1
|
Kelsall IR. Non-lysine ubiquitylation: Doing things differently. Front Mol Biosci 2022; 9:1008175. [PMID: 36200073 PMCID: PMC9527308 DOI: 10.3389/fmolb.2022.1008175] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
The post-translational modification of proteins with ubiquitin plays a central role in nearly all aspects of eukaryotic biology. Historically, studies have focused on the conjugation of ubiquitin to lysine residues in substrates, but it is now clear that ubiquitylation can also occur on cysteine, serine, and threonine residues, as well as on the N-terminal amino group of proteins. Paradigm-shifting reports of non-proteinaceous substrates have further extended the reach of ubiquitylation beyond the proteome to include intracellular lipids and sugars. Additionally, results from bacteria have revealed novel ways to ubiquitylate (and deubiquitylate) substrates without the need for any of the enzymatic components of the canonical ubiquitylation cascade. Focusing mainly upon recent findings, this review aims to outline the current understanding of non-lysine ubiquitylation and speculate upon the molecular mechanisms and physiological importance of this non-canonical modification.
Collapse
|
2
|
Iwai K. Discovery of linear ubiquitination, a crucial regulator for immune signaling and cell death. FEBS J 2020; 288:1060-1069. [PMID: 32627388 DOI: 10.1111/febs.15471] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 06/29/2020] [Indexed: 12/21/2022]
Abstract
Ubiquitination is a reversible post-translational modification that regulates function of conjugated proteins by decorating with ubiquitin chains-polymer of ubiquitin-in most cases. The discovery of linear ubiquitin chains and the linear ubiquitin chain assembly complex (LUBAC) ubiquitin ligase complex can be considered as paradigm shift in the ubiquitin research because the linear ubiquitin chain is generated via the N-terminal Met of ubiquitin, although the other ubiquitin chains are generated via one of seven Lys residues in ubiquitin. Moreover, ubiquitination is distributed throughout eukaryotic kingdoms; however, no linear ubiquitination could be found in lower eukaryotes including yeasts. Although the involvement of ubiquitination in proteolysis is well-documented, linear ubiquitination plays crucial roles in immune signaling and cell death regulation. Moreover, dysregulation of LUBAC-mediated linear ubiquitination underlies various human diseases including autoinflammation and cancer. Here, I introduce how linear ubiquitination was discovered and outline a brief history of linear ubiquitination research.
Collapse
Affiliation(s)
- Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Elton L, Carpentier I, Verhelst K, Staal J, Beyaert R. The multifaceted role of the E3 ubiquitin ligase HOIL-1: beyond linear ubiquitination. Immunol Rev 2016; 266:208-21. [PMID: 26085217 DOI: 10.1111/imr.12307] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ubiquitination controls and fine-tunes many signaling processes driving immunity, inflammation, and cancer. The E3 ubiquitin ligase HOIL-1 (heme-oxidized IRP2 ubiquitin ligase-1) is increasingly implicated in different signaling pathways and plays a vital role in immune regulation. HOIL-1 co operates with the E3 ubiquitin ligase HOIP (HOIL-1 interacting protein) to modify specific nuclear factor-κB (NF-κB) signaling proteins with linear M1-linked polyubiquitin chains. In addition, through its ability to also add K48-linked polyubiquitin chains to specific substrates, HOIL-1 has been linked with antiviral signaling, iron and xenobiotic metabolism, cell death, and cancer. HOIL-1 deficiency in humans leads to myopathy, amylopectinosis, auto-inflammation, and immunodeficiency associated with an increased frequency of bacterial infections. HOIL-1-deficient mice exhibit amylopectin-like deposits in the myocardium, pathogen-specific immunodeficiency, but minimal signs of hyper-inflammation. This review summarizes current knowledge on the mechanism of action of HOIL-1 and highlights recent advances regarding its role in health and disease.
