1
|
Ortega-Sáenz P, Macías D, Levitsky KL, Rodríguez-Gómez JA, González-Rodríguez P, Bonilla-Henao V, Arias-Mayenco I, López-Barneo J. Selective accumulation of biotin in arterial chemoreceptors: requirement for carotid body exocytotic dopamine secretion. J Physiol 2016; 594:7229-7248. [PMID: 27570189 DOI: 10.1113/jp272961] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/17/2016] [Indexed: 01/01/2023] Open
Abstract
KEY POINTS Biotin, a vitamin whose main role is as a coenzyme for carboxylases, accumulates at unusually large amounts within cells of the carotid body (CB). In biotin-deficient rats biotin rapidly disappears from the blood; however, it remains at relatively high levels in CB glomus cells. The CB contains high levels of mRNA for SLC5a6, a biotin transporter, and SLC19a3, a thiamine transporter regulated by biotin. Animals with biotin deficiency exhibit pronounced metabolic lactic acidosis. Remarkably, glomus cells from these animals have normal electrical and neurochemical properties. However, they show a marked decrease in the size of quantal dopaminergic secretory events. Inhibitors of the vesicular monoamine transporter 2 (VMAT2) mimic the effect of biotin deficiency. In biotin-deficient animals, VMAT2 protein expression decreases in parallel with biotin depletion in CB cells. These data suggest that dopamine transport and/or storage in small secretory granules in glomus cells depend on biotin. ABSTRACT Biotin is a water-soluble vitamin required for the function of carboxylases as well as for the regulation of gene expression. Here, we report that biotin accumulates in unusually large amounts in cells of arterial chemoreceptors, carotid body (CB) and adrenal medulla (AM). We show in a biotin-deficient rat model that the vitamin rapidly disappears from the blood and other tissues (including the AM), while remaining at relatively high levels in the CB. We have also observed that, in comparison with other peripheral neural tissues, CB cells contain high levels of SLC5a6, a biotin transporter, and SLC19a3, a thiamine transporter regulated by biotin. Biotin-deficient rats show a syndrome characterized by marked weight loss, metabolic lactic acidosis, aciduria and accelerated breathing with normal responsiveness to hypoxia. Remarkably, CB cells from biotin-deficient animals have normal electrophysiological and neurochemical (ATP levels and catecholamine synthesis) properties; however, they exhibit a marked decrease in the size of quantal catecholaminergic secretory events, which is not seen in AM cells. A similar differential secretory dysfunction is observed in CB cells treated with tetrabenazine, a selective inhibitor of the vesicular monoamine transporter 2 (VMAT2). VMAT2 is highly expressed in glomus cells (in comparison with VMAT1), and in biotin-deficient animals VMAT2 protein expression decreases in parallel with the decrease of biotin accumulated in CB cells. These data suggest that biotin has an essential role in the homeostasis of dopaminergic transmission modulating the transport and/or storage of transmitters within small secretory granules in glomus cells.
Collapse
Affiliation(s)
- Patricia Ortega-Sáenz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - David Macías
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Konstantin L Levitsky
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - José A Rodríguez-Gómez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Spain
| | - Patricia González-Rodríguez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Victoria Bonilla-Henao
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Ignacio Arias-Mayenco
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| |
Collapse
|
2
|
Larrieta E, Vega-Monroy MLLDL, Vital P, Aguilera A, German MS, Hafidi ME, Fernandez-Mejia C. Effects of biotin deficiency on pancreatic islet morphology, insulin sensitivity and glucose homeostasis. J Nutr Biochem 2011; 23:392-9. [PMID: 21596550 DOI: 10.1016/j.jnutbio.2011.01.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 09/04/2010] [Accepted: 01/06/2011] [Indexed: 11/24/2022]
Abstract
Several studies have revealed that physiological concentrations of biotin are required for the normal expression of critical carbohydrate metabolism genes and for glucose homeostasis. However, the different experimental models used in these studies make it difficult to integrate the effects of biotin deficiency on glucose metabolism. To further investigate the effects of biotin deficiency on glucose metabolism, we presently analyzed the effect of biotin deprivation on glucose homeostasis and on pancreatic islet morphology. Three-week-old male BALB/cAnN Hsd mice were fed a biotin-deficient or a biotin-control diet (0 or 7.2 μmol of free biotin/kg diet, respectively) over a period of 8 weeks. We found that biotin deprivation caused reduced concentrations of blood glucose and serum insulin concentrations, but increased plasma glucagon levels. Biotin-deficient mice also presented impaired glucose and insulin tolerance tests, indicating defects in insulin sensitivity. Altered insulin signaling was linked to a decrease in phosphorylated Akt/PKB but induced no change in insulin receptor abundance. Islet morphology studies revealed disruption of islet architecture due to biotin deficiency, and an increase in the number of α-cells in the islet core. Morphometric analyses found increased islet size, number of islets and glucagon-positive area, but a decreased insulin-positive area, in the biotin-deficient group. Glucagon secretion and gene expression increased in islets isolated from biotin-deficient mice. Our results suggest that biotin deficiency promotes hyperglycemic mechanisms such as increased glucagon concentration and decreased insulin secretion and sensitivity to compensate for reduced blood glucose concentrations. Variations in glucose homeostasis may participate in the changes observed in pancreatic islets.
