1
|
Pinzon-Arteaga CA, O'Hara R, Mazzagatti A, Ballard E, Hu Y, Pan A, Schmitz DA, Wei Y, Sakurai M, Ly P, Banaszynski LA, Wu J. TASOR expression in naive embryonic stem cells safeguards their developmental potential. Cell Rep 2024; 43:114887. [PMID: 39453814 DOI: 10.1016/j.celrep.2024.114887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/03/2024] [Accepted: 10/02/2024] [Indexed: 10/27/2024] Open
Abstract
The seamless transition through stages of pluripotency relies on a balance between transcription factor networks and epigenetic mechanisms. Here, we reveal the crucial role of the transgene activation suppressor (TASOR), a component of the human silencing hub (HUSH) complex, in maintaining cell viability during the transition from naive to primed pluripotency. TASOR loss in naive pluripotent stem cells (PSCs) triggers replication stress, disrupts H3K9me3 heterochromatin, and impairs silencing of LINE-1 (L1) transposable elements, with more severe effects in primed PSCs. Notably, the survival of Tasor knockout PSCs during this transition can be restored by inhibiting caspase or deleting the mitochondrial antiviral signaling protein (MAVS). This suggests that unscheduled L1 expression activates an innate immune response, leading to cell death specifically in cells exiting naive pluripotency. Our findings highlight the importance of epigenetic programs established in naive pluripotency for normal development.
Collapse
Affiliation(s)
- Carlos A Pinzon-Arteaga
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Ryan O'Hara
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alice Mazzagatti
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Emily Ballard
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yingying Hu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alex Pan
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; St. Mark's School of Texas, Dallas, TX 75230, USA
| | - Daniel A Schmitz
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yulei Wei
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Masahiro Sakurai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Peter Ly
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Laura A Banaszynski
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
2
|
Tsai YT, Seymen N, Thompson IR, Zou X, Mumtaz W, Gerlevik S, Mufti GJ, Karimi MM. Expression of most retrotransposons in human blood correlates with biological aging. eLife 2024; 13:RP96575. [PMID: 39417397 PMCID: PMC11486490 DOI: 10.7554/elife.96575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Retrotransposons (RTEs) have been postulated to reactivate with age and contribute to aging through activated innate immune response and inflammation. Here, we analyzed the relationship between RTE expression and aging using published transcriptomic and methylomic datasets of human blood. Despite no observed correlation between RTE activity and chronological age, the expression of most RTE classes and families except short interspersed nuclear elements (SINEs) correlated with biological age-associated gene signature scores. Strikingly, we found that the expression of SINEs was linked to upregulated DNA repair pathways in multiple cohorts. We also observed DNA hypomethylation with aging and the significant increase in RTE expression level in hypomethylated RTEs except for SINEs. Additionally, our single-cell transcriptomic analysis suggested a role for plasma cells in aging mediated by RTEs. Altogether, our multi-omics analysis of large human cohorts highlights the role of RTEs in biological aging and suggests possible mechanisms and cell populations for future investigations.
Collapse
Affiliation(s)
- Yi-Ting Tsai
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College LondonLondonUnited Kingdom
| | - Nogayhan Seymen
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College LondonLondonUnited Kingdom
| | - I Richard Thompson
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College LondonLondonUnited Kingdom
| | - Xinchen Zou
- MRC LMS, Imperial College LondonLondonUnited Kingdom
| | - Warisha Mumtaz
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College LondonLondonUnited Kingdom
| | - Sila Gerlevik
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College LondonLondonUnited Kingdom
| | - Ghulam J Mufti
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College LondonLondonUnited Kingdom
| | - Mohammad M Karimi
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College LondonLondonUnited Kingdom
| |
Collapse
|
3
|
Lanciano S, Philippe C, Sarkar A, Pratella D, Domrane C, Doucet AJ, van Essen D, Saccani S, Ferry L, Defossez PA, Cristofari G. Locus-level L1 DNA methylation profiling reveals the epigenetic and transcriptional interplay between L1s and their integration sites. CELL GENOMICS 2024; 4:100498. [PMID: 38309261 PMCID: PMC10879037 DOI: 10.1016/j.xgen.2024.100498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/20/2023] [Accepted: 01/09/2024] [Indexed: 02/05/2024]
Abstract
Long interspersed element 1 (L1) retrotransposons are implicated in human disease and evolution. Their global activity is repressed by DNA methylation, but deciphering the regulation of individual copies has been challenging. Here, we combine short- and long-read sequencing to unveil L1 methylation heterogeneity across cell types, families, and individual loci and elucidate key principles involved. We find that the youngest primate L1 families are specifically hypomethylated in pluripotent stem cells and the placenta but not in most tumors. Locally, intronic L1 methylation is intimately associated with gene transcription. Conversely, the L1 methylation state can propagate to the proximal region up to 300 bp. This phenomenon is accompanied by the binding of specific transcription factors, which drive the expression of L1 and chimeric transcripts. Finally, L1 hypomethylation alone is typically insufficient to trigger L1 expression due to redundant silencing pathways. Our results illuminate the epigenetic and transcriptional interplay between retrotransposons and their host genome.
Collapse
Affiliation(s)
- Sophie Lanciano
- University Cote d'Azur, INSERM, CNRS, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| | - Claude Philippe
- University Cote d'Azur, INSERM, CNRS, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| | - Arpita Sarkar
- University Cote d'Azur, INSERM, CNRS, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| | - David Pratella
- University Cote d'Azur, INSERM, CNRS, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| | - Cécilia Domrane
- University Paris Cité, CNRS, Epigenetics and Cell Fate, Paris, France
| | - Aurélien J Doucet
- University Cote d'Azur, INSERM, CNRS, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| | - Dominic van Essen
- University Cote d'Azur, INSERM, CNRS, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| | - Simona Saccani
- University Cote d'Azur, INSERM, CNRS, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| | - Laure Ferry
- University Paris Cité, CNRS, Epigenetics and Cell Fate, Paris, France
| | | | - Gael Cristofari
- University Cote d'Azur, INSERM, CNRS, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France.
| |
Collapse
|
4
|
Luqman-Fatah A, Nishimori K, Amano S, Fumoto Y, Miyoshi T. Retrotransposon life cycle and its impacts on cellular responses. RNA Biol 2024; 21:11-27. [PMID: 39396200 PMCID: PMC11485995 DOI: 10.1080/15476286.2024.2409607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/30/2024] [Accepted: 09/16/2024] [Indexed: 10/14/2024] Open
Abstract
Approximately 45% of the human genome is comprised of transposable elements (TEs), also known as mobile genetic elements. However, their biological function remains largely unknown. Among them, retrotransposons are particularly abundant, and some of the copies are still capable of mobilization within the genome through RNA intermediates. This review focuses on the life cycle of human retrotransposons and summarizes their regulatory mechanisms and impacts on cellular processes. Retrotransposons are generally epigenetically silenced in somatic cells, but are transcriptionally reactivated under certain conditions, such as tumorigenesis, development, stress, and ageing, potentially leading to genetic instability. We explored the dual nature of retrotransposons as genomic parasites and regulatory elements, focusing on their roles in genetic diversity and innate immunity. Furthermore, we discuss how host factors regulate retrotransposon RNA and cDNA intermediates through their binding, modification, and degradation. The interplay between retrotransposons and the host machinery provides insight into the complex regulation of retrotransposons and the potential for retrotransposon dysregulation to cause aberrant responses leading to inflammation and autoimmune diseases.
Collapse
Affiliation(s)
- Ahmad Luqman-Fatah
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kei Nishimori
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Shota Amano
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yukiko Fumoto
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tomoichiro Miyoshi
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
5
|
Mendez-Dorantes C, Burns KH. LINE-1 retrotransposition and its deregulation in cancers: implications for therapeutic opportunities. Genes Dev 2023; 37:948-967. [PMID: 38092519 PMCID: PMC10760644 DOI: 10.1101/gad.351051.123] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Long interspersed element 1 (LINE-1) is the only protein-coding transposon that is active in humans. LINE-1 propagates in the genome using RNA intermediates via retrotransposition. This activity has resulted in LINE-1 sequences occupying approximately one-fifth of our genome. Although most copies of LINE-1 are immobile, ∼100 copies are retrotransposition-competent. Retrotransposition is normally limited via epigenetic silencing, DNA repair, and other host defense mechanisms. In contrast, LINE-1 overexpression and retrotransposition are hallmarks of cancers. Here, we review mechanisms of LINE-1 regulation and how LINE-1 may promote genetic heterogeneity in tumors. Finally, we discuss therapeutic strategies to exploit LINE-1 biology in cancers.
Collapse
Affiliation(s)
- Carlos Mendez-Dorantes
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA;
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Kathleen H Burns
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA;
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
6
|
Luqman-Fatah A, Miyoshi T. Human LINE-1 retrotransposons: impacts on the genome and regulation by host factors. Genes Genet Syst 2023; 98:121-154. [PMID: 36436935 DOI: 10.1266/ggs.22-00038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Genome sequencing revealed that nearly half of the human genome is comprised of transposable elements. Although most of these elements have been rendered inactive due to mutations, full-length intact long interspersed element-1 (LINE-1 or L1) copies retain the ability to mobilize through RNA intermediates by a so-called "copy-and-paste" mechanism, termed retrotransposition. L1 is the only known autonomous mobile genetic element in the genome, and its retrotransposition contributes to inter- or intra-individual genetic variation within the human population. However, L1 retrotransposition also poses a threat to genome integrity due to gene disruption and chromosomal instability. Moreover, recent studies suggest that aberrant L1 expression can impact human health by causing diseases such as cancer and chronic inflammation that might lead to autoimmune disorders. To counteract these adverse effects, the host cells have evolved multiple layers of defense mechanisms at the epigenetic, RNA and protein levels. Intriguingly, several host factors have also been reported to facilitate L1 retrotransposition, suggesting that there is competition between negative and positive regulation of L1 by host factors. Here, we summarize the known host proteins that regulate L1 activity at different stages of the replication cycle and discuss how these factors modulate disease-associated phenotypes caused by L1.
Collapse
Affiliation(s)
- Ahmad Luqman-Fatah
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University
- Department of Stress Response, Radiation Biology Center, Graduate School of Biostudies, Kyoto University
| | - Tomoichiro Miyoshi
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University
- Department of Stress Response, Radiation Biology Center, Graduate School of Biostudies, Kyoto University
| |
Collapse
|
7
|
Mechanisms of DNA methylation and histone modifications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:51-92. [PMID: 37019597 DOI: 10.1016/bs.pmbts.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The field of genetics has expanded a lot in the past few decades due to the accessibility of human genome sequences, but still, the regulation of transcription cannot be explicated exclusively by the sequence of DNA of an individual. The coordination and crosstalk between chromatin factors which are conserved is indispensable for all living creatures. The regulation of gene expression has been dependent on the methylation of DNA, post-translational modifications of histones, effector proteins, chromatin remodeler enzymes that affect the chromatin structure and function, and other cellular activities such as DNA replication, DNA repair, proliferation and growth. The mutation and deletion of these factors can lead to human diseases. Various studies are being performed to identify and understand the gene regulatory mechanisms in the diseased state. The information from these high throughput screening studies is able to aid the treatment developments based on the epigenetics regulatory mechanisms. This book chapter will discourse on various modifications and their mechanisms that take place on histones and DNA that regulate the transcription of genes.