Collapse
Affiliation(s)
- Lynn Elton
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Isabelle Carpentier
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Kelly Verhelst
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jens Staal
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Romano S, D'Angelillo A, Romano MF. Pleiotropic roles in cancer biology for multifaceted proteins FKBPs. Biochim Biophys Acta Gen Subj 2015; 1850:2061-8. [PMID: 25592270 DOI: 10.1016/j.bbagen.2015.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 01/05/2015] [Accepted: 01/06/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND FK506 binding proteins (FKBP) are multifunctional proteins highly conserved across the species and abundantly expressed in the cell. In addition to a well-established role in immunosuppression, FKBPs modulate several signal transduction pathways in the cell, due to their isomerase activity and the capability to interact with other proteins, inducing changes in conformation and function of protein partners. Increasing literature data support the concept that FKBPs control cancer related pathways. SCOPE OF THE REVIEW The aim of the present article is to review current knowledge on FKBPs roles in regulation of key signaling pathways associated with cancer. MAJOR CONCLUSIONS Some family members appear to promote disease while others are protective against tumorigenesis. GENERAL SIGNIFICANCE FKBPs family proteins are expected to provide new biomarkers and small molecular targets, in the near future, increasing diagnostic and therapeutic opportunities in the cancer field. This article is part of a Special Issue entitled Proline-Directed Foldases: Cell Signaling Catalysts and Drug Targets.
Collapse
Affiliation(s)
- Simona Romano
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy
| | - Anna D'Angelillo
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy; Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy.
| |
Collapse
|
5
|
Xie N, Chen X, Zhang T, Liu B, Huang C. Using proteomics to identify the HBx interactome in hepatitis B virus: how can this inform the clinic? Expert Rev Proteomics 2013; 11:59-74. [PMID: 24308553 DOI: 10.1586/14789450.2014.861745] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hepatitis B virus (HBV) is a small and enveloped DNA virus, of which chronic infection is the main risk factor of liver cirrhosis and hepatocellular carcinoma. Hepatitis B virus X protein (HBx) is a multifunctional protein encoded by HBV genome, which have significant effects on HBV replication and pathogenesis. Through directly interacting with cellular proteins, HBx is capable to promote HBV replication, regulate transcription of host genes, disrupt protein degradation, modulate signaling pathway, manipulate cell death and deregulate cell cycle. In this review, we briefly discuss the diversified effects of HBx-interactome and their potential clinical significances.
Collapse
Affiliation(s)
- Na Xie
- The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, P.R. China
| | | | | | | | | |
Collapse
|
6
|
Donley C, McClelland K, McKeen HD, Nelson L, Yakkundi A, Jithesh PV, Burrows J, McClements L, Valentine A, Prise KM, McCarthy HO, Robson T. Identification of RBCK1 as a novel regulator of FKBPL: implications for tumor growth and response to tamoxifen. Oncogene 2013; 33:3441-50. [PMID: 23912458 DOI: 10.1038/onc.2013.306] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 05/27/2013] [Accepted: 06/11/2013] [Indexed: 01/03/2023]
Abstract
FKBPL has been implicated in processes associated with cancer, including regulation of tumor growth and angiogenesis with high levels of FKBPL prognosticating for improved patient survival. Understanding how FKBPL levels are controlled within the cell is therefore critical. We have identified a novel role for RBCK1 as an FKBPL-interacting protein, which regulates FKBPL stability at the post-translational level via ubiquitination. Both RBCK1 and FKBPL are upregulated by 17-β-estradiol and interact within heat shock protein 90 chaperone complexes, together with estrogen receptor-α (ERα). Furthermore, FKBPL and RBCK1 associate with ERα at the promoter of the estrogen responsive gene, pS2, and regulate pS2 levels. MCF-7 clones stably overexpressing RBCK1 were shown to have reduced proliferation and increased levels of FKBPL and p21. Furthermore, these clones were resistant to tamoxifen therapy, suggesting that RBCK1 could be a predictive marker of response to endocrine therapy. RBCK1 knockdown using targeted small interfering RNA resulted in increased proliferation and increased sensitivity to tamoxifen treatment. Moreover, in support of our in vitro data, analysis of mRNA microarray data sets demonstrated that high levels of FKBPL and RBCK1 correlated with increased patient survival, whereas high RBCK1 predicted for a poor response to tamoxifen. Our findings support a role for RBCK1 in the regulation of FKBPL with important implications for estrogen receptor signaling, cell proliferation and response to endocrine therapy.
