1
|
The Breast Cancer Protooncogenes HER2, BRCA1 and BRCA2 and Their Regulation by the iNOS/NOS2 Axis. Antioxidants (Basel) 2022; 11:antiox11061195. [PMID: 35740092 PMCID: PMC9227079 DOI: 10.3390/antiox11061195] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
The expression of inducible nitric oxide synthase (iNOS; NOS2) and derived NO in various cancers was reported to exert pro- and anti-tumorigenic effects depending on the levels of expression and the tumor types. In humans, the breast cancer level of iNOS was reported to be overexpressed, to exhibit pro-tumorigenic activities, and to be of prognostic significance. Likewise, the expression of the oncogenes HER2, BRCA1, and BRCA2 has been associated with malignancy. The interrelationship between the expression of these protooncogenes and oncogenes and the expression of iNOS is not clear. We have hypothesized that there exist cross-talk signaling pathways between the breast cancer protooncogenes, the iNOS axis, and iNOS-mediated NO mutations of these protooncogenes into oncogenes. We review the molecular regulation of the expression of the protooncogenes in breast cancer and their interrelationships with iNOS expression and activities. In addition, we discuss the roles of iNOS, HER2, BRCA1/2, and NO metabolism in the pathophysiology of cancer stem cells. Bioinformatic analyses have been performed and have found suggested molecular alterations responsible for breast cancer aggressiveness. These include the association of BRCA1/2 mutations and HER2 amplifications with the dysregulation of the NOS pathway. We propose that future studies should be undertaken to investigate the regulatory mechanisms underlying the expression of iNOS and various breast cancer oncogenes, with the aim of identifying new therapeutic targets for the treatment of breast cancers that are refractory to current treatments.
Collapse
|
2
|
Roy S, Guha Roy D, Bhushan A, Bharatiya S, Chinnaswamy S. Functional genetic variants of the IFN-λ3 (IL28B) gene and transcription factor interactions on its promoter. Cytokine 2021; 142:155491. [PMID: 33725487 PMCID: PMC7611124 DOI: 10.1016/j.cyto.2021.155491] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/27/2022]
Abstract
Interferon lambda 3 (IFN-λ3 or IFNL3, formerly IL28B), a type III interferon, modulates immune responses during infection/inflammation. Several human studies have reported an association of single nucleotide polymorphisms (SNP) in the IFNL3 locus with expression level of IFNL3. Previous genetic studies, in the context of hepatitis C virus infections, had predicted three regulatory SNPs: rs4803219, rs28416813 and rs4803217 that could have functional/causal roles. Subsequent studies confirmed this prediction for rs28416813 and rs4803217. A dinucleotide TA-repeat variant (rs72258881) has also been reported to be regulating the IFN-λ3 promoter. In this study, we tested all these genetic variants using a sensitive reporter assay. We show that the minor/ancestral alleles of both rs28416813 and rs4803217, together have a strong inhibitory effect on reporter gene expression. We also show an interaction between the two principal transcription factors regulating IFNL3 promoter: IRF7 and NF-kB RelA/p65. We show that IRF7 and p65 physically interact with each other. By using a transient ChIP assay, we show that presence of p65 increases the promoter occupancy of IRF7, thereby leading to synergistic activation of the IFNL3 promoter. We reason that, in contrast to p65, a unique nature of IRF7 binding to its specific DNA sequence makes it more sensitive to changes in DNA phasing. As a result, we see that IRF7, but not p65-mediated transcriptional activity is affected by the phase changes introduced by the TA-repeat polymorphism. Overall, we see that three genetic variants: rs28416813, rs4803217 and rs72258881 could have functional roles in controlling IFNL3 gene expression.
Collapse
Affiliation(s)
- Subhajit Roy
- National Institute of Biomedical Genomics, P.O.:N.S.S., Kalyani, West Bengal 741251, India
| | - Debarati Guha Roy
- National Institute of Biomedical Genomics, P.O.:N.S.S., Kalyani, West Bengal 741251, India
| | - Anand Bhushan
- National Institute of Biomedical Genomics, P.O.:N.S.S., Kalyani, West Bengal 741251, India
| | - Seema Bharatiya
- National Institute of Biomedical Genomics, P.O.:N.S.S., Kalyani, West Bengal 741251, India
| | - Sreedhar Chinnaswamy
- National Institute of Biomedical Genomics, P.O.:N.S.S., Kalyani, West Bengal 741251, India.
| |
Collapse
|
3
|
Lin W, Baines RA. Myocyte enhancer factor-2 and p300 interact to regulate the expression of homeostatic regulator Pumilio in Drosophila. Eur J Neurosci 2019; 50:1727-1740. [PMID: 30687963 PMCID: PMC6767705 DOI: 10.1111/ejn.14357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 01/23/2023]
Abstract
Pumilio (Pum), an RNA-binding protein, is a key component of neuron firing-rate homeostasis that likely maintains stability of neural circuit activity in all animals, from flies to mammals. While Pum is ubiquitously expressed, we understand little about how synaptic excitation regulates its expression in the CNS. Here, we characterized the Drosophila dpum promoter and identified multiple myocyte enhancer factor-2 (Mef2)-binding elements. We cloned 12 dmef2 splice variants and used a luciferase-based assay to monitor dpum promoter activity. While all 12 dMef2 splice variants enhance dpum promoter activity, exon 10-containing variants induce greater transactivation. Previous work shows dPum expression increases with synaptic excitation. However, we observe no change in dmef2 transcript in larval CNS, of both sexes, exposed to the proconvulsant picrotoxin. The lack of activity dependence is indicative of additional regulation. We identified p300 as a potential candidate. We show that by binding to dMef2, p300 represses dpum transactivation. Significantly, p300 transcript is downregulated by enhanced synaptic excitation (picrotoxin) which, in turn, increases transcription of dpum through derepression of dMef2. These results advance our understanding of dpum by showing the activity-dependent expression is regulated by an interaction between p300 and dMef2.
