1
|
Khan MA, Yumak S, Miyoshi H. Poly(A)-binding protein promotes VPg-dependent translation of potyvirus through enhanced binding of phosphorylated eIFiso4F and eIFiso4F∙eIF4B. PLoS One 2024; 19:e0300287. [PMID: 38696388 PMCID: PMC11065315 DOI: 10.1371/journal.pone.0300287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 02/24/2024] [Indexed: 05/04/2024] Open
Abstract
The phosphorylation of eukaryotic translational initiation factors has been shown to play a significant role in controlling the synthesis of protein. Viral infection, environmental stress, and growth circumstances cause phosphorylation or dephosphorylation of plant initiation factors. Our findings indicate that casein kinase 2 can phosphorylate recombinant wheat eIFiso4E and eIFiso4G generated from E. coli in vitro. For wheat eIFiso4E, Ser-207 was found to be the in vitro phosphorylation site. eIFiso4E lacks an amino acid that can be phosphorylated at the position corresponding to Ser-209, the phosphorylation site in mammalian eIF4E, yet phosphorylation of eIFiso4E has effects on VPg binding affinity that are similar to those of phosphorylation of mammalian eIF4E. The addition of VPg and phosphorylated eIFiso4F to depleted wheat germ extract (WGE) leads to enhancement of translation of both uncapped and capped viral mRNA. The addition of PABP together with eIFiso4Fp and eIF4B to depleted WGE increases both uncapped and capped mRNA translation. However, it exhibits a translational advantage specifically for uncapped mRNA, implying that the phosphorylation of eIFiso4F hinders cap binding while promoting VPg binding, thereby facilitating uncapped translation. These findings indicate TEV virus mediates VPg-dependent translation by engaging a mechanism entailing phosphorylated eIFiso4Fp and PABP. To elucidate the molecular mechanisms underlying these observed effects, we studied the impact of PABP and/or eIF4B on the binding of VPg with eIFiso4Fp. The inclusion of PABP and eIF4B with eIFiso4Fp resulted in about 2-fold increase in affinity for VPg (Kd = 24 ± 1.7 nM), as compared to the affinity of eIFiso4Fp alone (Kd = 41.0 ± 3.1 nM). The interactions between VPg and eIFiso4Fp were determined to be both enthalpically and entropically favorable, with the enthalpic contribution accounting for 76-97% of the ΔG at 25°C, indicating a substantial role of hydrogen bonding in enhancing the stability of the complex. The binding of PABP to eIFiso4Fp·4B resulted in a conformational alteration, leading to a significant enhancement in the binding affinity to VPg. These observations suggest PABP enhances the affinity between eIFiso4Fp and VPg, leading to an overall conformational change that provides a stable platform for efficient viral translation.
Collapse
Affiliation(s)
- Mateen A. Khan
- Department of Life Sciences, College of Science and General Studies, Alfaisal University Riyadh, Riyadh, Saudi Arabia
| | - Sumeyra Yumak
- Department of Science, Borough of Manhattan Community College, City University of New York, New York, NY, United States of America
| | - Hiroshi Miyoshi
- Department of Microbiology, St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
2
|
The Stringent Response Inhibits 70S Ribosome Formation in Staphylococcus aureus by Impeding GTPase-Ribosome Interactions. mBio 2021; 12:e0267921. [PMID: 34749534 PMCID: PMC8579695 DOI: 10.1128/mbio.02679-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
During nutrient limitation, bacteria produce the alarmones (p)ppGpp as effectors of a stress signaling network termed the stringent response. RsgA, RbgA, Era, and HflX are four ribosome-associated GTPases (RA-GTPases) that bind to (p)ppGpp in Staphylococcus aureus. These enzymes are cofactors in ribosome assembly, where they cycle between the ON (GTP-bound) and OFF (GDP-bound) ribosome-associated states. Entry into the OFF state occurs upon hydrolysis of GTP, with GTPase activity increasing substantially upon ribosome association. When bound to (p)ppGpp, GTPase activity is inhibited, reducing 70S ribosome assembly and growth. Here, we determine how (p)ppGpp impacts RA-GTPase-ribosome interactions. We show that RA-GTPases preferentially bind to 5′-diphosphate-containing nucleotides GDP and ppGpp over GTP, which is likely exploited as a regulatory mechanism within the cell to shut down ribosome biogenesis during stress. Stopped-flow fluorescence and association assays reveal that when bound to (p)ppGpp, the association of RA-GTPases to ribosomal subunits is destabilized, both in vitro and within bacterial cells. Consistently, structural analysis of the ppGpp-bound RA-GTPase RsgA reveals an OFF-state conformation similar to the GDP-bound state, with the G2/switch I loop adopting a conformation incompatible with ribosome association. Altogether, we highlight (p)ppGpp-mediated inhibition of RA-GTPases as a major mechanism of stringent response-mediated ribosome assembly and growth control.
Collapse
|
3
|
Bennison DJ, Irving SE, Corrigan RM. The Impact of the Stringent Response on TRAFAC GTPases and Prokaryotic Ribosome Assembly. Cells 2019; 8:cells8111313. [PMID: 31653044 PMCID: PMC6912228 DOI: 10.3390/cells8111313] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/17/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022] Open
Abstract
Many facets of ribosome biogenesis and function, including ribosomal RNA (rRNA) transcription, 70S assembly and protein translation, are negatively impacted upon induction of a nutrient stress-sensing signalling pathway termed the stringent response. This stress response is mediated by the alarmones guanosine tetra- and penta-phosphate ((p)ppGpp), the accumulation of which leads to a massive cellular response that slows growth and aids survival. The 70S bacterial ribosome is an intricate structure, with assembly both complex and highly modular. Presiding over the assembly process is a group of P-loop GTPases within the TRAFAC (Translation Factor Association) superclass that are crucial for correct positioning of both early and late stage ribosomal proteins (r-proteins) onto the rRNA. Often described as 'molecular switches', members of this GTPase superfamily readily bind and hydrolyse GTP to GDP in a cyclic manner that alters the propensity of the GTPase to carry out a function. TRAFAC GTPases are considered to act as checkpoints to ribosome assembly, involved in binding to immature sections in the GTP-bound state, preventing further r-protein association until maturation is complete. Here we review our current understanding of the impact of the stringent response and (p)ppGpp production on ribosome maturation in prokaryotic cells, focusing on the inhibition of (p)ppGpp on GTPase-mediated subunit assembly, but also touching upon the inhibition of rRNA transcription and protein translation.