Collapse
Affiliation(s)
- C Donley
- School of Pharmacy, McClay Research Centre, Queen's University, Belfast, Northern Ireland
| | - K McClelland
- School of Pharmacy, McClay Research Centre, Queen's University, Belfast, Northern Ireland
| | - H D McKeen
- School of Pharmacy, McClay Research Centre, Queen's University, Belfast, Northern Ireland
| | - L Nelson
- School of Pharmacy, McClay Research Centre, Queen's University, Belfast, Northern Ireland
| | - A Yakkundi
- School of Pharmacy, McClay Research Centre, Queen's University, Belfast, Northern Ireland
| | - P V Jithesh
- Liverpool Cancer Research UK Centre, University of Liverpool, Liverpool, UK
| | - J Burrows
- School of Pharmacy, McClay Research Centre, Queen's University, Belfast, Northern Ireland
| | - L McClements
- School of Pharmacy, McClay Research Centre, Queen's University, Belfast, Northern Ireland
| | - A Valentine
- School of Pharmacy, McClay Research Centre, Queen's University, Belfast, Northern Ireland
| | - K M Prise
- Centre for Cancer Research and Cell Biology, Queen's University, Belfast, Northern Ireland
| | - H O McCarthy
- School of Pharmacy, McClay Research Centre, Queen's University, Belfast, Northern Ireland
| | - T Robson
- School of Pharmacy, McClay Research Centre, Queen's University, Belfast, Northern Ireland
| |
Collapse
|
7
|
Shin GC, Ahn SH, Choi HS, Lim KH, Choi DY, Kim KP, Kim KH. Hepatocystin/80K-H inhibits replication of hepatitis B virus through interaction with HBx protein in hepatoma cell. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1569-81. [PMID: 23644164 DOI: 10.1016/j.bbadis.2013.04.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 04/11/2013] [Accepted: 04/25/2013] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV) X protein (HBx) is a key player in HBV replication as well as HBV-induced hepatocellular carcinoma (HCC). However, the pathogenesis of HBV infection and the mechanisms of host-virus interactions are still elusive. In this study, a combination of affinity purification and mass spectrometry was applied to identify the host factors interacting with HBx in hepatoma cells. Thirteen proteins were identified as HBx binding partners. Among them, we first focused on determining the functional significance of the interaction between HBx and hepatocystin. A physical interaction between HBx and hepatocystin was confirmed by co-immunoprecipitation and Western blotting. Immunocytochemistry demonstrated that HBx and hepatocystin colocalized in the hepatoma cells. Domain mapping of both proteins revealed that the HBx C-terminus (amino acids 110-154) was responsible for binding to the mannose 6-phosphate receptor homology domain (amino acids, 419-525) of hepatocystin. Using translation and proteasome inhibitors, we found that hepatocystin overexpression accelerated HBx degradation via a ubiquitin-independent proteasome pathway. We demonstrated that this effect was mediated by an interaction between both proteins using a HBx deletion mutant. Hepatocystin overexpression significantly inhibited HBV DNA replication and expression of HBs antigen concomitant with HBx degradation. Using the hepatocystin mutant constructs that bind HBx, we also confirmed that hepatocystin inhibited HBx-dependent HBV replication. In conclusion, we demonstrated for the first time that hepatocystin functions as a chaperon-like molecule by accelerating HBx degradation, and thereby inhibits HBV replication. Our results suggest that inducing hepatocystin may provide a novel therapeutic approach to control HBV infection.