Collapse
Affiliation(s)
- Wei‐Hsiang Lin
- Division of Neuroscience and Experimental PsychologySchool of Biological SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterManchester Academic Health Science CentreManchesterUK
| | - Richard A. Baines
- Division of Neuroscience and Experimental PsychologySchool of Biological SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterManchester Academic Health Science CentreManchesterUK
| |
Collapse
|
4
|
Mei YF, Wu H, Hultenby K, Silver J. Complete replication-competent adenovirus 11p vectors with E1 or E3 insertions show improved heat stability. Virology 2016; 497:198-210. [PMID: 27494367 DOI: 10.1016/j.virol.2016.07.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/16/2016] [Accepted: 07/26/2016] [Indexed: 11/25/2022]
Abstract
Conventional adenovirus vectors harboring E1 or E3 deletions followed by the insertion of an exogenous gene show considerably reduced virion stability. Here, we report strategies to generate complete replication-competent Ad11p(RCAd11p) vectors that overcome the above disadvantage. A GFP cassette was successfully introduced either upstream of E1A or in the E3A region. The resulting vectors showed high expression levels of the hexon and E1genes and also strongly induced the cytopathic effect in targeted cells. When harboring oversized genomes, the RCAd11pE1 and RCAd11pE3 vectors showed significantly improved heat stability in comparison to Ad11pwt;of the three, RCAd11pE3 was the most tolerant to heat treatment. Electron microscopy showed that RCAd11pE3, RCAd11pE1, Ad11pwt, and Ad11pE1 Delmanifested dominant, moderate, minimum, or no full virus particles after heat treatment at 47°C for 5h. Our results demonstrated that both genome size and the insertion site in the viral genome affect virion stability.
Collapse
Affiliation(s)
- Ya-Fang Mei
- Department of Clinical Microbiology and Virology, Umeå University, SE-901 85 Umeå, Sweden.
| | - Haidong Wu
- Department of Clinical Microbiology and Virology, Umeå University, SE-901 85 Umeå, Sweden.
| | - Kjell Hultenby
- Division of Clinical Research Centre, Department of Laboratory Medicine, Karolinska Institute, SE-14186 Stockholm, Sweden.
| | - Jim Silver
- Department of Clinical Microbiology and Virology, Umeå University, SE-901 85 Umeå, Sweden.
| |
Collapse
|
5
|
Zhao LJ, Loewenstein PM, Green M. The adenovirus E1A oncoprotein N-terminal transcriptional repression domain enhances p300 autoacetylation and inhibits histone H3 Lys18 acetylation. Genes Cancer 2015; 6:30-7. [PMID: 25821559 PMCID: PMC4362482 DOI: 10.18632/genesandcancer.47] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/07/2015] [Indexed: 11/25/2022] Open
Abstract
Expression of the adenovirus E1A N-terminal transcription repression domain alone (E1A 1-80) represses transcription from specific promoters such as HER2 [1] and from reconstituted chromatin [2]. Significantly, E1A 1-80 can induce the death of human breast cancer cells over-expressing the HER2 oncogene [1] as well as other cancer cells. Here, we report that E1A 1-80 alone is sufficient to inhibit H3K18 acetylation in vivo and p300-mediated H3K18 acetylation in reconstituted chromatin. Of interest, hypoacetylation of H3K18 has been correlated with the survival of tumor cells and the poor prognosis of many cancers [3, 4]. E1A 1-80 enhances p300 autoacetylation and concurrently inhibits H3K18 acetylation in chromatin in a dose-dependent manner. Pre-acetylation of p300 by incubation with acetyl-CoA alone reduces p300's ability to acetylate H3K18 in chromatin. Additional acetylation of p300 in the presence of E1A 1-80 produces stronger inhibition of H3K18 acetylation. These findings indicate that autoacetylation of p300 greatly reduces its ability to acetylate H3K18. The results reported here combined with our previous findings suggest that E1A can repress transcription by multiple strategies, including altering the chromatin modifying activity of p300 and dissociating TFIID from the TATA box thus disrupting formation of the transcription pre-initiation complex [5, 6]
Collapse
Affiliation(s)
- Ling-Jun Zhao
- Institute for Molecular Virology, Saint Louis University School of Medicine, Doisy research Center, St. Louis, Missouri
| | - Paul M Loewenstein
- Institute for Molecular Virology, Saint Louis University School of Medicine, Doisy research Center, St. Louis, Missouri
| | - Maurice Green
- Institute for Molecular Virology, Saint Louis University School of Medicine, Doisy research Center, St. Louis, Missouri
| |
Collapse
|
6
|
Chang YW, Hung MC, Su JL. The anti-tumor activity of E1A and its implications in cancer therapy. Arch Immunol Ther Exp (Warsz) 2014; 62:195-204. [PMID: 24504082 DOI: 10.1007/s00005-014-0273-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 01/17/2014] [Indexed: 12/31/2022]
Abstract
The adenovirus type 5 E1A protein (E1A) plays a critical role in anti-cancer gene therapy and has been tested in clinical trials. The expression of E1A significantly reduces tumorigenesis, promotes cell death, and inhibits cancer cell mobility. Chemosensitization is one of the anti-tumor effects of E1A, increasing in vitro and in vivo sensitization of anti-cancer drugs, including cisplatin, gemcitabine, etoposide, doxorubicin, paclitaxel, and tumor necrosis factor-related apoptosis-inducing ligand and histone deacetylase inhibitors in different types of cancer cells. E1A also demonstrates anti-metastasis activity through various molecular mechanisms such as the repression of protease expression, suppression of HER2/neu and downregulation of microRNA (miR-520h). Moreover, E1A has been reported to reprogram transcription in tumor cells and stabilize tumor suppressors such as PP2A/C, p21 and p53. Because E1A plays a potentially significant role in anti-tumor therapy, there exists an urgent need to study the anti-cancer activities of E1A. This paper presents a review of our current understanding of the tumor-suppressive functions and molecular regulation of E1A, as well as the potential clinical applications of E1A.
Collapse
Affiliation(s)
- Yi-Wen Chang
- Graduate Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, 11221, Taiwan
| | | | | |
Collapse
|
7
|
Targeting the EGFR family of receptor tyrosine kinases. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
8
|
HER. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
9
|
Shen LF, Chen J, Zeng S, Zhou RR, Zhu H, Zhong MZ, Yao RJ, Shen H. The Superparamagnetic Nanoparticles Carrying the E1A Gene Enhance the Radiosensitivity of Human Cervical Carcinoma in Nude Mice. Mol Cancer Ther 2010; 9:2123-30. [PMID: 20587666 DOI: 10.1158/1535-7163.mct-09-1150] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Liang-Fang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China 410008
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Su JL, Chen PB, Chen YH, Chen SC, Chang YW, Jan YH, Cheng X, Hsiao M, Hung MC. Downregulation of microRNA miR-520h by E1A contributes to anticancer activity. Cancer Res 2010; 70:5096-108. [PMID: 20501832 DOI: 10.1158/0008-5472.can-09-4148] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The leading cause of death in cancer patients is cancer metastasis, for which there is no effective treatment. MicroRNAs (miRNA) have been shown to play a significant role in cancer metastasis through regulation of gene expression. The adenovirus type 5 E1A (E1A) is associated with multiple tumor-suppressing activities including the inhibition of metastasis, and E1A gene therapies have been tested in several clinical trials. However, the mechanisms involved in E1A-mediated tumor-suppressing activities are not yet completely defined. Here, we showed that E1A downregulated the expression of the miRNA miR-520h, which was critical for E1A-mediated cancer cell mobility and in vitro invasion activity. In addition, we identified a signal cascade, namely, E1A-->miRNA-520h-->PP2A/C-->IkappaB kinase-->NF-kappaB-->Twist, in which E1A inhibited the expression of Twist through downregulation of miR-520h and the signal cascade. Our results indicated a functional link between miR-520h and tumorigenicity/invasive ability and provided a new insight into the role of E1A-mediated miRNA regulation in tumor suppression. Therefore, the results identified a new cascade of E1A-mediated tumor suppression activity via downregulation of miRNA-520h expression.
