrg4 protein displays significant homology to GDP-mannose transporters from other yeast, fungi, protozoa, and plants. CgVRG4 fully complements the glycosylation defect and other cell wall associated vrg4 mutant phenotypes. Like ScVRG4, CgVRG4 is essential for the viability of C. glabrata. These results suggest that, as in S. cerevisiae, CgVrg4p accounts for all of the GDP-mannose transport activity in the Golgi lumen.
Collapse
Affiliation(s)
- Akiko Nishikawa
- Department of Biochemistry and Cell Biology, Institute for Cell and Developmental Biology, State University of New York, Stony Brook, NY 11794-5215, USA
| | | | | | | |
Collapse
|
33
|
Nishikawa A, Poster JB, Jigami Y, Dean N. Molecular and phenotypic analysis of CaVRG4, encoding an essential Golgi apparatus GDP-mannose transporter. J Bacteriol 2002; 184:29-42. [PMID: 11741841 PMCID: PMC134776 DOI: 10.1128/jb.184.1.29-42.2002] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2001] [Accepted: 09/25/2001] [Indexed: 12/31/2022] Open
Abstract
Cell surface mannan is implicated in almost every aspect of pathogenicity of Candida albicans. In Saccharomyces cerevisiae, the Vrg4 protein acts as a master regulator of mannan synthesis through its role in substrate provision. The substrate for mannosylation of proteins and lipids in the Golgi apparatus is GDP-mannose, whose lumenal transport is catalyzed by Vrg4p. This nucleotide sugar is synthesized in the cytoplasm by pathways that are highly conserved in all eukaryotes, but its lumenal transport (and hence Golgi apparatus-specific mannosylation) is a fungus-specific process. To begin to study the role of Golgi mannosylation in C. albicans, we isolated the CaVRG4 gene and analyzed the effects of loss of its function. CaVRG4 encodes a functional homologue of the S. cerevisiae GDP-mannose transporter. CaVrg4p localized to punctate spots within the cytoplasm of C. albicans in a pattern reminiscent of localization of Vrg4p in the Golgi apparatus in S. cerevisiae. Like partial loss of ScVRG4 function, partial loss of CaVRG4 function resulted in mannosylation defects, which in turn led to a number of cell wall-associated phenotypes. While heterozygotes displayed no growth phenotypes, a hemizygous strain, containing a single copy of CaVRG4 under control of the methionine-repressible MET3 promoter, did not grow in the presence of methionine and cysteine, demonstrating that CaVRG4 is essential for viability. Mutant Candida vrg4 strains were defective in hyphal formation but exhibited a constitutive polarized mode of pseudohyphal growth. Because the VRG4 gene is essential for yeast viability but does not have a mammalian homologue, it is a particularly attractive target for development of antifungal therapies.
Collapse
Affiliation(s)
- Akiko Nishikawa
- Department of Biochemistry and Cell Biology, Institute for Cell and Developmental Biology, State University of New York, Stony Brook, New York 11794-5215, USA
| | | | | | | |
Collapse
|
34
|
Abstract
The Golgi apparatus serves as the major site of glycosylation reactions. Nucleotide sugars which are substrates of the Golgi localized glycosyltransferases are synthesized in the cytoplasm (cell nucleus in case of CMP-sialic acid) and must be transported into the compartment lumen. This transport function is carried out by nucleotide sugar transporters. The first genes were cloned in the year 1996 and revealed a family of structurally conserved multi-transmembrane-spanning proteins. Due to the high structural and functional conservation, the identification of many putative nucleotide sugar transporter sequences has become possible in the existing gene data bases and accelerates the increase in knowledge on structure-function-relationships. Recent developments in the nucleotide sugar transporter field are discussed in this article.