Collapse
Affiliation(s)
- Gu-Choul Shin
- Department of Pharmacology, Konkuk University School of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
8
|
Shi HP, Zhang J, Shang XC, Xie XY. Hepatitis B Virus Gene C1653T Polymorphism Mutation and Hepatocellular Carcinoma Risk: an Updated Meta-analysis. Asian Pac J Cancer Prev 2013; 14:1043-7. [DOI: 10.7314/apjcp.2013.14.2.1043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
9
|
Gustafsson Sheppard N, Heldring N, Dahlman-Wright K. Estrogen receptor-α, RBCK1, and protein kinase C β 1 cooperate to regulate estrogen receptor-α gene expression. J Mol Endocrinol 2012; 49:277-87. [PMID: 23042805 DOI: 10.1530/jme-12-0073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Estrogen receptor α (ERα) is initially overexpressed in two-thirds of all breast cancers and is involved in its development and proliferation. We previously reported that the RanBP-type and C3HC4-type zinc finger containing 1 (RBCK1) interacts with the ERα promoter and that RBCK1 expression positively correlates with ERα levels, expression of ERα downstream target genes, and proliferation of breast cancer cells. Based on this, and that RBCK1 positively correlates with ERα expression in breast cancer samples, we propose RBCK1 as a potential therapeutic target in breast cancer acting as a modulator of ERα expression. To further explore this, the molecular mechanism by which RBCK1 regulates ERα expression has to be defined. Here, we show that ERα, RBCK1, and the RBCK1-interacting protein protein kinase C β 1 (PKCβ(I)) co-occupy a previously identified ERα binding region in the proximal ERα promoter. We describe a number of mechanistic details of this complex including that RBCK1 recruitment to the ERα promoter B is facilitated by ERα, which in turn facilitates PKCβ(I) recruitment and PKCβ(I)-dependent histone modifications. Furthermore, ERα regulation of its own mRNA expression is facilitated by RBCK1 recruitment, suggesting an ERα coactivator function of RBCK1. The interaction between RBCK1 and ERα was dependent on the E3 ubiquitin ligase domain of RBCK1 and the activating function-1 domain of ERα. The ligand-binding function of ERα does not influence the interaction with RBCK1. In summary, our data provide insight into the molecular mechanism by which ERα expression is modulated in breast cancer cells.
Collapse
Affiliation(s)
- Nina Gustafsson Sheppard
- Department of Biosciences and Nutrition, Karolinska Institute, NOVUM, S-14183 Huddinge, Stockholm, Sweden.
| | | | | |
Collapse
|
10
|
Rana R, Coulter S, Kinyamu H, Goldstein JA. RBCK1, an E3 ubiquitin ligase, interacts with and ubiquinates the human pregnane X receptor. Drug Metab Dispos 2012; 41:398-405. [PMID: 23160820 DOI: 10.1124/dmd.112.048728] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The pregnane X receptor (PXR, NR1I2) plays a pivotal role in the disposition and detoxification of numerous foreign and endogenous chemicals by increasing transcription of numerous target genes, including phase I and II drug-metabolizing enzymes and transporters. In the present study, yeast two-hybrid screening identified an E3 ubiquitin ligase, RBCK1 (Ring-B-box-coiled-coil protein interacting with protein kinase C-1), as a human pregnane X receptor (hPXR)-interacting protein. Coimmunoprecipitation studies confirmed the interaction between RBCK1 and hPXR when both were ectopically expressed in AD-293 cells. Domain mapping studies showed that the interaction between RBCK1 and hPXR involves all RBCK1 domains. We further demonstrate that RBCK1 ubiquitinates hPXR, and this may target hPXR for degradation by the ubiquitin-proteasome pathway. Simultaneous ectopic overexpression of RBCK1 and PXR decreased PXR levels in AD-293 cells, and this decrease was inhibited by the proteasomal inhibitor MG-132 (carbobenzoxy-Leu-Leu-leucinal). Furthermore, overexpression of RBCK1 decreased endogenous levels of PXR in HepG2 cells. Of importance, ectopic overexpression and silencing of endogenous RBCK1 in primary human hepatocytes resulted in a decrease and increase, respectively, in endogenous PXR protein levels and in the induction of PXR target genes by rifampicin. These results suggest that RBCK1 is important for the ubiquitination of PXR and may play a role in its proteasomal degradation.