Collapse
Affiliation(s)
- Jen-Liang Su
- Graduate Institute of Cancer Biology, College of Medicine, China Medical University and Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Liu JY, Chuang TC, Way TD, Tsai TC, Hu CL, Liu GY, Wang SS, Chung JG, Kao MC. The N-terminal domain of EBNA1 acts as a suppressor of the HER2/neu oncogene. Cancer Lett 2008; 273:273-80. [PMID: 18805633 DOI: 10.1016/j.canlet.2008.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 05/23/2008] [Accepted: 08/08/2008] [Indexed: 11/15/2022]
Abstract
HER2/neu oncogene-mediated malignancy is clearly associated with various human cancers. Therefore, HER2/neu targeting is an effective approach to cancer therapy. We have previously demonstrated that Epstein-Barr virus nuclear antigen-1 (EBNA1) can suppress HER2/neu oncogene expression, although EBNA1 itself has oncogenic potential. Here, we found that the N-terminal domain of EBNA1 alone, named EBNA1-NT, which contains the N-terminal region of amino acid residues 1-86 of EBNA1, is required and sufficient to suppress HER2/neu oncogene expression at the transcriptional level. Furthermore, in EBNA1-NT-transfected HER2/neu-overexpressing cells, we found EBNA1-NT could down-regulate the endogenous production of p185(HER2/neu), lower transformation ability, sensitize paclitaxel-induced apoptosis and decrease tumorigenic potential. These data suggest that EBNA1-NT may act as a repressor of the HER2/neu oncogene.
Collapse
Affiliation(s)
- Jah-Yao Liu
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Shen L, Zeng S, Chen J, Zhong M, Yang H, Yao R, Shen H. E1A inhibits the proliferation of human cervical cancer cells (HeLa cells) by apoptosis induction through activation of HER-2/Neu/Caspase-3 pathway. Med Oncol 2007; 25:222-8. [PMID: 18488161 DOI: 10.1007/s12032-007-9007-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 08/23/2007] [Indexed: 12/15/2022]
Abstract
OBJECTIVE This study is to investigate the inhibitory effect of E1A gene on the cell proliferation of HeLa cells and its mechanism related to apoptosis. METHODS MTT assay and soft agar colony formation assay were employed to justify the inhibition activity of E1A on the proliferation of HeLa cells transfected with E1A gene. Western Blot, RT-PCR and Real-time quantitative RT-PCR were used to detect the gene expression of E1A, HER-2/Neu and Caspase-3 in HeLa cells, respectively. The Caspase-3 activity was monitored by ApoAlert Caspase-3 Assay. The redistribution of cell cycles and apoptosis of HeLa cells regulated by E1A expression were evaluated by flow cytometry. RESULTS E1A expression significantly inhibits the cell proliferation and anchorage-independent cell growth of HeLa, with the respective highest inhibition rate of 40.7% and 43.4% (P < 0.01). HER-2/Neu expression in HeLa was significantly down-regulated by E1A, while the protein expression and activity of Caspase-3 was up-regulated by E1A expression. Flow cytometry revealed that E1A transfection in HeLa increased the cell number at G1 stage and simultaneously decreased the cell number at S stage. E1A transfection induced 8.71% of HeLa cells at apoptosis status. CONCLUSIONS E1A significantly inhibits the cell proliferation of HeLa by the apoptosis induction through HER-2/Neu/Caspase-3 pathway. These results encourage us to continue an in-vivo study and preclinical development of LPD-E1A as a novel gene therapeutic agent for human cervical cancer.
Collapse
Affiliation(s)
- Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | | | | | | | | | | | | |
Collapse
|
13
|
Kanemitsu S, Hisaoka M, Shimajiri S, Matsuyama A, Hashimoto H. Molecular detection of SS18-SSX fusion gene transcripts by cRNA in situ hybridization in synovial sarcoma using formalin-fixed, paraffin-embedded tumor tissue specimens. ACTA ACUST UNITED AC 2007; 16:9-17. [PMID: 17471153 DOI: 10.1097/pdm.0b013e318031f02f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
SS18-SSX fusion genes resulting from a chromosomal translocation t(X;18)(p11.2;q11.2) are a genetic hallmark of synovial sarcoma. Although such cytogenetic or molecular aberrations have mostly been detected by fluorescence in situ hybridization or reverse transcription-polymerase chain reaction, the expression of SS18-SSX has been poorly investigated at a cellular or tissue level. In this study, biotinylated tyramide (BT)-based in situ hybridization (ISH) was performed to detect SS18-SSX transcripts using formalin-fixed, paraffin-embedded tissues from 15 synovial sarcomas. Digoxigenin-labeled cRNA probes flanking the fusion points of SS18-SSX1 and SS18-SSX2 were generated by in vitro transcription, and hybridized signals were detected by a streptavidin-biotin complex method after chemical enhancement with BT. The localizations of signals were compared with the immunohistochemical expressions of epithelial or neuroectodermal markers and those of cell adhesion including cytokeratins (CAM5.2, AE1/AE3, CK7), epithelial membrane antigen, E-cadherin, beta-catenin, c-erbB-2 (HER2/neu), CD56, and claudin-1. The ISH signals of the SS18-SSX transcripts were identified in 13 synovial sarcomas, and their fusion types correlated with those determined by reverse transcription-polymerase chain reaction. In biphasic tumors, the ISH signals tended to localize to epithelial areas, whereas spindle-cell areas or monophasic fibrous tumors showed a less intense or focal expression pattern. Notably, the expression patterns of AE1/AE3, CK7, and c-erbB-2 often colocalized with the ISH signals (7 of 11 cases positive for each marker). Our results suggest that BT-based ISH can be used as a molecular technique for the detection of SS18-SSX using formalin-fixed, paraffin-embedded tissues.