Collapse
|
8
|
Dwivedi Y, Shelton RC. Genomics in Treatment Development. ADVANCES IN NEUROBIOLOGY 2023; 30:363-385. [PMID: 36928858 DOI: 10.1007/978-3-031-21054-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The Human Genome Project mapped the 3 billion base pairs in the human genome, which ushered in a new generation of genomically focused treatment development. While this has been very successful in other areas, neuroscience has been largely devoid of such developments. This is in large part because there are very few neurological or mental health conditions that are related to single-gene variants. While developments in pharmacogenomics have been somewhat successful, the use of genetic information in practice has to do with drug metabolism and adverse reactions. Studies of drug metabolism related to genetic variations are an important part of drug development. However, outside of cancer biology, the actual translation of genomic information into novel therapies has been limited. Epigenetics, which relates in part to the effects of the environment on DNA, is a promising newer area of relevance to CNS disorders. The environment can induce chemical modifications of DNA (e.g., cytosine methylation), which can be induced by the environment and may represent either shorter- or longer-term changes. Given the importance of environmental influences on CNS disorders, epigenetics may identify important treatment targets in the future.
Collapse
Affiliation(s)
- Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Richard C Shelton
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
9
|
Freeman B, White T, Kaul T, Stow EC, Baddoo M, Ungerleider N, Morales M, Yang H, Deharo D, Deininger P, Belancio V. Analysis of epigenetic features characteristic of L1 loci expressed in human cells. Nucleic Acids Res 2022; 50:1888-1907. [PMID: 35100410 PMCID: PMC8887483 DOI: 10.1093/nar/gkac013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/27/2021] [Accepted: 01/24/2022] [Indexed: 12/26/2022] Open
Abstract
Only a select few L1 loci in the human genome are expressed in any given cell line or organ, likely to minimize damage done to the genome. The epigenetic features and requirements of expressed L1 loci are currently unknown. Using human cells and comprehensive epigenetic analysis of individual expressed and unexpressed L1 loci, we determined that endogenous L1 transcription depends on a combination of epigenetic factors, including open chromatin, activating histone modifications, and hypomethylation at the L1 promoter. We demonstrate that the L1 promoter seems to require interaction with enhancer elements for optimal function. We utilize epigenetic context to predict the expression status of L1Hs loci that are poorly mappable with RNA-Seq. Our analysis identified a population of ‘transitional’ L1 loci that likely have greater potential to be activated during the epigenetic dysregulation seen in tumors and during aging because they are the most responsive to targeted CRISPR-mediated delivery of trans-activating domains. We demonstrate that an engineered increase in endogenous L1 mRNA expression increases Alu mobilization. Overall, our findings present the first global and comprehensive analysis of epigenetic status of individual L1 loci based on their expression status and demonstrate the importance of epigenetic context for L1 expression heterogeneity.
Collapse
Affiliation(s)
- Benjamin Freeman
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Travis White
- Sloan Kettering Institute for Cancer Research, NY, NY 10065, USA
| | - Tiffany Kaul
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Emily C Stow
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Melody Baddoo
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| | - Nathan Ungerleider
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| | - Maria Morales
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Hanlin Yang
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Dawn Deharo
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Prescott Deininger
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
- Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Victoria P Belancio
- To whom correspondence should be addressed. Tel: +1 504 988 4506; Fax: +1 504 988 1687;
| |
Collapse
|
10
|
Miller KN, Victorelli SG, Salmonowicz H, Dasgupta N, Liu T, Passos JF, Adams PD. Cytoplasmic DNA: sources, sensing, and role in aging and disease. Cell 2021; 184:5506-5526. [PMID: 34715021 PMCID: PMC8627867 DOI: 10.1016/j.cell.2021.09.034] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022]
Abstract
Endogenous cytoplasmic DNA (cytoDNA) species are emerging as key mediators of inflammation in diverse physiological and pathological contexts. Although the role of endogenous cytoDNA in innate immune activation is well established, the cytoDNA species themselves are often poorly characterized and difficult to distinguish, and their mechanisms of formation, scope of function and contribution to disease are incompletely understood. Here, we summarize current knowledge in this rapidly progressing field with emphases on similarities and differences between distinct cytoDNAs, their underlying molecular mechanisms of formation and function, interactions between cytoDNA pathways, and therapeutic opportunities in the treatment of age-associated diseases.
Collapse
Affiliation(s)
- Karl N Miller
- Aging, Cancer and Immuno-oncology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Stella G Victorelli
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Hanna Salmonowicz
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA; Institute for Cell and Molecular Biosciences & Newcastle University Institute for Ageing, Newcastle upon Tyne NE4 5PL, UK; International Institute of Molecular Mechanisms and Machines, Polish Academy of Sciences, 02-109 Warsaw, Poland
| | - Nirmalya Dasgupta
- Aging, Cancer and Immuno-oncology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Tianhui Liu
- Aging, Cancer and Immuno-oncology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - João F Passos
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA.
| | - Peter D Adams
- Aging, Cancer and Immuno-oncology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
11
|
Jeon S, Kim S, Oh MH, Liang P, Tang W, Han K. A comprehensive analysis of gorilla-specific LINE-1 retrotransposons. Genes Genomics 2021; 43:1133-1141. [PMID: 34406591 DOI: 10.1007/s13258-021-01146-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/29/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Long interspersed element-1 (LINE-1 or L1) is the most abundant retrotransposons in the primate genome. They have approximately 520,000 copies and make up ~ 17% of the primate genome. Full-length L1s can mobilize to a new genomic location using their enzymatic machinery. Gorilla is the second closest species to humans after the chimpanzee, and human-gorilla split 7-12 million years ago. The gorilla genome provides an opportunity to explore primate origins and evolution. OBJECTIVE L1s have contributed to genome diversity and variations during primate evolution. This study aimed to identify gorilla-specific L1s using a more recent version of the gorilla reference genome (Mar. 2016 GSMRT3/gorGor5). METHODS We collected gorilla-specific L1 candidates through computational analysis and manual inspection. L1Xplorer was used to identify whether full-length gorilla-specific L1s were intact. In addition, to determine the level of sequence conservation between intact fulllength gorilla-specific L1s, two ORFs of intact L1s were aligned with the L1PA2 consensus sequence. RESULTS 2002 gorilla-specific L1 candidates were identified through computational analysis. Among them, we manually inspected 1,883 gorilla-specific L1s, among which most of them belong to the L1PA2 subfamily and 12 were intact L1s that could influence genomic variations in the gorilla genome. Interestingly, the 12 intact full-length gorilla-specific L1s have 14 highly conserved nonsynonymous mutations, including 6 mutations and 8 mutations in ORF1 and ORF2, respectively. In comparison to the intact full-length chimpanzee-specific L1s and human-specific hot-L1s, two of these in ORF1 (L256F and E293G) were shown as gorilla-specific nonsynonymous mutations. CONCLUSION The gorilla-specific L1s may have had significantly affected the gorilla genome to compose a genome different form that of other primates during primate evolution.
Collapse
Affiliation(s)
- Soyeon Jeon
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Songmi Kim
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, 31116, Republic of Korea.,Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, 31116, Republic of Korea
| | - Man Hwan Oh
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Ping Liang
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.,Centre of Biotechnologies, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Wanxiangfu Tang
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Kyudong Han
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, 31116, Republic of Korea. .,Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
12
|
Hsu PS, Yu SH, Tsai YT, Chang JY, Tsai LK, Ye CH, Song NY, Yau LC, Lin SP. More than causing (epi)genomic instability: emerging physiological implications of transposable element modulation. J Biomed Sci 2021; 28:58. [PMID: 34364371 PMCID: PMC8349491 DOI: 10.1186/s12929-021-00754-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/19/2021] [Indexed: 12/30/2022] Open
Abstract
Transposable elements (TEs) initially attracted attention because they comprise a major portion of the genomic sequences in plants and animals. TEs may jump around the genome and disrupt both coding genes as well as regulatory sequences to cause disease. Host cells have therefore evolved various epigenetic and functional RNA-mediated mechanisms to mitigate the disruption of genomic integrity by TEs. TE associated sequences therefore acquire the tendencies of attracting various epigenetic modifiers to induce epigenetic alterations that may spread to the neighboring genes. In addition to posting threats for (epi)genome integrity, emerging evidence suggested the physiological importance of endogenous TEs either as cis-acting control elements for controlling gene regulation or as TE-containing functional transcripts that modulate the transcriptome of the host cells. Recent advances in long-reads sequence analysis technologies, bioinformatics and genetic editing tools have enabled the profiling, precise annotation and functional characterization of TEs despite their challenging repetitive nature. The importance of specific TEs in preimplantation embryonic development, germ cell differentiation and meiosis, cell fate determination and in driving species specific differences in mammals will be discussed.
Collapse
Affiliation(s)
- Pu-Sheng Hsu
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Shu-Han Yu
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Yi-Tzang Tsai
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Jen-Yun Chang
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Li-Kuang Tsai
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Chih-Hung Ye
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Ning-Yu Song
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.,Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Lih-Chiao Yau
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Shau-Ping Lin
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan. .,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan. .,Center of Systems Biology, National Taiwan University, Taipei, Taiwan. .,The Research Center of Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
13
|
Gorbunova V, Seluanov A, Mita P, McKerrow W, Fenyö D, Boeke JD, Linker SB, Gage FH, Kreiling JA, Petrashen AP, Woodham TA, Taylor JR, Helfand SL, Sedivy JM. The role of retrotransposable elements in ageing and age-associated diseases. Nature 2021; 596:43-53. [PMID: 34349292 PMCID: PMC8600649 DOI: 10.1038/s41586-021-03542-y] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 04/13/2021] [Indexed: 02/06/2023]
Abstract
The genomes of virtually all organisms contain repetitive sequences that are generated by the activity of transposable elements (transposons). Transposons are mobile genetic elements that can move from one genomic location to another; in this process, they amplify and increase their presence in genomes, sometimes to very high copy numbers. In this Review we discuss new evidence and ideas that the activity of retrotransposons, a major subgroup of transposons overall, influences and even promotes the process of ageing and age-related diseases in complex metazoan organisms, including humans. Retrotransposons have been coevolving with their host genomes since the dawn of life. This relationship has been largely competitive, and transposons have earned epithets such as 'junk DNA' and 'molecular parasites'. Much of our knowledge of the evolution of retrotransposons reflects their activity in the germline and is evident from genome sequence data. Recent research has provided a wealth of information on the activity of retrotransposons in somatic tissues during an individual lifespan, the molecular mechanisms that underlie this activity, and the manner in which these processes intersect with our own physiology, health and well-being.
