1
|
Zenke K, Sugimoto R, Watanabe S, Muroi M. NF-κB p105-mediated nuclear translocation of ERK is required for full activation of IFNγ-induced iNOS expression. Cell Signal 2024; 124:111424. [PMID: 39304100 DOI: 10.1016/j.cellsig.2024.111424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/30/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Inducible nitric oxidase (iNOS) encoded by Nos2 is a representative IFNγ-inducible effector molecule that plays an important role in both innate and adaptive immunity. In the present study, we demonstrated that full-length NF-κB p105 (p105), which is a precursor of NF-κB p50 (p50), is required for full activation of IFNγ-induced iNOS expression in the RAW264.7 mouse macrophage cell line. In comparison to wild-type (WT) RAW264.7 cells, p105 KO RAW264.7 (p105 KO) cells completely lost IFNγ-induced iNOS expression. Despite the limited effect of exogenous expression of p50 in p105 KO cells on IFNγ-induced Nos2 promoter activity, p105 expression fully restored IFNγ-induced Nos2 promoter activity to a level comparable to that of WT cells, suggesting an important role for full-length p105 in IFNγ-induced iNOS expression. While the expression and phosphorylation of JAK1 and STAT1 were rather enhanced in p105 KO cells, the phosphorylation of c-Jun downstream of MAPK signaling was decreased. IFNγ-induced phosphorylation of ERK, a kinase for IFNγ-induced c-Jun phosphorylation, was not significantly reduced in p105 KO cells, although the nuclear activity of ERK was significantly decreased due to its reduced translocation to the nucleus. Expression of iNOS, nuclear translocation of ERK, and phosphorylation of c-Jun were restored by stable supplementation of p105 in p105 KO cells. These results suggest that p105 is required for the nuclear translocation of ERK and the subsequent phosphorylation of c-Jun, which are necessary for full activation of IFNγ-induced iNOS expression. Reduced nuclear translocation of ERK in p105 KO cells was also observed in the activation of ERK following serum starvation, further suggesting that the involvement of p105 in ERK nuclear translocation is not limited to IFNγ-stimulated cells but is a more general function of p105.
Collapse
Affiliation(s)
- Kosuke Zenke
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan
| | - Rino Sugimoto
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan
| | - Sachiko Watanabe
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan
| | - Masashi Muroi
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| |
Collapse
|
2
|
Marrufo AM, Flores-Mireles AL. Macrophage fate: to kill or not to kill? Infect Immun 2024; 92:e0047623. [PMID: 38829045 PMCID: PMC11385966 DOI: 10.1128/iai.00476-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Macrophages are dynamic innate immune cells that either reside in tissue, serving as sentinels, or recruited as monocytes from bone marrow into inflamed and infected tissue. In response to cues in the tissue microenvironment (TME), macrophages polarize on a continuum toward M1 or M2 with diverse roles in progression and resolution of disease. M1-like macrophages exhibit proinflammatory functions with antimicrobial and anti-tumorigenic activities, while M2-like macrophages have anti-inflammatory functions that generally resolve inflammatory responses and orchestrate a tissue healing process. Given these opposite phenotypes, proper spatiotemporal coordination of macrophage polarization in response to cues within the TME is critical to effectively resolve infectious disease and regulate wound healing. However, if this spatiotemporal coordination becomes disrupted due to persistent infection or dysregulated coagulation, macrophages' inappropriate response to these cues will result in the development of diseases with clinically unfavorable outcomes. Since plasticity and heterogeneity are hallmarks of macrophages, they are attractive targets for therapies to reprogram toward specific phenotypes that could resolve disease and favor clinical prognosis. In this review, we discuss how basic science studies have elucidated macrophage polarization mechanisms in TMEs during infections and inflammation, particularly coagulation. Therefore, understanding the dynamics of macrophage polarization within TMEs in diseases is important in further development of targeted therapies.
Collapse
Affiliation(s)
- Armando M. Marrufo
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | | |
Collapse
|
3
|
Ma Y, Wang Q, Du S, Luo J, Sun X, Jia B, Ge J, Dong J, Jiang S, Li Z. Multipathway Regulation for Targeted Atherosclerosis Therapy Using Anti-miR-33-Loaded DNA Origami. ACS NANO 2024. [PMID: 38321605 DOI: 10.1021/acsnano.3c10213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Given the multifactorial pathogenesis of atherosclerosis (AS), a chronic inflammatory disease, combination therapy arises as a compelling approach to effectively address the complex interplay of pathogenic mechanisms for a more desired treatment outcome. Here, we present cRGD/ASOtDON, a nanoformulation based on a self-assembled DNA origami nanostructure for the targeted combination therapy of AS. cRGD/ASOtDON targets αvβ3 integrin receptors overexpressed on pro-inflammatory macrophages and activated endothelial cells in atherosclerotic lesions, alleviates the oxidative stress induced by extracellular and endogenous reactive oxygen species, facilitates the polarization of pro-inflammatory macrophages toward the anti-inflammatory M2 phenotype, and inhibits foam cell formation by promoting cholesterol efflux from macrophages by downregulating miR-33. The antiatherosclerotic efficacy and safety profile of cRGD/ASOtDON, as well as its mechanism of action, were validated in an AS mouse model. cRGD/ASOtDON treatment reversed AS progression and restored normal morphology and tissue homeostasis of the diseased artery. Compared to probucol, a clinical antiatherosclerotic drug with a similar mechanism of action, cRGD/ASOtDON enabled the desired therapeutic outcome at a notably lower dosage. This study demonstrates the benefits of targeted combination therapy in AS management and the potential of self-assembled DNA nanoformulations in addressing multifactorial inflammatory conditions.
Collapse
Affiliation(s)
- Yuxuan Ma
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Qi Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Shiyu Du
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Jingwei Luo
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Xiaolei Sun
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Bin Jia
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Jingru Ge
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Jun Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P. R. China
| | - Shuoxing Jiang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Zhe Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| |
Collapse
|
4
|
Challa NL, Sarkar A, Kapettu S, Phanithi PB, Chakrabarti P, Parsa KVL, Misra P. TGS1/PIMT regulates pro-inflammatory macrophage mediated paracrine insulin resistance: Crosstalk between macrophages and skeletal muscle cells. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166878. [PMID: 37673359 DOI: 10.1016/j.bbadis.2023.166878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
Macrophage-driven chronic low-grade inflammatory response is intimately associated with pathogenesis of insulin resistance and type 2 diabetes (T2D). However, the molecular basis for skewing of pro-inflammatory macrophage is still elusive. Here, we describe the mechanism and significance of TGS1/PIMT (PRIP-Interacting protein with Methyl Transferase domain) in regulating macrophage activation and polarization and its impact on the development of insulin resistance in skeletal muscle cells. We show altered expression of TGS1 in M1 polarized cultured macrophages, bone marrow-derived (BMDM) and adipose tissue macrophages. Moreover, in High Fat Diet (HFD)-fed mice enhanced TGS1 expression is predominantly localized to the nucleus of adipose tissue macrophages suggesting its potential functional role. Gain and loss of TGS1 expression in macrophage further established its role in the secretion of pro-inflammatory mediators. Mechanistically, TGS1 controls the transcription of numerous genes linked to inflammation by forming a complex with Histone Acetyl Transferase (HAT)-containing transcriptional co-activators CBP and p300. Functionally, TGS1 mediated macrophage inflammatory response induces the development of insulin resistance in skeletal muscle cells and adipocytes. Our findings thus demonstrate an unexpected contribution of TGS1 in the regulation of macrophage mediated inflammation and insulin resistance highlighting that TGS1 antagonism could be a promising therapeutic target for the management of inflammation and insulin resistance in T2D.
Collapse
Affiliation(s)
- Naga Lakshmi Challa
- Centre for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life sciences, University of Hyderabad Campus, Hyderabad 500046, Telangana, India; Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India; Registered as a PhD student with MAHE, Manipal, India
| | - Ankita Sarkar
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, West Bengal, India
| | - Satyamoorthy Kapettu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Prakash Babu Phanithi
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Partha Chakrabarti
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, West Bengal, India.
| | - Kishore V L Parsa
- Centre for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life sciences, University of Hyderabad Campus, Hyderabad 500046, Telangana, India.
| | - Parimal Misra
- Centre for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life sciences, University of Hyderabad Campus, Hyderabad 500046, Telangana, India.
| |
Collapse
|
5
|
Sun L, Han X, Egeblad M. Isolation of mouse mammary carcinoma-derived macrophages and cancer cells for co-culture assays. STAR Protoc 2022; 3:101833. [PMID: 36386879 PMCID: PMC9664409 DOI: 10.1016/j.xpro.2022.101833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We recently established an in vitro co-culture system in which monophosphoryl lipid A + interferon-γ (MPLA+IFNγ)-treated tumor-associated macrophages (TAMs) killed cancer cells. Here, we describe a step-by-step protocol for isolating TAMs and cancer cells from mouse primary mammary carcinomas, the setup of the co-culture system, and the image acquisition approach. The technical difficulties in the co-culture assay involve isolating pure TAMs and cancer cells from the same tumor and staining them with different dyes to track the macrophages' tumoricidal activity. For complete details on the use and execution of this protocol, please refer to Sun et al. (2021).1.
Collapse
Affiliation(s)
- Lijuan Sun
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA,Corresponding author
| | - Xiao Han
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA,Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA,Corresponding author
| |
Collapse
|
6
|
Moreira J, Saraiva L, Pinto MM, Cidade H. Bioactive Diarylpentanoids: Insights into the Biological Effects beyond Antitumor Activity and Structure-Activity Relationships. Molecules 2022; 27:6340. [PMID: 36234878 PMCID: PMC9572019 DOI: 10.3390/molecules27196340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 12/03/2022] Open
Abstract
Diarylpentanoids, a class of natural products and their synthetic analogs which are structurally related to chalcones, have gained increasing attention due to their wide array of biological activities, including antitumor, anti-infective, antioxidant, anti-inflammatory, antidiabetic, anti-hyperuricemic, and neuroprotective properties. Previously, we reviewed diarylpentanoids with promising antitumor activity. However, in view of the wide range of biological activities described for this class of compounds, the purpose of this review is to provide a more detailed overview of the synthetic bioactive diarylpentanoids that have been described over the last two decades, beyond simply their antitumor effects. A total of 745 compounds were found, highlighting the main synthetic methodologies used in their synthesis as well as the structure-activity relationship studies and structural features for all activities reported. Collectively, this review highlights the diarylpentanoid scaffold as a promising starting point for the development of new therapeutic agents.
Collapse
Affiliation(s)
- Joana Moreira
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Lucilia Saraiva
- LAQV/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Madalena M. Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Honorina Cidade
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| |
Collapse
|
7
|
Cowan MN, Kovacs MA, Sethi I, Babcock IW, Still K, Batista SJ, O’Brien CA, Thompson JA, Sibley LA, Labuzan SA, Harris TH. Microglial STAT1-sufficiency is required for resistance to toxoplasmic encephalitis. PLoS Pathog 2022; 18:e1010637. [PMID: 36067217 PMCID: PMC9481170 DOI: 10.1371/journal.ppat.1010637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/16/2022] [Accepted: 08/11/2022] [Indexed: 12/02/2022] Open
Abstract
Toxoplasma gondii is a ubiquitous intracellular protozoan parasite that establishes a life-long chronic infection largely restricted to the central nervous system (CNS). Constant immune pressure, notably IFN-γ-STAT1 signaling, is required for preventing fatal pathology during T. gondii infection. Here, we report that abrogation of STAT1 signaling in microglia, the resident immune cells of the CNS, is sufficient to induce a loss of parasite control in the CNS and susceptibility to toxoplasmic encephalitis during the early stages of chronic infection. Using a microglia-specific genetic labeling and targeting system that discriminates microglia from blood-derived myeloid cells that infiltrate the brain during infection, we find that, contrary to previous in vitro reports, microglia do not express inducible nitric-oxide synthase (iNOS) during T. gondii infection in vivo. Instead, transcriptomic analyses of microglia reveal that STAT1 regulates both (i) a transcriptional shift from homeostatic to “disease-associated microglia” (DAM) phenotype conserved across several neuroinflammatory models, including T. gondii infection, and (ii) the expression of anti-parasitic cytosolic molecules that are required for eliminating T. gondii in a cell-intrinsic manner. Further, genetic deletion of Stat1 from microglia during T. gondii challenge leads to fatal pathology despite largely equivalent or enhanced immune effector functions displayed by brain-infiltrating immune populations. Finally, we show that microglial STAT1-deficiency results in the overrepresentation of the highly replicative, lytic tachyzoite form of T. gondii, relative to its quiescent, semi-dormant bradyzoite form typical of chronic CNS infection. Our data suggest an overall protective role of CNS-resident microglia against T. gondii infection, illuminating (i) general mechanisms of CNS-specific immunity to infection (ii) and a clear role for IFN-STAT1 signaling in regulating a microglial activation phenotype observed across diverse neuroinflammatory disease states. The brain, an immune-privileged organ, can be invaded and colonized by pathogens such as the opportunistic parasite, Toxoplasma gondii. How microglia, the resident immune cells of the brain, provide resistance to infection is an active area of investigation. In this study, we used a genetic approach to generate and study mice with microglia that lack STAT1, a critical transcription factor that confers protection against intracellular pathogens in both humans and mice. We find that despite robust activation and recruitment of immune cells from the blood to the brain during infection, STAT1 deficiency in microglia leads to increased brain parasite burden and uniform lethality in mice when challenged with T. gondii. Our bioinformatic analyses also indicate that STAT1 in microglia regulates (i) the expression of large families of genes associated with parasite killing and (ii) a microglial activation state that has been classically seen in neurodegeneration. Our findings identify mechanisms by which microglia contribute to parasite control and contribute to a greater understanding of their cellular physiology during neuroinflammation.