Collapse
Affiliation(s)
- Daniel J Bennison
- The Florey Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.
| | - Sophie E Irving
- The Florey Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.
| | - Rebecca M Corrigan
- The Florey Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.
| |
Collapse
|
4
|
Khan MA. Phosphorylation of translation initiation factor eIFiso4E promotes translation through enhanced binding to potyvirus VPg. J Biochem 2019; 165:167-176. [PMID: 30371907 DOI: 10.1093/jb/mvy091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/28/2018] [Indexed: 12/13/2022] Open
Abstract
Interactions of phosphorylated eIFiso4E binding to VPg as a function of temperature and ionic strength were assessed employing fluorescence spectroscopic. Phosphorylation increased the binding affinity ∼3.5-fold between VPg and eIFiso4E under equilibrium conditions. Binding affinity of VPg for eIFiso4Ep correlates with the ability to enhance in vitro protein synthesis. Addition of VPg and eIFiso4Ep together to Dep WGE enhances the translation for both uncapped and capped mRNA. However, capped mRNA translation was inhibited with addition of eIFiso4Ep alone in dep WGE, suggesting that phosphorylation prevents the cap binding and favours the VPg binding to promotes translation. Temperature dependence showed that the phosphorylated form of the eIFiso4E is preferred for complex formation. A van't Hoff analysis reveals that eIFiso4Ep binding to VPg was enthalpy driven (ΔH = -43.9 ± 0.3 kJ.mol-1) and entropy-opposed (ΔS = -4.3 ± 0.1 J.mol-1K-1). Phosphorylation increased the enthalpic contributions ∼33% for eIFiso4Ep-VPg complex. The thermodynamic values and ionic strength dependence of binding data suggesting that phosphorylation increased hydrogen-bonding and decreased hydrophobic interactions, which leads to more stable complex formation and favour efficient viral translation. Overall these data correlate well with the observed translational data and provide more detailed information on the translational strategy of potyviruses.
Collapse
Affiliation(s)
- Mateen A Khan
- Department of Chemistry & Biochemistry, Hunter College of the City University of New York, 695 Park Ave, New York, USA.,Department of Life Sciences, College of Science and General Studies, Alfaisal University, Takhasusi Street, P.O. Box-50927, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Sharma SD, Kraft JJ, Miller WA, Goss DJ. Recruitment of the 40S ribosome subunit to the 3'-untranslated region (UTR) of a viral mRNA, via the eIF4 complex, facilitates cap-independent translation. J Biol Chem 2015; 290:11268-81. [PMID: 25792742 DOI: 10.1074/jbc.m115.645002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Indexed: 02/05/2023] Open
Abstract
Barley yellow dwarf virus mRNA, which lacks both cap and poly(A) tail, has a translation element (3'-BTE) in its 3'-UTR essential for efficient translation initiation at the 5'-proximal AUG. This mechanism requires eukaryotic initiation factor 4G (eIF4G), subunit of heterodimer eIF4F (plant eIF4F lacks eIF4A), and 3'-BTE-5'-UTR interaction. Using fluorescence anisotropy, SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) analysis, and toeprinting, we found that (i) 40S subunits bind to BTE (Kd = 350 ± 30 nm), (ii) the helicase complex eIF4F-eIF4A-eIF4B-ATP increases 40S subunit binding (Kd = 120 ± 10 nm) to the conserved stem-loop I of the 3'-BTE by exposing more unpaired bases, and (iii) long distance base pairing transfers this complex to the 5'-end of the mRNA, where translation initiates. Although 3'-5' interactions have been recognized as important in mRNA translation, barley yellow dwarf virus employs a novel mechanism utilizing the 3'-UTR as the primary site of ribosome recruitment.
Collapse
Affiliation(s)
- Sohani Das Sharma
- From the Department of Chemistry, Hunter College and the Graduate Center, City University of New York, New York, New York 10065 and
| | | | - W Allen Miller
- the Departments of Plant Pathology and Microbiology and Biochemistry, Biophysics, Molecular Biology, and Microbiology, Iowa State University, Ames, Iowa 50011
| | - Dixie J Goss
- From the Department of Chemistry, Hunter College and the Graduate Center, City University of New York, New York, New York 10065 and
| |
Collapse
|
6
|
|
7
|
Domashevskiy AV, Miyoshi H, Goss DJ. Inhibition of pokeweed antiviral protein (PAP) by turnip mosaic virus genome-linked protein (VPg). J Biol Chem 2012; 287:29729-38. [PMID: 22773840 DOI: 10.1074/jbc.m112.367581] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pokeweed antiviral protein (PAP) from Phytolacca americana is a ribosome-inactivating protein (RIP) and an RNA N-glycosidase that removes specific purine residues from the sarcin/ricin loop of large rRNA, arresting protein synthesis at the translocation step. PAP is also a cap-binding protein and is a potent antiviral agent against many plant, animal, and human viruses. To elucidate the mechanism of RNA depurination, and to understand how PAP recognizes and targets various RNAs, the interactions between PAP and turnip mosaic virus genome-linked protein (VPg) were investigated. VPg can function as a cap analog in cap-independent translation and potentially target PAP to uncapped IRES-containing RNA. In this work, fluorescence spectroscopy and HPLC techniques were used to quantitatively describe PAP depurination activity and PAP-VPg interactions. PAP binds to VPg with high affinity (29.5 nm); the reaction is enthalpically driven and entropically favored. Further, VPg is a potent inhibitor of PAP depurination of RNA in wheat germ lysate and competes with structured RNA derived from tobacco etch virus for PAP binding. VPg may confer an evolutionary advantage by suppressing one of the plant defense mechanisms and also suggests the possible use of this protein against the cytotoxic activity of ribosome-inactivating proteins.