Collapse
Affiliation(s)
- Shuichi Kanemitsu
- Department of Pathology and Oncology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | | | |
Collapse
|
14
|
Novel Approaches for Chemosensitization of Breast Cancer Cells: The E1A Story. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 608:144-69. [DOI: 10.1007/978-0-387-74039-3_11] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
de la Fuente C, Gupta MV, Klase Z, Strouss K, Cahan P, McCaffery T, Galante A, Soteropoulos P, Pumfery A, Fujii M, Kashanchi F. Involvement of HTLV-I Tax and CREB in aneuploidy: a bioinformatics approach. Retrovirology 2006; 3:43. [PMID: 16822311 PMCID: PMC1553470 DOI: 10.1186/1742-4690-3-43] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Accepted: 07/05/2006] [Indexed: 11/23/2022] Open
Abstract
Background Adult T-cell leukemia (ATL) is a complex and multifaceted disease associated with human T-cell leukemia virus type 1 (HTLV-I) infection. Tax, the viral oncoprotein, is considered a major contributor to cell cycle deregulation in HTLV-I transformed cells by either directly disrupting cellular factors (protein-protein interactions) or altering their transcription profile. Tax transactivates these cellular promoters by interacting with transcription factors such as CREB/ATF, NF-κB, and SRF. Therefore by examining which factors upregulate a particular set of promoters we may begin to understand how Tax orchestrates leukemia development. Results We observed that CTLL cells stably expressing wild-type Tax (CTLL/WT) exhibited aneuploidy as compared to a Tax clone deficient for CREB transactivation (CTLL/703). To better understand the contribution of Tax transactivation through the CREB/ATF pathway to the aneuploid phenotype, we performed microarray analysis comparing CTLL/WT to CTLL/703 cells. Promoter analysis of altered genes revealed that a subset of these genes contain CREB/ATF consensus sequences. While these genes had diverse functions, smaller subsets of genes were found to be involved in G2/M phase regulation, in particular kinetochore assembly. Furthermore, we confirmed the presence of CREB, Tax and RNA Polymerase II at the p97Vcp and Sgt1 promoters in vivo through chromatin immunoprecipitation in CTLL/WT cells. Conclusion These results indicate that the development of aneuploidy in Tax-expressing cells may occur in response to an alteration in the transcription profile, in addition to direct protein interactions.
Collapse
MESH Headings
- Aneuploidy
- Binding Sites
- Chromatin Immunoprecipitation
- Computational Biology/methods
- Cyclic AMP Response Element-Binding Protein/genetics
- Cyclic AMP Response Element-Binding Protein/metabolism
- DNA Polymerase II/genetics
- DNA Polymerase II/metabolism
- Gene Expression Profiling/methods
- Gene Expression Regulation
- Gene Products, tax/biosynthesis
- Gene Products, tax/genetics
- Gene Products, tax/metabolism
- Genes, pX
- Human T-lymphotropic virus 1/genetics
- Humans
- Kinetochores/physiology
- Leukemia, Prolymphocytic, T-Cell/genetics
- Leukemia, Prolymphocytic, T-Cell/virology
- Oligonucleotide Array Sequence Analysis
- Promoter Regions, Genetic
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Cytotoxic/physiology
- Transfection
Collapse
Affiliation(s)
- Cynthia de la Fuente
- The George Washington University Medical Center, Department of Biochemistry and Molecular Biology, Washington, DC 20037, USA
| | - Madhur V Gupta
- The George Washington University Medical Center, Department of Biochemistry and Molecular Biology, Washington, DC 20037, USA
| | - Zachary Klase
- The George Washington University Medical Center, Department of Biochemistry and Molecular Biology, Washington, DC 20037, USA
| | - Katharine Strouss
- The George Washington University Medical Center, Department of Biochemistry and Molecular Biology, Washington, DC 20037, USA
| | - Patrick Cahan
- The George Washington University Medical Center, Department of Biochemistry and Molecular Biology, Washington, DC 20037, USA
| | - Timothy McCaffery
- The George Washington University Medical Center, Department of Biochemistry and Molecular Biology, Washington, DC 20037, USA
| | - Anthony Galante
- Center for Applied Genomics, Public Health Research Institute, Newark, NJ 07103, USA
| | - Patricia Soteropoulos
- Center for Applied Genomics, Public Health Research Institute, Newark, NJ 07103, USA
| | - Anne Pumfery
- The George Washington University Medical Center, Department of Biochemistry and Molecular Biology, Washington, DC 20037, USA
| | - Masahiro Fujii
- Department of Immunotherapeutics, Niigata University School of Medicine, Asahimachi-Dori, Niigata 951-8510, Japan
- Department of Virology, Niigata University School of Medicine, Asahimachi-Dori, Niigata 951-8510, Japan
| | - Fatah Kashanchi
- The George Washington University Medical Center, Department of Biochemistry and Molecular Biology, Washington, DC 20037, USA
- The Institute for Genomic Research (TIGR), Rockville, MD 20850, USA
| |
Collapse
|
16
|
Xia WY, Lien HC, Wang SC, Pan Y, Sahin A, Kuo YH, Chang KJ, Zhou X, Wang H, Yu Z, Hortobagyi G, Shi DR, Hung MC. Expression of PEA3 and lack of correlation between PEA3 and HER-2/neu expression in breast cancer. Breast Cancer Res Treat 2006; 98:295-301. [PMID: 16752078 DOI: 10.1007/s10549-006-9162-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Accepted: 01/02/2006] [Indexed: 01/19/2023]
Abstract
The ETS protein PEA3 functions as a transcription factor to regulate gene expression. Although members of the ETS family have been reported to be involved in tumor progression, ectopic expression of PEA3 has been shown to suppress tumor formation. Despite several studies demonstrated frequent expression of PEA3 and its high association with HER-2/neu and have suggested a potential role of PEA3 in breast cancer, contradictory result has shown that the PEA3 was associated with better survival rate in breast cancer. In the current study, we address this discrepancy by examining the expression of PEA3 and HER-2/neu on 289 archived breast cancer tumor tissues and their correlation with clinicopathologic factors and prognosis. The staining of PEA3 was further validated by in situ hybridization for PEA3 mRNA. We found PEA3 was positive in 22.2% (64/289) of all cases and only 25.6% (21/82) of HER-2/neu-overexpressing cases showed co-expression of PEA3. In contrast to HER-2/neu, PEA3 expression was not correlated with prognosis or major clinicopathologic factors, except for a negative correlation with lymphovascular permeation ( p=0.007). This study demonstrates that PEA3 expression is not correlated with HER-2/neu expression in breast cancer tumor tissues, nor is it associated with adverse clinicopathologic factors or prognosis.