Collapse
Affiliation(s)
- Maureen N. Cowan
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Michael A. Kovacs
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Ish Sethi
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Isaac W. Babcock
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Katherine Still
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Samantha J. Batista
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Carleigh A. O’Brien
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jeremy A. Thompson
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Lydia A. Sibley
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Sydney A. Labuzan
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Tajie H. Harris
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
8
|
Barley TJ, Murphy PR, Wang X, Bowman BA, Mormol JM, Mager CE, Kirk SG, Cash CJ, Linn SC, Meng X, Nelin LD, Chen B, Hafner M, Zhang J, Liu Y. Mitogen-activated protein kinase phosphatase-1 controls PD-L1 expression by regulating type I interferon during systemic Escherichia coli infection. J Biol Chem 2022; 298:101938. [PMID: 35429501 PMCID: PMC9108994 DOI: 10.1016/j.jbc.2022.101938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/21/2022] [Accepted: 04/06/2022] [Indexed: 11/24/2022] Open
Abstract
Mitogen-activated protein kinase phosphatase 1 (Mkp-1) KO mice produce elevated cytokines and exhibit increased mortality and bacterial burden following systemic Escherichia coli infection. To understand how Mkp-1 affects immune defense, we analyzed the RNA-Seq datasets previously generated from control and E. coli-infected Mkp-1+/+ and Mkp-1-/- mice. We found that E. coli infection markedly induced programmed death-ligand 1 (PD-L1) expression and that Mkp-1 deficiency further amplified PD-L1 expression. Administration of a PD-L1-neutralizing monoclonal antibody (mAb) to Mkp-1-/- mice increased the mortality of the animals following E. coli infection, although bacterial burden was decreased. In addition, the PD-L1-neutralizing mAb increased serum interferon (IFN)-γ and tumor necrosis factor alpha, as well as lung- and liver-inducible nitric oxide synthase levels, suggesting an enhanced inflammatory response. Interestingly, neutralization of IFN-α/β receptor 1 blocked PD-L1 induction in Mkp-1-/- mice following E. coli infection. PD-L1 was potently induced in macrophages by E. coli and lipopolysaccharide in vitro, and Mkp-1 deficiency exacerbated PD-L1 induction with little effect on the half-life of PD-L1 mRNA. In contrast, inhibitors of Janus kinase 1/2 and tyrosine kinase 2, as well as the IFN-α/β receptor 1-neutralizing mAb, markedly attenuated PD-L1 induction. These results suggest that the beneficial effect of type I IFNs in E. coli-infected Mkp-1-/- mice is, at least in part, mediated by Janus kinase/signal transducer and activator of transcription-driven PD-L1 induction. Our studies also support the notion that enhanced PD-L1 expression contributes to the bactericidal defect of Mkp-1-/- mice.
Collapse
Affiliation(s)
- Timothy J Barley
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Parker R Murphy
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Xiantao Wang
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Bridget A Bowman
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Justin M Mormol
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Carli E Mager
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Sean G Kirk
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Charles J Cash
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Sarah C Linn
- Combined Anatomic Pathology Residency/Graduate Program, Department of Veterinary Biosciences, The Ohio State University College of Veterinary Medicine, Columbus, Ohio, USA; Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Xiaomei Meng
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Leif D Nelin
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Bernadette Chen
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Markus Hafner
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Jian Zhang
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Yusen Liu
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA.
| |
Collapse
|
9
|
Sun L, Kees T, Almeida AS, Liu B, He XY, Ng D, Han X, Spector DL, McNeish IA, Gimotty P, Adams S, Egeblad M. Activating a collaborative innate-adaptive immune response to control metastasis. Cancer Cell 2021; 39:1361-1374.e9. [PMID: 34478639 PMCID: PMC8981964 DOI: 10.1016/j.ccell.2021.08.005] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 06/01/2021] [Accepted: 08/13/2021] [Indexed: 12/15/2022]
Abstract
Tumor-associated macrophages (TAMs) promote metastasis and inhibit T cells, but macrophages can be polarized to kill cancer cells. Macrophage polarization could thus be a strategy for controlling cancer. We show that macrophages from metastatic pleural effusions of breast cancer patients can be polarized to kill cancer cells with monophosphoryl lipid A (MPLA) and interferon (IFN) γ. MPLA + IFNγ injected intratumorally or intraperitoneally reduces primary tumor growth and metastasis in breast cancer mouse models, suppresses metastasis, and enhances chemotherapy response in an ovarian cancer model. Both macrophages and T cells are critical for the treatment's anti-metastatic effects. MPLA + IFNγ stimulates type I IFN signaling, reprograms CD206+ TAMs to inducible NO synthase (iNOS)+ macrophages, and activates cytotoxic T cells through macrophage-secreted interleukin-12 (IL-12) and tumor necrosis factor alpha (TNFα). MPLA and IFNγ are used individually in clinical practice and together represent a previously unexplored approach for engaging a systemic anti-tumor immune response.
Collapse
Affiliation(s)
- Lijuan Sun
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Tim Kees
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Bodu Liu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Xue-Yan He
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - David Ng
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Xiao Han
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
| | - David L Spector
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Iain A McNeish
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Phyllis Gimotty
- Department of Biostatistics, Epidemiology & Informatics, University of Pennsylvania, Philadelphia, PA 19104-6021, USA
| | - Sylvia Adams
- Perlmutter Cancer Center, New York University, New York, NY 10016, USA
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
10
|
Li X, Wang F, Xu X, Zhang J, Xu G. The Dual Role of STAT1 in Ovarian Cancer: Insight Into Molecular Mechanisms and Application Potentials. Front Cell Dev Biol 2021; 9:636595. [PMID: 33834023 PMCID: PMC8021797 DOI: 10.3389/fcell.2021.636595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/01/2021] [Indexed: 01/06/2023] Open
Abstract
The signal transducer and activator of transcription 1 (STAT1) is a transducer protein and acts as a transcription factor but its role in ovarian cancer (OC) is not completely understood. Practically, there are two-faced effects of STAT1 on tumorigenesis in different kinds of cancers. Existing evidence reveals that STAT1 has both tumor-suppressing and tumor-promoting functions involved in angiogenesis, cell proliferation, migration, invasion, apoptosis, drug resistance, stemness, and immune responses mainly through interacting and regulating target genes at multiple levels. The canonical STAT1 signaling pathway shows that STAT1 is phosphorylated and activated by the receptor-activated kinases such as Janus kinase in response to interferon stimulation. The STAT1 signaling can also be crosstalk with other signaling such as transforming growth factor-β signaling involved in cancer cell behavior. OC is often diagnosed at an advanced stage due to symptomless or atypical symptoms and the lack of effective detection at an early stage. Furthermore, patients with OC often develop chemoresistance and recurrence. This review focuses on the multi-faced role of STAT1 and highlights the molecular mechanisms and biological functions of STAT1 in OC.
Collapse
Affiliation(s)
- Xin Li
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fanchen Wang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaolin Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jinguo Zhang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Cytocidal macrophages in symbiosis with CD4 and CD8 T cells cause acute diabetes following checkpoint blockade of PD-1 in NOD mice. Proc Natl Acad Sci U S A 2020; 117:31319-31330. [PMID: 33229539 DOI: 10.1073/pnas.2019743117] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Autoimmune diabetes is one of the complications resulting from checkpoint blockade immunotherapy in cancer patients, yet the underlying mechanisms for such an adverse effect are not well understood. Leveraging the diabetes-susceptible nonobese diabetic (NOD) mouse model, we phenocopy the diabetes progression induced by programmed death 1 (PD-1)/PD-L1 blockade and identify a cascade of highly interdependent cellular interactions involving diabetogenic CD4 and CD8 T cells and macrophages. We demonstrate that exhausted CD8 T cells are the major cells that respond to PD-1 blockade producing high levels of IFN-γ. Most importantly, the activated T cells lead to the recruitment of monocyte-derived macrophages that become highly activated when responding to IFN-γ. These macrophages acquire cytocidal activity against β-cells via nitric oxide and induce autoimmune diabetes. Collectively, the data in this study reveal a critical role of macrophages in the PD-1 blockade-induced diabetogenesis, providing new insights for the understanding of checkpoint blockade immunotherapy in cancer and infectious diseases.
Collapse
|
12
|
IRF4 and STAT3 activities are associated with the imbalanced differentiation of T-cells in responses to inhalable particulate matters. Respir Res 2020; 21:123. [PMID: 32448264 PMCID: PMC7245756 DOI: 10.1186/s12931-020-01368-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 04/22/2020] [Indexed: 12/23/2022] Open
Abstract
Background Particulate Matter (PM) is known to cause inflammatory responses in human. Although prior studies verified the immunogenicity of PM in cell lines and animal models, the effectors of PM exposure in the respiratory system and the regulators of the immunogenicity of PM is not fully elucidated. Methods To identify the potential effector of PM exposure in human respiratory system and to better understand the biology of the immunogenicity of PM, We performed gene-expression profiling of peripheral blood mononuclear cells from 171 heathy subjects in northern China to identify co-expressed gene modules associated with PM exposure. We inferred transcription factors regulating the co-expression and validated the association to T-cell differentiation in both primary T-cells and mice treated with PM. Results We report two transcription factors, IRF4 and STAT3, as regulators of the gene expression in response to PM exposure in human. We confirmed that the activation of IRF4 and STAT3 by PM is strongly associated with imbalanced differentiation of T-cells in the respiratory tracts in a time-sensitive manner in mouse. We also verified the consequential inflammatory responses of the PM exposure. Moreover, we show that the protein levels of phosphorylated IRF4 and STAT3 increase with PM exposure. Conclusions Our study suggests the regulatory activities of IRF4 and STAT3 are associated with the Th17-mediated inflammatory responses to PM exposure in the respiratory tracts, which informs the biological background of the immunogenicity of particulate matters.