Collapse
Affiliation(s)
- Artem V Domashevskiy
- Department of Chemistry, Hunter College and the Graduate Center of the City University of New York, New York, NY 10065, USA
| | | | | |
Collapse
|
8
|
Khan MA, Goss DJ. Poly(A)-binding protein increases the binding affinity and kinetic rates of interaction of viral protein linked to genome with translation initiation factors eIFiso4F and eIFiso4F·4B complex. Biochemistry 2012; 51:1388-95. [PMID: 22299678 DOI: 10.1021/bi201929h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
VPg of turnip mosaic virus (TuMV) was previously shown to interact with translation initiation factor eIFiso4F and play an important role in mRNA translation [Khan, M. A., et al. (2008) J. Biol. Chem.283, 1340-1349]. VPg competed with cap analogue for eIFiso4F binding and competitively inhibited cap-dependent translation and enhanced cap-independent translation to give viral RNA a significant competitive advantage. To gain further insight into the cap-independent process of initiation of protein synthesis, we examined the effect of PABP and/or eIF4B on the equilibrium and kinetics of binding of VPg to eIFiso4F. Equilibrium data showed the addition of PABP and/or eIF4B to eIFiso4F increased the binding affinity for VPg (K(d) = 24.3 ± 1.6 nM) as compared to that with eIFiso4F alone (K(d) = 81.3 ± 0.2.4 nM). Thermodynamic parameters showed that binding of VPg to eIFiso4F was enthalpy-driven and entropy-favorable with the addition of PABP and/or eIF4B. PABP and eIF4B decreased the entropic contribution by 67% for binding of VPg to eIFiso4F. The decrease in entropy involved in the formation of the eIFiso4F·4B·PABP-VPg complex suggested weakened hydrophobic interactions for complex formation and an overall conformational change. The kinetic studies of eIFiso4F with VPg in the presence of PABP and eIF4B show 3-fold faster association (k(2) = 182 ± 9.0 s(-1)) compared to that with eIFiso4F alone (k(2) = 69.0 ± 1.5 s(-1)) . The dissociation rate was 3-fold slower (k(-2) = 6.5 ± 0.43 s(-1)) for eIFiso4F with VPg in the presence of PABP and eIF4B (k(-2) = 19.0 ± 0.9 s(-1)). The addition of PABP and eIF4B decreased the activation energy of eIFiso4F with VPg from 81.0 ± 3.0 to 44.0 ± 2.4 kJ/mol. This suggests that the presence of both proteins leads to a rapid, stable complex, which serves to sequester initiation factors.
Collapse
Affiliation(s)
- Mateen A Khan
- Department of Chemistry and Biochemistry, Hunter College of City University of New York, New York, New York 10065, United States
| | | |
Collapse
|
9
|
Abstract
Selection of correct start codons on messenger RNAs is a key step required for faithful translation of the genetic message. Such a selection occurs in a complex process, during which a translation-competent ribosome assembles, eventually having in its P site a specialized methionyl-tRNAMet base-paired with the start codon on the mRNA. This chapter summarizes recent advances describing at the molecular level the successive steps involved in the process. Special emphasis is put on the roles of the three initiation factors and of the initiator tRNA, which are crucial for the efficiency and the specificity of the process. In particular, structural analyses concerning complexes containing ribosomal subunits, as well as detailed kinetic studies, have shed new light on the sequence of events leading to faithful initiation of protein synthesis in Bacteria.
Collapse
|
10
|
The Era GTPase recognizes the GAUCACCUCC sequence and binds helix 45 near the 3' end of 16S rRNA. Proc Natl Acad Sci U S A 2011; 108:10156-61. [PMID: 21646538 DOI: 10.1073/pnas.1017679108] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Era, composed of a GTPase domain and a K homology domain, is essential for bacterial cell viability. It is required for the maturation of 16S rRNA and assembly of the 30S ribosomal subunit. We showed previously that the protein recognizes nine nucleotides ( ) near the 3' end of 16S rRNA, and that this recognition stimulates GTP-hydrolyzing activity of Era. In all three kingdoms of life, the sequence and helix 45 (h45) (nucleotides 1506-1529) are highly conserved. It has been shown that the to double mutation severely affects the viability of bacteria. However, whether Era interacts with G1530 and/or h45 and whether such interactions (if any) contribute to the stimulation of Era's GTPase activity were not known. Here, we report two RNA structures that contain nucleotides 1506-1542 (RNA301), one in complex with Era and GDPNP (GNP), a nonhydrolysable GTP-analogue, and the other in complex with Era, GNP, and the KsgA methyltransferase. The structures show that Era recognizes 10 nucleotides, including G1530, and that Era also binds h45. Moreover, GTPase assay experiments show that G1530 does not stimulate Era's GTPase activity. Rather, A1531 and A1534 are most important for stimulation and h45 further contributes to the stimulation. Although G1530 does not contribute to the intrinsic GTPase activity of Era, its interaction with Era is important for binding and is essential for the protein to function, leading to the discovery of a new cold-sensitive phenotype of Era.
Collapse
|
11
|
Sharma MR, Dönhöfer A, Barat C, Marquez V, Datta PP, Fucini P, Wilson DN, Agrawal RK. PSRP1 is not a ribosomal protein, but a ribosome-binding factor that is recycled by the ribosome-recycling factor (RRF) and elongation factor G (EF-G). J Biol Chem 2009; 285:4006-4014. [PMID: 19965869 DOI: 10.1074/jbc.m109.062299] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plastid-specific ribosomal proteins (PSRPs) have been proposed to play roles in the light-dependent regulation of chloroplast translation. Here we demonstrate that PSRP1 is not a bona fide ribosomal protein, but rather a functional homologue of the Escherichia coli cold-shock protein pY. Three-dimensional Cryo-electron microscopic (Cryo-EM) reconstructions reveal that, like pY, PSRP1 binds within the intersubunit space of the 70S ribosome, at a site overlapping the positions of mRNA and A- and P-site tRNAs. PSRP1 induces conformational changes within ribosomal components that comprise several intersubunit bridges, including bridge B2a, thereby stabilizes the ribosome against dissociation. We find that the presence of PSRP1/pY lowers the binding of tRNA to the ribosome. Furthermore, similarly to tRNAs, PSRP1/pY is recycled from the ribosome by the concerted action of the ribosome-recycling factor (RRF) and elongation factor G (EF-G). These results suggest a novel function for EF-G and RRF in the post-stress return of PSRP1/pY-inactivated ribosomes to the actively translating pool.