Collapse
Affiliation(s)
- R Gerardy-Schahn
- Institut für Physiologische Chemie, Proteinstruktur, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| | | | | |
Collapse
|
35
|
Cipollo JF, Trimble RB, Chi JH, Yan Q, Dean N. The yeast ALG11 gene specifies addition of the terminal alpha 1,2-Man to the Man5GlcNAc2-PP-dolichol N-glycosylation intermediate formed on the cytosolic side of the endoplasmic reticulum. J Biol Chem 2001; 276:21828-40. [PMID: 11278778 DOI: 10.1074/jbc.m010896200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The initial steps in N-linked glycosylation involve the synthesis of a lipid-linked core oligosaccharide followed by the transfer of the core glycan to nascent polypeptides in the endoplasmic reticulum (ER). Here, we describe alg11, a new yeast glycosylation mutant that is defective in the last step of the synthesis of the Man(5)GlcNAc(2)-PP-dolichol core oligosaccharide on the cytosolic face of the ER. A deletion of the ALG11 gene leads to poor growth and temperature-sensitive lethality. In an alg11 lesion, both Man(3)GlcNAc(2)-PP-dolichol and Man(4)GlcNAc(2)-PP-dolichol are translocated into the ER lumen as substrates for the Man-P-dolichol-dependent sugar transferases in this compartment. This leads to a unique family of oligosaccharide structures lacking one or both of the lower arm alpha1,2-linked Man residues. The former are elongated to mannan, whereas the latter are poor substrates for outerchain initiation by Ochlp (Nakayama, K.-I., Nakanishi-Shindo, Y., Tanaka, A., Haga-Toda, Y., and Jigami, Y. (1997) FEBS Lett. 412, 547-550) and accumulate largely as truncated biosynthetic end products. The ALG11 gene is predicted to encode a 63.1-kDa membrane protein that by indirect immunofluorescence resides in the ER. The Alg11 protein is highly conserved, with homologs in fission yeast, worms, flies, and plants. In addition to these Alg11-related proteins, Alg11p is also similar to Alg2p, a protein that regulates the addition of the third mannose to the core oligosaccharide. All of these Alg11-related proteins share a 23-amino acid sequence that is found in over 60 proteins from bacteria to man whose function is in sugar metabolism, implicating this sequence as a potential sugar nucleotide binding motif.
Collapse
Affiliation(s)
- J F Cipollo
- Department of Biomedical Sciences, State University of New York at Albany, Albany, New York 12201, USA
| | | | | | | | | |
Collapse
|
36
|
Aoki K, Ishida N, Kawakita M. Substrate recognition by UDP-galactose and CMP-sialic acid transporters. Different sets of transmembrane helices are utilized for the specific recognition of UDP-galactose and CMP-sialic acid. J Biol Chem 2001; 276:21555-61. [PMID: 11279205 DOI: 10.1074/jbc.m101462200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human UDP-galactose transporter (hUGT1) and CMP-sialic acid transporter (hCST) are related Golgi membrane proteins with 10 transmembrane helices. We have constructed chimeras between these proteins in order to identify submolecular regions responsible for the determination of substrate specificity. To assess the UGT and CST activities, chimeric cDNAs were transiently expressed in either UGT-deficient mutant Lec8 cells or CST-deficient mutant Lec2 cells, and the binding of plant lectins, GS-II or PNA, respectively, to these cells was examined. During the course of analysis of various chimeric transporters, we found that chimeras whose submolecular regions contained helices 1, 8, 9, and 10, and helices 2, 3, and 7 derived from hUGT1 and hCST sequences, respectively, exhibited both UGT and CST activities. The dual substrate specificity for UDP-galactose and CMP-sialic acid of one such representative chimera was directly confirmed by in vitro measurement of the nucleotide sugar transport activity using a heterologous expression system in the yeast Saccharomyces cerevisiae. These findings indicated that the regions which are critical for determining the substrate specificity of UGT and CST resided in different submolecular sites in the two transporters, and that these different determinants could be present within one protein without interfering with each other's function.