Collapse
|
13
|
Song H, Hwang D, Song B, Kim J, Park J, Lee M, Choi J, Noh J. Methanolic extracts of Capparis ecuadorica iltis inhibit the inflammatory response in lipopolysaccharide-stimulated RAW 264.7 macrophage cells. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_464_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
14
|
Porcine Alveolar Macrophages' Nitric Oxide Synthase-Mediated Generation of Nitric Oxide Exerts Important Defensive Effects against Glaesserella parasuis Infection. Pathogens 2019; 8:pathogens8040234. [PMID: 31766159 PMCID: PMC6963498 DOI: 10.3390/pathogens8040234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 11/16/2022] Open
Abstract
Glaesserella parasuis is a habitual bacterium of pigs' upper respiratory tracts. Its infection initiates with the invasion and colonization of the lower respiratory tracts of pigs, and develops as the bacteria survive host pulmonary defenses and clearance by alveolar macrophages. Alveolar macrophage-derived nitric oxide (NO) is recognized as an important mediator that exerts antimicrobial activity as well as immunomodulatory effects. In this study, we investigated the effects and the signaling pathway of NO generation in porcine alveolar macrophages 3D4/21 during G. parasuis infection. We demonstrated a time and dose-dependent generation of NO in 3D4/21 cells by G. parasuis, and showed that NO production required bacterial viability and nitric oxide synthase 2 upregulation, which was largely contributed by G. parasuis-induced nuclear factor-κB signaling's activation. Moreover, the porcine alveolar macrophage-derived NO exhibited prominent bacteriostatic effects against G. parasuis and positive host immunomodulation effects by inducing the production of cytokines and chemokines during infection. G. parasuis in turn, selectively upregulated several nitrate reductase genes to better survive this NO stress, revealing a battle of wits during the bacteria-host interactions. To our knowledge, this is the first direct demonstration of NO production and its anti-infection effects in alveolar macrophages with G. parasuis infection.
Collapse
|
15
|
Somasundaram V, Gilmore AC, Basudhar D, Palmieri EM, Scheiblin DA, Heinz WF, Cheng RYS, Ridnour LA, Altan-Bonnet G, Lockett SJ, McVicar DW, Wink DA. Inducible nitric oxide synthase-derived extracellular nitric oxide flux regulates proinflammatory responses at the single cell level. Redox Biol 2019; 28:101354. [PMID: 31683257 PMCID: PMC6920088 DOI: 10.1016/j.redox.2019.101354] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/04/2019] [Accepted: 10/18/2019] [Indexed: 02/01/2023] Open
Abstract
The role of nitric oxide (NO) in cancer progression has largely been studied in the context of tumor NOS2 expression. However, pro- versus anti-tumor signaling is also affected by tumor cell-macrophage interactions. While these cell-cell interactions are partly regulated by NO, the functional effects of NO flux on proinflammatory (M1) macrophages are unknown. Using a triple negative murine breast cancer model, we explored the potential role of macrophage Nos2 on 4T1 tumor progression. The effects of NO on macrophage phenotype were examined in bone marrow derived macrophages from wild type and Nos2−/− mice following in vitro stimulation with cytokine/LPS combinations to produce low, medium, and high NO flux. Remarkably, Nos2 induction was spatially distinct, where Nos2high cells expressed low cyclooxygenase-2 (Cox2) and vice versa. Importantly, in vitro M1 polarization with IFNγ+LPS induced high NO flux that was restricted to cells harboring depolarized mitochondria. This flux altered the magnitude and spatial extent of hypoxic gradients. Metabolic and single cell analyses demonstrated that single cell Nos2 induction limited the generation of hypoxic gradients in vitro, and Nos2-dependent and independent features may collaborate to regulate M1 functionality. It was found that Cox2 expression was important for Nos2high cells to maintain NO tolerance. Furthermore, Nos2 and Cox2 expression in 4T1 mouse tumors was spatially orthogonal forming distinct cellular neighborhoods. In summary, the location and type of Nos2high cells, NO flux, and the inflammatory status of other cells, such as Cox2high cells in the tumor niche contribute to Nos2 inflammatory mechanisms that promote disease progression of 4T1 tumors.
Collapse
Affiliation(s)
- Veena Somasundaram
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institute of Health, USA
| | - Anne C Gilmore
- Optical Microscopy and Analysis Laboratory, Office of Science and Technology Resources, Center for Cancer Research, National Cancer Institute, USA
| | - Debashree Basudhar
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institute of Health, USA
| | - Erika Mariana Palmieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institute of Health, USA
| | - David A Scheiblin
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - William F Heinz
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Robert Y S Cheng
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institute of Health, USA
| | - Lisa A Ridnour
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institute of Health, USA
| | - Grégoire Altan-Bonnet
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institute of Health, USA
| | - Stephen J Lockett
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Daniel W McVicar
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institute of Health, USA
| | - David A Wink
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institute of Health, USA.
| |
Collapse
|
16
|
Somasundaram V, Basudhar D, Bharadwaj G, No JH, Ridnour LA, Cheng RY, Fujita M, Thomas DD, Anderson SK, McVicar DW, Wink DA. Molecular Mechanisms of Nitric Oxide in Cancer Progression, Signal Transduction, and Metabolism. Antioxid Redox Signal 2019; 30:1124-1143. [PMID: 29634348 PMCID: PMC6354612 DOI: 10.1089/ars.2018.7527] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 03/08/2018] [Indexed: 01/03/2023]
Abstract
SIGNIFICANCE Cancer is a complex disease, which not only involves the tumor but its microenvironment comprising different immune cells as well. Nitric oxide (NO) plays specific roles within tumor cells and the microenvironment and determines the rate of cancer progression, therapy efficacy, and patient prognosis. Recent Advances: Key understanding of the processes leading to dysregulated NO flux within the tumor microenvironment over the past decade has provided better understanding of the dichotomous role of NO in cancer and its importance in shaping the immune landscape. It is becoming increasingly evident that nitric oxide synthase 2 (NOS2)-mediated NO/reactive nitrogen oxide species (RNS) are heavily involved in cancer progression and metastasis in different types of tumor. More recent studies have found that NO from NOS2+ macrophages is required for cancer immunotherapy to be effective. CRITICAL ISSUES NO/RNS, unlike other molecules, are unique in their ability to target a plethora of oncogenic pathways during cancer progression. In this review, we subcategorize the different levels of NO produced by cells and shed light on the context-dependent temporal effects on cancer signaling and metabolic shift in the tumor microenvironment. FUTURE DIRECTIONS Understanding the source of NO and its spaciotemporal profile within the tumor microenvironment could help improve efficacy of cancer immunotherapies by improving tumor infiltration of immune cells for better tumor clearance.
Collapse
Affiliation(s)
- Veena Somasundaram
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Debashree Basudhar
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Gaurav Bharadwaj
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Jae Hong No
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Lisa A. Ridnour
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Robert Y.S. Cheng
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Mayumi Fujita
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
- Department of Basic Medical Sciences for Radiation Damages, National Institutes of Quantum and Radiological Science and Technology, Chiba, Japan
| | - Douglas D. Thomas
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Stephen K. Anderson
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Daniel W. McVicar
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - David A. Wink
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| |
Collapse
|
17
|
Müller E, Speth M, Christopoulos PF, Lunde A, Avdagic A, Øynebråten I, Corthay A. Both Type I and Type II Interferons Can Activate Antitumor M1 Macrophages When Combined With TLR Stimulation. Front Immunol 2018; 9:2520. [PMID: 30450098 PMCID: PMC6224375 DOI: 10.3389/fimmu.2018.02520] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/12/2018] [Indexed: 12/18/2022] Open
Abstract
Triggering or enhancing antitumor activity of tumor-associated macrophages is an attractive strategy for cancer treatment. We have previously shown that the cytokine interferon-γ (IFN-γ), a type II IFN, could synergize with toll-like receptor (TLR) agonists for induction of antitumor M1 macrophages. However, the toxicity of IFN-γ limits its clinical use. Here, we investigated whether the less toxic type I IFNs, IFN-α, and IFN-β, could potentially replace IFN-γ for induction of antitumor M1 macrophages. We measured in vitro the ability of type I and II IFNs to synergize with TLR agonists for transcription of inducible nitric oxide synthase (iNOS) mRNA and secretion of nitric oxide (NO) by mouse bone marrow-derived macrophages (BMDMs). An in vitro growth inhibition assay was used to measure both cytotoxic and cytostatic activity of activated macrophages against Lewis lung carcinoma (LLC) cancer cells. We found that both type I and II IFNs could synergize with TLR agonists in inducing macrophage-mediated inhibition of cancer cell growth, which was dependent on NO. The ability of high dose lipopolysaccharide (LPS) to induce tumoricidal activity in macrophages in the absence of IFN-γ was shown to depend on induction of autocrine type I IFNs. Antitumor M1 macrophages could also be generated in the absence of IFN-γ by a combination of two TLR ligands when using the TLR3 agonist poly(I:C) which induces autocrine type I IFNs. Finally, we show that encapsulation of poly(I:C) into nanoparticles improved its potency to induce M1 macrophages up to 100-fold. This study reveals the potential of type I IFNs for activation of antitumor macrophages and indicates new avenues for cancer immunotherapy based on type I IFN signaling, including combination of TLR agonists.
Collapse
Affiliation(s)
- Elisabeth Müller
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, University of Oslo, Oslo, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway
| | - Martin Speth
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Panagiotis F Christopoulos
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Anna Lunde
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Ajna Avdagic
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Inger Øynebråten
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Alexandre Corthay
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, University of Oslo, Oslo, Norway
| |
Collapse
|
18
|
Graham DB, Jasso GJ, Mok A, Goel G, Ng ACY, Kolde R, Varma M, Doench JG, Root DE, Clish CB, Carr SA, Xavier RJ. Nitric Oxide Engages an Anti-inflammatory Feedback Loop Mediated by Peroxiredoxin 5 in Phagocytes. Cell Rep 2018; 24:838-850. [PMID: 30044981 PMCID: PMC6156773 DOI: 10.1016/j.celrep.2018.06.081] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 04/25/2018] [Accepted: 06/19/2018] [Indexed: 12/30/2022] Open
Abstract
Phagocyte microbiocidal mechanisms and inflammatory cytokine production are temporally coordinated, although their respective interdependencies remain incompletely understood. Here, we identify a nitric-oxide-mediated antioxidant response as a negative feedback regulator of inflammatory cytokine production in phagocytes. In this context, Keap1 functions as a cellular redox sensor that responds to elevated reactive nitrogen intermediates by eliciting an adaptive transcriptional program controlled by Nrf2 and comprised of antioxidant genes, including Prdx5. We demonstrate that engaging the antioxidant response is sufficient to suppress Toll-like receptor (TLR)-induced cytokine production in dendritic cells and that Prdx5 is required for attenuation of inflammatory cytokine production. Collectively, these findings delineate the reciprocal regulation of inflammation and cellular redox systems in myeloid cells.
Collapse
Affiliation(s)
- Daniel B Graham
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02114, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Guadalupe J Jasso
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02114, USA
| | - Amanda Mok
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gautam Goel
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Aylwin C Y Ng
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02114, USA
| | - Raivo Kolde
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Mukund Varma
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - David E Root
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02114, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
19
|
Ali Khan MS, Ahmed N, Misbah, Arifuddin M, Zakaria ZA, Al-Sanea MM, Khundmiri SUK, Ahmed I, Ahmed S, Mok PL. Anti-nociceptive mechanisms of flavonoids-rich methanolic extract from Terminalia coriacea (Roxb.) Wight & Arn. leaves. Food Chem Toxicol 2018; 115:523-531. [DOI: 10.1016/j.fct.2018.03.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/12/2018] [Accepted: 03/16/2018] [Indexed: 01/22/2023]
|
20
|
Dhananjayan K, Gunawardena D, Hearn N, Sonntag T, Moran C, Gyengesi E, Srikanth V, Münch G. Activation of Macrophages and Microglia by Interferon-γ and Lipopolysaccharide Increases Methylglyoxal Production: A New Mechanism in the Development of Vascular Complications and Cognitive Decline in Type 2 Diabetes Mellitus? J Alzheimers Dis 2018; 59:467-479. [PMID: 28582854 DOI: 10.3233/jad-161152] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Methylglyoxal (MGO), a dicarbonyl compound derived from glucose, is elevated in diabetes mellitus and contributes to vascular complications by crosslinking collagen and increasing arterial stiffness. It is known that MGO contributes to inflammation as it forms advanced glycation end products (AGEs), which activate macrophages via the receptor RAGE. The aim of study was to investigate whether inflammatory activation can increase MGO levels, thereby completing a vicious cycle. In order to validate this, macrophage (RAW264.7, J774A.1) and microglial (N11) cells were stimulated with IFN-γ and LPS (5 + 5 and 10 + 10 IFN-γ U/ml or μg/ml LPS), and extracellular MGO concentration was determined after derivatization with 5,6-Diamino-2,4-dihydroxypyrimidine sulfate by HPLC. MGO levels in activated macrophage cells (RAW264.7) peaked at 48 h, increasing 2.86-fold (3.14±0.4 μM) at 5 U/ml IFN-γ+5 μg/ml LPS, and 4.74-fold (5.46±0.30 μM) at 10 U/ml IFN-γ+10 μg/ml LPS compared to the non-activated controls (1.15±0.02 μM). The other two cell lines, J774A.1 macrophages and N11 microglia, showed a similar response. We suggest that inflammation increases MGO production, possibly exacerbating arterial stiffness, cardiovascular complications, and diabetes-related cognitive decline.