Collapse
Affiliation(s)
- Manjuli R Sharma
- From the Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York 12201-0509
| | - Alexandra Dönhöfer
- the Center for Integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universitat München, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany; Gene Center and Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universitat München, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany
| | - Chandana Barat
- From the Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York 12201-0509
| | - Viter Marquez
- the Center for Integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universitat München, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany; Gene Center and Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universitat München, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany
| | - Partha P Datta
- From the Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York 12201-0509
| | - Paola Fucini
- the Cluster of Excellence for Macromolecular Complexes, Institut fur Organische Chemie und Chemische Biologie, J. W. Goethe-Universitaet Frankfurt am Main, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany, and
| | - Daniel N Wilson
- the Center for Integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universitat München, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany; Gene Center and Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universitat München, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany.
| | - Rajendra K Agrawal
- From the Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York 12201-0509; the Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, New York 12201.
| |
Collapse
|
12
|
Khan MA, Walden WE, Goss DJ, Theil EC. Direct Fe2+ sensing by iron-responsive messenger RNA:repressor complexes weakens binding. J Biol Chem 2009; 284:30122-8. [PMID: 19720833 DOI: 10.1074/jbc.m109.041061] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fe(2+) is now shown to weaken binding between ferritin and mitochondrial aconitase messenger RNA noncoding regulatory structures ((iron-responsive element) (IRE)-RNAs) and the regulatory proteins (IRPs), which adds a direct role of iron to regulation that can complement the well known regulatory protein modification and degradative pathways related to iron-induced mRNA translation. We observe that the K(d) value increases 17-fold in 5'-untranslated region IRE-RNA:repressor complexes; Fe(2+), is studied in the absence of O(2). Other metal ions, Mn(2+) and Mg(2+) have similar effects to Fe(2+) but the required Mg(2+) concentration is 100 times greater than for Fe(2+) or Mn(2+). Metal ions also weaken ethidium bromide binding to IRE-RNA with no effect on IRP fluorescence, using Mn(2+) as an O(2)-resistant surrogate for Fe(2+), indicating that metal ions bound IRE-RNA but not IRP: Fe(2+) decreases IRP repressor complex stability of ferritin IRE-RNA 5-10 times compared with 2-5 times for mitochondrial aconitase IRE-RNA, over the same concentration range, suggesting that differences among IRE-RNA structures contribute to the differences in the iron responses observed in vivo. The results show the IRE-RNA:repressor complex literally responds to Fe(2+), selectively for each IRE-mRNA.
Collapse
Affiliation(s)
- Mateen A Khan
- Department of Chemistry, Hunter College, City University of New York, New York, New York 10065, USA
| | | | | | | |
Collapse
|
13
|
Dawy Z, Morcos F, Weindl J, Mueller JC. Translation initiation modeling and mutational analysis based on the -end of the Escherichia coli 16S rRNA sequence. Biosystems 2009; 96:58-64. [DOI: 10.1016/j.biosystems.2008.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 11/10/2008] [Accepted: 11/14/2008] [Indexed: 01/11/2023]
|
14
|
Haque ME, Grasso D, Spremulli LL. The interaction of mammalian mitochondrial translational initiation factor 3 with ribosomes: evolution of terminal extensions in IF3mt. Nucleic Acids Res 2007; 36:589-97. [PMID: 18056078 PMCID: PMC2241858 DOI: 10.1093/nar/gkm1072] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mammalian mitochondrial initiation factor 3 (IF3mt) has a central region with homology to bacterial IF3. This homology region is preceded by an N-terminal extension and followed by a C-terminal extension. The role of these extensions on the binding of IF3mt to mitochondrial small ribosomal subunits (28S) was studied using derivatives in which the extensions had been deleted. The Kd for the binding of IF3mt to 28S subunits is ∼30 nM. Removal of either the N- or C-terminal extension has almost no effect on this value. IF3mt has very weak interactions with the large subunit of the mitochondrial ribosome (39S) (Kd = 1.5 μM). However, deletion of the extensions results in derivatives with significant affinity for 39S subunits (Kd = 0.12−0.25 μM). IF3mt does not bind 55S monosomes, while the deletion derivative binds slightly to these particles. IF3mt is very effective in dissociating 55S ribosomes. Removal of the N-terminal extension has little effect on this activity. However, removal of the C-terminal extension leads to a complex dissociation pattern due to the high affinity of this derivative for 39S subunits. These data suggest that the extensions have evolved to ensure the proper dissociation of IF3mt from the 28S subunits upon 39S subunit joining.
Collapse
Affiliation(s)
- Md Emdadul Haque
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC-27599-3290, USA
| | | | | |
Collapse
|
15
|
Khan MA, Miyoshi H, Gallie DR, Goss DJ. Potyvirus genome-linked protein, VPg, directly affects wheat germ in vitro translation: interactions with translation initiation factors eIF4F and eIFiso4F. J Biol Chem 2007; 283:1340-1349. [PMID: 18045881 DOI: 10.1074/jbc.m703356200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Potyvirus genome linked protein, VPg, interacts with translation initiation factors eIF4E and eIFiso4E, but its role in protein synthesis has not been elucidated. We show that addition of VPg to wheat germ extract leads to enhancement of uncapped viral mRNA translation and inhibition of capped viral mRNA translation. This provides a significant competitive advantage to the uncapped viral mRNA. To understand the molecular basis of these effects, we have characterized the interaction of VPg with eIF4F, eIFiso4F, and a structured RNA derived from tobacco etch virus (TEV RNA). When VPg formed a complex with eIF4F, the affinity for TEV RNA increased more than 4-fold compared with eIF4F alone (19.4 and 79.0 nm, respectively). The binding affinity of eIF4F to TEV RNA correlates with translation efficiency. VPg enhanced eIFiso4F binding to TEV RNA 1.6-fold (178 nm compared with 108 nm). Kinetic studies of eIF4F and eIFiso4F with VPg show approximately 2.6-fold faster association for eIFiso4F.VPg as compared with eIF4F.VPg. The dissociation rate was approximately 2.9-fold slower for eIFiso4F than eIF4F with VPg. These data demonstrate that eIFiso4F can kinetically compete with eIF4F for VPg binding. The quantitative data presented here suggest a model where eIF4F.VPg interaction enhances cap-independent translation by increasing the affinity of eIF4F for TEV RNA. This is the first evidence of direct participation of VPg in translation initiation.