Collapse
Affiliation(s)
- Vera Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, New York 14627, USA
| | - Andrei Seluanov
- Departments of Biology and Medicine, University of Rochester, Rochester, New York 14627, USA
| | - Paolo Mita
- Institute for Systems Genetics, and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, New York 10016, USA
| | - Wilson McKerrow
- Institute for Systems Genetics, and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, New York 10016, USA
| | - David Fenyö
- Institute for Systems Genetics, and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, New York 10016, USA
| | - Jef D. Boeke
- Institute for Systems Genetics, and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, New York 10016, USA.,Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn 11201, NY, USA
| | - Sara B. Linker
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Fred H. Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Jill A. Kreiling
- Center on the Biology of Aging, and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Anna P. Petrashen
- Center on the Biology of Aging, and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Trenton A. Woodham
- Center on the Biology of Aging, and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Jackson R. Taylor
- Center on the Biology of Aging, and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Stephen L. Helfand
- Center on the Biology of Aging, and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - John M. Sedivy
- Center on the Biology of Aging, and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA.,Corresponding author
| |
Collapse
|
14
|
Sui Y, Peng S. A Mechanism Leading to Changes in Copy Number Variations Affected by Transcriptional Level Might Be Involved in Evolution, Embryonic Development, Senescence, and Oncogenesis Mediated by Retrotransposons. Front Cell Dev Biol 2021; 9:618113. [PMID: 33644055 PMCID: PMC7905054 DOI: 10.3389/fcell.2021.618113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/11/2021] [Indexed: 01/05/2023] Open
Abstract
In recent years, more and more evidence has emerged showing that changes in copy number variations (CNVs) correlated with the transcriptional level can be found during evolution, embryonic development, and oncogenesis. However, the underlying mechanisms remain largely unknown. The success of the induced pluripotent stem cell suggests that genome changes could bring about transformations in protein expression and cell status; conversely, genome alterations generated during embryonic development and senescence might also be the result of genome changes. With rapid developments in science and technology, evidence of changes in the genome affected by transcriptional level has gradually been revealed, and a rational and concrete explanation is needed. Given the preference of the HIV-1 genome to insert into transposons of genes with high transcriptional levels, we propose a mechanism based on retrotransposons facilitated by specific pre-mRNA splicing style and homologous recombination (HR) to explain changes in CNVs in the genome. This mechanism is similar to that of the group II intron that originated much earlier. Under this proposed mechanism, CNVs on genome are dynamically and spontaneously extended in a manner that is positively correlated with transcriptional level or contract as the cell divides during evolution, embryonic development, senescence, and oncogenesis, propelling alterations in them. Besides, this mechanism explains several critical puzzles in these processes. From evidence collected to date, it can be deduced that the message contained in genome is not just three-dimensional but will become four-dimensional, carrying more genetic information.
Collapse
Affiliation(s)
- Yunpeng Sui
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | | |
Collapse
|
15
|
Hakata Y, Miyazawa M. Deaminase-Independent Mode of Antiretroviral Action in Human and Mouse APOBEC3 Proteins. Microorganisms 2020; 8:microorganisms8121976. [PMID: 33322756 PMCID: PMC7764128 DOI: 10.3390/microorganisms8121976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023] Open
Abstract
Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3 (APOBEC3) proteins (APOBEC3s) are deaminases that convert cytosines to uracils predominantly on a single-stranded DNA, and function as intrinsic restriction factors in the innate immune system to suppress replication of viruses (including retroviruses) and movement of retrotransposons. Enzymatic activity is supposed to be essential for the APOBEC3 antiviral function. However, it is not the only way that APOBEC3s exert their biological function. Since the discovery of human APOBEC3G as a restriction factor for HIV-1, the deaminase-independent mode of action has been observed. At present, it is apparent that both the deaminase-dependent and -independent pathways are tightly involved not only in combating viruses but also in human tumorigenesis. Although the deaminase-dependent pathway has been extensively characterized so far, understanding of the deaminase-independent pathway remains immature. Here, we review existing knowledge regarding the deaminase-independent antiretroviral functions of APOBEC3s and their molecular mechanisms. We also discuss the possible unidentified molecular mechanism for the deaminase-independent antiretroviral function mediated by mouse APOBEC3.
Collapse
Affiliation(s)
- Yoshiyuki Hakata
- Department of Immunology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan;
- Correspondence: ; Tel.: +81-72-367-7660
| | - Masaaki Miyazawa
- Department of Immunology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan;
- Kindai University Anti-Aging Center, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan
| |
Collapse
|
16
|
Wang X, Wang M, Zeng L, Su P. Hypomethylation of LINE-1 retrotransposons is associated with cadmium-induced testicular injury. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:40749-40756. [PMID: 32671713 DOI: 10.1007/s11356-020-10115-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Retrotransposons, as vital regulator of male fertility, are essential for spermatogenesis. Cadmium (Cd) is an environmental toxicant and endocrine disruptor, targeting the reproductive system. Growing evidence shows that Cd exposure can induce male infertility in mammals. In this study, we generated a male C57BL/6 J mice model with consecutive 35 days cadmium chloride (CdCl2) in different concentrations of 0, 0.25, 0.5, 1.0, and 2.0 mg/kg. The results indicated that 1.0 and 2.0 mg/kg CdCl2 significantly affected the body weight. Meanwhile, the highest dose group with 2.0 mg/kg CdCl2 presented low fertility. Furthermore, the expression of retrotransposon mRNA was markedly increased in the higher doses group. We examined methylcytosine (mC) levels of the three active LINE-1 subfamilies TfI, A, and GfII in testis. Conclusively, Cd exposure probably undermines the male mice fertility by disrupting DNA methylation to regulate the retrotransposons. Further studies are required for identifying whether retrotransposon activation has any significant impacts on genome structure, stability, and expression in Cd-induced testicular injury, laying foundation for the treatment for male infertility.
Collapse
Affiliation(s)
- Xiaofei Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Mei Wang
- Department of Obstetrics and Gynecology/Reproduction Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China
| | - Ling Zeng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Ping Su
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
17
|
Ardeljan D, Steranka JP, Liu C, Li Z, Taylor MS, Payer LM, Gorbounov M, Sarnecki JS, Deshpande V, Hruban RH, Boeke JD, Fenyö D, Wu PH, Smogorzewska A, Holland AJ, Burns KH. Cell fitness screens reveal a conflict between LINE-1 retrotransposition and DNA replication. Nat Struct Mol Biol 2020; 27:168-178. [PMID: 32042151 PMCID: PMC7080318 DOI: 10.1038/s41594-020-0372-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 12/31/2019] [Indexed: 12/18/2022]
Abstract
LINE-1 retrotransposon overexpression is a hallmark of human cancers. We identified a colorectal cancer wherein a fast-growing tumor subclone downregulated LINE-1, prompting us to examine how LINE-1 expression affects cell growth. We find that nontransformed cells undergo a TP53-dependent growth arrest and activate interferon signaling in response to LINE-1. TP53 inhibition allows LINE-1+ cells to grow, and genome-wide-knockout screens show that these cells require replication-coupled DNA-repair pathways, replication-stress signaling and replication-fork restart factors. Our findings demonstrate that LINE-1 expression creates specific molecular vulnerabilities and reveal a retrotransposition-replication conflict that may be an important determinant of cancer growth.
Collapse
Affiliation(s)
- Daniel Ardeljan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Jared P Steranka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chunhong Liu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhi Li
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York City, NY, USA
| | - Martin S Taylor
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Lindsay M Payer
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mikhail Gorbounov
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jacob S Sarnecki
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Ralph H Hruban
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York City, NY, USA
| | - David Fenyö
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York City, NY, USA
| | - Pei-Hsun Wu
- Johns Hopkins Physical Sciences Oncology Center, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, The Rockefeller University, New York City, NY, USA
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kathleen H Burns
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
18
|
Ectopic Methylation of a Single Persistently Unmethylated CpG in the Promoter of the Vitellogenin Gene Abolishes Its Inducibility by Estrogen through Attenuation of Upstream Stimulating Factor Binding. Mol Cell Biol 2019; 39:MCB.00436-19. [PMID: 31548262 DOI: 10.1128/mcb.00436-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 09/15/2019] [Indexed: 01/02/2023] Open
Abstract
The enhancer/promoter of the vitellogenin II gene (VTG) has been extensively studied as a model system of vertebrate transcriptional control. While deletion mutagenesis and in vivo footprinting identified the transcription factor (TF) binding sites governing its tissue specificity, DNase hypersensitivity and DNA methylation studies revealed the epigenetic changes accompanying its hormone-dependent activation. Moreover, upon induction with estrogen (E2), the region flanking the estrogen-responsive element (ERE) was reported to undergo active DNA demethylation. We now show that although the VTG ERE is methylated in embryonic chicken liver and in LMH/2A hepatocytes, its induction by E2 was not accompanied by extensive demethylation. In contrast, E2 failed to activate a VTG enhancer/promoter-controlled luciferase reporter gene methylated by SssI. Surprisingly, this inducibility difference could be traced not to the ERE but rather to a single CpG in an E-box (CACGTG) sequence upstream of the VTG TATA box, which is unmethylated in vivo but methylated by SssI. We demonstrate that this E-box binds the upstream stimulating factor USF1/2. Selective methylation of the CpG within this binding site with an E-box-specific DNA methyltransferase, Eco72IM, was sufficient to attenuate USF1/2 binding in vitro and abolish the hormone-induced transcription of the VTG gene in the reporter system.
Collapse
|
19
|
Asymmetric Inheritance of Cell Fate Determinants: Focus on RNA. Noncoding RNA 2019; 5:ncrna5020038. [PMID: 31075989 PMCID: PMC6630313 DOI: 10.3390/ncrna5020038] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 12/20/2022] Open
Abstract
During the last decade, and mainly primed by major developments in high-throughput sequencing technologies, the catalogue of RNA molecules harbouring regulatory functions has increased at a steady pace. Current evidence indicates that hundreds of mammalian RNAs have regulatory roles at several levels, including transcription, translation/post-translation, chromatin structure, and nuclear architecture, thus suggesting that RNA molecules are indeed mighty controllers in the flow of biological information. Therefore, it is logical to suggest that there must exist a series of molecular systems that safeguard the faithful inheritance of RNA content throughout cell division and that those mechanisms must be tightly controlled to ensure the successful segregation of key molecules to the progeny. Interestingly, whilst a handful of integral components of mammalian cells seem to follow a general pattern of asymmetric inheritance throughout division, the fate of RNA molecules largely remains a mystery. Herein, we will discuss current concepts of asymmetric inheritance in a wide range of systems, including prions, proteins, and finally RNA molecules, to assess overall the biological impact of RNA inheritance in cellular plasticity and evolutionary fitness.