Collapse
Affiliation(s)
- Wei-Ya Xia
- Department of Molecular and Cellular Oncology, University of Texas, M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Cancer cells transcriptionally activate many genes that are important for uncontrolled proliferation and cell death. Deregulated transcriptional machinery in tumor cells usually consists of increased expression/activity of transcription factors. Ideally, cancer-specific killing can be achieved by delivering a therapeutic gene under the control of the DNA elements that can be activated by transcription factors that are overexpressed and/or constitutively activated in cancer cells. Additionally, tumor-specific translation of tumor-killing genes has been also exploited in cancer gene therapy. Based on these rationales, cancer-specific expression of a therapeutic gene has emerged as a potentially successful approach for cancer gene therapy. To achieve tumor-specific expression, cancer-specific vectors are generally composed of promoters, enhancers, and/or 5'-UTR that are responsive to tumor-specific transcription factors. A number of cancer-specific promoters have been reported, such as those of probasin, human telomerase reverse transcriptase, survivin, ceruloplasmin, HER-2, osteocalcin, and carcinoembryonic antigen. Evidences suggest that the enhancer element targeted by beta-catenin can be useful to target colon cancer cells. The 5'-UTR of the basic fibroblast growth factor-2 has been reported to provide tumor specificity. Moreover, a variety of therapeutic genes demonstrated direct antitumor effects such as those encoding proapoptotic proteins p53, E1A, p202, PEA3, BAX, Bik, and prodrug metabolizing enzymes, namely thymidine kinase and cytosine deaminase. As cancerous cells of different origins vary significantly in their genetic, transcriptional/translational, and cellular profiles, the success of a cancer gene therapy will not be promised unless it is carefully designed based on the biology of a specific tumor type. Thus, tremendous research efforts have been focused on the development of non-viral vectors that selectively target various tumors resulting in minimal toxicity in the normal tissues. Significant progresses were also made in the exploitation of various novel apoptotic, cytotoxic genes as therapeutic tools that suppress the growth of different tumors. Together, these recent advances provide rationales for future clinical testing of transcriptionally targeted non-viral vectors in cancer patients.
Collapse
Affiliation(s)
- Hui-Wen Lo
- Department of Molecular and Cellular Oncology The University of Texas M.D. Anderson Cancer Center Houston, Texas 77030, USA
| | | | | |
Collapse
|
18
|
Thomas DG, Giordano TJ, Sanders D, Biermann S, Sondak VK, Trent JC, Yu D, Pollock RE, Baker L. Expression of receptor tyrosine kinases epidermal growth factor receptor and HER-2/neu in synovial sarcoma. Cancer 2005; 103:830-8. [PMID: 15641030 DOI: 10.1002/cncr.20847] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Synovial sarcomas are high-grade soft tissue neoplasms often characterized by a biphasic spindle and epithelioid cell morphology. The majority of synovial sarcomas harbor a specific chromosomal translocation in which the proximal portion of the SYT gene at chromosome 18q11 is fused to the distal portion of one of several duplicated SSX genes (most notably SSX1 and SSX2) at chromosome Xp11. SYT/SSX1 translocations are seen in nearly three times as many synovial sarcomas as SYT/SSX2 translocations. Although the SYT/SSX2 fusion is usually associated with the monophasic disease pattern, the SYT/SSX1 fusion is present in tumors with biphasic or monophasic patterns. The SYT/SSX1 fusion gene is associated with more aggressive tumor growth and poor outcome. Despite advances in the therapy of local disease, distant metastasis remains the predominant cause of death. Accordingly, there is a need for alternate therapies, such as those recently developed against the receptor tyrosine kinases, such as epidermal growth factor receptor (EGFR) and HER-2/neu. METHODS Archival specimens of synovial sarcoma (n=38) representing 30 patients were assessed for EGFR and HER-2/neu protein expression by standard immunohistochemical techniques. To validate the immunohistochemistry results, quantitative real-time polymerase chain reaction (Q-PCR) assays using either fresh and/or archival material was performed. The presence of gene amplification was determined by chromogenic in-situ hybridization. RESULTS EGFR and HER-2/neu protein were detected by immunohistochemistry in 21 of 38 (55.3%) and 20 of 38 (52.6%) synovial specimens, respectively. EGFR immunoreactivity showed a granular and membranous pattern, whereas HER-2/neu immunoreactivity demonstrated only a membrane pattern. Coexpression was observed in 13 of 38 specimens (34.2%). HER-2/neu expression by immunohistochemistry in synovial sarcomas was restricted to tumors with the SYT/SSX1 translocations. Of 6 specimens with SSX2 translocation, none (0%) showed HER-2/neu immunoreactivity and 1 (17%) demonstrated EGFR expression. Q-PCR demonstrated the presence of mRNA for EGFR and HER-2/neu in 19 of 30 specimens (63.3%) and 22 of 30 specimens (73.3%), respectively. EGFR and HER-2/neu were expressed at low concentrations compared with the expression of glyceraldehyde 3-phosphate dehydrogenase (GAPDH). No evidence of gene amplification was observed. CONCLUSIONS EGFR and HER-2/neu are expressed in the majority of patients with SYT/SSX1 synovial sarcomas, albeit at low levels. Treatment with tyrosine kinase inhibitors may represent appropriate alternate therapy for these patients.
Collapse
Affiliation(s)
- Dafydd G Thomas
- Department of Pathology, University of Michigan Health System, Ann Arbor, Michigan 48109-0602, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lund CV, Blancafort P, Popkov M, Barbas CF. Promoter-targeted phage display selections with preassembled synthetic zinc finger libraries for endogenous gene regulation. J Mol Biol 2004; 340:599-613. [PMID: 15210357 DOI: 10.1016/j.jmb.2004.04.057] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Revised: 04/21/2004] [Accepted: 04/22/2004] [Indexed: 11/30/2022]
Abstract
Regulation of endogenous gene expression has been achieved using synthetic zinc finger proteins fused to activation or repression domains, zinc finger transcription factors (TFZFs). Two key aspects of selective gene regulation using TFZFs are the accessibility of a zinc finger protein to its target DNA sequence and the interaction of the fused activation or repression domain with endogenous proteins. Previous work has shown that predicting a biologically active binding site at which a TF(ZF) can control gene expression is not always straightforward. Here, we used a library of preassembled three-finger zinc finger proteins (ZFPs) displayed on filamentous phage, and selected for ZFPs that bound along a 1.4 kb promoter fragment of the human ErbB-2 gene. Following affinity selection by phage display, 13 ZFPs were isolated and sequenced. Transcription factors were prepared by fusion of the zinc finger proteins with a VP64 activation domain or a KRAB repression domain and the transcriptional control imposed by these TFZFs was evaluated using luciferase reporter assays. Endogenous gene regulation activity was studied following retroviral delivery into A431 cells. Additional ZFP characterization included DNaseI footprinting to evaluate the integrity of each predicted protein:DNA interaction. The most promising TFZFs able to both up-regulate and down-regulate ErbB-2 expression were extended to six-finger proteins. The increased affinity and refined specificity demonstrated by the six-finger proteins provided reliable transcriptional control. As a result of studies with the six-finger proteins, the specific region of the promoter most accessible to transcriptional control by VP64-ZFP and KRAB-ZFP fusion proteins was elucidated and confirmed by DNaseI footprinting, flow cytometric analysis and immunofluorescence. The ZFP phage display library strategy disclosed here, coupled with the growing availability of genome sequencing information, provides a route to identifying gene-regulating TFZFs without the prerequisite of well-defined promoter elements.