Collapse
Affiliation(s)
- Karthik Dhananjayan
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Dhanushka Gunawardena
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Nerissa Hearn
- Molecular Medicine Research Group, Western Sydney University, Penrith, NSW, Australia
| | - Tanja Sonntag
- Molecular Medicine Research Group, Western Sydney University, Penrith, NSW, Australia
| | - Chris Moran
- Department of Medicine, Peninsula Health & Peninsula Clinical School, Monash University, VIC, Australia
| | - Erika Gyengesi
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Velandai Srikanth
- Department of Medicine, Peninsula Health & Peninsula Clinical School, Monash University, VIC, Australia
| | - Gerald Münch
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia.,Molecular Medicine Research Group, Western Sydney University, Penrith, NSW, Australia.,National Institute of Complementary Medicine, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
21
|
Plasmodium falciparum PfEMP1 Modulates Monocyte/Macrophage Transcription Factor Activation and Cytokine and Chemokine Responses. Infect Immun 2017; 86:IAI.00447-17. [PMID: 29038124 PMCID: PMC5736827 DOI: 10.1128/iai.00447-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/03/2017] [Indexed: 12/11/2022] Open
Abstract
Immunity to Plasmodium falciparum malaria is slow to develop, and it is often asserted that malaria suppresses host immunity, although this is poorly understood and the molecular basis for such activity remains unknown. P. falciparum erythrocyte membrane protein 1 (PfEMP1) is a virulence factor that plays a key role in parasite-host interactions. We investigated the immunosuppressive effect of PfEMP1 on monocytes/macrophages, which are central to the antiparasitic innate response. RAW macrophages and human primary monocytes were stimulated with wild-type 3D7 or CS2 parasites or transgenic PfEMP1-null parasites. To study the immunomodulatory effect of PfEMP1, transcription factor activation and cytokine and chemokine responses were measured. The level of activation of NF-κB was significantly lower in macrophages stimulated with parasites that express PfEMP1 at the red blood cell surface membrane than in macrophages stimulated with PfEMP1-null parasites. Modulation of additional transcription factors, including CREB, also occurred, resulting in reduced immune gene expression and decreased tumor necrosis factor (TNF) and interleukin-10 (IL-10) release. Similarly, human monocytes released less IL-1β, IL-6, IL-10, monocyte chemoattractant protein 1 (MCP-1), macrophage inflammatory protein 1α (MIP-1α), MIP-1β, and TNF specifically in response to VAR2CSA PfEMP1-containing parasites than in response to PfEMP1-null parasites, suggesting that this immune regulation by PfEMP1 is important in naturally occurring infections. These results indicate that PfEMP1 is an immunomodulatory molecule that affects the activation of a range of transcription factors, dampening cytokine and chemokine responses. Therefore, these findings describe a potential molecular basis for immune suppression by P. falciparum.
Collapse
|
22
|
Li SS, Li J, Sun J, Guo R, Yu LZ, Zhao YF, Zhu ZX, Tu PF. Berkeleyacetal C, a meroterpenoid isolated from the fungus Penicillium purpurogenum MHZ 111, exerts anti-inflammatory effects via inhibiting NF-κB, ERK1/2 and IRF3 signaling pathways. Eur J Pharmacol 2017; 814:283-293. [PMID: 28865677 DOI: 10.1016/j.ejphar.2017.08.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/29/2017] [Accepted: 08/29/2017] [Indexed: 01/01/2023]
Abstract
Berkeleyacetal C (BAC), a meroterpenoid compound, was isolated from the fungus Penicillium purpurogenum MHZ 111 and showed favorable activity of inhibiting nitrogen oxide (NO) production of macrophages stimulated by lipopolysaccharide (LPS) in our preliminary screening. In order to develop novel therapeutic drug for acute and chronic inflammatory diseases, the anti-inflammatory activity and underlying mechanisms of BAC were investigated in macrophages and neutrophils. The results showed that BAC significantly inhibited the expression of inducible nitric oxide synthase (iNOS) and the following NO production by macrophages. The expression and secretion of key pro-inflammatory factors and chemokines, including tumor necrosis factor-α (TNF-α),interleukin-6 (IL-6), interleukin-1β (IL-1β), macrophage inflammatory protein-1α (MIP-1α), and monocyte chemotactic protein-1 (MCP-1) were also intensively suppressed by BAC. Furthermore, BAC also markedly inhibited activation of neutrophils and reactive oxygen species production. In mechanism study, BAC selectively suppressed phosphorylation of nuclear factor-κB (NF-κB), extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), and interferon regulatory transcription factor 3 (IRF3) during the activation of NF-κB, mitogen-activated protein kinase (MAPK), signal transducer and activator of transcription 1 and 3 (STAT1/3), and IRF3 signaling pathways induced by LPS. In summary, BAC exerts strong anti-inflammatory effects by inhibiting NF-κB, ERK1/2 and IRF3 signaling pathways and thereby shows great potential to be developed into therapeutic agent for inflammatory disorders.
Collapse
Affiliation(s)
- Shan-Shan Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China
| | - Jing Sun
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China
| | - Ran Guo
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China
| | - Lan-Zhi Yu
- China-Japan Friendship Hospital, Cherry Garden East Street, Chaoyang District, Beijing 100029, PR China
| | - Yun-Fang Zhao
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China
| | - Zhi-Xiang Zhu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China.
| | - Peng-Fei Tu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China.
| |
Collapse
|
23
|
An overview of structure-activity relationship studies of curcumin analogs as antioxidant and anti-inflammatory agents. Future Med Chem 2017; 9:605-626. [PMID: 28394628 DOI: 10.4155/fmc-2016-0223] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Curcumin, extracted mainly from Curcuma longa rhizomes, has been reported to possess potent anti-inflammatory and anti-oxidant activities. Although safe at higher doses and exhibiting multiple biological activities, curcumin still has the problem of poor bioavailability which has been an attractive area of research over the last few years. A number of efforts have been made by modifying structural features of curcumin. This review highlights the structurally modified and more stable newly synthesized curcumin analogs that have been screened against antioxidant and anti-inflammatory activities. Also the structure-activity relationship to gain insight into future guidelines for scheming new compounds has been discussed, and further these analogs being more stable may serve as promising agents for use in different pathological conditions.
Collapse
|
24
|
Yao K, Chen Q, Wu Y, Liu F, Chen X, Zhang Y. Unphosphorylated STAT1 represses apoptosis in macrophages during Mycobacteriumtuberculosis infection. J Cell Sci 2017; 130:1740-1751. [PMID: 28348106 DOI: 10.1242/jcs.200659] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/23/2017] [Indexed: 12/19/2022] Open
Abstract
In murine macrophages infected with Mycobacterium tuberculosis (Mtb), the level of phosphorylated STAT1 (P-STAT1), which drives the expression of many pro-apoptosis genes, increases quickly but then declines over a period of hours. By contrast, infection induces a continued increase in the level of unphosphorylated STAT1 that persists for several days. Here, we found that the level of unphosphorylated STAT1 correlated with the intracellular bacterial burden during the later stages of infection. To investigate the significance of a high level of unphosphorylated STAT1, we increased its concentration exogenously, and found that the apoptosis rate induced by Mtb was sufficiently decreased. Further experiments confirmed that unphosphorylated STAT1 affects the expression of several immune-associated genes and lessens the sensitivity of macrophages to CD95 (FAS)-mediated apoptosis during Mtb infection. Furthermore, we characterized 149 proteins that interacted with unphosphorylated STAT1 and the interactome network. The cooperation between unphosphorylated STAT1 and STAT3 results in downregulation of CD95 expression. Additionally, we verified that unphosphorylated STAT1 and IFIT1 competed for binding to eEF1A. Taken together, our data show that the role of unphosphorylated STAT1 differs from that of P-STAT1, and represses apoptosis in macrophages to promote immune evasion during Mtb infection.
Collapse
Affiliation(s)
- Kezhen Yao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qi Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yongyan Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fayang Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xin Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China .,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
25
|
Hwang JS, Kwon MY, Kim KH, Lee Y, Lyoo IK, Kim JE, Oh ES, Han IO. Lipopolysaccharide (LPS)-stimulated iNOS Induction Is Increased by Glucosamine under Normal Glucose Conditions but Is Inhibited by Glucosamine under High Glucose Conditions in Macrophage Cells. J Biol Chem 2016; 292:1724-1736. [PMID: 27927986 DOI: 10.1074/jbc.m116.737940] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 11/29/2016] [Indexed: 12/26/2022] Open
Abstract
We investigated the regulatory effect of glucosamine (GlcN) for the production of nitric oxide (NO) and expression of inducible NO synthase (iNOS) under various glucose conditions in macrophage cells. At normal glucose concentrations, GlcN dose dependently increased LPS-stimulated production of NO/iNOS. However, GlcN suppressed NO/iNOS production under high glucose culture conditions. Moreover, GlcN suppressed LPS-induced up-regulation of COX-2, IL-6, and TNF-α mRNAs under 25 mm glucose conditions yet did not inhibit up-regulation under 5 mm glucose conditions. Glucose itself dose dependently increased LPS-induced iNOS expression. LPS-induced MAPK and IκB-α phosphorylation did not significantly differ at normal and high glucose conditions. The activity of LPS-induced nuclear factor-κB (NF-κB) and DNA binding of c-Rel to the iNOS promoter were inhibited under high glucose conditions in comparison with no significant changes under normal glucose conditions. In addition, we found that the LPS-induced increase in O-GlcNAcylation as well as DNA binding of c-Rel to the iNOS promoter were further increased by GlcN under normal glucose conditions. However, both O-GlcNAcylation and DNA binding of c-Rel decreased under high glucose conditions. The NF-κB inhibitor, pyrrolidine dithiocarbamate, inhibited LPS-induced iNOS expression under high glucose conditions but it did not influence iNOS induction under normal glucose conditions. In addition, pyrrolidine dithiocarbamate inhibited NF-κB DNA binding and c-Rel O-GlcNAcylation only under high glucose conditions. By blocking transcription with actinomycin D, we found that stability of LPS-induced iNOS mRNA was increased by GlcN under normal glucose conditions. These results suggest that GlcN regulates inflammation by sensing energy states of normal and fuel excess.
Collapse
Affiliation(s)
- Ji-Sun Hwang
- From the Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon 22212, Korea
| | - Mi-Youn Kwon
- From the Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon 22212, Korea
| | - Kyung-Hong Kim
- From the Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon 22212, Korea
| | - Yunkyoung Lee
- the Department of Brain and Cognitive Sciences, Ewha Brain Institute, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - In Kyoon Lyoo
- the Department of Brain and Cognitive Sciences, Ewha Brain Institute, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Jieun E Kim
- the Department of Brain and Cognitive Sciences, Ewha Brain Institute, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Eok-Soo Oh
- the Department of Life Sciences, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Inn-Oc Han
- From the Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon 22212, Korea.
| |
Collapse
|
26
|
Lawrence DW, Kornbluth J. E3 ubiquitin ligase NKLAM ubiquitinates STAT1 and positively regulates STAT1-mediated transcriptional activity. Cell Signal 2016; 28:1833-1841. [PMID: 27570112 PMCID: PMC5206800 DOI: 10.1016/j.cellsig.2016.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/19/2016] [Accepted: 08/24/2016] [Indexed: 01/16/2023]
Abstract
Signal transducer and activator of transcription 1 (STAT1) is critically important for the transcription of a large number of immunologically relevant genes. In macrophages, interferon gamma (IFNγ) signal transduction occurs via the JAK/STAT pathway and ends with the transcription of a number of genes necessary for a successful host immune response. The predominant mechanism of regulation of STAT1 is phosphorylation; however, there is a growing body of evidence that demonstrates STAT1 is also regulated by ubiquitination. In this report we show that JAK1 and STAT1 in macrophages deficient in an E3 ubiquitin ligase termed Natural Killer Lytic-Associated Molecule (NKLAM) are hyperphosphorylated following IFNγ stimulation. We found NKLAM was transiently localized to the IFNγ receptor complex during stimulation with IFNγ, where it bound to and mediated K63-linked ubiquitination of STAT1. In vitro nucleofection studies demonstrated that STAT1-mediated transcription was significantly reduced in NKLAM-KO macrophages. There was no obvious defect in STAT1 nuclear translocation; however, STAT1 from NKLAM-KO macrophages had a reduced ability to bind a functional gamma activation DNA sequence. There was also less mRNA expression of STAT1-mediated genes in NKLAM-KO macrophages treated with IFNγ. Our results demonstrate for the first time that NKLAM is a positive regulator of STAT1-mediated transcriptional activity and is an important component of the innate immune response.