Collapse
|
20
|
Kuehner JN, Bruggeman EC, Wen Z, Yao B. Epigenetic Regulations in Neuropsychiatric Disorders. Front Genet 2019; 10:268. [PMID: 31019524 PMCID: PMC6458251 DOI: 10.3389/fgene.2019.00268] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/11/2019] [Indexed: 12/14/2022] Open
Abstract
Precise genetic and epigenetic spatiotemporal regulation of gene expression is critical for proper brain development, function and circuitry formation in the mammalian central nervous system. Neuronal differentiation processes are tightly regulated by epigenetic mechanisms including DNA methylation, histone modifications, chromatin remodelers and non-coding RNAs. Dysregulation of any of these pathways is detrimental to normal neuronal development and functions, which can result in devastating neuropsychiatric disorders, such as depression, schizophrenia and autism spectrum disorders. In this review, we focus on the current understanding of epigenetic regulations in brain development and functions, as well as their implications in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Janise N Kuehner
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Emily C Bruggeman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States.,Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
21
|
Kim Y, Wen X, Jeong S, Cho NY, Kim WH, Kang GH. Combinatory low methylation statuses of SAT-α and L1 are associated with shortened survival time in patients with advanced gastric cancer. Gastric Cancer 2019; 22:37-47. [PMID: 29926315 DOI: 10.1007/s10120-018-0852-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/16/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND L1 and SAT-α are repetitive DNA elements that undergo demethylation in association with cancerization. Unlike L1 hypomethaylation, nothing is known regarding the prognostic implication of SAT-α hypomethylation alongside L1 hypomethaylaton in gastric cancers. METHODS Formalin-fixed paraffin-embedded samples from 492 cases of advanced gastric cancer were analyzed to determine their L1 and SAT-α methylation status using pyrosequencing methylation assay. RESULTS L1 and SAT-α methylation statuses were correlated with clinicopathological parameters, including survival. L1 or SAT-α methylation levels were lower in gastric cancers with venous invasion or nodal metastasis than those without. L1 methylation was lower in gastric cancers with lymphatic emboli than in those with no lymphatic emboli, but was higher in gastric cancers with perineural invasion than in those with no perineural invasion. Multivariate survival analysis revealed that both tumoral L1 and SAT-α hypomethylations were found to correlate independently with OS (HR = 1.477; 95% CI 1.079-2.021 and HR = 1.394; 95% CI 1.011-1.922, respectively) and RFS (HR = 1.477; 95% CI 1.090-2.001 and HR = 1.516; 95% CI 1.106-2.078, respectively). Combined L1 and SAT-α hypomethylation turned out to correlate independently with OS (HR = 2.003; 95% CI 1.268-3.164) and RFS (HR = 2.226; 95% CI 1.411-3.510). CONCLUSION Not only tumoral L1 hypomethylation, but also tumoral SAT-α hypomethylation was found to be independent prognostic parameters in patients with advanced gastric cancer. SAT-α methylation status can be used to further divide gastric cancers with L1 hypomethylation into subsets of gastric cancers with better and worse prognosis.
Collapse
Affiliation(s)
- Younghoon Kim
- Department of Pathology, Seoul National University College of Medicine, 103 Daehak-ro, Chongno-gu, Seoul, South Korea
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Xianyu Wen
- Department of Pathology, Seoul National University College of Medicine, 103 Daehak-ro, Chongno-gu, Seoul, South Korea
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Seorin Jeong
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Nam-Yun Cho
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University College of Medicine, 103 Daehak-ro, Chongno-gu, Seoul, South Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University College of Medicine, 103 Daehak-ro, Chongno-gu, Seoul, South Korea.
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
22
|
Taka N, Karube I, Yoshida W. Direct Detection of Hemi-methylated DNA by SRA-fused Luciferase Based on Bioluminescence Resonance Energy Transfer. ANAL LETT 2018. [DOI: 10.1080/00032719.2018.1533022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Natsumi Taka
- School of Bioscience and Biotechnology, Graduate School of Bionics, Tokyo University of Technology, Hachioji, Tokyo, Japan
| | - Isao Karube
- School of Bioscience and Biotechnology, Graduate School of Bionics, Tokyo University of Technology, Hachioji, Tokyo, Japan
| | - Wataru Yoshida
- School of Bioscience and Biotechnology, Graduate School of Bionics, Tokyo University of Technology, Hachioji, Tokyo, Japan
| |
Collapse
|
23
|
Minskaia E, Saraiva BC, Soares MMV, Azevedo RI, Ribeiro RM, Kumar SD, Vieira AIS, Lacerda JF. Molecular Markers Distinguishing T Cell Subtypes With TSDR Strand-Bias Methylation. Front Immunol 2018; 9:2540. [PMID: 30455694 PMCID: PMC6230625 DOI: 10.3389/fimmu.2018.02540] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/15/2018] [Indexed: 12/28/2022] Open
Abstract
Human regulatory CD4+CD25+FOXP3+ T cells (Treg) play important roles in the maintenance of self-tolerance and immune homeostasis in various disease settings and are also involved in the suppression of effective immune responses. These cells are heterogeneous in phenotype and function, and the ability to reliably distinguish between various FOXP3-expressing subpopulations can affect the development of successful therapies. This study demonstrates that hypomethylated CpG sites, present in four regions of the FOXP3 locus, CAMTA1 and FUT7 gene regions, can be used to distinguish several subsets of Treg from conventional CD4+ T lymphocytes (Tcon) in donors of both genders. We describe a previously unreported strand-bias hemimethylation pattern in FOXP3 promoter and TSDR in donors of both genders, with the coding strand being demethylated within promoter and methylated within TSDR in all CD4+ lymphocyte subtypes, whereas the template strand follows the previously described pattern of methylation with both regions being more demethylated in Treg subtypes and mostly methylated in Tcon. This strand-specific approach within the TSDR may prove to be instrumental in correctly defining Treg subsets in health and in disease.
Collapse
Affiliation(s)
- Ekaterina Minskaia
- Faculdade de Medicina da Universidade de Lisboa, Instituto de Medicina Molecular-João Lobo Antunes, Lisbon, Portugal
| | - Barbara C Saraiva
- Faculdade de Medicina da Universidade de Lisboa, Instituto de Medicina Molecular-João Lobo Antunes, Lisbon, Portugal
| | - Maria M V Soares
- Faculdade de Medicina da Universidade de Lisboa, Instituto de Medicina Molecular-João Lobo Antunes, Lisbon, Portugal
| | - Rita I Azevedo
- Faculdade de Medicina da Universidade de Lisboa, Instituto de Medicina Molecular-João Lobo Antunes, Lisbon, Portugal
| | - Ruy M Ribeiro
- Departmento de Biomatemática, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Saumya D Kumar
- Faculdade de Medicina da Universidade de Lisboa, Instituto de Medicina Molecular-João Lobo Antunes, Lisbon, Portugal
| | - Ana I S Vieira
- Faculdade de Medicina da Universidade de Lisboa, Instituto de Medicina Molecular-João Lobo Antunes, Lisbon, Portugal
| | - João F Lacerda
- Faculdade de Medicina da Universidade de Lisboa, Instituto de Medicina Molecular-João Lobo Antunes, Lisbon, Portugal
| |
Collapse
|
24
|
Welsh L, Maleszka R, Foret S. Detecting rare asymmetrically methylated cytosines and decoding methylation patterns in the honeybee genome. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170248. [PMID: 28989734 PMCID: PMC5627074 DOI: 10.1098/rsos.170248] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/07/2017] [Indexed: 05/12/2023]
Abstract
Context-dependent gene expression in eukaryotes is controlled by several mechanisms including cytosine methylation that primarily occurs in the CG dinucleotides (CpGs). However, less frequent non-CpG asymmetric methylation has been found in various cell types, such as mammalian neurons, and recent results suggest that these sites can repress transcription independently of CpG contexts. In addition, an emerging view is that CpG hemimethylation may arise not only from deregulation of cellular processes but also be a standard feature of the methylome. Here, we have applied a novel approach to examine whether asymmetric CpG methylation is present in a sparsely methylated genome of the honeybee, a social insect with a high level of epigenetically driven phenotypic plasticity. By combining strand-specific ultra-deep amplicon sequencing of illustrator genes with whole-genome methylomics and bioinformatics, we show that rare asymmetrically methylated CpGs can be unambiguously detected in the honeybee genome. Additionally, we confirm differential methylation between two phenotypically and reproductively distinct castes, queens and workers, and offer new insight into the heterogeneity of brain methylation patterns. In particular, we challenge the assumption that symmetrical methylation levels reflect symmetry in the underlying methylation patterns and conclude that hemimethylation may occur more frequently than indicated by methylation levels. Finally, we question the validity of a prior study in which most of cytosine methylation in this species was reported to be asymmetric.
Collapse
|
25
|
Welsh L, Maleszka R, Foret S. Detecting rare asymmetrically methylated cytosines and decoding methylation patterns in the honeybee genome. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170248. [PMID: 28989734 DOI: 10.5061/dryad.7nb8q] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/07/2017] [Indexed: 05/26/2023]
Abstract
Context-dependent gene expression in eukaryotes is controlled by several mechanisms including cytosine methylation that primarily occurs in the CG dinucleotides (CpGs). However, less frequent non-CpG asymmetric methylation has been found in various cell types, such as mammalian neurons, and recent results suggest that these sites can repress transcription independently of CpG contexts. In addition, an emerging view is that CpG hemimethylation may arise not only from deregulation of cellular processes but also be a standard feature of the methylome. Here, we have applied a novel approach to examine whether asymmetric CpG methylation is present in a sparsely methylated genome of the honeybee, a social insect with a high level of epigenetically driven phenotypic plasticity. By combining strand-specific ultra-deep amplicon sequencing of illustrator genes with whole-genome methylomics and bioinformatics, we show that rare asymmetrically methylated CpGs can be unambiguously detected in the honeybee genome. Additionally, we confirm differential methylation between two phenotypically and reproductively distinct castes, queens and workers, and offer new insight into the heterogeneity of brain methylation patterns. In particular, we challenge the assumption that symmetrical methylation levels reflect symmetry in the underlying methylation patterns and conclude that hemimethylation may occur more frequently than indicated by methylation levels. Finally, we question the validity of a prior study in which most of cytosine methylation in this species was reported to be asymmetric.