Collapse
Affiliation(s)
- Caren V Lund
- The Skaggs Institute for Chemical Biology and Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
20
|
|
21
|
Bell J, Walsh S, Nusrat A, Cohen C. Zonula occludens-1 and Her-2/neu expression in invasive breast carcinoma. Appl Immunohistochem Mol Morphol 2003; 11:125-9. [PMID: 12777995 DOI: 10.1097/00129039-200306000-00006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A subset of breast carcinomas shows unexplained overexpression of HER-2/neu protein without HER-2/neu gene amplification. These tumors are often scored 2+ by immunohistochemistry (DAKO HercepTest). In vitro, Zonula occludens-1 (ZO-1), a tight junction protein, can upregulate HER-2/neu expression by sequestering a repressor of the HER-2/neu gene promoter. To assess this relation in vivo, we examined the expression of ZO-1 in 2 series of breast carcinomas. In group 1, 35 invasive breast carcinomas previously scored by HercepTest for HER-2/neu status (negative [n = 12], 2+ [n = 13], 3+ [n = 10]) were examined by immunohistochemistry for expression of ZO-1. ZO-1 expression was then correlated with HER-2/neu expression status. Twenty-four of 35 carcinomas (69%) were positive for ZO-1 expression. Frequency of ZO-1 expression did not differ between HER-2/neu-negative carcinomas (67%) and 2+ positive carcinomas (77%). Carcinomas with 3+ HER-2/neu expression were less commonly positive for ZO-1 (60%), but this difference was not significant. Twenty tumors contained ductal carcinoma in situ (DCIS); 18 of 20 DCIS (90%) were positive for ZO-1. Interestingly, in those tumors with ZO-1-positive DCIS, 4 of 18 (22%) were negative for ZO-1 expression in the invasive tumor. In group 2, 31 of 42 (74%) fluorescent in situ hybridization-nonamplified breast carcinomas showed ZO-1 expression, also with no significant difference in frequency between HER-2/neu-positive (by immunohistochemistry) and negative cases. ZO-1 expression does not correlate with HER-2/neu expression in breast carcinomas. Other causes of HER-2/neu protein overexpression should be sought in cases without HER-2/neu gene amplification.
Collapse
Affiliation(s)
- Julie Bell
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | |
Collapse
|
22
|
Bosc DG, Janknecht R. Regulation of Her2/neu promoter activity by the ETS transcription factor, ER81. J Cell Biochem 2002; 86:174-83. [PMID: 12112028 DOI: 10.1002/jcb.10205] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Overexpression of the HER2/Neu receptor is correlated to a poor prognosis in tumor patients and leads to stimulation of mitogen-activated protein kinase (MAPK) signaling pathways, which in turn activate transcription factors, such as the ETS protein ER81. Here, we have analyzed whether, on the other hand, ER81 may regulate the Her2/neu gene. Indeed, ER81, together with its co-activators, p300 and CBP, activates the Her2/neu promoter, and this activation is enhanced upon stimulation of MAPK pathways as well as by oncogenic HER2/Neu protein. Furthermore, ER81 interacts with one ETS binding site in the Her2/neu promoter, whose mutation decreases ER81-mediated transcription. Activation of the Her2/neu promoter is also diminished upon mutation of MAPK-dependent phosphorylation sites in ER81 or upon deletion of ER81 transactivation domains. In addition, the ER81 DNA-binding domain on its own functions as a dominant-negative molecule, effectively repressing any stimulation of the Her2/neu promoter. Altogether, our results show that ER81 is a component of a positive regulatory feedback loop, in which the HER2/Neu protein activates ER81, as well as p300/CBP via MAPKs causing the upregulation of the Her2/neu gene.
Collapse
Affiliation(s)
- Denis G Bosc
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
23
|
Chuang TC, Way TD, Lin YS, Lee YC, Law SL, Kao MC. The Epstein-Barr virus nuclear antigen-1 may act as a transforming suppressor of the HER2/neu oncogene. FEBS Lett 2002; 532:135-42. [PMID: 12459478 DOI: 10.1016/s0014-5793(02)03658-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is known that the HER2/neu proto-oncogene is associated with a wide variety of human cancers and considered to be an attractive target for developing anti-cancer agents. We report here for the first time that the Epstein-Barr virus nuclear antigen-1 (EBNA1) suppresses the HER2/neu oncogene expression at the transcriptional level. Recombinant clones of EBNA1 were subcloned and stably transfected into HER2/neu-overexpressing human ovarian cancer SKOV3.ip1 cells. These EBNA1-containing clones down-regulated the endogenous production of p185(HER2/neu). In addition, the EBNA1-expressing stable transfectants showed reduced growth rate, low soft agarose colony-forming ability and tumorigenic potential as compared with the parental line. These data suggest that EBNA1 may act as a transforming suppressor of the HER2/neu oncogene.
Collapse
Affiliation(s)
- Tzu-Chao Chuang
- Graduate Institute of Life Sciences, National Defense Medical Center, National Defense University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
24
|
Zhou RR, Jia SF, Zhou Z, Wang Y, Bucana CD, Kleinerman ES. Adenovirus-E1A gene therapy enhances the in vivo sensitivity of Ewing's sarcoma to VP-16. Cancer Gene Ther 2002; 9:407-13. [PMID: 11961663 DOI: 10.1038/sj.cgt.7700449] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2002] [Indexed: 11/09/2022]
Abstract
This study determined the effect of Ad-E1A gene therapy in vivo. TC71 cells (2 x 10(6)) injected subcutaneously into nude mice resulted in tumor development (1-3 mm) 6 days later. Animals were then treated with Ad-E1A or Ad-beta-gal (5 x 10(9) plaque-forming units) by intratumoral injection twice weekly for 2 weeks. Animals received 8 mg/kg VP-16 given by intraperitoneal injection daily for 5 days following the first week of treatment with Ad-E1A or Ad-beta-gal. Control animals received no therapy or VP-16 only after tumor cells were injected. When tumors exceeded 2 x 2 cm, the mice were sacrificed and the tumors underwent histologic and immunohistochemical analysis. Tumors from mice treated with Ad-E1A plus VP-16 were 9.6-fold smaller than those treated with VP-16 alone and 6.3-fold smaller than those treated with Ad-E1A alone. HER2/neu p185 protein expression decreased in all tumors that received Ad-E1A therapy. TUNEL fluorescence staining revealed more apoptosis in the tumors from animals treated with Ad-E1A plus VP-16 than in those from animals treated with Ad-E1A alone, Ad-beta-gal plus VP-16, or VP-16 alone. These data demonstrated that Ad-E1A gene therapy down-regulated HER2/neu expression, increased tumor cell apoptosis induced by VP-16, and enhanced tumor cell sensitivity to VP-16. Ad-E1A may have potential in the treatment of relapsed drug-resistant Ewing's sarcoma.