Collapse
Affiliation(s)
- K Aoki
- Department of Physiological Chemistry, The Tokyo Metropolitan Institute of Medical Science, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113-8613, Japan
| | | | | |
Collapse
|
37
|
Gao XD, Nishikawa A, Dean N. Identification of a conserved motif in the yeast golgi GDP-mannose transporter required for binding to nucleotide sugar. J Biol Chem 2001; 276:4424-32. [PMID: 11067855 DOI: 10.1074/jbc.m009114200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycoproteins and lipids in the Golgi complex are modified by the addition of sugars. In the yeast Saccharomyces cerevisiae, these terminal Golgi carbohydrate modifications primarily involve mannose additions that utilize GDP-mannose as the substrate. The transport of GDP-mannose from its site of synthesis in the cytosol into the lumen of the Golgi is mediated by the VRG4 gene product, a nucleotide sugar transporter that is a member of a large family of related membrane proteins. Loss of VRG4 function leads to lethality, but several viable vrg4 mutants were isolated whose GDP-mannose transport activity was reduced but not obliterated. Mutations in these alleles mapped to a region of the Vrg4 protein that is highly conserved among other GDP-mannose transporters but not other types of nucleotide sugar transporters. Here, we present evidence that suggest an involvement of this region of the protein in binding GDP-mannose. Most of the mutations that were introduced within this conserved domain, spanning amino acids 280-291 of Vrg4p, lead to lethality, and none interfere with Vrg4 protein stability, localization, or dimer formation. The null phenotype of these mutant vrg4 alleles can be complemented by their overexpression. Vesicles prepared from vrg4 mutant strains were reduced in luminal GDP-mannose transport activity, but this effect could be suppressed by increasing the concentration of GDP-mannose in vitro. Thus, either an increased substrate concentration, in vitro, or an increased Vrg4 protein concentration, in vivo, can suppress these vrg4 mutant phenotypes. Vrg4 proteins with alterations in this region were reduced in binding to guanosine 5'-[gamma-(32)P]triphosphate gamma-azidoanilide, a photoaffinity substrate analogue whose binding to Vrg4-HAp was specifically inhibited by GDP-mannose. Taken together, these data are consistent with the model that amino acids in this region of the yeast GDP-mannose transporter mediate the recognition of or binding to nucleotide sugar prior to its transport into the Golgi.
Collapse
Affiliation(s)
- X D Gao
- Department of Biochemistry, Institute for Cell and Developmental Biology, State University of New York, Stony Brook, New York 11794-5215, USA
| | | | | |
Collapse
|
38
|
|
39
|
Abstract
Glycosylation, sulfation and phosphorylation of proteins, proteoglycans and lipids occur in the lumen of the Golgi apparatus. The nucleotide substrates of these reactions must be first transported from the cytosol into the Golgi lumen by specific transporters. The topology and structure of these hydrophobic, multi-transmembrane-spanning proteins are beginning to be understood.
Collapse
Affiliation(s)
- P M Berninsone
- Department of Molecular and Cell Biology, Boston University, School of Dental Medicine, 700 Albany Street, W-200, MA 02118, Boston, USA
| | | |
Collapse
|
40
|
Gao XD, Dean N. Distinct protein domains of the yeast Golgi GDP-mannose transporter mediate oligomer assembly and export from the endoplasmic reticulum. J Biol Chem 2000; 275:17718-27. [PMID: 10748175 DOI: 10.1074/jbc.m909946199] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The substrates for glycan synthesis in the lumen of the Golgi are nucleotide sugars that must be transported from the cytosol by specific membrane-bound transporters. The principal nucleotide sugar used for glycosylation in the Golgi of the yeast Saccharomyces cerevisiae is GDP-mannose, whose lumenal transport is mediated by the VRG4 gene product. As the sole provider of lumenal mannose, the Vrg4 protein functions as a key regulator of glycosylation in the yeast Golgi. We have undertaken a functional analysis of Vrg4p as a model for understanding nucleotide sugar transport in the Golgi. Here, we analyzed epitope-tagged alleles of VRG4. Gel filtration chromatography and co-immunoprecipitation experiments demonstrate that the Vrg4 protein forms homodimers with specificity and high affinity. Deletion analyses identified two regions essential for Vrg4p function. Mutant Vrg4 proteins lacking the predicted C-terminal membrane-spanning domain fail to assemble into oligomers (Abe, M., Hashimoto, H., and Yoda, K. (1999) FEBS Lett. 458, 309-312) and are unstable, while proteins lacking the N-terminal cytosolic tail are stable and multimerize efficiently, but are mislocalized to the endoplasmic reticulum (ER). Fusion of the N terminus of Vrg4p to related ER membrane proteins promote their transport to the Golgi, suggesting that sequences in the N terminus supply information for ER export. The dominant negative phenotype resulting from overexpression of truncated Vrg4-DeltaN proteins provides strong genetic evidence for homodimer formation in vivo. These studies are consistent with a model in which Vrg4p oligomerizes in the ER and is subsequently transported to the Golgi via a mechanism that involves positive sorting rather than passive default.