Collapse
Affiliation(s)
- Laura Welsh
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Ryszard Maleszka
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Sylvain Foret
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
26
|
Kalia V, Perera F, Tang D. Environmental Pollutants and Neurodevelopment: Review of Benefits From Closure of a Coal-Burning Power Plant in Tongliang, China. Glob Pediatr Health 2017; 4:2333794X17721609. [PMID: 28812058 PMCID: PMC5542072 DOI: 10.1177/2333794x17721609] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 06/13/2017] [Accepted: 06/21/2017] [Indexed: 12/02/2022] Open
Abstract
Background. Understanding preventable causes of neurodevelopmental disorders is a public health priority. Polycyclic aromatic hydrocarbons (PAH) from combustion of fossil fuel, lead, and mercury are among known neurodevelopmental toxicants. Method. For the first time, we comprehensively review the findings from a study by the Columbia Center for Children's Environmental Health and Chinese partners that followed 2 groups of mother-child pairs, one from 2002 and another from 2005, in Tongliang County, China. Pregnant mothers in the 2 cohorts experienced different exposure to PAH because a local coal-burning power plant was shut down in 2004. Investigators assessed change in prenatal PAH exposure, measured using a biomarker (benzo[a]pyrene [BaP]-DNA adducts in cord blood). Developmental quotients were measured using the Gesell Developmental Scales at age 2 and IQ was assessed using the Wechsler Intelligence Scale for Children at age 5. Biologic markers of preclinical response were measured in cord blood: methylation status of long interspersed nuclear elements (LINE1), an indicator of genomic stability, and brain-derived neurotrophic factor (BDNF), a neuronal growth promoter. Analyses accounted for co-exposure to lead and mercury. Results. BaP-DNA adducts were significantly inversely associated with Gesell Developmental Scales scores in the first cohort but not in the second cohort; and levels of BDNF and LINE1 methylation were higher in the second cohort. Conclusion. In this study, reduced exposure to PAH was associated with beneficial effects on neurodevelopment as well as molecular changes related to improved brain development and health. These benefits should encourage further efforts to limit exposure to these toxic pollutants.
Collapse
Affiliation(s)
- Vrinda Kalia
- Department of Environmental Health Sciences, Columbia Center for Children’s Environemental Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Frederica Perera
- Department of Environmental Health Sciences, Columbia Center for Children’s Environemental Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Deliang Tang
- Department of Environmental Health Sciences, Columbia Center for Children’s Environemental Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
27
|
Zhang P, Ludwig AK, Hastert FD, Rausch C, Lehmkuhl A, Hellmann I, Smets M, Leonhardt H, Cardoso MC. L1 retrotransposition is activated by Ten-eleven-translocation protein 1 and repressed by methyl-CpG binding proteins. Nucleus 2017; 8:548-562. [PMID: 28524723 PMCID: PMC5703239 DOI: 10.1080/19491034.2017.1330238] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
One of the major functions of DNA methylation is the repression of transposable elements, such as the long-interspersed nuclear element 1 (L1). The underlying mechanism(s), however, are unclear. Here, we addressed how retrotransposon activation and mobilization are regulated by methyl-cytosine modifying ten-eleven-translocation (Tet) proteins and how this is modulated by methyl-CpG binding domain (MBD) proteins. We show that Tet1 activates both, endogenous and engineered L1 retrotransposons. Furthermore, we found that Mecp2 and Mbd2 repress Tet1-mediated activation of L1 by preventing 5hmC formation at the L1 promoter. Finally, we demonstrate that the methyl-CpG binding domain, as well as the adjacent non-sequence specific DNA binding domain of Mecp2 are each sufficient to mediate repression of Tet1-induced L1 mobilization. Our study reveals a mechanism how L1 elements get activated in the absence of Mecp2 and suggests that Tet1 may contribute to Mecp2/Mbd2-deficiency phenotypes, such as the Rett syndrome. We propose that the balance between methylation "reader" and "eraser/writer" controls L1 retrotransposition.
Collapse
Affiliation(s)
- Peng Zhang
- a Department of Biology , Technical University Darmstadt , Darmstadt , Germany
| | - Anne K Ludwig
- a Department of Biology , Technical University Darmstadt , Darmstadt , Germany
| | - Florian D Hastert
- a Department of Biology , Technical University Darmstadt , Darmstadt , Germany
| | - Cathia Rausch
- a Department of Biology , Technical University Darmstadt , Darmstadt , Germany
| | - Anne Lehmkuhl
- a Department of Biology , Technical University Darmstadt , Darmstadt , Germany
| | - Ines Hellmann
- b Anthropology and Human Genomics, Department Biology II , LMU Munich , Germany
| | - Martha Smets
- c Human Biology and BioImaging, Department of Biology II , LMU Munich , Germany
| | - Heinrich Leonhardt
- c Human Biology and BioImaging, Department of Biology II , LMU Munich , Germany
| | - M Cristina Cardoso
- a Department of Biology , Technical University Darmstadt , Darmstadt , Germany
| |
Collapse
|
28
|
Nasri F, Gharesi-Fard B, Namavar Jahromi B, Farazi-Fard MA, Banaei M, Davari M, Ebrahimi S, Anvar Z. Sperm DNA methylation of H19 imprinted gene and male infertility. Andrologia 2017; 49. [PMID: 28295500 DOI: 10.1111/and.12766] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2016] [Indexed: 02/06/2023] Open
Abstract
Infertility affects up to 15% of reproductive-aged couples worldwide, with male factor being detected in 40%-50% of the cases. Proper sperm production is associated with the establishment of appropriate epigenetic marks in developing germ cells. Several studies have demonstrated the association between abnormal spermatogenesis and epigenetic disturbances with the major focus on DNA methylation. Imprinted genes are expressed in a parent-of-origin-specific manner, and the role of their DNA methylation in proper spermatogenesis has been documented recently. The existing evidence along with the absence of relevant data in south of Iran prompted us to study the methylation of H19 imprinted gene in spermatozoa of idiopathic infertile patients (males with abnormalities in sperm parameters) and healthy controls by Combined Bisulfite Restriction Analysis. According to our results, the lowest methylation percentage of H19 imprinted gene belongs to three cases with sperm characteristics under normal range (two cases Oligoasthenoteratozoospermia and one case Oligoteratozoospermia). However, our results show that the median of methylation percentage for H19 is not statistically significant between case and control groups. Our results and those of others introduce DNA methylation as a potential marker of fertility and should be investigated with more patients in future studies.
Collapse
Affiliation(s)
- F Nasri
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - B Gharesi-Fard
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - B Namavar Jahromi
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Obstetrics and Gynecology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M A Farazi-Fard
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M Banaei
- IVF Division, Ghadir-Mother and Child Hospital of Shiraz, Shiraz, Iran
| | - M Davari
- Department of Obstetrics and Gynecology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,IVF Division, Ghadir-Mother and Child Hospital of Shiraz, Shiraz, Iran
| | - S Ebrahimi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Z Anvar
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Obstetrics and Gynecology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
29
|
Abstract
Retrotransposons have generated about 40 % of the human genome. This review examines the strategies the cell has evolved to coexist with these genomic "parasites", focussing on the non-long terminal repeat retrotransposons of humans and mice. Some of the restriction factors for retrotransposition, including the APOBECs, MOV10, RNASEL, SAMHD1, TREX1, and ZAP, also limit replication of retroviruses, including HIV, and are part of the intrinsic immune system of the cell. Many of these proteins act in the cytoplasm to degrade retroelement RNA or inhibit its translation. Some factors act in the nucleus and involve DNA repair enzymes or epigenetic processes of DNA methylation and histone modification. RISC and piRNA pathway proteins protect the germline. Retrotransposon control is relaxed in some cell types, such as neurons in the brain, stem cells, and in certain types of disease and cancer, with implications for human health and disease. This review also considers potential pitfalls in interpreting retrotransposon-related data, as well as issues to consider for future research.
Collapse
Affiliation(s)
- John L. Goodier
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA 212051
| |
Collapse
|
30
|
Ariumi Y. Guardian of the Human Genome: Host Defense Mechanisms against LINE-1 Retrotransposition. Front Chem 2016; 4:28. [PMID: 27446907 PMCID: PMC4924340 DOI: 10.3389/fchem.2016.00028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 06/14/2016] [Indexed: 11/13/2022] Open
Abstract
Long interspersed element type 1 (LINE-1, L1) is a mobile genetic element comprising about 17% of the human genome, encoding a newly identified ORF0 with unknown function, ORF1p with RNA-binding activity and ORF2p with endonuclease and reverse transcriptase activities required for L1 retrotransposition. L1 utilizes an endonuclease (EN) to insert L1 cDNA into target DNA, which induces DNA double-strand breaks (DSBs). The ataxia-telangiectasia mutated (ATM) is activated by DSBs and subsequently the ATM-signaling pathway plays a role in regulating L1 retrotransposition. In addition, the host DNA repair machinery such as non-homologous end-joining (NHEJ) repair pathway is also involved in L1 retrotransposition. On the other hand, L1 is an insertional mutagenic agent, which contributes to genetic change, genomic instability, and tumorigenesis. Indeed, high-throughput sequencing-based approaches identified numerous tumor-specific somatic L1 insertions in variety of cancers, such as colon cancer, breast cancer, and hepatocellular carcinoma (HCC). In fact, L1 retrotransposition seems to be a potential factor to reduce the tumor suppressive property in HCC. Furthermore, recent study demonstrated that a specific viral-human chimeric transcript, HBx-L1, contributes to hepatitis B virus (HBV)-associated HCC. In contrast, host cells have evolved several defense mechanisms protecting cells against retrotransposition including epigenetic regulation through DNA methylation and host defense factors, such as APOBEC3, MOV10, and SAMHD1, which restrict L1 mobility as a guardian of the human genome. In this review, I focus on somatic L1 insertions into the human genome in cancers and host defense mechanisms against deleterious L1 insertions.