Collapse
Affiliation(s)
- Rong-Rong Zhou
- Division of Pediatrics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
25
|
Chuang TC, Yu YH, Lin YS, Wang SS, Kao MC. The N-terminal domain of SV40 large T antigen represses the HER2/neu-mediated transformation and metastatic potential in breast cancers. FEBS Lett 2002; 511:46-50. [PMID: 11821047 DOI: 10.1016/s0014-5793(01)03277-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
HER2/neu is known to be overexpressed in approximately 40% of human breast and ovarian cancers and it is associated with increased metastasis and poor prognosis. We have shown previously that the N-terminal domain of simian virus 40 large T antigen (LT425) can act as a transforming suppressor of the HER2/neu oncogene in human ovarian cancer. In the present study, we demonstrate that LT425 can also repress the transforming properties of HER2/neu-overexpressing human breast cancer cells. In addition, the results of a chemotaxis assay and an in vitro chemoinvasion assay further suggest that LT425 can also suppress the metastatic potential of the HER2/neu-transformed breast cancer cells. Taken together, these data clearly suggest that the inhibition of the expression of p185 HER2/neu tyrosine kinase by LT425 is capable of suppressing the HER2/neu-mediated transformation and metastatic potential in breast cancers.
Collapse
MESH Headings
- Antigens, Polyomavirus Transforming/chemistry
- Antigens, Polyomavirus Transforming/genetics
- Antigens, Polyomavirus Transforming/metabolism
- Blotting, Western
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Division
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Chemotaxis
- Down-Regulation
- Female
- Gene Expression Regulation, Neoplastic
- Genes, erbB-2/genetics
- Humans
- Neoplasm Metastasis/genetics
- Neoplasm Metastasis/pathology
- Protein Structure, Tertiary
- Receptor, ErbB-2/antagonists & inhibitors
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Tzu-Chao Chuang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
| | | | | | | | | |
Collapse
|
26
|
Hortobagyi GN, Ueno NT, Xia W, Zhang S, Wolf JK, Putnam JB, Weiden PL, Willey JS, Carey M, Branham DL, Payne JY, Tucker SD, Bartholomeusz C, Kilbourn RG, De Jager RL, Sneige N, Katz RL, Anklesaria P, Ibrahim NK, Murray JL, Theriault RL, Valero V, Gershenson DM, Bevers MW, Huang L, Lopez-Berestein G, Hung MC. Cationic liposome-mediated E1A gene transfer to human breast and ovarian cancer cells and its biologic effects: a phase I clinical trial. J Clin Oncol 2001; 19:3422-33. [PMID: 11454891 DOI: 10.1200/jco.2001.19.14.3422] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Preclinical studies have demonstrated that the adenovirus type 5 E1A gene is associated with antitumor activities by transcriptional repression of HER-2/neu and induction of apoptosis. Indeed, E1A gene therapy is known to induce regression of HER-2/neu-overexpressing breast and ovarian cancers in nude mice. Therefore, we evaluated the feasibility of intracavitary injection of E1A gene complexed with DC-Chol cationic liposome (DCC-E1A) in patients with both HER-2/neu-overexpressing and low HER-2/neu-expressing breast and ovarian cancers in a phase I clinical trial. PATIENTS AND METHODS An E1A gene complexed with DCC-E1A cationic liposome was injected once a week into the thoracic or peritoneal cavity of 18 patients with advanced cancer of the breast (n = 6) or ovary (n = 12). RESULTS E1A gene expression in tumor cells was detected by immunohistochemical staining and reverse transcriptase-polymerase chain reaction. This E1A gene expression was accompanied by HER-2/neu downregulation, increased apoptosis, and reduced proliferation. The most common treatment-related toxicities were fever, nausea, vomiting, and/or discomfort at the injection sites. CONCLUSION These results argue for the feasibility of intracavitary DCC-E1A administration, provide a clear proof of preclinical concept, and warrant phase II trials to determine the antitumor activity of the E1A gene.
Collapse
Affiliation(s)
- G N Hortobagyi
- Department of Breast Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lin YC, Peng JM, Wang WB. The N-terminal common domain of simian virus 40 large T and small t antigens acts as a transformation suppressor of the HER-2/neu oncogene. Oncogene 2000; 19:2704-13. [PMID: 10851070 DOI: 10.1038/sj.onc.1203582] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Overexpression of HER-2/neu (also known as c-erbB-2) proto-oncogene frequently occurs in many different types of human cancers, including ovarian carcinoma, and is known to enhance tumor metastasis and chemoresistance. Previous studies showed that inhibition of HER-2/neu expression by various agents, such as adenovirus E1A and simian virus 40 large T, can lead to suppression of tumorigenicity of HER-2/neu-overexpressing cancer cells. Here we report that T/t-common, which contains the N-terminal common domain of simian virus 40 large T and small t antigens, could specifically repress the HER-2/neu promoter. When the coding sequence of T/t-common was stably transfected into the HER-2/neu-overexpressing human ovarian carcinoma SK-OV-3 cells, the expression of HER-2/neu was dramatically reduced by the expression of T/t-common. Accordingly the tumorigenic potential of these T/t-common-expressing clones, including the ability to grow anchorage-independently and the ability to induce tumor in nu/nu mice, was also drastically suppressed. Furthermore, when T/t-common was transiently cotransfected with the activated genomic neu into NIH3T3 cells, the transforming activity of the latter was suppressed by T/t-common in soft-agarose microcolony formation assays. Taken together, these data suggest that T/t-common may act as a transformation suppressor of the HER-2/neu oncogene. Oncogene (2000).