Collapse
Affiliation(s)
- Mateen A Khan
- Department of Chemistry, Hunter College and the Graduate Center of the City University of New York, New York, New York 10065
| | - Hiroshi Miyoshi
- Department of Microbiology, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan
| | - Daniel R Gallie
- Department of Biochemistry, University of California, Riverside, California 92521-0129
| | - Dixie J Goss
- Department of Chemistry, Hunter College and the Graduate Center of the City University of New York, New York, New York 10065.
| |
Collapse
|
16
|
Sharma MR, Barat C, Wilson DN, Booth TM, Kawazoe M, Hori-Takemoto C, Shirouzu M, Yokoyama S, Fucini P, Agrawal RK. Interaction of Era with the 30S ribosomal subunit implications for 30S subunit assembly. Mol Cell 2005; 18:319-29. [PMID: 15866174 DOI: 10.1016/j.molcel.2005.03.028] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 03/16/2005] [Accepted: 03/24/2005] [Indexed: 11/18/2022]
Abstract
Era (E. coliRas-like protein) is a highly conserved and essential GTPase in bacteria. It binds to the 16S ribosomal RNA (rRNA) of the small (30S) ribosomal subunit, and its depletion leads to accumulation of an unprocessed precursor of the 16S rRNA. We have obtained a three-dimensional cryo-electron microscopic map of the Thermus thermophilus 30S-Era complex. Era binds in the cleft between the head and platform of the 30S subunit and locks the subunit in a conformation that is not favorable for association with the large (50S) ribosomal subunit. The RNA binding KH motif present within the C-terminal domain of Era interacts with the conserved nucleotides in the 3' region of the 16S rRNA. Furthermore, Era makes contact with several assembly elements of the 30S subunit. These observations suggest a direct involvement of Era in the assembly and maturation of the 30S subunit.
Collapse
Affiliation(s)
- Manjuli R Sharma
- Division of Molecular Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York 12201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bashan A, Agmon I, Zarivach R, Schluenzen F, Harms J, Pioletti M, Bartels H, Gluehmann M, Hansen H, Auerbach T, Franceschi F, Yonath A. High-resolution structures of ribosomal subunits: initiation, inhibition, and conformational variability. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:43-56. [PMID: 12762007 DOI: 10.1101/sqb.2001.66.43] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- A Bashan
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Yonath A. The search and its outcome: high-resolution structures of ribosomal particles from mesophilic, thermophilic, and halophilic bacteria at various functional states. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2002; 31:257-73. [PMID: 11988470 DOI: 10.1146/annurev.biophys.31.082901.134439] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We determined the high-resolution structures of large and small ribosomal subunits from mesophilic and thermophilic bacteria and compared them with those of the thermophilic ribosome and the halophilic large subunit. We confirmed that the elements involved in intersubunit contacts and in substrate binding are inherently flexible and that a common ribosomal strategy is to utilize this conformational variability for optimizing its functional efficiency and minimizing nonproductive interactions. Under close-to-physiological conditions, these elements maintain well-ordered characteristic conformations. In unbound subunits, the features creating intersubunit bridges within associated ribosomes lie on the interface surface, and the features that bind factors and substrates reach toward the binding site only when conditions are ripe.
Collapse
Affiliation(s)
- Ada Yonath
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
19
|
Pioletti M, Schlünzen F, Harms J, Zarivach R, Glühmann M, Avila H, Bashan A, Bartels H, Auerbach T, Jacobi C, Hartsch T, Yonath A, Franceschi F. Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3. EMBO J 2001; 20:1829-39. [PMID: 11296217 PMCID: PMC125237 DOI: 10.1093/emboj/20.8.1829] [Citation(s) in RCA: 362] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The small ribosomal subunit is responsible for the decoding of genetic information and plays a key role in the initiation of protein synthesis. We analyzed by X-ray crystallography the structures of three different complexes of the small ribosomal subunit of Thermus thermophilus with the A-site inhibitor tetracycline, the universal initiation inhibitor edeine and the C-terminal domain of the translation initiation factor IF3. The crystal structure analysis of the complex with tetracycline revealed the functionally important site responsible for the blockage of the A-site. Five additional tetracycline sites resolve most of the controversial biochemical data on the location of tetracycline. The interaction of edeine with the small subunit indicates its role in inhibiting initiation and shows its involvement with P-site tRNA. The location of the C-terminal domain of IF3, at the solvent side of the platform, sheds light on the formation of the initiation complex, and implies that the anti-association activity of IF3 is due to its influence on the conformational dynamics of the small ribosomal subunit.
Collapse
Affiliation(s)
- Marta Pioletti
- Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, 14195 Berlin, FB Biologie, Chemie, Pharmazie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Max-Planck-Research Unit for Ribosomal Structure, Notkestrasse 85, 22603 Hamburg, Göttingen Genomics Laboratory, Georg-August Universität, Griesebacherstrasse 8, 37077 Göttingen, Germany, Department of Structural Biology, Weizmann Institute, 76100 Rehovot, Israel and Centro de Investigaciones Biomédicas, Universidad de Carabobo, Las Delicias, Maracay, Venezuela Corresponding author e-mail:
M.Pioletti, F.Schlünzen and J.Harms contributed equally to this work
| | - Frank Schlünzen
- Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, 14195 Berlin, FB Biologie, Chemie, Pharmazie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Max-Planck-Research Unit for Ribosomal Structure, Notkestrasse 85, 22603 Hamburg, Göttingen Genomics Laboratory, Georg-August Universität, Griesebacherstrasse 8, 37077 Göttingen, Germany, Department of Structural Biology, Weizmann Institute, 76100 Rehovot, Israel and Centro de Investigaciones Biomédicas, Universidad de Carabobo, Las Delicias, Maracay, Venezuela Corresponding author e-mail:
M.Pioletti, F.Schlünzen and J.Harms contributed equally to this work
| | - Jörg Harms
- Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, 14195 Berlin, FB Biologie, Chemie, Pharmazie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Max-Planck-Research Unit for Ribosomal Structure, Notkestrasse 85, 22603 Hamburg, Göttingen Genomics Laboratory, Georg-August Universität, Griesebacherstrasse 8, 37077 Göttingen, Germany, Department of Structural Biology, Weizmann Institute, 76100 Rehovot, Israel and Centro de Investigaciones Biomédicas, Universidad de Carabobo, Las Delicias, Maracay, Venezuela Corresponding author e-mail:
M.Pioletti, F.Schlünzen and J.Harms contributed equally to this work
| | - Raz Zarivach
- Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, 14195 Berlin, FB Biologie, Chemie, Pharmazie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Max-Planck-Research Unit for Ribosomal Structure, Notkestrasse 85, 22603 Hamburg, Göttingen Genomics Laboratory, Georg-August Universität, Griesebacherstrasse 8, 37077 Göttingen, Germany, Department of Structural Biology, Weizmann Institute, 76100 Rehovot, Israel and Centro de Investigaciones Biomédicas, Universidad de Carabobo, Las Delicias, Maracay, Venezuela Corresponding author e-mail:
M.Pioletti, F.Schlünzen and J.Harms contributed equally to this work
| | - Marco Glühmann
- Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, 14195 Berlin, FB Biologie, Chemie, Pharmazie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Max-Planck-Research Unit for Ribosomal Structure, Notkestrasse 85, 22603 Hamburg, Göttingen Genomics Laboratory, Georg-August Universität, Griesebacherstrasse 8, 37077 Göttingen, Germany, Department of Structural Biology, Weizmann Institute, 76100 Rehovot, Israel and Centro de Investigaciones Biomédicas, Universidad de Carabobo, Las Delicias, Maracay, Venezuela Corresponding author e-mail:
M.Pioletti, F.Schlünzen and J.Harms contributed equally to this work
| | - Horacio Avila
- Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, 14195 Berlin, FB Biologie, Chemie, Pharmazie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Max-Planck-Research Unit for Ribosomal Structure, Notkestrasse 85, 22603 Hamburg, Göttingen Genomics Laboratory, Georg-August Universität, Griesebacherstrasse 8, 37077 Göttingen, Germany, Department of Structural Biology, Weizmann Institute, 76100 Rehovot, Israel and Centro de Investigaciones Biomédicas, Universidad de Carabobo, Las Delicias, Maracay, Venezuela Corresponding author e-mail:
M.Pioletti, F.Schlünzen and J.Harms contributed equally to this work
| | - Anat Bashan
- Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, 14195 Berlin, FB Biologie, Chemie, Pharmazie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Max-Planck-Research Unit for Ribosomal Structure, Notkestrasse 85, 22603 Hamburg, Göttingen Genomics Laboratory, Georg-August Universität, Griesebacherstrasse 8, 37077 Göttingen, Germany, Department of Structural Biology, Weizmann Institute, 76100 Rehovot, Israel and Centro de Investigaciones Biomédicas, Universidad de Carabobo, Las Delicias, Maracay, Venezuela Corresponding author e-mail:
M.Pioletti, F.Schlünzen and J.Harms contributed equally to this work
| | - Heike Bartels
- Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, 14195 Berlin, FB Biologie, Chemie, Pharmazie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Max-Planck-Research Unit for Ribosomal Structure, Notkestrasse 85, 22603 Hamburg, Göttingen Genomics Laboratory, Georg-August Universität, Griesebacherstrasse 8, 37077 Göttingen, Germany, Department of Structural Biology, Weizmann Institute, 76100 Rehovot, Israel and Centro de Investigaciones Biomédicas, Universidad de Carabobo, Las Delicias, Maracay, Venezuela Corresponding author e-mail:
M.Pioletti, F.Schlünzen and J.Harms contributed equally to this work
| | - Tamar Auerbach
- Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, 14195 Berlin, FB Biologie, Chemie, Pharmazie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Max-Planck-Research Unit for Ribosomal Structure, Notkestrasse 85, 22603 Hamburg, Göttingen Genomics Laboratory, Georg-August Universität, Griesebacherstrasse 8, 37077 Göttingen, Germany, Department of Structural Biology, Weizmann Institute, 76100 Rehovot, Israel and Centro de Investigaciones Biomédicas, Universidad de Carabobo, Las Delicias, Maracay, Venezuela Corresponding author e-mail:
M.Pioletti, F.Schlünzen and J.Harms contributed equally to this work
| | - Carsten Jacobi
- Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, 14195 Berlin, FB Biologie, Chemie, Pharmazie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Max-Planck-Research Unit for Ribosomal Structure, Notkestrasse 85, 22603 Hamburg, Göttingen Genomics Laboratory, Georg-August Universität, Griesebacherstrasse 8, 37077 Göttingen, Germany, Department of Structural Biology, Weizmann Institute, 76100 Rehovot, Israel and Centro de Investigaciones Biomédicas, Universidad de Carabobo, Las Delicias, Maracay, Venezuela Corresponding author e-mail:
M.Pioletti, F.Schlünzen and J.Harms contributed equally to this work
| | - Thomas Hartsch
- Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, 14195 Berlin, FB Biologie, Chemie, Pharmazie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Max-Planck-Research Unit for Ribosomal Structure, Notkestrasse 85, 22603 Hamburg, Göttingen Genomics Laboratory, Georg-August Universität, Griesebacherstrasse 8, 37077 Göttingen, Germany, Department of Structural Biology, Weizmann Institute, 76100 Rehovot, Israel and Centro de Investigaciones Biomédicas, Universidad de Carabobo, Las Delicias, Maracay, Venezuela Corresponding author e-mail:
M.Pioletti, F.Schlünzen and J.Harms contributed equally to this work
| | - Ada Yonath
- Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, 14195 Berlin, FB Biologie, Chemie, Pharmazie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Max-Planck-Research Unit for Ribosomal Structure, Notkestrasse 85, 22603 Hamburg, Göttingen Genomics Laboratory, Georg-August Universität, Griesebacherstrasse 8, 37077 Göttingen, Germany, Department of Structural Biology, Weizmann Institute, 76100 Rehovot, Israel and Centro de Investigaciones Biomédicas, Universidad de Carabobo, Las Delicias, Maracay, Venezuela Corresponding author e-mail:
M.Pioletti, F.Schlünzen and J.Harms contributed equally to this work
| | - François Franceschi
- Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, 14195 Berlin, FB Biologie, Chemie, Pharmazie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Max-Planck-Research Unit for Ribosomal Structure, Notkestrasse 85, 22603 Hamburg, Göttingen Genomics Laboratory, Georg-August Universität, Griesebacherstrasse 8, 37077 Göttingen, Germany, Department of Structural Biology, Weizmann Institute, 76100 Rehovot, Israel and Centro de Investigaciones Biomédicas, Universidad de Carabobo, Las Delicias, Maracay, Venezuela Corresponding author e-mail:
M.Pioletti, F.Schlünzen and J.Harms contributed equally to this work
| |
Collapse
|
20
|
Firpo MA, Dahlberg AE. The importance of base pairing in the penultimate stem of Escherichia coli 16S rRNA for ribosomal subunit association. Nucleic Acids Res 1998; 26:2156-60. [PMID: 9547274 PMCID: PMC147509 DOI: 10.1093/nar/26.9.2156] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The influence of base pairing in the penultimate stem of Escherichia coli 16S rRNA (defined as nt 1409-1491) on ribosome function has been addressed by the construction of mutations in this region of rRNA. Two sets of mutations were made on either side of a structurally conserved region in the penultimate stem that disrupted base pairing, while a third set of mutations replaced the wild-type sequence with other base pair combinations. The effects of these mutations were analyzed in vivo and in vitro . The mutations that disrupted base pairing caused significant increases in cell doubling times as well as a severe subunit association defect and a modest increase in frame shifting and stop codon read-through. Restoration of base pairing restored wild-type growth rates, decoding and subunit association, indicating that base pairing in this region is essential for proper ribosome function.