Collapse
Affiliation(s)
- Elena Larrieta
- Unidad de Genética de la Nutrición, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México/Instituto Nacional de Pediatría, Mexico
| | | | | | | | | | | | | |
Collapse
|
3
|
León-Del-Río A. Biotin-dependent regulation of gene expression in human cells. J Nutr Biochem 2005; 16:432-4. [PMID: 15992685 DOI: 10.1016/j.jnutbio.2005.03.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 03/30/2005] [Accepted: 03/30/2005] [Indexed: 11/26/2022]
Abstract
The role of biotin as cofactor of carboxylases and its importance in metabolic homeostasis are well known. In recent years, different researchers have suggested the participation of biotin as a regulator molecule in the control of gene expression. Biotin-dependent gene expression requires of the transformation of biotin into biotinyl-5'-AMP by holocarboxylase synthetase and the activation of soluble guanylate cyclase and a cGMP-dependent protein kinase. The regulatory role of biotin is responsible for the correct expression of enzymes involved in biotin utilization in human cells. We propose that this mechanism protects the brain from biotin deficiency.
Collapse
Affiliation(s)
- Alfonso León-Del-Río
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico, DF 04510, Mexico.
| |
Collapse
|
4
|
Pacheco-Alvarez D, Solórzano-Vargas RS, Del Río AL. Biotin in metabolism and its relationship to human disease. Arch Med Res 2002; 33:439-47. [PMID: 12459313 DOI: 10.1016/s0188-4409(02)00399-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Biotin, a water-soluble vitamin, is used as cofactor of enzymes involved in carboxylation reactions. In humans, there are five biotin-dependent carboxylases: propionyl-CoA carboxylase; methylcrotonyl-CoA carboxylase; pyruvate carboxylase, and two forms of acetyl-CoA carboxylase. These enzymes catalyze key reactions in gluconeogenesis, fatty acid metabolism, and amino acid catabolism; thus, biotin plays an essential role in maintaining metabolic homeostasis. In recent years, biotin has been associated with several diseases in humans. Some are related to enzyme deficiencies involved in biotin metabolism. However, not all biotin-responsive disorders can be explained based on the classical role of the vitamin in cell metabolism. Several groups have suggested that biotin may be involved in regulating transcription or protein expression of different proteins. Biotinylation of histones and triggering of transduction signaling cascades have been suggested as underlying mechanisms behind these non-classical biotin-deficiency manifestation in humans.
Collapse
Affiliation(s)
- Diana Pacheco-Alvarez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas (IIBM), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | | | | |
Collapse
|
5
|
De La Vega LA, Stockert RJ. Regulation of the insulin and asialoglycoprotein receptors via cGMP-dependent protein kinase. Am J Physiol Cell Physiol 2000; 279:C2037-42. [PMID: 11078721 DOI: 10.1152/ajpcell.2000.279.6.c2037] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Biotin regulation of asialoglycoprotein receptor expression and insulin receptor activity has been established in two human hepatoblastoma cell lines, Hep G2 and HuH-7. Second messenger cGMP mimics the effect of biotin on asialoglycoprotein receptor expression at the translational level. Metabolic labeling and subsequent immunoprecipitation indicate that the loss of insulin receptor activity during biotin deprivation was due to suppression of receptor synthesis. Evidence for posttranscriptional regulation of insulin receptor synthesis was provided by rapid biotin induction of receptor synthesis without an increase in gene transcript number. Addition of a cGMP-dependent protein kinase (cGK) inhibitor prevented biotin induction of the insulin and asialoglycoprotein receptors, suggesting that protein phosphorylation propagates the cGMP signal transduction cascade. Coatomer protein COPI was recently identified as the trans-acting factor that regulates in vitro translation of the asialoglycoprotein receptor. Biotin repletion of the culture medium resulted in the hyperphosphorylation of alpha-COP, which was prevented by simultaneous addition of the cGK inhibitor. These findings suggest that the end point of this cGMP signal cascade is modulated by cGK and that a phosphorylation reaction governs the expression of both receptor proteins.