Collapse
Affiliation(s)
- Donald W Lawrence
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO 63104, United States
| | - Jacki Kornbluth
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO 63104, United States; VA St. Louis Health Care System, St. Louis, MO 63106, United States.
| |
Collapse
|
27
|
Salim T, Sershen CL, May EE. Investigating the Role of TNF-α and IFN-γ Activation on the Dynamics of iNOS Gene Expression in LPS Stimulated Macrophages. PLoS One 2016; 11:e0153289. [PMID: 27276061 PMCID: PMC4898755 DOI: 10.1371/journal.pone.0153289] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 03/25/2016] [Indexed: 01/09/2023] Open
Abstract
Macrophage produced inducible nitric oxide synthase (iNOS) is known to play a critical role in the proinflammatory response against intracellular pathogens by promoting the generation of bactericidal reactive nitrogen species. Robust and timely production of nitric oxide (NO) by iNOS and analogous production of reactive oxygen species are critical components of an effective immune response. In addition to pathogen associated lipopolysaccharides (LPS), iNOS gene expression is dependent on numerous proinflammatory cytokines in the cellular microenvironment of the macrophage, two of which include interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α). To understand the synergistic effect of IFN-γ and TNF-α activation, and LPS stimulation on iNOS expression dynamics and NO production, we developed a systems biology based mathematical model. Using our model, we investigated the impact of pre-infection cytokine exposure, or priming, on the system. We explored the essentiality of IFN-γ priming to the robustness of initial proinflammatory response with respect to the ability of macrophages to produce reactive species needed for pathogen clearance. Results from our theoretical studies indicated that IFN-γ and subsequent activation of IRF1 are essential in consequential production of iNOS upon LPS stimulation. We showed that IFN-γ priming at low concentrations greatly increases the effector response of macrophages against intracellular pathogens. Ultimately the model demonstrated that although TNF-α contributed towards a more rapid response time, measured as time to reach maximum iNOS production, IFN-γ stimulation was significantly more significant in terms of the maximum expression of iNOS and the concentration of NO produced.
Collapse
Affiliation(s)
- Taha Salim
- Department of Biomedical Engineering, University of Houston, Houston, Texas, United States of America
| | - Cheryl L. Sershen
- Department of Biomedical Engineering, University of Houston, Houston, Texas, United States of America
| | - Elebeoba E. May
- Department of Biomedical Engineering, University of Houston, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
28
|
Type I interferons exert anti-tumor effect via reversing immunosuppression mediated by mesenchymal stromal cells. Oncogene 2016; 35:5953-5962. [PMID: 27109100 PMCID: PMC5079855 DOI: 10.1038/onc.2016.128] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 03/06/2016] [Accepted: 03/15/2016] [Indexed: 12/13/2022]
Abstract
Mesenchymal stromal cells (MSCs) are strongly immunosuppressive via producing nitric oxide (NO) and known to migrate into tumor sites to promote tumor growth, but the underlying mechanisms remain largely elusive. Here, we found that interferon alpha (IFNα)-secreting MSCs showed more dramatic inhibition effect on tumor progression than that of IFNα alone. Interestingly, IFNα-primed MSCs could also effectively suppress tumor growth. Mechanistically, we demonstrated that both IFNα and IFNβ (type I IFNs) reversed the immunosuppressive effect of MSCs on splenocyte proliferation. This effect of type I IFNs was exerted through inhibiting inducible NO synthase (iNOS) expression in IFNγ and TNFα-stimulated MSCs. Notably, only NO production was inhibited by IFNα production of other cytokines or chemokines tested was not suppressed. Furthermore, IFNα promoted the switch from signal transducer and activator of transcription 1 (Stat1) homodimers to Stat1-Stat2 heterodimers. Studies using the luciferase reporter system and chromatin immunoprecipitation assay revealed that IFNα suppressed iNOS transcription through inhibiting the binding of Stat1 to iNOS promoter. Therefore, the synergistic anti-tumor effects of type I IFNs and MSCs were achieved by inhibiting NO production. This study provides essential information for understanding the mechanisms of MSC-mediated immunosuppression and for the development of better clinical strategies using IFNs and MSCs for cancer immunotherapy.
Collapse
|
29
|
Simon PS, Sharman SK, Lu C, Yang D, Paschall AV, Tulachan SS, Liu K. The NF-κB p65 and p50 homodimer cooperate with IRF8 to activate iNOS transcription. BMC Cancer 2015; 15:770. [PMID: 26497740 PMCID: PMC4619452 DOI: 10.1186/s12885-015-1808-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 10/16/2015] [Indexed: 01/23/2023] Open
Abstract
Background Inducible nitric oxide synthase (iNOS) metabolizes L-arginine to produce nitric oxide (NO) which was originally identified in myeloid cells as a host defense mechanism against pathogens. Recent studies, however, have revealed that iNOS is often induced in tumor cells and myeloid cells in the tumor microenvironment. Compelling experimental data have shown that iNOS promotes tumor development in certain cellular context and suppresses tumor development in other cellular conditions. The molecular mechanisms underlying these contrasting functions of iNOS is unknown. Because iNOS is often induced by inflammatory signals, it is therefore likely that these contrasting functions of iNOS could be controlled by the inflammatory signaling pathways, which remains to be determined. Methods iNOS is expressed in colon carcinoma and myeloid cells in the tumor microenvironment. Colon carcinoma and myeloid cell lines were used to elucidate the molecular mechanisms underlying iNOS expression. Chromatin immunoprecipitation and electrophoretic mobility shift assay were used to determine the IFNγ-activated pSTAT1 and NF-κB association with the chromatin DNA of the nos2 promoter. Results We show here that iNOS is dramatically up-regulated in inflammed human colon tissues and in human colon carcinoma as compared to normal colon tissue. iNOS is expressed in either the colon carcinoma cells or immune cells within the tumor microenvironment. On the molecular level, the proinflammatory IFNγ and NF-κB signals induce iNOS expression in human colon cancer cells. We further demonstrate that NF-κB directly binds to the NOS2 promoter to regulate iNOS expression. Although neither the IFNγ signaling pathway nor the NF-κB signaling pathway alone is sufficient to induce iNOS expression in myeloid cells, IFNγ and NF-κB synergistically induce iNOS expression in myeloid cells. Furthermore, we determine that IFNγ up-regulates IRF8 expression to augment NF-κB induction of iNOS expression. More interestingly, we observed that the p65/p65 and p50/p50 homodimers, not the canonical p65/p50 heterodimer, directly binds to the nos2 promoter to regulate iNOS expression in myeloid cells. Conclusions IFNγ-induced IRF8 acts in concert with NF-κB to regulate iNOS expression in both colon carcinoma and myeloid cells. In myeloid cells, the NF-κB complexes that bind to the nos2 promoter are p65/p65 and p50/p50 homodimers.
Collapse
Affiliation(s)
- Priscilla S Simon
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA, 30912, USA. .,Cancer Center, Georgia Regents University, Augusta, GA, 30912, USA. .,Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA.
| | - Sarah K Sharman
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA, 30912, USA. .,Cancer Center, Georgia Regents University, Augusta, GA, 30912, USA.
| | - Chunwan Lu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA, 30912, USA. .,Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA.
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA, 30912, USA. .,Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA.
| | - Amy V Paschall
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA, 30912, USA. .,Cancer Center, Georgia Regents University, Augusta, GA, 30912, USA. .,Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA.
| | - Sidhartha S Tulachan
- Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA, 30912, USA.
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA, 30912, USA. .,Cancer Center, Georgia Regents University, Augusta, GA, 30912, USA. .,Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA.
| |
Collapse
|
30
|
Yau B, Mitchell AJ, Too LK, Ball HJ, Hunt NH. Interferon-γ-Induced Nitric Oxide Synthase-2 Contributes to Blood/Brain Barrier Dysfunction and Acute Mortality in Experimental Streptococcus pneumoniae Meningitis. J Interferon Cytokine Res 2015; 36:86-99. [PMID: 26418460 DOI: 10.1089/jir.2015.0078] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The proinflammatory cytokine interferon-gamma (IFNγ) recently was shown to play a crucial role in experimental pneumococcal meningitis (PM) pathogenesis, and we aimed in this study to investigate IFNγ-driven nitric oxide synthase-2 (NOS2)-mediated pathogenesis of murine PM. We demonstrate that costimulation of toll-like receptors and IFNγ receptors was synergistic for NOS2 expression in cultured murine microglia. Using an experimental PM model, wild-type mice treated with anti-IFNγ antibody, as well as IFNγ and NOS2 gene knockout (GKO) mice, were inoculated intracerebroventricularly with 10(3) colony-forming units of Streptococcus pneumoniae (WU2 strain). Mice were monitored daily during a 200-h disease course to assess survival rate and blood-brain barrier (BBB) permeability measured at 48 h. IFNγ deficiency was protective in PM, with an approximate 3-fold increase in survival rates in both antibody-treated and IFNγ GKO mice compared to controls (P < 0.01). At 48 h postinoculation, brain NOS2 mRNA expression was significantly increased in an IFNγ-dependent manner. Mortality was significantly delayed in NOS2 GKO mice compared to controls (P < 0.01), and BBB dysfunction was reduced by 54% in IFNγ GKO mice and abolished in NOS2 GKO. These data suggest that IFNγ-dependent expression of NOS2 in the brain contributes to BBB breakdown and early mortality in murine PM.
Collapse
Affiliation(s)
- Belinda Yau
- 1 Molecular Immunopathology Unit, School of Medical Sciences, Sydney Medical School, University of Sydney , Sydney, New South Wales, Australia
| | - Andrew J Mitchell
- 1 Molecular Immunopathology Unit, School of Medical Sciences, Sydney Medical School, University of Sydney , Sydney, New South Wales, Australia .,2 Centenary Institute for Cancer Medicine and Cell Biology , Newtown, New South Wales, Australia
| | - Lay Khoon Too
- 1 Molecular Immunopathology Unit, School of Medical Sciences, Sydney Medical School, University of Sydney , Sydney, New South Wales, Australia
| | - Helen J Ball
- 1 Molecular Immunopathology Unit, School of Medical Sciences, Sydney Medical School, University of Sydney , Sydney, New South Wales, Australia
| | - Nicholas H Hunt
- 1 Molecular Immunopathology Unit, School of Medical Sciences, Sydney Medical School, University of Sydney , Sydney, New South Wales, Australia
| |
Collapse
|
31
|
Monoacylglycerol lipase promotes Fcγ receptor-mediated phagocytosis in microglia but does not regulate LPS-induced upregulation of inflammatory cytokines. Biochem Biophys Res Commun 2015; 464:603-10. [PMID: 26166819 DOI: 10.1016/j.bbrc.2015.07.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/03/2015] [Indexed: 12/11/2022]
Abstract
Monoacylglycerol lipase (MAGL) is important for neuroinflammation. However, the regulatory mechanisms underlying its expression and function remain unknown. Lipopolysaccharide (LPS) treatment post-translationally upregulated MAGL expression, whereas it downregulated MAGL transcription through a Stat6-mediated mechanism in microglia. Neither MAGL knockdown nor JZL-184, a selective MAGL inhibitor, suppressed LPS-induced upregulation of inflammatory cytokines in microglia. Moreover, exogenous expression of MAGL in BV-2 microglial cell line, which lacks endogenous MAGL, did not promote the induction of inflammatory cytokines by LPS treatment. Interestingly, MAGL knockdown reduced Fcγ receptor-mediated phagocytosis in primary microglia, and introduction of MAGL into the BV-2 cells increased Fcγ receptor-mediated phagocytosis. Collectively, these results suggest that MAGL regulates phagocytosis, but not LPS-mediated cytokine induction in microglia.