Collapse
Affiliation(s)
- M A Firpo
- Department of Molecular and Cell Biology and Biochemistry, Box G, Brown University, Providence, RI 02912, USA
| | | |
Collapse
|
21
|
Wei CC, Balasta ML, Ren J, Goss DJ. Wheat germ poly(A) binding protein enhances the binding affinity of eukaryotic initiation factor 4F and (iso)4F for cap analogues. Biochemistry 1998; 37:1910-6. [PMID: 9485317 DOI: 10.1021/bi9724570] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Most eukaryotic mRNAs contain a 5' cap (m7GppX) and a 3' poly(A) tail to increase synergistically the translational efficiency. Recently, the poly(A) binding protein (PABP) and cap-binding protein, eIF-4F, were found to interact [Le et al. (1997) J. Biol. Chem. 272, 16247-16255; Tarun and Sachs (1996) EMBO J. 15, 7168-7177]. These data suggest that PABP may exert its effect on translational efficiency either by increasing the formation of initiation factor-mRNA complex or by enhancing ribosome recycling. To investigate the functional consequences of these interactions, the fluorescent cap analogue, ant-m7GTP, which is an environmentally sensitive fluorescent probe [Ren and Goss (1996) Nucleic Acids Res. 24, 3629-3634] was used to investigate the cap-binding affinity. Our data show that the binding of eIF-(iso)4F or eIF-4F to cap analogue enhanced their binding affinity toward PABP approximately 40-fold. Similarly, the eIF-4F/PABP or eIF-(iso)4F/PABP complexes show a 40-fold enhancement of cap analogue binding as compared to eIF-4F or eIF-(iso)4F alone. At least part of the enhancement of the translational initiation by PABP can be accounted for by direct changes in cap-binding affinity. The interactions of these components also suggest a mechanism whereby the poly(A) tail is brought into close proximity with m7G cap. This effect was examined by fluorescence energy transfer, and it was determined that the PABP/eIF-4F complex could bind both poly(A) and 5' cap simultaneously.
Collapse
Affiliation(s)
- C C Wei
- Department of Chemistry, Hunter College, City University of New York 10021, USA
| | | | | | | |
Collapse
|
22
|
Yu NJ, Spremulli LL. Structural and mechanistic studies on chloroplast translational initiation factor 3 from Euglena gracilis. Biochemistry 1997; 36:14827-35. [PMID: 9398204 DOI: 10.1021/bi971185y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chloroplast translational initiation factor 3 (IF3chl) from Euglena gracilis contains a central region (homology domain) that is homologous to prokaryotic IF3. The homology domain is preceded by a long NH2-terminal extension (head), and followed by a 64 amino acid COOH-terminal extension (tail). Sequences in these extensions reduce the activity of the homology domain. To gain insight into these effects, a possible three-dimensional structure for the homology region of IF3chl has been modeled using the X-ray coordinates from the N- and C-domains of Bacillus stearothermophilus IF3. In B. stearothermophilus IF3, these two compact domains are thought to fold independently and are separated by a helical lysine-rich linker. The modeled structure suggests that IF3chl has a similar overall fold although some subtle differences are predicted to occur. Both the head and tail regions of IF3chl are oriented toward the linker region in the homology domain where they may potentially interfere with its function. Circular dichroism spectropolarimetry (CD) indicates that the lysine-rich linker region in IF3chl is not in a helical conformation and is probably a random coil. CD analysis indicates that a portion of the tail region of IF3chl is helical and that the tail has a direct interaction with the linker region in the homology domain. Site-directed mutagenesis of the linker indicates that two conserved lysine residues are important for the function of IF3chl and play a role in the binding of IF3chl to the 30S ribosomal subunit. Mutation of these residues affects the interaction of the homology domain with the tail.
Collapse
Affiliation(s)
- N J Yu
- Department of Chemistry, University of North Carolina, Chapel Hill 27599-3290, USA
| | | |
Collapse
|
23
|
Le H, Tanguay RL, Balasta ML, Wei CC, Browning KS, Metz AM, Goss DJ, Gallie DR. Translation initiation factors eIF-iso4G and eIF-4B interact with the poly(A)-binding protein and increase its RNA binding activity. J Biol Chem 1997; 272:16247-55. [PMID: 9195926 DOI: 10.1074/jbc.272.26.16247] [Citation(s) in RCA: 212] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The 5'-cap and the poly(A) tail act synergistically to increase the translational efficiency of eukaryotic mRNAs, which suggests that these two mRNA elements communicate during translation. We report here that the cap-associated eukaryotic initiation factors (eIFs), i. e. the two isoforms of the cap-binding complex (eIF-4F and eIF-iso4F) and eIF-4B, bind to the poly(A)-binding protein (PABP) both in the presence and absence of poly(A) RNA. The interactions between PABP and eIF-4F, eIF-iso4F, and eIF-4B were measured in the absence of poly(A) RNA using far Western analysis and confirmed by direct fluorescence titration studies. The functional consequence of the interaction between these initiation factors and PABP was examined using RNA binding assays and RNA mobility shift analysis. eIF-4F, eIF-iso4F, and eIF-4B promoted PABP activity through a shift in its equilibrium affinity for poly(A). eIF-iso4G, the large subunit of eIF-iso4F, was the subunit responsible for the interaction between eIF-iso4F and PABP and was the subunit that promoted PABP RNA binding activity. Truncation analysis of eIF-iso4G indicated that a domain close to its N-terminal end appeared to be involved in binding PABP. These results suggest that the interaction between PABP and eIF-4B and eIF-iso4G may be involved in mediating the functional co-dependence observed between the cap and the poly(A) tail during translation.