Collapse
Affiliation(s)
- Yasuo Ariumi
- Ariumi Project Laboratory, Center for AIDS Research and International Research Center for Medical Sciences, Kumamoto University Kumamoto, Japan
| |
Collapse
|
31
|
Upregulated LINE-1 Activity in the Fanconi Anemia Cancer Susceptibility Syndrome Leads to Spontaneous Pro-inflammatory Cytokine Production. EBioMedicine 2016; 8:184-194. [PMID: 27428429 PMCID: PMC4919473 DOI: 10.1016/j.ebiom.2016.05.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/08/2016] [Accepted: 05/05/2016] [Indexed: 11/30/2022] Open
Abstract
Fanconi Anemia (FA) is a genetic disorder characterized by elevated cancer susceptibility and pro-inflammatory cytokine production. Using SLX4FANCP deficiency as a working model, we questioned the trigger for chronic inflammation in FA. We found that absence of SLX4 caused cytoplasmic DNA accumulation, including sequences deriving from active Long INterspersed Element-1 (LINE-1), triggering the cGAS-STING pathway to elicit interferon (IFN) expression. In agreement, absence of SLX4 leads to upregulated LINE-1 retrotransposition. Importantly, similar results were obtained with the FANCD2 upstream activator of SLX4. Furthermore, treatment of FA cells with the Tenofovir reverse transcriptase inhibitor (RTi), that prevents endogenous retrotransposition, decreased both accumulation of cytoplasmic DNA and pro-inflammatory signaling. Collectively, our data suggest a contribution of endogenous RT activities to the generation of immunogenic cytoplasmic nucleic acids responsible for inflammation in FA. The additional observation that RTi decreased pro-inflammatory cytokine production induced by DNA replication stress-inducing drugs further demonstrates the contribution of endogenous RTs to sustaining chronic inflammation. Altogether, our data open perspectives in the prevention of adverse effects of chronic inflammation in tumorigenesis. Cytoplasmic DNA, comprising LINE-1-derived sequences, elicits IFN expression via the cGAS-STING pathway in SLX4-deficiency. Members of the Fanconi Anemia DNA repair pathway negatively regulate LINE-1 retrotransposition. Endogenous reverse transcriptase activities contribute to spontaneous and chemotherapy-induced inflammation.
Chronic inflammation favors tumorigenesis, negatively influencing patient prognosis. Yet, the underlying molecular mechanisms are poorly understood. Here, we show that increased endogenous retroelement-associated reverse transcriptase activity contributes to generate immunogenic cytoplasmic nucleic acids susceptible of triggering a pro-inflammatory response in the Fanconi Anemia (FA) cancer susceptibility syndrome. In addition, treatment of FA cells or of cells exposed to replication stress inducing drugs, with a reverse transcriptase inhibitor, decreases pro-inflammatory signals. Altogether our data suggest the involvement of endogenous reverse transcriptase activities in sustaining pervasive chronic inflammation, opening therapeutic perspectives for preventing its impact on tumorigenesis.
Collapse
|
32
|
Hu S, Liang C, Guo F. Stress out the LINEs. Mob Genet Elements 2016; 6:e1133267. [PMID: 27066303 DOI: 10.1080/2159256x.2015.1133267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/04/2015] [Accepted: 12/10/2015] [Indexed: 10/22/2022] Open
Abstract
Occupying 17% of human genome, the mobile long interspersed element 1 (LINE-1 or L1) continues to modulate the landscape of our genome by inserting into new loci and, as a result, causing sporadic diseases. It is not surprising that human cells have evolved a battery of mechanisms to control and limit the activity of LINE-1. Our recent study unravels such a mechanism that is imposed by the stress granule pathway. This mechanism functions by sequestering the LINE-1 RNA-protein complex within the cytoplasmic stress granules and thus inhibiting the nuclear import of LINE-1 RNA and its subsequent reverse transcription and integration into cellular DNA. Conditions that promote stress granule formation, such as expression of the SAMHD1 protein, further reduce LINE-1 retrotransposition.
Collapse
Affiliation(s)
- Siqi Hu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing, P. R. China
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital , Montreal, Quebec, Canada
| | - Fei Guo
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing, P. R. China
| |
Collapse
|
33
|
Song YS, Kim Y, Cho NY, Yang HK, Kim WH, Kang GH. Methylation status of long interspersed element-1 in advanced gastric cancer and its prognostic implication. Gastric Cancer 2016; 19:98-106. [PMID: 25609453 DOI: 10.1007/s10120-015-0463-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/29/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUNDS Reportedly, the pyrosequencing methylation assay can produce inconsistent results between paired snap-frozen and formalin-fixed paraffin-embedded archival tissue samples. In this study, we assayed the methylation levels at four individual CpG sites of L1 using pyrosequencing and found that the methylation levels at individual CpG sites were different but were closely correlated between paired snap-frozen and formalin-fixed paraffin-embedded tissue samples. We aimed to determine whether low methylation status of L1 is associated with gastric cancer patient prognosis. METHODS We analyzed 434 formalin-fixed paraffin-embedded tissue samples of advanced gastric cancer for their methylation status at four CpG sites of L1 [nucleotide positions 328, 321, 318, and 306 of X58075 (Genbank)] using pyrosequencing, and correlated the L1 methylation level with clinicopathological features. RESULTS Older age at onset, males, tumor location at antrum or lower body, intestinal type, and lymphatic or venous invasion were associated with a low average methylation level of L1 at the two CpG sites 1 and 4 combined. The average methylation level of L1 at CpG sites 1 and 4 combined was significantly lower in microsatellite-stable and EBV-negative gastric cancers than in EBV-positive or microsatellite-unstable gastric cancers. Low methylation status of L1 was independently correlated with shorter overall survival and disease-free survival time. CONCLUSION Our findings indicate that the discrepancy in the methylation level of L1 between fresh tissue and formalin-fixed paraffin-embedded tissue samples depends on the CpG sites considered, and that the methylation status of L1 at CpG sites 1 and 4 combined could be utilized as a prognostic parameter for advanced gastric cancers.
Collapse
Affiliation(s)
- Young Seok Song
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Younghoon Kim
- Department of Pathology, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul, 110-744, South Korea
| | - Nam Yun Cho
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Han Kwang Yang
- Department of General Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul, 110-744, South Korea
| | - Gyeong Hoon Kang
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea. .,Department of Pathology, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul, 110-744, South Korea.
| |
Collapse
|
34
|
Davis AP, Benninghoff AD, Thomas AJ, Sessions BR, White KL. DNA methylation of the LIN28 pseudogene family. BMC Genomics 2015; 16:287. [PMID: 25884154 PMCID: PMC4404226 DOI: 10.1186/s12864-015-1487-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 03/25/2015] [Indexed: 12/01/2022] Open
Abstract
Background DNA methylation directs the epigenetic silencing of selected regions of DNA, including the regulation of pseudogenes, and is widespread throughout the genome. Pseudogenes are decayed copies of duplicated genes that have spread throughout the genome by transposition. Pseudogenes are transcriptionally silenced by DNA methylation, but little is known about how pseudogenes are targeted for methylation or how methylation levels are maintained in different tissues. Results We employed bisulfite next generation sequencing to examine the methylation status of the LIN28 gene and four processed pseudogenes derived from LIN28. The objective was to determine whether LIN28 pseudogenes maintain the same pattern of methylation as the parental gene or acquire a methylation pattern independent of the gene of origin. In this study, we determined that the methylation status of LIN28 pseudogenes does not resemble the pattern evident for the LIN28 gene, but rather these pseudogenes appear to acquire methylation patterns independent of the parental gene. Furthermore, we observed that methylation levels of the examined pseudogenes correlate to the location of insertion within the genome. LIN28 pseudogenes inserted into gene bodies were highly methylated in all tissues examined. In contrast, pseudogenes inserted into genomic regions that are not proximal to genes were differentially methylated in various tissue types. Conclusions Our analysis suggests that Lin28 pseudogenes do not aquire patterns of tissue-specific methylation as for the parental gene, but rather are methylated in patterns specific to the local genomic environment into which they were inserted. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1487-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aaron P Davis
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, 4815 Old Main Hill, Logan, UT, 84322-4815, USA.
| | - Abby D Benninghoff
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, 4815 Old Main Hill, Logan, UT, 84322-4815, USA. .,School of Veterinary Medicine, Utah State University, Logan, UT, USA. .,USTAR Applied Nutrition Research, Utah State University, Logan, UT, USA.
| | - Aaron J Thomas
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, 4815 Old Main Hill, Logan, UT, 84322-4815, USA.
| | - Benjamin R Sessions
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, 4815 Old Main Hill, Logan, UT, 84322-4815, USA.
| | - Kenneth L White
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, 4815 Old Main Hill, Logan, UT, 84322-4815, USA. .,School of Veterinary Medicine, Utah State University, Logan, UT, USA.
| |
Collapse
|
35
|
Couldrey C, Brauning R, Henderson HV, McEwan JC. Genome-wide DNA methylation analysis: no evidence for stable hemimethylation in the sheep muscle genome. Anim Genet 2015; 46:185-9. [PMID: 25662407 DOI: 10.1111/age.12268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2014] [Indexed: 11/28/2022]
Abstract
The importance of maintaining DNA methylation patterns and faithful transmission of these patterns during cell division to ensure appropriate gene expression has been known for many decades now. It has largely been assumed that the symmetrical nature of CpG motifs, the most common site for DNA methylation in mammals, together with the presence of maintenance methylases able to methylate newly synthesised DNA, ensures that there is concordance of methylation on both strands. However, although this assumption is compelling in theory, little experimental evidence exists that either supports or refutes this assumption. Here, we have undertaken a genome-wide single-nucleotide resolution analysis to determine the frequency with which hemimethylated CpG sites exist in sheep muscle tissue. Analysis of multiple independent samples provides strong evidence that stably maintained hemimethylation is a very rare occurrence, at least in this tissue. Given the rarity of stably maintained hemimethylation, next-generation sequencing data from both DNA strands may be carefully combined to increase the accuracy with which DNA methylation can be measured at single-nucleotide resolution.
Collapse
Affiliation(s)
- C Couldrey
- Ruakura Research Centre, AgResearch Ltd., 10 Bisley Road, Hamilton, New Zealand
| | | | | | | |
Collapse
|
36
|
Belkhiri A, El-Rifai W. 5-Methylcytosine hydroxylation-mediated LINE-1 hypomethylation: a novel mechanism of proto-oncogenes activation in colorectal cancer? Gut 2014; 63:538-9. [PMID: 23812322 PMCID: PMC4035300 DOI: 10.1136/gutjnl-2013-305176] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Abbes Belkhiri
- Department of Surgery and Department of Cancer Biology,
Vanderbilt University Medical Center, Nashville TN 37232
| | - Wael El-Rifai
- Department of Surgery and Department of Cancer Biology,
Vanderbilt University Medical Center, Nashville TN 37232,Department of Veterans Affairs, Tennessee Valley Healthcare
System, Nashville, TN 37232
| |
Collapse
|
37
|
Venhoranta H, Li S, Salamon S, Flisikowska T, Andersson M, Switonski M, Kind A, Schnieke A, Flisikowski K. Non-CpG hypermethylation in placenta of mutation-induced intrauterine growth restricted bovine foetuses. Biochem Biophys Res Commun 2014; 444:391-4. [PMID: 24480436 DOI: 10.1016/j.bbrc.2014.01.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 01/17/2014] [Indexed: 11/20/2022]
Abstract
The existence of non-CpG methylation in mammalian DNA has mainly been observed in embryonic stem cells, but its functional significance is uncertain. We found an age-dependent non-CpG hypermethylation in DMR at the 3' end of the MIMT1 in the placenta of intrauterine growth restricted foetuses in cattle. Data suggest that this DMR play a role in epigenetic regulation of the PEG3 domain.