Collapse
|
32
|
Li HS, Watowich SS. Innate immune regulation by STAT-mediated transcriptional mechanisms. Immunol Rev 2015; 261:84-101. [PMID: 25123278 DOI: 10.1111/imr.12198] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term innate immunity typically refers to a quick but non-specific host defense response against invading pathogens. The innate immune system comprises particular immune cell populations, epithelial barriers, and numerous secretory mediators including cytokines, chemokines, and defense peptides. Innate immune cells are also now recognized to play important contributing roles in cancer and pathological inflammatory conditions. Innate immunity relies on rapid signal transduction elicited upon pathogen recognition via pattern recognition receptors (PRRs) and cell:cell communication conducted by soluble mediators, including cytokines. A majority of cytokines involved in innate immune signaling use a molecular cascade encompassing receptor-associated Jak protein tyrosine kinases and STAT (signal transducer and activator of transcription) transcriptional regulators. Here, we focus on roles for STAT proteins in three major innate immune subsets: neutrophils, macrophages, and dendritic cells (DCs). While knowledge in this area is only now emerging, understanding the molecular regulation of these cell types is necessary for developing new approaches to treat human disorders such as inflammatory conditions, autoimmunity, and cancer.
Collapse
Affiliation(s)
- Haiyan S Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
33
|
Trinh B, Ko SY, Haria D, Barengo N, Naora H. The homeoprotein DLX4 controls inducible nitric oxide synthase-mediated angiogenesis in ovarian cancer. Mol Cancer 2015; 14:97. [PMID: 25924901 PMCID: PMC4427985 DOI: 10.1186/s12943-015-0368-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/17/2015] [Indexed: 12/24/2022] Open
Abstract
Background Homeobox genes encode transcription factors that control patterning of virtually all organ systems including the vasculature. Tumor angiogenesis is stimulated by several homeobox genes that are overexpressed in tumor cells, but the mechanisms of these genes are poorly understood. In this study, we investigated the mechanisms by which DLX4, a homeobox gene that is associated with increased tumor microvessel density, stimulates ovarian tumor angiogenesis. Methods Expression of DLX4 and nitric oxide synthases was analyzed in publicly available transcriptional profiles of ovarian cancer clinical specimens. Levels of inducible nitric oxide synthase (iNOS) were evaluated by quantitative RT-PCR, flow cytometry and nitric oxide assays using ovarian cancer cell lines in which DLX4 was overexpressed or knocked down. Signal Transducer and Activator of Transcription 1 (STAT1) expression and activity were evaluated by luciferase reporter assays, immunofluorescence staining, Western blot and immunoprecipitation. Endothelial cell growth and tumor angiogenesis were evaluated in in vitro assays and xenograft models. Results We identified that DLX4 induces expression of iNOS, an enzyme that stimulates angiogenesis by generating nitric oxide. Analysis of datasets of two independent patient cohorts revealed that high DLX4 expression in ovarian cancer is strongly associated with elevated expression of iNOS but not of other nitric oxide synthases. Studies using STAT1-expressing and STAT1-deficient cells revealed that DLX4 interacts with STAT1 and induces iNOS expression in part by stimulating STAT1 activity. Expression of DLX4 in ovarian cancer cells stimulated endothelial cell growth in vitro and increased microvessel density in xenograft models, and these stimulatory effects of DLX4 were abrogated when its induction of iNOS was inhibited. Conclusion These findings indicate that DLX4 promotes ovarian tumor angiogenesis in part by stimulating iNOS expression. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0368-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bon Trinh
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Song Yi Ko
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Dhwani Haria
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Nicolas Barengo
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Honami Naora
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
34
|
Sikorski K, Wesoly J, Bluyssen HAR. Data mining of atherosclerotic plaque transcriptomes predicts STAT1-dependent inflammatory signal integration in vascular disease. Int J Mol Sci 2014; 15:14313-31. [PMID: 25196434 PMCID: PMC4159852 DOI: 10.3390/ijms150814313] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/29/2014] [Accepted: 08/01/2014] [Indexed: 01/02/2023] Open
Abstract
Atherosclerotic plaque development involves multiple extra- and intra-cellular signals engaging cells from the immune system and from the vasculature. Pro-inflammatory pathways activated by interferon gamma (IFNγ) and toll-like receptor 4 (TLR4) ligands are profoundly involved in plaque formation and have been shown to involve cross-talk in all atheroma-interacting cell types leading to increased activation of signal transducer and activator of transcription-1 (STAT1) and elevated expression of pro-inflammatory mediators. Here we demonstrate that in Gene Expression Omnibus repository (GEO) deposited microarray datasets, obtained from human coronary and carotid atherosclerotic plaques, a significant increase in expression of pro-inflammatory and immunomodulatory genes can be detected. Moreover, increased expression of multiple chemokines, adhesion molecules and matrix-remodeling molecules was commonly detected in both plaque types and correlated with the presence of putative STAT1 binding sites in their promoters, suggesting strong involvement of STAT1 in plaque development. We also provide evidence to suggest that STAT1-nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) or STAT1-interferon-regulated factor (IRF) regulatory modules are over-represented in the promoters of these inflammatory genes, which points to a possible contribution of IFNγ and TLR4 cross-talk in the process of atherogenesis. Finally, a subset of these genes encodes for secreted proteins that could serve as a basis of a non-invasive diagnostic assay. The results of our in silico analysis in vitro provide potential evidence that STAT1-dependent IFNγ-TLR4 cross-talk plays a crucial role in coronary and carotid artery plaque development and identifies a STAT1-dependent gene signature that could represent a novel diagnostic tool to monitor and diagnose plaque progression in human atherosclerosis.
Collapse
Affiliation(s)
- Krzysztof Sikorski
- Department of Human Molecular Genetics, Adam Mickiewicz University in Poznan, Poznan 61-614, Poland.
| | - Joanna Wesoly
- Laboratory of High-Throughput Technologies, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, Poznan 61-614, Poland.
| | - Hans A R Bluyssen
- Department of Human Molecular Genetics, Adam Mickiewicz University in Poznan, Poznan 61-614, Poland.
| |
Collapse
|
35
|
Sikorski K, Chmielewski S, Olejnik A, Wesoly JZ, Heemann U, Baumann M, Bluyssen H. STAT1 as a central mediator of IFNγ and TLR4 signal integration in vascular dysfunction. JAKSTAT 2014; 1:241-9. [PMID: 24058779 PMCID: PMC3670280 DOI: 10.4161/jkst.22469] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis is characterized by early endothelial dysfunction and altered vascular smooth muscle cells (VSMCs) contractility. The forming atheroma is a site of excessive production of cytokines and inflammatory ligands by various cell types that mediate inflammation and immune responses. Key factors contributing to early stages of plaque development are IFNγ and TLR4. This review provides insight in the differential STAT1-dependent signal integration between IFNγ and TLR4 signals in vascular cells and atheroma interacting immune cells. This results in increased leukocyte attraction and adhesion and VSMC proliferation and migration, which are important characteristics of EC dysfunction and early triggers of atherosclerosis.
Collapse
Affiliation(s)
- Krzysztof Sikorski
- Department of Human Molecular Genetics; Institute of Molecular Biology and Biotechnology; Faculty of Biology; Adam Mickiewicz University; Poznan, Poland
| | | | | | | | | | | | | |
Collapse
|
36
|
Sun GY, Chuang DY, Zong Y, Jiang J, Lee JCM, Gu Z, Simonyi A. Role of cytosolic phospholipase A2 in oxidative and inflammatory signaling pathways in different cell types in the central nervous system. Mol Neurobiol 2014; 50:6-14. [PMID: 24573693 DOI: 10.1007/s12035-014-8662-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 02/11/2014] [Indexed: 12/30/2022]
Abstract
Phospholipases A(2) (PLA(2)s) are important enzymes for the metabolism of fatty acids in membrane phospholipids. Among the three major classes of PLA(2)s in the mammalian system, the group IV calcium-dependent cytosolic PLA(2) alpha (cPLA(2)α) has received the most attention because it is widely expressed in nearly all mammalian cells and its active participation in cell metabolism. Besides Ca(2+) binding to its C2 domain, this enzyme can undergo a number of cell-specific post-translational modifications, including phosphorylation by protein kinases, S-nitrosylation through interaction with nitric oxide (NO), as well as interaction with other proteins and lipid molecules. Hydrolysis of phospholipids by cPLA(2) yields two important lipid mediators, arachidonic acid (AA) and lysophospholipids. While AA is known to serve as a substrate for cyclooxygenases and lipoxygenases, which are enzymes for the synthesis of eicosanoids and leukotrienes, lysophospholipids are known to possess detergent-like properties capable of altering microdomains of cell membranes. An important feature of cPLA(2) is its link to cell surface receptors that stimulate signaling pathways associated with activation of protein kinases and production of reactive oxygen species (ROS). In the central nervous system (CNS), cPLA(2) activation has been implicated in neuronal excitation, synaptic secretion, apoptosis, cell-cell interaction, cognitive and behavioral function, oxidative-nitrosative stress, and inflammatory responses that underline the pathogenesis of a number of neurodegenerative diseases. However, the types of extracellular agonists that target intracellular signaling pathways leading to cPLA(2) activation among different cell types and under different physiological and pathological conditions have not been investigated in detail. In this review, special emphasis is given to metabolic events linking cPLA(2) to activation in neurons, astrocytes, microglial cells, and cerebrovascular cells. Understanding the molecular mechanism(s) for regulation of this enzyme is deemed important in the development of new therapeutic targets for the treatment and prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Grace Y Sun
- Biochemistry Department, University of Missouri, 117 Schweitzer Hall, Columbia, MO, 65211, USA,
| | | | | | | | | | | | | |
Collapse
|
37
|
Alamuru NP, Behera S, Butchar JP, Tridandapani S, Kaimal Suraj S, Babu PP, Hasnain SE, Ehtesham NZ, Parsa KVL. A novel immunomodulatory function of PHLPP1: inhibition of iNOS via attenuation of STAT1 ser727 phosphorylation in mouse macrophages. J Leukoc Biol 2014; 95:775-783. [PMID: 24443556 DOI: 10.1189/jlb.0713360] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 12/10/2013] [Accepted: 01/06/2014] [Indexed: 11/24/2022] Open
Abstract
PHLPP1 is a novel tumor suppressor, but its role in the regulation of innate immune responses, which are frequently dysregulated in cancer, is unexplored. Here, we report that LPS attenuated PHLPP1 expression at mRNA and protein levels in immune cells, suggesting its involvement in immune responses. To test this, we overexpressed PHLPP1 in RAW 264.7 macrophages and observed a dramatic reduction in LPS/IFN-γ-induced iNOS expression. Conversely, silencing of PHLPP1 by siRNA or by shRNA robustly augmented LPS/IFN-γ-induced iNOS expression. qPCR and iNOS promoter reporter experiments showed that PHLPP1 inhibited iNOS transcription. Mechanistic analysis revealed that PHLPP1 suppressed LPS/IFN-γ-induced phosphorylation of ser727 STAT1; however, the underlying mechanisms differed. PHLPP1 reduced IFN-γ-stimulated but not LPS-induced ERK1/2 phosphorylation, and inhibition of ERK1/2 abolished IFN-γ-induced ser727 STAT1 phosphorylation and iNOS expression. In contrast, PHLPP1 knockdown augmented LPS-induced but not IFN-γ-elicited p38 phosphorylation. Blockade of p38 abolished LPS-stimulated phosphorylation of ser727 STAT1 and iNOS expression. Furthermore, PHLPP1 suppressed LPS-induced phosphorylation of tyr701 STAT1 by dampening p38-dependent IFN-β feedback. Collectively, our data demonstrate for the first time that PHLPP1 plays a vital role in restricting innate immune responses of macrophages, and further studies may show it to be a potential therapeutic target within the context of dysregulated macrophage activity.