Collapse
Affiliation(s)
- X D Gao
- Department of Biochemistry and Cell Biology, Institute for Cell and Developmental Biology, State University of New York, Stony Brook, New York 11794-5215, USA
| | | |
Collapse
|
41
|
Hong K, Ma D, Beverley SM, Turco SJ. The Leishmania GDP-mannose transporter is an autonomous, multi-specific, hexameric complex of LPG2 subunits. Biochemistry 2000; 39:2013-22. [PMID: 10684651 DOI: 10.1021/bi992363l] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
LPG2 (a gene involved in lipophosphoglycan assembly) encodes the Golgi GDP-Man transporter of the protozoan parasite Leishmania and is a defining member of a new family of eukaryotic nucleotide-sugar transporters (NSTs). Although NST activities are widespread, mammalian cells lack a GDP-Man NST, thereby providing an ideal heterologous system for probing the LPG2 structure and activity. LPG2 expression constructs introduced into either mammalian cells or a Leishmania lpg2(-) mutant conferred GDP-Man, GDP-Ara, and GDP-Fuc (in Leishmania only) uptake in isolated microsomes. LPG2 is the first NST to be associated with multiple substrate specificities. Uptake activity showed latency, exhibited an antiport mechanism of transport with GMP, and was susceptible to the anion transport inhibitor DIDS. The apparent K(m) for GDP-Man uptake was similar in transfected mammalian cells (12.2 microM) or Leishmania (6.9 microM). Given the evolutionary distance between protozoans and vertebrates, these data suggest that LPG2 functions autonomously to provide transporter activity. Using epitope-tagged LPG2 proteins, we showed the existence of hexameric LPG2 complexes by immunoprecipitation experiments, glycerol gradient centrifugation, pore-limited native gel electrophoresis, and cross-linking experiments. This provides strong biochemical evidence for a multimeric complex of NSTs, a finding with important implications to the structure and specificity of NSTs in both Leishmania and other organisms. Inhibition of essential GDP-Man uptake in fungal and protozoan systems offers an attractive target for potential chemotherapy.
Collapse
Affiliation(s)
- K Hong
- Department of Biochemistry, University of Kentucky Medical Center, Lexington, Kentucky 40536, USA
| | | | | | | |
Collapse
|
42
|
Abe M, Hashimoto H, Yoda K. Molecular characterization of Vig4/Vrg4 GDP-mannose transporter of the yeast Saccharomyces cerevisiae. FEBS Lett 1999; 458:309-12. [PMID: 10570930 DOI: 10.1016/s0014-5793(99)01177-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Saccharomyces cerevisiae Vig4/Vrg4 protein is a Golgi membrane protein which has multiple transmembrane domains and is essential for transport of GDP-mannose across the Golgi membrane. By immunoprecipitation of detergent-solubilized tagged protein, we found that this protein exists as oligomer. Two mutants vig4-1 and vig4-2 had amino acid substitutions in the C-terminal region, Ala286Val and Ser278Cys, respectively. In accord with these mutations, trimming of the C-terminal hydrophobic part close to the region impaired the function and traffic of the proteins from the endoplasmic reticulum to the Golgi compartments.