Collapse
Affiliation(s)
- Ritu Rana
- Laboratory of Toxicology & Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
11
|
Rawat S, Clippinger AJ, Bouchard MJ. Modulation of apoptotic signaling by the hepatitis B virus X protein. Viruses 2012; 4:2945-72. [PMID: 23202511 PMCID: PMC3509679 DOI: 10.3390/v4112945] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/23/2012] [Accepted: 10/31/2012] [Indexed: 12/18/2022] Open
Abstract
Worldwide, an estimated 350 million people are chronically infected with the Hepatitis B Virus (HBV); chronic infection with HBV is associated with the development of severe liver diseases including hepatitis and cirrhosis. Individuals who are chronically infected with HBV also have a significantly higher risk of developing hepatocellular carcinoma (HCC) than uninfected individuals. The HBV X protein (HBx) is a key regulatory HBV protein that is important for HBV replication, and likely plays a cofactor role in the development of HCC in chronically HBV-infected individuals. Although some of the functions of HBx that may contribute to the development of HCC have been characterized, many HBx activities, and their putative roles during the development of HBV-associated HCC, remain incompletely understood. HBx is a multifunctional protein that localizes to the cytoplasm, nucleus, and mitochondria of HBV‑infected hepatocytes. HBx regulates numerous cellular signal transduction pathways and transcription factors as well as cell cycle progression and apoptosis. In this review, we will summarize reports in which the impact of HBx expression on cellular apoptotic pathways has been analyzed. Although various effects of HBx on apoptotic pathways have been observed in different model systems, studies of HBx activities in biologically relevant hepatocyte systems have begun to clarify apoptotic effects of HBx and suggest mechanisms that could link HBx modulation of apoptotic pathways to the development of HBV-associated HCC.
Collapse
Affiliation(s)
- Siddhartha Rawat
- Graduate Program in Molecular and Cellular Biology and Genetics, Drexel University College of Medicine, Philadelphia, PA 19102, USA;
| | - Amy J. Clippinger
- Department of Cancer Biology, Abramson Family Cancer Research Institute, School of Medicine, University of Pennsylvania Philadelphia, PA 19104, USA;
| | - Michael J. Bouchard
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| |
Collapse
|
12
|
GUO PENGTAO, YANG DONG, SUN ZHE, XU HUIMIAN. Hepatitis B virus X protein plays an important role in gastric ulcers. Oncol Rep 2012; 28:1653-8. [DOI: 10.3892/or.2012.2011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 07/09/2012] [Indexed: 11/06/2022] Open
|
13
|
Tokunaga F, Iwai K. LUBAC, a novel ubiquitin ligase for linear ubiquitination, is crucial for inflammation and immune responses. Microbes Infect 2012; 14:563-72. [DOI: 10.1016/j.micinf.2012.01.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 01/19/2012] [Indexed: 10/14/2022]
|
14
|
Ma J, Sun T, Park S, Shen G, Liu J. The role of hepatitis B virus X protein is related to its differential intracellular localization. Acta Biochim Biophys Sin (Shanghai) 2011; 43:583-8. [PMID: 21693548 DOI: 10.1093/abbs/gmr048] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection has been strongly associated with hepatocellular carcinoma. HBV encodes an oncogenic hepatitis B virus X protein (HBx), which is a multifunctional regulator that modulates signal transduction, transcription, cell cycle progress, protein degradation, apoptosis, and genetic stability through direct and indirect interaction with host factors. The subcellular localization of HBx is primarily cytoplasmic, with a small fraction in the nucleus. In addition, high levels of HBx expression lead to an abnormal mitochondrial distribution. The dynamic distribution of HBx could be important to the multiple functions of HBx at different stages of the HBV life cycle. This short review presents an overview of the differential roles of HBx as a function of its intracellular localization.