Collapse
Affiliation(s)
- Y C Lin
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | | | | |
Collapse
|
28
|
Nowling TK, Johnson LR, Wiebe MS, Rizzino A. Identification of the transactivation domain of the transcription factor Sox-2 and an associated co-activator. J Biol Chem 2000; 275:3810-8. [PMID: 10660531 DOI: 10.1074/jbc.275.6.3810] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The importance of interactions between Sox and POU transcription factors in the regulation of gene expression is becoming increasingly apparent. Recently, many examples of the involvement of Sox-POU partnerships in transcription have been discovered, including a partnership between Sox-2 and Oct-3. Little is known about the mechanisms by which these factors modulate transcription. To better understand the molecular interactions involved, we mapped the location of the transactivation domain of Sox-2. This was done in the context of its interaction with Oct-3, as well as its ability to transactivate as a fusion protein linked to the DNA-binding domain of Gal4. Both approaches demonstrated that Sox-2 contains a transactivation domain in its C-terminal half, containing a serine-rich region and the C terminus. We also determined that the viral oncoprotein E1a inhibits the ability of the Gal4/Sox-2 fusion protein to transactivate, as well as the transcriptional activation mediated by the combined action of Sox-2 and Oct-3. In contrast, a mutant form of E1a, unable to bind p300, lacks both of these effects. Importantly, we determined that p300 overcomes the inhibitory effects of E1a in both assays. Together, these findings suggest that Sox-2 mediates its effects, at least in part, through the co-activator p300.
Collapse
Affiliation(s)
- T K Nowling
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | | | | | | |
Collapse
|
29
|
Xing X, Wang SC, Xia W, Zou Y, Shao R, Kwong KY, Yu Z, Zhang S, Miller S, Huang L, Hung MC. The ets protein PEA3 suppresses HER-2/neu overexpression and inhibits tumorigenesis. Nat Med 2000; 6:189-95. [PMID: 10655108 DOI: 10.1038/72294] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Because HER-2/neu overexpression is important in cancer development, we looked for a method of suppressing the cell transformation mediated by HER-2/neu overexpression. We have identified that the DNA-binding protein PEA3, which is encoded by a previously isolated gene of the ets family, specifically targeted a DNA sequence on the HER-2/neu promoter and downregulated the promoter activity. Expression of PEA3 resulted in preferential inhibition of cell growth and tumor development of HER-2/neu-overexpressing cancer cells. This is a new approach to targeting HER-2/neu overexpression and also provides a rationale to the design for repressors of diseases caused by overexpression of pathogenic genes.
Collapse
Affiliation(s)
- X Xing
- The University of Texas M.D. Anderson Cancer Center, Department of Cancer Biology, Section of Molecular Cell Biology, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kannabiran C, Morris GF, Mathews MB. Dual action of the adenovirus E1A 243R oncoprotein on the human proliferating cell nuclear antigen promoter: repression of transcriptional activation by p53. Oncogene 1999; 18:7825-33. [PMID: 10618724 DOI: 10.1038/sj.onc.1203294] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The promoter of the human proliferating cell nuclear antigen (PCNA) gene is activated by the adenovirus oncoprotein E1A 243R in HeLa cells. To understand the effect of this oncoprotein on PCNA expression in cells that are sensitive to oncogenic transformation by adenovirus, we studied the effect of E1A 243R on PCNA promoter-directed reporter gene expression in cloned rat embryo fibroblast (CREF) and primary baby rat kidney cells. In contrast to the results obtained in HeLa cells, E1A repressed the PCNA promoter in both cell-types. Promoter analysis identified a p53-responsive element that mediates E1A-induced repression. Repression required the intact N-terminus of E1A 243R, as shown by the ability of mutant E1A proteins to repress the promoter, and correlated with the p300-binding region of E1A. The adenovirus E1B 19K protein relieved repression by E1A 243R. These results reveal dual pathways for induction of this essential DNA replication factor and suggest a mechanism for oncogenic cooperativity between the E1A and E1B oncoproteins.
Collapse
Affiliation(s)
- C Kannabiran
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA
| | | | | |
Collapse
|
31
|
Fernandes ER, Rooney RJ. Suppression of E1A-mediated transformation by the p50E4F transcription factor. Mol Cell Biol 1999; 19:4739-49. [PMID: 10373523 PMCID: PMC84272 DOI: 10.1128/mcb.19.7.4739] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The adenovirus E1A gene can act as an oncogene or a tumor suppressor, with the latter effect generally arising from the induction of apoptosis or the repression of genes that provide oncogenic growth stimuli (e.g., HER-2/c-erbB2/neu) or increased metastatic invasiveness (e.g., metalloproteases). In this study, coexpression of E1A and p50E4F, a cellular transcription factor whose DNA binding activity is stimulated by E1A, suppressed colony formation by NIH 3T3 cells and transformation of primary rat embryo fibroblasts but had no observed effect in the absence of E1A. Domains in p50E4F required for stimulation of the adenovirus E4 promoter were required for the suppressive effect, indicating a transcriptional mechanism. In serum-containing media, retroviral expression of p50E4F in E1A13S/ras-transformed NIH 3T3 fibroblasts had little effect on subconfluent cultures but accelerated a decline in viability after the cultures reached confluence. Cell death occurred by both apoptosis and necrosis, with the predominance of each process determined by culture conditions. In serum-free media, p50E4F accelerated E1A-induced apoptosis. The results suggest that p50E4F sensitizes cells to signals or conditions that cause cell death.
Collapse
Affiliation(s)
- E R Fernandes
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | |
Collapse
|
32
|
Moens U, Seternes OM, Johansen B, Rekvig OP. Mechanisms of transcriptional regulation of cellular genes by SV40 large T- and small T-antigens. Virus Genes 1998; 15:135-54. [PMID: 9421878 DOI: 10.1023/a:1007962908248] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
During the past decade a number of virus-encoded transcriptional trans-activators that regulate the expression of viral genes have been reported. These trans-activators may also affect the expression or activity of several cellular genes or gene products to create an optimal cellular environment that favors viral replication. Among the better-studied viral trans-activating proteins are the Simian virus 40 large T- and small t-antigens. During the last few years, mechanisms by which these two viral proteins influence cellular gene expression start to emerge. They are grouped provisionally and reflect the methods used to determine the effects of large T-antigen. Large T-antigen may influence cellular gene expression by: i. altering mRNA levels of cellular transcription factors; ii. interacting with and regulating the DNA-binding or transcriptional activity of specific transcription factors; iii. functionally substitution of eukaryotic transcription factors; iv. direct binding to DNA; or v. regulating components of signaling transduction pathways. Small t-ag seems to exert its effect mainly through inhibiting a cellular phosphatase, protein phosphatase 2A, thereby modulating components of signal transduction pathways and preventing dephosphorylation of several transcription factors. However, small t-ag may also control cellular gene expression by regulating mRNA levels of transcription factors or by interacting with other transcription factors.
Collapse
Affiliation(s)
- U Moens
- Department of Gene Biology, University of Tromsø, Norway
| | | | | | | |
Collapse
|