Collapse
Affiliation(s)
- M Abe
- Department of Biotechnology, The University of Tokyo, Yayoi, Tokyo, Japan
| | | | | |
Collapse
|
43
|
Gao XD, Kaigorodov V, Jigami Y. YND1, a homologue of GDA1, encodes membrane-bound apyrase required for Golgi N- and O-glycosylation in Saccharomyces cerevisiae. J Biol Chem 1999; 274:21450-6. [PMID: 10409709 DOI: 10.1074/jbc.274.30.21450] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gene for the open reading frame YER005w that is homologous to yeast Golgi GDPase encoded by the GDA1 gene was cloned and named YND1. It encodes a 630-amino acid protein that contains a single transmembrane region near the carboxyl terminus. The overexpression of the YND1 gene in the gda1 null mutant caused a significant increase in microsomal membrane-bound nucleoside phosphatase activity with a luminal orientation. The activity was equally high toward ADP/ATP, GDP/GTP, and UDP/UTP and approximately 50% less toward CDP/CTP and thiamine pyrophosphate, but there was no activity toward GMP, indicating that the Ynd1 protein belongs to the apyrase family. This substrate specificity is different from that of yeast GDPase, but similar to that of human Golgi UDPase. The Deltaynd1 mutant cells were defective in O- and N-linked glycosylation in the Golgi compartments. The overexpression of the YND1 gene complemented some glycosylation defects in Deltagda1 disruptants, suggesting a partially redundant function of yeast apyrase and GDPase. From these results and the phenotype of the Deltaynd1Deltagda1 double deletion showing a synthetic effect, we conclude that yeast apyrase is required for Golgi glycosylation and cell wall integrity, providing the first direct evidence for the in vivo function of intracellular apyrase in eukaryotic cells.
Collapse
Affiliation(s)
- X D Gao
- Molecular Biology Department, National Institute of Bioscience and Human Technology, 1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | | | | |
Collapse
|
44
|
Abstract
The Golgi complex is the site where the terminal carbohydrate modification of proteins and lipids occurs. These carbohydrates play a variety of biological roles, ranging from the stabilization of glycoprotein structure to the provision of ligands for cell-cell interactions to the regulation of cell surface properties. Progress in our understanding of the biosynthesis and regulation of glycoconjugates has been accelerating at a rapid pace. Recent advances in the field of yeast glycobiology have been particularly impressive. This review focuses on glycosylation of proteins in the Golgi of the yeast Saccharomyces cerevisiae, with emphasis on the candidate mannosyltransferases that participate in the synthesis of N-linked oligosaccharides. Current views on how these enzymes may be regulated and how glycosylation relates on other cellular processes are also discussed.
Collapse
Affiliation(s)
- N Dean
- Department of Biochemistry and Cell Biology, Institute for Cell and Developmental Biology, State University of New York, Stony Brook, NY 11794-5215, USA.
| |
Collapse
|
45
|
Uccelletti D, Farina F, Morlupi A, Palleschi C. Mutants of Kluyveromyces lactis with altered protein glycosylation are affected in cell wall morphogenesis. Res Microbiol 1999; 150:5-12. [PMID: 10096129 DOI: 10.1016/s0923-2508(99)80041-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We isolated spontaneous mutants resistant to sodium orthovanadate in the biotechnologically significant yeast Kluyveromyces lactis. Resistance behaved as a recessive character in all mutants analyzed. Four genes were defined by complementation analysis, from vga1 to vga4. These mutants showed defects in N-linked as well as O-linked glycosylation processes. In addition, the mutants exhibited sensitivity to the aminoglycoside hygromycin B and to calcofluor white, with the exception of vga4; this mutant grew in the presence of the antibiotic as well as the parental wild type and was resistant to calcofluor. The mutations were accompanied by alterations in the cell wall structure, as revealed by the delocalization of chitin, changes in cell shape and size and by the clumpy aspect of the cultures. The mutants isolated provide basic tools for molecular and cellular analysis of glycosylation processes in K. lactis.