Collapse
Affiliation(s)
| | - Soma Behera
- Dr. Reddy's Institute of Life Sciences (DRILS), Hyderabad, India
| | | | | | | | - P Prakash Babu
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Seyed E Hasnain
- Department of Biological Sciences, Indian Institute of Technology, New Delhi, India; and
| | | | | |
Collapse
|
38
|
Anti-inflammatory cytokine interleukin-4 inhibits inducible nitric oxide synthase gene expression in the mouse macrophage cell line RAW264.7 through the repression of octamer-dependent transcription. Mediators Inflamm 2013; 2013:369693. [PMID: 24459328 PMCID: PMC3891534 DOI: 10.1155/2013/369693] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 11/30/2013] [Accepted: 12/02/2013] [Indexed: 11/17/2022] Open
Abstract
Inducible nitric oxide synthase (iNOS) is a signature molecule involved in the classical activation of M1 macrophages and is induced by the Nos2 gene upon stimulation with Th1-cell derived interferon-gamma (IFNγ) and bacterial lipopolysaccharide (LPS). Although the anti-inflammatory cytokine IL-4 is known to inhibit Nos2 gene expression, the molecular mechanism involved in the negative regulation of Nos2 by IL-4 remains to be fully elucidated. In the present study, we investigated the mechanism of IL-4-mediated Nos2 transcriptional repression in the mouse macrophage-like cell line RAW264.7. Signal transducer and activator of transcription 6 (Stat6) knockdown by siRNA abolished the IL-4-mediated inhibition of Nos2 induced by IFNγ/LPS. Transient transfection of a luciferase reporter gene containing the 5′-flanking region of the Nos2 gene demonstrated that an octamer transcription factor (OCT) binding site in the promoter region is required for both positive regulation by IFNγ/LPS and negative regulation by IL-4. Although IL-4 had no inhibitory effect on the DNA-binding activity of constitutively expressed Oct-1, IL-4-induced Nos2-reporter transcriptional repression was partially attenuated by overexpression of the coactivator CREB-binding protein (CBP). These results suggest that a coactivator/cofactor that functionally interacts with Oct-1 is a molecular target for the IL-4-mediated inhibition of Nos2 and that IL-4-activated Stat6 represses Oct-1-dependent transcription by competing with this coactivator/cofactor.
Collapse
|
39
|
Burke SJ, Updegraff BL, Bellich RM, Goff MR, Lu D, Minkin SC, Karlstad MD, Collier JJ. Regulation of iNOS gene transcription by IL-1β and IFN-γ requires a coactivator exchange mechanism. Mol Endocrinol 2013; 27:1724-42. [PMID: 24014650 DOI: 10.1210/me.2013-1159] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The proinflammatory cytokines IL-1β and IFN-γ decrease functional islet β-cell mass in part through the increased expression of specific genes, such as inducible nitric oxide synthase (iNOS). Dysregulated iNOS protein accumulation leads to overproduction of nitric oxide, which induces DNA damage, impairs β-cell function, and ultimately diminishes cellular viability. However, the transcriptional mechanisms underlying cytokine-mediated expression of the iNOS gene are not completely understood. Herein, we demonstrated that individual mutations within the proximal and distal nuclear factor-κB sites impaired cytokine-mediated transcriptional activation. Surprisingly, mutating IFN-γ-activated site (GAS) elements in the iNOS gene promoter, which are classically responsive to IFN-γ, modulated transcriptional sensitivity to IL-1β. Transcriptional sensitivity to IL-1β was increased by generation of a consensus GAS element and decreased correspondingly with 1 or 2 nucleotide divergences from the consensus sequence. The nuclear factor-κB subunits p65 and p50 bound to the κB response elements in an IL-1β-dependent manner. IL-1β also promoted binding of serine-phosphorylated signal transducer and activator of transcription-1 (STAT1) (Ser727) but not tyrosine-phosphorylated STAT1 (Tyr701) to GAS elements. However, phosphorylation at Tyr701 was required for IFN-γ to potentiate the IL-1β response. Furthermore, coactivator p300 and coactivator arginine methyltransferase were recruited to the iNOS gene promoter with concomitant displacement of the coactivator CREB-binding protein in cells exposed to IL-1β. Moreover, these coordinated changes in factor recruitment were associated with alterations in acetylation, methylation, and phosphorylation of histone proteins. We conclude that p65 and STAT1 cooperate to control iNOS gene transcription in response to proinflammatory cytokines by a coactivator exchange mechanism. This increase in transcription is also associated with signal-specific chromatin remodeling that leads to RNA polymerase II recruitment and phosphorylation.
Collapse
Affiliation(s)
- Susan J Burke
- Department of Nutrition, University of Tennessee, 1215 Cumberland Avenue, 229 JHB, Knoxville, Tennessee 37996-1920.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
microRNA control of interferons and interferon induced anti-viral activity. Mol Immunol 2013; 56:781-93. [PMID: 23962477 DOI: 10.1016/j.molimm.2013.07.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 07/11/2013] [Accepted: 07/14/2013] [Indexed: 12/22/2022]
Abstract
Interferons (IFNs) are cytokines that are spontaneously produced in response to virus infection. They act by binding to IFN-receptors (IFN-R), which trigger JAK/STAT cell signalling and the subsequent induction of hundreds of IFN-inducible genes, including both protein-coding and microRNA genes. IFN-induced genes then act synergistically to prevent virus replication and create an anti-viral state. miRNA are therefore integral to the innate response to virus infection and are important components of IFN-mediated biology. On the other hand viruses also encode miRNAs that in some cases interfere directly with the IFN response to infection. This review summarizes the important roles of miRNAs in virus infection acting both as IFN-stimulated anti-viral molecules and as critical regulators of IFNs and IFN-stimulated genes. It also highlights how recent knowledge in RNA editing influence miRNA control of virus infection.
Collapse
|
41
|
Wu SJ, Lu TM, Lai MN, Ng LT. Immunomodulatory activities of medicinal mushroom Grifola frondosa extract and its bioactive constituent. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2013; 41:131-44. [PMID: 23336512 DOI: 10.1142/s0192415x13500109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Grifola frondosa (GF), a high value medicinal mushroom in China and Japan, is popularly consumed as traditional medicines and health foods, especially for enhancing immune functions. In this study, our aim was to examine the immunomodulatory activities of GF and its bioactive compound ergosterol peroxide (EPO) in lipopolysaccharide (LPS)-induced human monocytic (THP-1) cells. At low concentrations, EPO but not other extracts showed a full protection against LPS-induced cell toxicity. EPO significantly blocked MyD88 and VCAM-1 expression, and cytokine (IL-1β, IL-6 and TNF-α) production in LPS-stimulated cells. It also effectively inhibited NF-κB activation, which was further confirmed with siRNA treatment. These results conclude that EPO may play an important role in the immunomodulatory activity of GF through inhibiting the production of pro-inflammatory mediators and activation of NF-κB signaling pathway.
Collapse
Affiliation(s)
- Shu-Jing Wu
- Department of Nutritional Health, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan
| | | | | | | |
Collapse
|
42
|
Kearney S, Delgado C, Lenz LL. Differential effects of type I and II interferons on myeloid cells and resistance to intracellular bacterial infections. Immunol Res 2013; 55:187-200. [PMID: 22983898 DOI: 10.1007/s12026-012-8362-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The type I and II interferons (IFNs) play important roles in regulating immune responses during viral and bacterial infections and in the context of autoimmune and neoplastic diseases. These two IFN types bind to distinct cell surface receptors that are expressed by nearly all cells to trigger signal transduction events and elicit diverse cellular responses. In some cases, type I and II IFNs trigger similar cellular responses, while in other cases, the IFNs have unique or antagonistic effects on host cells. Negative regulators of IFN signaling also modulate cellular responses to the IFNs and play important roles in maintaining immunological homeostasis. In this review, we provide an overview of how IFNs stimulate cellular responses. We discuss the disparate effects of type I and II IFNs on host resistance to certain intracellular bacterial infections and provide an overview of models that have been proposed to account for these disparate effects. Mechanisms of antagonistic cross talk between type I and II IFNs are also introduced.
Collapse
Affiliation(s)
- Staci Kearney
- Integrated Department of Immunology, University of Colorado School of Medicine, Aurora, CO, USA
| | | | | |
Collapse
|
43
|
Bhowmick R, Girotti AW. Cytoprotective signaling associated with nitric oxide upregulation in tumor cells subjected to photodynamic therapy-like oxidative stress. Free Radic Biol Med 2013; 57:39-48. [PMID: 23261943 PMCID: PMC3594367 DOI: 10.1016/j.freeradbiomed.2012.12.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 12/04/2012] [Accepted: 12/07/2012] [Indexed: 12/12/2022]
Abstract
Photodynamic therapy (PDT) employs photoexcitation of a sensitizer to generate tumor-eradicating reactive oxygen species. We recently showed that irradiating breast cancer COH-BR1 cells after treating with 5-aminolevulinic acid (ALA, a pro-sensitizer) resulted in rapid upregulation of inducible nitric oxide (NO) synthase (iNOS). Apoptotic cell killing was strongly enhanced by an iNOS inhibitor (1400W), iNOS knockdown (kd), or a NO scavenger, suggesting that NO was acting cytoprotectively. Stress signaling associated with these effects was examined in this study. ALA/light-stressed COH-BR1 cells, and also breast adenocarcinoma MDA-MB-231 cells, mounted an iNOS/NO-dependent resistance to apoptosis that proved to be cGMP-independent. Immunocytochemistry and subcellular Western analysis of photostressed COH-BR1 cells revealed a cytosol-to-nucleus translocation of NF-κB which was negated by the NF-κB activation inhibitor Bay11. Bay11 also enhanced apoptosis and prevented iNOS induction, consistent with NF-κB involvement in the latter. JNK and p38 MAP kinase inhibitors suppressed apoptosis, implicating these kinases in death signaling. Post-irradiation extent and duration of JNK and p38 phosphorylation were dramatically elevated by 1400 W or iNOS-kd, suggesting that these activations were suppressed by NO. Regarding pro-survival stress signaling, rapid activation of Akt was unaffected by 1400 W, but prevented by Wortmannin, which also enhanced apoptosis. Thus, a link between upstream Akt activation and iNOS induction was apparent. Furthermore, p53 protein expression under photostress was elevated by iNOS-kd, whereas robust Survivin induction was abolished, consistent with p53 and Survivin being negatively and positively regulated by NO, respectively. Collectively, these findings enhance our understanding of cytoprotective signaling associated with photostress-induced NO and suggest iNOS inhibitor-based approaches for improving PDT efficacy.
Collapse
Affiliation(s)
- Reshma Bhowmick
- To whom correspondence may be addressed: Reshma Bhowmick, Ph.D. Department of Biochemistry Medical College of Wisconsin Milwaukee, WI, 53226 Tel: 414-955-8445
| | - Albert W. Girotti
- To whom correspondence may be addressed: Albert W. Girotti, Ph.D. Department of Biochemistry Medical College of Wisconsin Milwaukee, WI, 53226 Tel: 414-955-8432
| |
Collapse
|
44
|
Singh R, Kone BC, Gounni AS, Uzonna JE. Molecular regulation of Trypanosoma congolense-induced nitric oxide production in macrophages. PLoS One 2013; 8:e59631. [PMID: 23536884 PMCID: PMC3607579 DOI: 10.1371/journal.pone.0059631] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 02/15/2013] [Indexed: 11/18/2022] Open
Abstract
BALB/c mice are highly susceptible while C57BL/6 mice are relatively resistant to experimental Trypanosoma congolense infection. Several reports show that an early interferon-gamma (IFN-γ) response in infected mice is critically important for resistance via the activation of macrophages and production of nitric oxide (NO). NO is a pivotal effector molecule and possesses both cytostatic and cytolytic properties for the parasite. However, the molecular mechanisms leading to T. congolense (TC)-induced NO release from macrophages are not known. In this study, we investigated the signaling pathways induced by trypanosomes in immortalized macrophage cell lines from the highly susceptible BALB/c (BALB.BM) and relatively resistant C57Bl/6 (ANA-1) mice. We found that T. congolense whole cell extract (TC-WCE) induces significantly higher levels of NO production in IFN-γ-primed ANA-1 than BALB.BM cells, which was further confirmed in primary bone marrow-derived macrophage (BMDM) cultures. NO production was dependent on mitogen-activated protein kinase (MAPK, including p38, Erk1/2, and JNK) phosphorylation and was significantly inhibited by specific MAPK inhibitors in BALB.BM, but not in ANA-1 cells. In addition, T. congolense- and IFN-γ-induced NO production in ANA-1 and BALB.BM cells was dependent on STAT1 phosphorylation and was totally suppressed by the use of fludarabine (a specific STAT1 inhibitor). We further show that T. congolense induces differential iNOS transcriptional promoter activation in IFN-γ-primed cells, which is dependent on the activation of both GAS1 and GAS2 transcription factors in BALB.BM but only on GAS1 in ANA-1 cells. Taken together, our findings show the existence of differential signalling events that lead to NO production in macrophages from the highly susceptible and relatively resistant mice following treatment with IFN-γ and T. congolense. Understanding these pathways may help identify immunomodulatory mechanisms that regulate the outcome of infection during Trypanosome infections.