Collapse
Affiliation(s)
- L A De La Vega
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
6
|
de La Vega LA, Stockert RJ. The cytoplasmic coatomer protein COPI. A potential translational regulator. J Biol Chem 1999; 274:31135-8. [PMID: 10531302 DOI: 10.1074/jbc.274.44.31135] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of the asialoglycoprotein receptor (ASGR) by the human hepatocellular carcinoma cell lines HepG2 and HuH-7 in response to intracellular cGMP concentrations was previously shown to be regulated at the translational level (1). Stable transfection of COS-7 cells with deletion constructs encoding the asialoglycoprotein receptor H2b subunit localized the cGMP-responsive cis-acting element to the mRNA 5'-untranslated region. Resolution by anion exchange chromatography of an S-100 isolated from human liver resulted in the partial purification of an RNA-binding protein specific to this cis-acting element. Northwestern analysis using the 5'-untranslated region as probe indicated that a 140-kDa protein was the potential RNA-binding protein. Sequence of tryptic peptides suggested that the 140-kDa protein was the alpha-COP subunit of coatomer protein COPI, usually associated with trans-Golgi network membrane traffic. Immunoblot analysis confirmed the presence of alpha-COP in the Mono-Q fraction as well as that of a second coatomer subunit, beta-COP. Antibody induced gel retardation supershift confirmed the identification of the RNA-binding proteins as alpha- and beta-COP. Although the RNA recognition motif appears to reside solely in alpha-COP, antibody-induced supershift strongly indicated that the entire coatomer complex was the trans-acting factor. Depletion of S-100 with the antibody to beta-COP confirmed that the coatomer was the sole protein binding to the ASGR mRNA 5'-untranslated region in liver cytosol and responsible for inhibition of in vitro translation of the asialoglycoprotein receptor.
Collapse
Affiliation(s)
- L A de La Vega
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
7
|
Bellocq A, Azoulay E, Marullo S, Flahault A, Fouqueray B, Philippe C, Cadranel J, Baud L. Reactive oxygen and nitrogen intermediates increase transforming growth factor-beta1 release from human epithelial alveolar cells through two different mechanisms. Am J Respir Cell Mol Biol 1999; 21:128-36. [PMID: 10385601 DOI: 10.1165/ajrcmb.21.1.3379] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Transforming growth factor (TGF)-beta1 is a growth factor involved in the mechanisms of lung repair and fibrosis that follow inflammatory processes. We sought to examine the link between the generation of reactive oxygen intermediates (ROI) or reactive nitrogen intermediates (RNI) by inflammatory cells and the expression of TGF-beta1 by alveolar epithelial cells. Exposure of the A549 lung epithelial cell line to either an ROI generating system (xanthine and xanthine oxidase) or an RNI donor (S-nitroso-N-acetyl-penicillamine [SNAP]) promoted a time- and dose-dependent increase in TGF-beta1 release, as measured by a specific enzyme-linked immunosorbent assay. At the peak, the levels of TGF-beta1 were twice the control values. The induction of TGF-beta1 release by ROI was blunted by catalase and unaffected by superoxide dismutase, indicating the involvement of hydrogen peroxide. The response was also blunted by 5, 6-dichloro-1-beta-D-ribofuranosyl benzimidazole (DRB), a specific RNA polymerase II inhibitor, and accompanied by a corresponding increase in TGF-beta1 messenger RNA, as measured by quantitative/competitive reverse transcription polymerase chain reaction, suggesting the involvement of transcriptional mechanisms and possibly other downstream mechanisms. In contrast, RNI-induced TGF-beta1 release was unaffected by DRB and blunted by the protein synthesis inhibitor cycloheximide, suggesting the involvement of translational and post-translational mechanisms. This response required cyclic guanosine monophosphate (cGMP)- mediated processes because (1) immunoreactive cGMP accumulated in the culture medium of SNAP-treated cells; (2) SNAP-induced TGF-beta1 release was blunted by KT 5823, an inhibitor of cGMP-dependent protein kinase; and (3) similar increase in TGF-beta1 release was obtained by cell exposure to membrane-permeable dibutyryl-cGMP or to atrial natriuretic factor, a known agonist of particulate guanylate cyclase. These data suggest that in vitro exposure of human alveolar epithelial cells to ROI and RNI enhances TGF-beta1 release through different mechanisms. In vivo, this control may constitute a molecular link between inflammatory and fibrotic processes.
Collapse
Affiliation(s)
- A Bellocq
- Service d'Explorations Fonctionnelles and Unité INSERM 489, Service de Biostatistique et Informatique, and Service de Pneumologie and UPRES-A 1531, Hôpital Tenon, UPRES-A 8068, Hôpital Cochin, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|