Collapse
Affiliation(s)
- D Uccelletti
- Foundation Institut Pasteur-Fondazione Cenci-Bolognetti, Department of Developmental and Cell Biology, University of Rome La Sapienza, Italy
| | | | | | | |
Collapse
|
46
|
Jungmann J, Munro S. Multi-protein complexes in the cis Golgi of Saccharomyces cerevisiae with alpha-1,6-mannosyltransferase activity. EMBO J 1998; 17:423-34. [PMID: 9430634 PMCID: PMC1170393 DOI: 10.1093/emboj/17.2.423] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Anp1p, Van1p and Mnn9p constitute a family of membrane proteins required for proper Golgi function in Saccharomyces cerevisiae. We demonstrate that these proteins colocalize within the cis Golgi, and that they are physically associated in two distinct complexes, both of which contain Mnn9p. Furthermore, we identify two new proteins in the Anp1p-Mnn9p-containing complex which have homology to known glycosyltransferases. Both protein complexes have alpha-1, 6-mannosyltransferase activity, forming a series of poly-mannose structures. These reaction products also contain some alpha-1, 2-linked mannose residues. Our data suggest that these two multi-protein complexes are responsible for the synthesis and initial branching of the long alpha-1,6-linked backbone of the hypermannose structure attached to many yeast glycoproteins.
Collapse
Affiliation(s)
- J Jungmann
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | |
Collapse
|
47
|
Kukuruzinska MA, Lennon K. Protein N-glycosylation: molecular genetics and functional significance. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 1998; 9:415-48. [PMID: 9825220 DOI: 10.1177/10454411980090040301] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein N-glycosylation is a metabolic process that has been highly conserved in evolution. In all eukaryotes, N-glycosylation is obligatory for viability. It functions by modifying appropriate asparagine residues of proteins with oligosaccharide structures, thus influencing their properties and bioactivities. N-glycoprotein biosynthesis involves a multitude of enzymes, glycosyltransferases, and glycosidases, encoded by distinct genes. The majority of these enzymes are transmembrane proteins that function in the endoplasmic reticulum and Golgi apparatus in an ordered and well-orchestrated manner. The complexity of N-glycosylation is augmented by the fact that different asparagine residues within the same polypeptide may be modified with different oligosaccharide structures, and various proteins are distinguished from one another by the characteristics of their carbohydrate moieties. Furthermore, biological consequences of derivatization of proteins with N-glycans range from subtle to significant. In the past, all these features of N-glycosylation have posed a formidable challenge to an elucidation of the physiological role for this modification. Recent advances in molecular genetics, combined with the availability of diverse in vivo experimental systems ranging from yeast to transgenic mice, have expedited the identification, isolation, and characterization of N-glycosylation genes. As a result, rather unexpected information regarding relationships between N-glycosylation and other cellular functions--including secretion, cytoskeletal organization, proliferation, and apoptosis--has emerged. Concurrently, increased understanding of molecular details of N-glycosylation has facilitated the alignment between N-glycosylation deficiencies and human diseases, and has highlighted the possibility of using N-glycan expression on cells as potential determinants of disease and its progression. Recent studies suggest correlations between N-glycosylation capacities of cells and drug sensitivities, as well as susceptibility to infection. Therefore, knowledge of the regulatory features of N-glycosylation may prove useful in the design of novel therapeutics. While facing the demanding task of defining properties, functions, and regulation of the numerous, as yet uncharacterized, N-glycosylation genes, glycobiologists of the 21st century offer exciting possibilities for new approaches to disease diagnosis, prevention, and cure.