Collapse
Affiliation(s)
- Rani Singh
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Bruce C. Kone
- University of Texas Medical School, Houston, Texas, United States of America
| | - Abdelilah S. Gounni
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jude E. Uzonna
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
45
|
Leppänen T, Korhonen R, Laavola M, Nieminen R, Tuominen RK, Moilanen E. Down-regulation of protein kinase Cδ inhibits inducible nitric oxide synthase expression through IRF1. PLoS One 2013; 8:e52741. [PMID: 23326354 PMCID: PMC3541401 DOI: 10.1371/journal.pone.0052741] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 11/21/2012] [Indexed: 12/15/2022] Open
Abstract
In inflammation, pro-inflammatory cytokines and bacterial products induce the production of high amounts of NO by inducible nitric oxide synthase (iNOS) in inflammatory and tissue cells. NO is an effector molecule in innate immunity, and it also has regulatory and pro-inflammatory/destructive effects in the inflammatory process. Protein kinase Cδ (PKCδ) is an important signaling protein regulating B lymphocyte functions, but less is known about its effects in innate immunity and inflammatory gene expression. In the present study we investigated the role of PKCδ in the regulation of iNOS expression in inflammatory conditions. NO production and iNOS expression were induced by LPS or a combination of cytokines IFNγ, IL-1β, and TNFα. Down-regulation of PKCδ by siRNA and inhibition of PKCδ by rottlerin suppressed NO production and iNOS expression in activated macrophages and fibroblasts. PKCδ directed siRNA and inhibition of PKCδ by rottlerin suppressed also the expression of transcription factor IRF1, possibly through inhibition of STAT1 activation. Accordingly, down-regulation of IRF1 by siRNA reduced iNOS expression in response to inflammatory stimuli. In addition, inhibition of PKCδ showed anti-inflammatory effects in carrageenan induced paw inflammation in mice as did iNOS inhibitor L-NIL. These results suggest that inhibitors of PKCδ have anti-inflammatory effects in disease states complicated by enhanced NO production through iNOS pathway.
Collapse
Affiliation(s)
- Tiina Leppänen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
| | - Riku Korhonen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
| | - Mirka Laavola
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
| | - Riina Nieminen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
| | - Raimo K. Tuominen
- The Division of Pharmacology and Toxicology, University of Helsinki Faculty of Pharmacy, Helsinki, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
- * E-mail:
| |
Collapse
|
46
|
Hsieh CY, Chen CL, Tsai CC, Huang WC, Tseng PC, Lin YS, Chen SH, Wong TW, Choi PC, Lin CF. Inhibiting glycogen synthase kinase-3 decreases 12-O-tetradecanoylphorbol-13-acetate-induced interferon-γ-mediated skin inflammation. J Pharmacol Exp Ther 2012; 343:125-33. [PMID: 22773863 DOI: 10.1124/jpet.112.194100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) facilitates interferon (IFN)-γ signaling. Because IFN-γ is involved in inflammatory skin diseases, such as psoriasis, the aim of this study was to investigate the pathogenic role of GSK-3 in 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced IFN-γ-mediated ear skin inflammation. TPA (3 μg per ear) induced acute skin inflammation in the ears of C57BL/6 mice, including edema, infiltration of granulocytes but not T cells, and IFN-γ receptor 1-mediated deregulation of intercellular adhesion molecule 1 (CD54). TPA/IFN-γ induced GSK-3 activation, which in turn activated signal transducer and activator of transcription 1. Inhibiting GSK-3 pharmacologically, by administering 6-bromoindirubin-3'-oxime (1.5 μg per ear), and genetically, with lentiviral-based short-hairpin RNA, reduced TPA-induced acute skin inflammation but not T-cell infiltration. It is noteworthy that inhibiting GSK-3 decreased TPA-induced IFN-γ production and the nuclear translocation of T-box transcription factor Tbx21, a transcription factor of IFN-γ, in CD3-positive T cells. In chronic TPA-induced skin inflammation, inhibiting GSK-3 attenuated epidermis hyperproliferation and dermis angiogenesis. These results demonstrate the dual role of GSK-3 in TPA-induced skin inflammation that is not only to facilitate IFN-γ signaling but also to regulate IFN-γ production. Inhibiting GSK-3 may be a potential treatment strategy for preventing such effects.
Collapse
Affiliation(s)
- Chia-Yuan Hsieh
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Shimura M, Yamamoto M, Fujii G, Takahashi M, Komiya M, Noma N, Tanuma SI, Yanaka A, Mutoh M. Novel compound SK-1009 suppresses interleukin-6 expression through modulation of activation of nuclear factor-kappaB pathway. Biol Pharm Bull 2012; 35:2186-91. [PMID: 23018603 DOI: 10.1248/bpb.b12-00575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although interleukin-6 (IL-6) is an important biological mediator playing an indispensable role in inflammation and cancer, few inhibitors and suppressors are known. In the present study, the underlying mechanisms of a novel chemically synthesized compound SK-1009, which has suppressive properties on IL-6 production in human macrophage cells, were examined. SK-1009 suppressed IL-6 mRNA levels in human colon cancer cells. Thus, the influence of SK-1009 on transcription factor, nuclear factor-kappaB (NF-κB), which is involved in expression of the IL-6 gene was assessed. SK-1009 was found to suppress degradation of I-κB, an NF-κB inhibitory factor, and consequently inhibited the NF-κB activation pathway. The inhibitory property was almost the same as other NF-κB inhibitors, such as 5HPP-33. Thus, SK-1009 exerts a potent inhibitory effect on IL-6 expression, apparently mediated by modulation of activation of NF-κB transcription factor.
Collapse
Affiliation(s)
- Misato Shimura
- Division of Cancer Prevention Research, National Cancer Center Research Institute, 5–1–1 Tsukiji, Chuo-ku, Tokyo 104–0045, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Tomimori K, Nakama S, Kimura R, Tamaki K, Ishikawa C, Mori N. Antitumor activity and macrophage nitric oxide producing action of medicinal herb, Crassocephalum crepidioides. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 12:78. [PMID: 22720874 PMCID: PMC3407475 DOI: 10.1186/1472-6882-12-78] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 06/21/2012] [Indexed: 11/10/2022]
Abstract
Background Crassocephalum crepidioides, a plant distributed in Okinawa Islands, is known in folk medicine; however, its anticancer activity has not been investigated. The aim of this study was to determine the in vitro and in vivo antitumor activities of C. crepidioides on murine Sarcoma 180 (S-180) and related molecular mechanisms. Methods The antitumor effect of C. crepidioides was evaluated in S-180-cell-bearing mice. Cell growth was assessed using a colorimetric assay. Nitrite and nitrate levels were measured by colorimetry. The expression levels of inducible NO synthase (iNOS) in murine RAW264.7 macrophages was assessed by reverse transcriptase-polymerase chain reaction. Activation of iNOS promoter was detected by reporter gene. Activation of nuclear factor-κB (NF-κB) was evaluated by electrophoretic mobility shift assay. The role of NF-κB signaling was analyzed using inhibitors of NF-κB and dominant-negative mutants, and Western blot analysis. Results C. crepidioides extract delayed tumor growth in S-180-bearing mice. However, it did not inhibit S-180 cell growth in vitro. Supernatant of cultured C. crepidioides-stimulated RAW264.7 macrophages was cytotoxic to S-180 cells. This cytotoxicity was associated with nitric oxide (NO) production. NF-κB signaling pathway was crucial for the transcriptional activation of iNOS gene. Isochlorogenic acid, a component of C. crepidioides, induced NF-κB activation and iNOS expression. Conclusions The results highlight the oncolytic and immunopotentiation properties of C. crepidioides mediated through NF-κB-induced release of NO from macrophages.
Collapse
|
49
|
Inducible NOS-induced chloride intracellular channel 4 (CLIC4) nuclear translocation regulates macrophage deactivation. Proc Natl Acad Sci U S A 2012; 109:6130-5. [PMID: 22474389 DOI: 10.1073/pnas.1201351109] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nuclear translocation of cytosolic CLIC4 is an essential feature of its proapoptotic and prodifferentiation functions. Here we demonstrate that CLIC4 is induced concurrently with inducible nitric oxide synthase (iNOS) and S-nitrosylated in proinflammatory peritoneal macrophages. Chemical inhibition or genetic ablation of iNOS inhibits S-nitrosylation and nuclear translocation of CLIC4. In macrophages, iNOS-induced nuclear CLIC4 coincides with the pro- to anti-inflammatory transition of the cells because IL-1β and CXCL1 mRNA remain elevated in CLIC4 and iNOS knockout macrophages at late time points, whereas TNFα mRNA is elevated only in the iNOS knockout macrophages. Active IL-1β remains elevated in CLIC4 knockout macrophages and in macrophages in which CLIC4 nuclear translocation is prevented by the NOS inhibitor l-NAME. Moreover, overexpression of nuclear-targeted CLIC4 down-regulates IL-1β in stimulated macrophages. In mice, genetically null for CLIC4, the number of phagocytosing macrophages stimulated by LPS is reduced. Thus, iNOS-induced nuclear CLIC4 is an essential part of the macrophage deactivation program.
Collapse
|
50
|
Xu X, Yasuda M, Nakamura-Tsuruta S, Mizuno M, Ashida H. β-Glucan from Lentinus edodes inhibits nitric oxide and tumor necrosis factor-α production and phosphorylation of mitogen-activated protein kinases in lipopolysaccharide-stimulated murine RAW 264.7 macrophages. J Biol Chem 2012; 287:871-8. [PMID: 22102286 PMCID: PMC3256862 DOI: 10.1074/jbc.m111.297887] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 10/31/2011] [Indexed: 01/12/2023] Open
Abstract
Lentinan (LNT), a β-glucan from the fruiting bodies of Lentinus edodes, is well known to have immunomodulatory activity. NO and TNF-α are associated with many inflammatory diseases. In this study, we investigated the effects of LNT extracted by sonication (LNT-S) on the NO and TNF-α production in LPS-stimulated murine RAW 264.7 macrophages. The results suggested that treatment with LNT-S not only resulted in the striking inhibition of TNF-α and NO production in LPS-activated macrophage RAW 264.7 cells, but also the protein expression of inducible NOS (iNOS) and the gene expression of iNOS mRNA and TNF-α mRNA. It is surprising that LNT-S enhanced LPS-induced NF-κB p65 nuclear translocation and NF-κB luciferase activity, but severely inhibited the phosphorylation of JNK1/2 and ERK1/2. The neutralizing antibodies of anti-Dectin-1 and anti-TLR2 hardly affected the inhibition of NO production. All of these results suggested that the suppression of LPS-induced NO and TNF-α production was at least partially attributable to the inhibition of JNK1/2 and ERK1/2 activation. This work discovered a promising molecule to control the diseases associated with overproduction of NO and TNF-α.
Collapse
Affiliation(s)
- Xiaojuan Xu
- From the Department of Chemistry, Wuhan University, Wuhan 430072, China
- the Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe 657-8501, Japan
| | - Michiko Yasuda
- the Organization of Advanced Science and Technology, Kobe University, Nada-ku, Kobe 657-8501, Japan, and
| | - Sachiko Nakamura-Tsuruta
- the Organization of Advanced Science and Technology, Kobe University, Nada-ku, Kobe 657-8501, Japan, and
| | - Masashi Mizuno
- the Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe 657-8501, Japan
| | - Hitoshi Ashida
- the Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|