Collapse
Affiliation(s)
- H Le
- Department of Biochemistry, University of California, Riverside, California 92521-0129, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
O'Connor M, Thomas CL, Zimmermann RA, Dahlberg AE. Decoding fidelity at the ribosomal A and P sites: influence of mutations in three different regions of the decoding domain in 16S rRNA. Nucleic Acids Res 1997; 25:1185-93. [PMID: 9092628 PMCID: PMC146559 DOI: 10.1093/nar/25.6.1185] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The involvement of defined regions of Escherichia coli 16S rRNA in the fidelity of decoding has been examined by analyzing the effects of rRNA mutations on misreading errors at the ribosomal A and P sites. Mutations in the 1400-1500 region, the 530 loop and in the 1050/1200 region (helix 34) all caused readthrough of stop codons and frameshifting during elongation and stimulated initiation from non-AUG codons at the initiation of protein synthesis. These results indicate the involvement of all three regions of 16S rRNA in decoding functions at both the A and P sites. The functional similarity of all three mutant classes are consistent with close physical proximity of the 1400- 1500 region, the 530 loop and helix 34 and suggest that all three regions of rRNA comprise a decoding domain in the ribosome.
Collapse
Affiliation(s)
- M O'Connor
- Department of Molecular and Cell Biology and Biochemistry, Box G, J. W.Wilson Laboratory, Brown University, Providence, RI 02912, USA. Michael_O'
| | | | | | | |
Collapse
|
25
|
Moreau M, de Cock E, Fortier PL, Garcia C, Albaret C, Blanquet S, Lallemand JY, Dardel F. Heteronuclear NMR studies of E. coli translation initiation factor IF3. Evidence that the inter-domain region is disordered in solution. J Mol Biol 1997; 266:15-22. [PMID: 9054966 DOI: 10.1006/jmbi.1996.0756] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Initiation factor IF3 from Escherichia coli plays a critical role in the selection of the correct initiation codon. This protein is composed of two domains, connected by a lysin-rich hydrophilic linker. The conformation of native IF3 was investigated by heteronuclear NMR spectroscopy. The two domains are independent and show little or no interaction. Heteronuclear relaxation studies of a sample selectively labelled on lysine residues demonstrates that the inter-domain linker is highly flexible, exhibiting increased 15N T2 values and negative 1H[15N] nuclear Overhause effects over a length of at least eight residues. Analysis of the rotational correlation times further shows that the motions of the two domains are most likely uncorrelated. The inter-domain linker thus displays almost totally unrestricted motions. Accordingly, the amide protons in the central region are shown to be in fast exchange with water. Such a high degree of flexibility of the inter-domain linker might be required for IF3 domains to interact with distant regions of the ribosome.
Collapse
Affiliation(s)
- M Moreau
- Laboratoire de Synthèse Organique, URA 1308 du CNRS Ecole Polytechnique, Palaiseau, France
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Triman KL, Adams BJ. Expansion of the 16S and 23S ribosomal RNA mutation databases (16SMDB and 23SMDB). Nucleic Acids Res 1997; 25:188-91. [PMID: 9016533 PMCID: PMC146368 DOI: 10.1093/nar/25.1.188] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Ribosomal RNA Mutation Databases (16SMDB and 23SMDB) provide lists of mutated positions in 16S and 23S ribosomal RNA from Escherichia coli and the identity of each alteration. Information provided for each mutation includes: (i) a brief description of the phenotype(s) associated with each mutation; (ii) whether a mutant phenotype has been detected by in vivo or in vitro methods; and (iii) relevant literature citations. The databases are available via ftp and on the World Wide Web. Expansion of the databases to include information about mutations isolated in organisms other than E.coli is currently in progress.
Collapse
Affiliation(s)
- K L Triman
- Department of Biology, Franklin and Marshall College, PO Box 3003, Lancaster, PA 17604, USA.
| | | |
Collapse
|
27
|
Abstract
Progress in our understanding of several biological processes promises to broaden the usefulness of Escherichia coli as a tool for gene expression. There is an expanding choice of tightly regulated prokaryotic promoters suitable for achieving high-level gene expression. New host strains facilitate the formation of disulfide bonds in the reducing environment of the cytoplasm and offer higher protein yields by minimizing proteolytic degradation. Insights into the process of protein translocation across the bacterial membranes may eventually make it possible to achieve robust secretion of specific proteins into the culture medium. Studies involving molecular chaperones have shown that in specific cases, chaperones can be very effective for improved protein folding, solubility, and membrane transport. Negative results derived from such studies are also instructive in formulating different strategies. The remarkable increase in the availability of fusion partners offers a wide range of tools for improved protein folding, solubility, protection from proteases, yield, and secretion into the culture medium, as well as for detection and purification of recombinant proteins. Codon usage is known to present a potential impediment to high-level gene expression in E. coli. Although we still do not understand all the rules governing this phenomenon, it is apparent that "rare" codons, depending on their frequency and context, can have an adverse effect on protein levels. Usually, this problem can be alleviated by modification of the relevant codons or by coexpression of the cognate tRNA genes. Finally, the elucidation of specific determinants of protein degradation, a plethora of protease-deficient host strains, and methods to stabilize proteins afford new strategies to minimize proteolytic susceptibility of recombinant proteins in E. coli.
Collapse
Affiliation(s)
- S C Makrides
- Department of Molecular Biology, T Cell Sciences, Inc., Needham, Massachusetts 02194, USA
| |
Collapse
|
28
|
Schmitt E, Guillon JM, Meinnel T, Mechulam Y, Dardel F, Blanquet S. Molecular recognition governing the initiation of translation in Escherichia coli. A review. Biochimie 1996; 78:543-54. [PMID: 8955898 DOI: 10.1016/s0300-9084(96)80001-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Selection of the proper start codon for the synthesis of a polypeptide by the Escherichia coli translation initiation apparatus involves several macromolecular components. These macromolecules interact in a specific and concerted manner to yield the translation initiation complex. This review focuses on recent data concerning the properties of the initiator tRNA and of enzymes and factors involved in the translation initiation process. The three initiation factors, as well as methionyl-tRNA synthetase and methionyl-tRNA(f)Met formyltransferase are described. In addition, the tRNA recognition properties of EF-Tu and peptidyl-tRNA hydrolase are considered. Finally, peptide deformylase and methionine aminopeptidase, which catalyze the amino terminal maturation of nascent polypeptides, can also be associated to the translation initiation process.
Collapse
Affiliation(s)
- E Schmitt
- Laboratoire de Biochimie, URA-CNRS no 1970, Ecole Polytechnique, Palaiseau, France
| | | | | | | | | | | |
Collapse
|