Collapse
Affiliation(s)
- M A Kukuruzinska
- Department of Molecular and Cell Biology, School of Dental Medicine, Boston University Medical Center, Massachusetts 02118, USA
| | | |
Collapse
|
48
|
Hashimoto H, Yoda K. Novel membrane protein complexes for protein glycosylation in the yeast Golgi apparatus. Biochem Biophys Res Commun 1997; 241:682-6. [PMID: 9434768 DOI: 10.1006/bbrc.1997.7888] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Three type II membrane proteins Anp1, Van1 and Mnn9 of Saccharomyces cerevisiae share significant sequence homology. Their precise biochemical activity has long been unknown though the mutant phenotype indicates their participation in protein glycosylation in the Golgi apparatus. To shed light on their molecular characteristics, interactions of these proteins were studied by immunoprecipitation after solubilizing the membrane by nonionic detergent. Our results indicated that there are at least two submembrane complexes containing these proteins: one contains Van1 and Mnn9 proteins and the other contains Anp1 and Mnn9 proteins. In addition, Hoc1 protein which has significant homology to Och1 protein colocalized with Anp1 and Mnn9 proteins. These complexes with similar but partially different constituents may represent essential parts of glycosylation machinery in the yeast Golgi compartments.
Collapse
Affiliation(s)
- H Hashimoto
- Department of Biotechnology, University of Tokyo, Japan
| | | |
Collapse
|
49
|
Dean N, Zhang YB, Poster JB. The VRG4 gene is required for GDP-mannose transport into the lumen of the Golgi in the yeast, Saccharomyces cerevisiae. J Biol Chem 1997; 272:31908-14. [PMID: 9395539 DOI: 10.1074/jbc.272.50.31908] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In the yeast Saccharomyces cerevisiae, glycoproteins and sphingolipids are modified in the Golgi by the addition of mannose residues. The critical mannosyl donor for these reactions is the nucleotide sugar, GDP-mannose, whose transport into the Golgi from the cytoplasm is required for mannosylation. This transport reaction has been well characterized, but the nucleotide sugar transporter has yet to be identified in yeast. VRG4 is an essential gene whose product is required for a number of Golgi-specific functions, including glycosylation and the organization of the endomembrane system. Here, data are presented that demonstrate that the primary role of Vrg4p is in the transport of GDP-mannose into the Golgi. The vrg4 mutation causes a general impairment in mannosylation, affecting N-linked and O-linked glycoprotein modifications as well as the mannosylation of sphingolipids. By using an in vitro assay, vrg4 mutants were shown to be specifically defective in the transport of GDP-mannose into Golgi vesicles. The Vrg4 protein localizes to the Golgi complex in a pattern that suggests a wide distribution throughout the Golgi. Vrg4p displays homology to other putative nucleotide sugar transporters, suggesting that the VRG4 gene encodes a Golgi GDP-mannose transporter. As Vrg4p is essential, these results suggest that a complete lack of mannosylation of glycoproteins in the Golgi leads to inviability. Alternatively, the essential function of Vrg4p in yeast involves its effect on sphingolipids, which would imply a critical role for mannosylinositol phosphorylceramides or mannosyl diphosphoinositol ceramides on growth and viability.
Collapse
Affiliation(s)
- N Dean
- Department of Biochemistry and Cell Biology, Institute for Cell and Developmental Biology, State University of New York, Stony Brook, New York 11794-5215, USA.
| | | | | |
Collapse
|
50
|
Abstract
Members of the p24 family of putative cargo receptors are proposed to contain retrograde and anterograde trafficking signals in their cytoplasmic domain to facilitate coat protein binding and cycling in the secretory pathway. We have analyzed the role of the transmembrane domain (TMD) of a p24 protein isolated from COPI-coated intra-Golgi transport vesicles. CD8-p24 chimeras were transiently expressed in COS7 cells and analyzed by immunofluorescence and pulse-chase experiments. The localization and transit of the wild-type chimera from the endoplasmic reticulum (ER) through the Golgi complex involved a glutamic acid residue and a conserved glutamine in the TMD. The TMD glutamic acid mediated the localization of the chimeras to the ER in the absence of the conserved glutamine. Efficient ER exit required the TMD glutamine and was further facilitated by a pair of phenylalanine residues in the cytoplasmic tail. TMD residues of p24 proteins may mediate the interaction with integral membrane proteins of the vesicle budding machinery to ensure p24 packaging into transport vesicles.
Collapse
Affiliation(s)
- K Fiedler
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | |
Collapse
|