Collapse
Affiliation(s)
- Heli Venhoranta
- Department of Production Animal Medicine, University of Helsinki, Saarentaus, Finland
| | - Shun Li
- Chair of Livestock Biotechnology, Technische Universität München, Freising, Germany
| | - Sylwia Salamon
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
| | - Tatiana Flisikowska
- Chair of Livestock Biotechnology, Technische Universität München, Freising, Germany
| | - Magnus Andersson
- Department of Production Animal Medicine, University of Helsinki, Saarentaus, Finland
| | - Marek Switonski
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
| | - Alexander Kind
- Chair of Livestock Biotechnology, Technische Universität München, Freising, Germany
| | - Angelika Schnieke
- Chair of Livestock Biotechnology, Technische Universität München, Freising, Germany
| | - Krzysztof Flisikowski
- Chair of Livestock Biotechnology, Technische Universität München, Freising, Germany.
| |
Collapse
|
38
|
Gao XD, Qu JH, Chang XJ, Lu YY, Bai WL, Wang H, Xu ZX, An LJ, Wang CP, Zeng Z, Yang YP. Hypomethylation of long interspersed nuclear element-1 promoter is associated with poor outcomes for curative resected hepatocellular carcinoma. Liver Int 2014; 34:136-46. [PMID: 23875825 PMCID: PMC4238827 DOI: 10.1111/liv.12264] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 06/12/2013] [Accepted: 06/20/2013] [Indexed: 12/19/2022]
Abstract
BACKGROUND Epigenetic alterations are well documented in hepatocarcinogenesis. However, hypomethylation of long interspersed nuclear element 1(LINE-1) promoter and its relationship with clinicopathological features in hepatocellular carcinoma(HCC) remain unknown. METHODS The bisulfite-specific PCR and DNA sequencing analysis was performed to assess the methylation status of LINE-1 promoter in a pilot cohort of 71 patients with HCC. Additionally,methylation levels of two hot CpG sites of LINE-1 promoter, site 7 and 18 were measured by real-time PCR and compared with clinicopathological parameters in a cohort of 172 HCC. All the patients included were in BCLC stage A or B. RESULTS Most patients with HCC (87.3%) showed hypomethylation of LINE-1 promoter compared with HBV-related cirrhosis and normal controls (P < 0.001). The HCC patients with LINE-1 promoter hypomethylation had a median tumour-free survival (TFS) and overall survival (OS)post-resection of 22.0 (95% CI: 13.3–30.7) months and 35.0 (95% CI: 24.0–46.1) months, respectively, compared with 40 months and ~60 months for those with LINE-1 promoter hypermethylation (P < 0.05). Multivariate analyses showed that the hypomethylation level at CpG site 7 and 18 of LINE-1 promoter, along with tumour size and tumour differentiation, was independently associated with both TFS and OS for patients with HCC after resection. CONCLUSION Promoter hypomethylation of LINE-1, especially at the CpG site 7 and 18, was associated with a poor prognosis in HCC.
Collapse
Affiliation(s)
- Xu-dong Gao
- Department of Hepatology, Center of Therapeutic Research for Liver Cancer, The 302nd HospitalBeijing, China,* Both authors contributed equally to this work
| | - Jian-hui Qu
- Department of Hepatology, Center of Therapeutic Research for Liver Cancer, The 302nd HospitalBeijing, China,Beijing Institute for Infectious DiseaseBeijing, China,* Both authors contributed equally to this work
| | - Xiu-juan Chang
- Department of Hepatology, Center of Therapeutic Research for Liver Cancer, The 302nd HospitalBeijing, China
| | - Yin-ying Lu
- Department of Hepatology, Center of Therapeutic Research for Liver Cancer, The 302nd HospitalBeijing, China
| | - Wen-lin Bai
- Department of Hepatology, Center of Therapeutic Research for Liver Cancer, The 302nd HospitalBeijing, China
| | - Hong Wang
- Department of Hepatology, Center of Therapeutic Research for Liver Cancer, The 302nd HospitalBeijing, China
| | - Zhong-xian Xu
- Department of Hepatology, Center of Therapeutic Research for Liver Cancer, The 302nd HospitalBeijing, China
| | - Lin-jing An
- Department of Hepatology, Center of Therapeutic Research for Liver Cancer, The 302nd HospitalBeijing, China
| | - Chun-ping Wang
- Department of Hepatology, Center of Therapeutic Research for Liver Cancer, The 302nd HospitalBeijing, China
| | - Zhen Zeng
- Department of Hepatology, Center of Therapeutic Research for Liver Cancer, The 302nd HospitalBeijing, China
| | - Yong-ping Yang
- Department of Hepatology, Center of Therapeutic Research for Liver Cancer, The 302nd HospitalBeijing, China,Beijing Institute for Infectious DiseaseBeijing, China
| |
Collapse
|
39
|
Julsing JR, Peters GJ. Methylation of DNA repair genes and the efficacy of DNA targeted anticancer treatment. ACTA ACUST UNITED AC 2014. [DOI: 10.7243/2052-6199-2-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
40
|
Abstract
Type 1 long-interspersed nuclear elements (L1s) are autonomous retrotransposable elements that retain the potential for activity in the human genome but are suppressed by host factors. Retrotransposition of L1s into chromosomal DNA can lead to genomic instability, whereas reverse transcription of L1 in the cytosol has the potential to activate innate immune sensors. We hypothesized that HIV-1 infection would compromise cellular control of L1 elements, resulting in the induction of retrotransposition events. Here, we show that HIV-1 infection enhances L1 retrotransposition in Jurkat cells in a Vif- and Vpr-dependent manner. In primary CD4(+) cells, HIV-1 infection results in the accumulation of L1 DNA, at least the majority of which is extrachromosomal. These data expose an unrecognized interaction between HIV-1 and endogenous retrotransposable elements, which may have implications for the innate immune response to HIV-1 infection, as well as for HIV-1-induced genomic instability and cytopathicity.
Collapse
|
41
|
Li B, Li JB, Xiao XF, Ma YF, Wang J, Liang XX, Zhao HX, Jiang F, Yao YQ, Wang XH. Altered DNA methylation patterns of the H19 differentially methylated region and the DAZL gene promoter are associated with defective human sperm. PLoS One 2013; 8:e71215. [PMID: 24015185 PMCID: PMC3756053 DOI: 10.1371/journal.pone.0071215] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 06/30/2013] [Indexed: 01/28/2023] Open
Abstract
DNA methylation disturbance is associated with defective human sperm. However, oligozoospermia (OZ) and asthenozoospermia (AZ) usually present together, and the relationship between the single-phenotype defects in human sperm and DNA methylation is poorly understood. In this study, 20 infertile OZ patients and 20 infertile AZ patients were compared with 20 fertile normozoospermic men. Bisulfate-specific PCR was used to analyze DNA methylation of the H19-DMR and the DAZL promoter in these subjects. A similar DNA methylation pattern of the H19-DMR was detected in AZ and NZ(control), with only complete methylation and mild hypomethylation(<50% unmethylated CpGs) identified, and there was no significant difference in the occurrence of these two methylation patterns between AZ and NZ (P>0.05). However, the methylation pattern of severe hypomethylation (>50% unmethylated CpGs ) and complete unmethylation was only detected in 5 OZ patients, and the occurrence of these two methylation patterns was 8.54±10.86% and 9±6.06%, respectively. Loss of DNA methylation of the H19-DMR in the OZ patients was found to mainly occur in CTCF-binding site 6, with occurrence of 18.15±14.71%, which was much higher than that in patients with NZ (0.84±2.05%) and AZ (0.58±1.77%) (P<0.001).Additional, our data indicated the occurrence of >20% methylated clones in the DAZL promoter only in infertile patients, there was no significant difference between the AZ and OZ patients in the proportion of moderately-to-severely hypermethylated clones (p>0.05). In all cases, global sperm genome methylation analyses, using LINE1 transposon as the indicator, showed that dysregulation of DNA methylation is specifically associated with the H19-DMR and DAZL promoter. Therefore, abnormal DNA methylation status of H19-DMR, especially at the CTCF-binding site 6, is closely associated with OZ. Abnormal DNA methylation of the DAZL promoter might represent an epigenetic marker of male infertility.
Collapse
Affiliation(s)
- Bo Li
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, China
| | - Jian-bo Li
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, China
| | - Xi-feng Xiao
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, China
| | - Ye-fei Ma
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, China
| | - Jun Wang
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, China
| | - Xin-xin Liang
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, China
| | - Hong-xi Zhao
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, China
| | - Feng Jiang
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, China
| | - Yuan-qing Yao
- Department of Obstetrics and Gynecology, General Hospital of the Chinese People's Liberation Army, Peking, China
| | - Xiao-hong Wang
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, China
| |
Collapse
|
42
|
Iijima K, Okudaira N, Tamura M, Doi A, Saito Y, Shimura M, Goto M, Matsunaga A, Kawamura YI, Otsubo T, Dohi T, Hoshino S, Kano S, Hagiwara S, Tanuma J, Gatanaga H, Baba M, Iguchi T, Yanagita M, Oka S, Okamura T, Ishizaka Y. Viral protein R of human immunodeficiency virus type-1 induces retrotransposition of long interspersed element-1. Retrovirology 2013; 10:83. [PMID: 23915234 PMCID: PMC3751050 DOI: 10.1186/1742-4690-10-83] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 07/18/2013] [Indexed: 01/04/2023] Open
Abstract
Background Viral protein R (Vpr), a protein of human immunodeficiency virus type-1 (HIV-1) with various biological functions, was shown to be present in the blood of HIV-1-positive patients. However, it remained unclear whether circulating Vpr in patients’ blood is biologically active. Here, we examined the activity of blood Vpr using an assay system by which retrotransposition of long interspersed element-1 (L1-RTP) was detected. We also investigated the in vivo effects of recombinant Vpr (rVpr) by administrating it to transgenic mice harboring human L1 as a transgene (hL1-Tg mice). Based on our data, we discuss the involvement of blood Vpr in the clinical symptoms of acquired immunodeficiency syndrome (AIDS). Results We first discovered that rVpr was active in induction of L1-RTP. Biochemical analyses revealed that rVpr-induced L1-RTP depended on the aryl hydrocarbon receptor, mitogen-activated protein kinases, and CCAAT/enhancer-binding protein β. By using a sensitive L1-RTP assay system, we showed that 6 of the 15 blood samples from HIV-1 patients examined were positive for induction of L1-RTP. Of note, the L1-RTP-inducing activity was blocked by a monoclonal antibody specific for Vpr. Moreover, L1-RTP was reproducibly induced in various organs, including the kidney, when rVpr was administered to hL1-Tg mice. Conclusions Blood Vpr is biologically active, suggesting that its monitoring is worthwhile for clarification of the roles of Vpr in the pathogenesis of AIDS. This is the first report to demonstrate a soluble factor in patients’ blood active for L1-RTP activity, and implies the involvement of L1-RTP in the development of human diseases.
Collapse
Affiliation(s)
- Kenta Iijima
- Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
The Intersection of Genetics and Epigenetics: Reactivation of Mammalian LINE-1 Retrotransposons by Environmental Injury. ENVIRONMENTAL EPIGENOMICS IN HEALTH AND DISEASE 2013. [DOI: 10.1007/978-3-642-23380-7_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
44
|
Long interspersed element-1 is differentially regulated by food-borne carcinogens via the aryl hydrocarbon receptor. Oncogene 2012. [PMID: 23208499 PMCID: PMC3795476 DOI: 10.1038/onc.2012.516] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A single human cell contains more than 5.0 × 10(5) copies of long interspersed element-1 (L1), 80-100 of which are competent for retrotransposition (L1-RTP). Recent observations have revealed the presence of de novo L1 insertions in various tumors, but little is known about its mechanism. Here, we found that 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-amino-3,8-dimethyl-imidazo[4,5-f]quinoxaline (MeIQx), food-borne carcinogens that are present in broiled meats, induced L1-RTP. This induction was dependent on a cellular cascade comprising the aryl hydrocarbon receptor (AhR), a mitogen-activated protein kinase, and CCAAT/enhancer-binding protein β. Notably, these compounds exhibited differential induction of L1-RTP. MeIQx-induced L1-RTP was dependent on AhR nuclear translocator 1 (ARNT1), a counterpart of AhR required for gene expression in response to environmental pollutants. By contrast, PhIP-induced L1-RTP did not require ARNT1 but was dependent on estrogen receptor α (ERα) and AhR repressor. In vivo studies using transgenic mice harboring the human L1 gene indicated that PhIP-induced L1-RTP was reproducibly detected in the mammary gland, which is a target organ of PhIP-induced carcinoma. Moreover, picomolar levels of each compound induced L1-RTP, which is comparable to the PhIP concentration detected in human breast milk. Data suggest that somatic cells possess machineries that induce L1-RTP in response to the carcinogenic compounds. Together with data showing that micromolar levels of heterocyclic amines (HCAs) were non-genotoxic, our observations indicate that L1-RTP by environmental compounds is a novel type of genomic instability, further suggesting that analysis of L1-RTP by HCAs is a novel approach to clarification of modes of carcinogenesis.
Collapse
|
45
|
Transcriptional activation of transposable elements in mouse zygotes is independent of Tet3-mediated 5-methylcytosine oxidation. Cell Res 2012. [PMID: 23184059 DOI: 10.1038/cr.2012.160] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The methylation state of the paternal genome is rapidly reprogrammed shortly after fertilization. Recent studies have revealed that loss of 5-methylcytosine (5mC) in zygotes correlates with appearance of 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). This process is mediated by Tet3 and the 5mC oxidation products generated in zygotes are gradually lost during preimplantation development through a replication-dependent dilution process. Despite these findings, the biological significance of Tet3-mediated oxidation of 5mC to 5hmC/5fC/5caC in zygotes is unknown. DNA methylation plays an important role in silencing gene expression including the repression of transposable elements (TEs). Given that the activation of TEs during preimplantation development correlates with loss of DNA methylation, it is believed that paternal DNA demethylation may have an important role in TE activation. Here we examined this hypothesis and found that Tet3-mediated 5mC oxidation does not have a significant contribution to TE activation. We show that the expression of LINE-1 (long interspersed nucleotide element 1) and ERVL (endogenous retroviruses class III) are activated from both paternal and maternal genomes in zygotes. Inhibition of 5mC oxidation by siRNA-mediated depletion of Tet3 affected neither TE activation, nor global transcription in zygotes. Thus, our study provides the first evidence demonstrating that activation of both TEs and global transcription in zygotes are independent of Tet3-mediated 5mC oxidation.
Collapse
|
46
|
Ishizaka Y, Okudaira N, Tamura M, Iijima K, Shimura M, Goto M, Okamura T. Modes of retrotransposition of long interspersed element-1 by environmental factors. Front Microbiol 2012; 3:191. [PMID: 22666219 PMCID: PMC3364524 DOI: 10.3389/fmicb.2012.00191] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/10/2012] [Indexed: 11/13/2022] Open
Abstract
Approximately 42% of the human genome is composed of endogenous retroelements, and the major retroelement component, long interspersed element-1 (L1), comprises ∼17% of the total genome. A single human cell has more than 5 × 10(5) copies of L1, 80∼100 copies of which are competent for retrotransposition (RTP). Notably, L1 can induce RTP of other retroelements, such as Alu and SVA, and is believed to function as a driving force of evolution. Although L1-RTP during early embryogenesis has been highlighted in the literature, recent observations revealed that L1-RTP also occurs in somatic cells. However, little is known about how environmental factors induce L1-RTP. Here, we summarize our current understanding of the mechanism of L1-RTP in somatic cells. We have focused on the mode of L1-RTP that is dependent on the basic helix-loop-helix/per-arnt-sim (bHLH/PAS) family of transcription factors. Along with the proposed function of bHLH/PAS proteins in environmental adaptation, we discuss the functional linking of L1-RTP and bHLH/PAS proteins for environmental adaptation and evolution.
Collapse
Affiliation(s)
- Yukihito Ishizaka
- Department of Intractable Diseases, National Center for Global Health and Medicine Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Rosser JM, An W. L1 expression and regulation in humans and rodents. Front Biosci (Elite Ed) 2012; 4:2203-25. [PMID: 22202032 DOI: 10.2741/537] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Long interspersed elements type 1 (LINE-1s, or L1s) have impacted mammalian genomes at multiple levels. L1 transcription is mainly controlled by its 5' untranslated region (5'UTR), which differs significantly among active human and rodent L1 families. In this review, L1 expression and its regulation are examined in the context of human and rodent development. First, endogenous L1 expression patterns in three different species-human, rat, and mouse-are compared and contrasted. A detailed account of relevant experimental evidence is presented according to the source material, such as cell lines, tumors, and normal somatic and germline tissues from different developmental stages. Second, factors involved in the regulation of L1 expression at both transcriptional and posttranscriptional levels are discussed. These include transcription factors, DNA methylation, PIWI-interacting RNAs (piRNAs), RNA interference (RNAi), and posttranscriptional host factors. Similarities and differences between human and rodent L1s are highlighted. Third, recent findings from transgenic mouse models of L1 are summarized and contrasted with those from endogenous L1 studies. Finally, the challenges and opportunities for L1 mouse models are discussed.
Collapse
Affiliation(s)
- James M Rosser
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| | | |
Collapse
|
48
|
Tovy A, Ankri S. Epigenetics in the unicellular parasite Entamoeba histolytica. Future Microbiol 2011; 5:1875-84. [PMID: 21198420 DOI: 10.2217/fmb.10.140] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amoebiasis is a serious infectious disease that is caused by the unicellular parasite, Entamoeba histolytica. This parasite is mainly found in developing countries, and are named owing to its ability to destroy tissues. The molecular mechanisms that regulate the virulence of this parasite are not well understood. In recent years, an increasing interest in the epigenetic regulation of the parasite's virulence has emerged. In this article, an overview of our current knowledge about the role of DNA methylation, histone modifications and RNA-associated silencing in the biology of E. histolytica is provided. The relevance of some features of the parasite's unique epigenetic machinery to the development of new antiamoebic therapeutic molecules is discussed.
Collapse
Affiliation(s)
- Ayala Tovy
- Department of Microbiology, Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology & the Rappaport Institute, Haifa, Israel
| | | |
Collapse
|
49
|
Moskalev EA, Zavgorodnij MG, Majorova SP, Vorobjev IA, Jandaghi P, Bure IV, Hoheisel JD. Correction of PCR-bias in quantitative DNA methylation studies by means of cubic polynomial regression. Nucleic Acids Res 2011; 39:e77. [PMID: 21486748 PMCID: PMC3113592 DOI: 10.1093/nar/gkr213] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
DNA methylation profiling has become an important aspect of biomedical molecular analysis. Polymerase chain reaction (PCR) amplification of bisulphite-treated DNA is a processing step that is common to many currently used methods of quantitative methylation analysis. Preferential amplification of unmethylated alleles—known as PCR-bias—may significantly affect the accuracy of quantification. To date, no universal experimental approach has been reported to overcome the problem. This study presents an effective method of correcting biased methylation data. The procedure includes a calibration performed in parallel to the analysis of the samples under investigation. DNA samples with defined degrees of methylation are analysed. The observed deviation of the experimental results from the expected values is used for calculating a regression curve. The equation of the best-fitting curve is then used for correction of the data obtained from the samples of interest. The process can be applied irrespective of the locus interrogated and the number of sites analysed, avoiding an optimization of the amplification conditions for each individual locus.
Collapse
Affiliation(s)
- Evgeny A Moskalev
- Functional Genome Analysis, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
50
|
Prazeres H, Torres J, Rodrigues F, Pinto M, Pastoriza MC, Gomes D, Cameselle-Teijeiro J, Vidal A, Martins TC, Sobrinho-Simões M, Soares P. Chromosomal, epigenetic and microRNA-mediated inactivation of LRP1B, a modulator of the extracellular environment of thyroid cancer cells. Oncogene 2010; 30:1302-17. [PMID: 21057533 DOI: 10.1038/onc.2010.512] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The low-density lipoprotein receptor-related protein (LRP1B), encoding an endocytic LDL-family receptor, is among the 10 most significantly deleted genes across 3312 human cancer specimens. However, currently the apparently crucial role of this lipoprotein receptor in carcinogenesis is not clear. Here we show that LRP1B inactivation (by chromosomal, epigenetic and microRNA (miR)-mediated mechanisms) results in changes to the tumor environment that confer cancer cells an increased growth and invasive capacity. LRP1B displays frequent DNA copy number loss and CpG island methylation, resulting in mRNA underexpression. By using CpG island reporters methylated in vitro, we found that DNA methylation disrupts a functional binding site for the histone-acetyltransferase p300 located at intron 1. We identified and validated an miR targeting LRP1B (miR-548a-5p), which is overexpressed in cancer cell lines as a result of 8q22 DNA gains. Restoration of LRP1B impaired in vitro and in vivo tumor growth, inhibited cell invasion and led to a reduction of matrix metalloproteinase 2 in the extracellular medium. We emphasized the role of an endocytic receptor acting as a tumor suppressor by modulating the extracellular environment composition in a way that constrains the invasive behavior of the cancer cells.
Collapse
Affiliation(s)
- H Prazeres
- Department of Cancer Biology, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|