Collapse
Affiliation(s)
- Jingwei Ma
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | | | | | | | | |
Collapse
|
15
|
Sipl1 and Rbck1 are novel Eya1-binding proteins with a role in craniofacial development. Mol Cell Biol 2010; 30:5764-75. [PMID: 20956555 DOI: 10.1128/mcb.01645-09] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The eyes absent 1 protein (Eya1) plays an essential role in the development of various organs in both invertebrates and vertebrates. Mutations in the human EYA1 gene are linked to BOR (branchio-oto-renal) syndrome, characterized by kidney defects, hearing loss, and branchial arch anomalies. For a better understanding of Eya1's function, we have set out to identify new Eya1-interacting proteins. Here we report the identification of the related proteins Sipl1 (Shank-interacting protein-like 1) and Rbck1 (RBCC protein interacting with PKC1) as novel interaction partners of Eya1. We confirmed the interactions by glutathione S-transferase (GST) pulldown analysis and coimmunoprecipitation. A first mechanistic insight is provided by the demonstration that Sipl1 and Rbck1 enhance the function of Eya proteins to act as coactivators for the Six transcription factors. Using reverse transcriptase PCR (RT-PCR) and in situ hybridization, we show that Sipl1 and Rbck1 are coexpressed with Eya1 in several organs during embryogenesis of both the mouse and zebrafish. By morpholino-mediated knockdown, we demonstrate that the Sipl1 and Rbck1 orthologs are involved in different aspects of zebrafish development. In particular, knockdown of one Sipl1 ortholog as well as one Rbck1 ortholog led to a BOR syndrome-like phenotype, with characteristic defects in ear and branchial arch formation.
Collapse
|
16
|
Asim M, Malik A, Sarma MP, Polipalli SK, Begum N, Ahmad I, Khan LA, Husain SA, Akhtar N, Husain S, Thayumanavan L, Singla R, Kar P. Hepatitis B virus BCP, Precore/core, X gene mutations/genotypes and the risk of hepatocellular carcinoma in India. J Med Virol 2010; 82:1115-25. [PMID: 20513073 DOI: 10.1002/jmv.21774] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The study aims to characterize mutations of the HBV genome involving BCP, Precore/core and X regions and also defines HBV genotypes in patients of hepatocellular carcinoma (HCC). The study involved 150 HBV-related HCC cases and 136 HBV-related chronic liver disease patients without HCC as controls. HBV DNA was subjected to mutational analysis using SSCP technique, genotyping by RFLP, and direct nucleotide sequencing. HBV DNA was found in 58.7% (88/150) of the HCC cases and 74.3% (101/136) of controls. HBV mutants were observed in 44.3% of HCC cases and 43.2% of controls. HBV/D was prevalent amongst the patients and controls, followed by HBV/A. The prevalence of the TT1504 mutation in the X gene, the V1753 and T1762/A1764 mutations in the BCP region, and G1914 mutation in the core gene were significantly higher in the HCC group than in the non-HCC group. Multivariate analyses showed that the TT1504, V1753, A1762T/G1764A, and the G1914 mutations and the patient's age, sex, and HBeAg status increased the risk of HCC development significantly. Also, patients with HCC had lower levels of serum albumin, viral load, and platelet counts but higher values of alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, bilirubin, and Alpha feto-protein than those of controls (P < 0.001 for all comparisons). HBV/D was the predominant genotype associated with HCC cases seen in India. The presence of different types of HBV mutations, age, sex, HBeAg status, and viral load was found to increase significantly the risk of HCC development in India.
Collapse
Affiliation(s)
- Mohammad Asim
- Department of Medicine, Maulana Azad Medical College, University of Delhi, New Delhi, India
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Gustafsson N, Zhao C, Gustafsson JÅ, Dahlman-Wright K. RBCK1 Drives Breast Cancer Cell Proliferation by Promoting Transcription of Estrogen Receptor α and Cyclin B1. Cancer Res 2010; 70:1265-74. [DOI: 10.1158/0008-5472.can-09-2674] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Kim JK, Chang HY, Lee JM, Baatarkhuu O, Yoon YJ, Park JY, Kim DY, Han KH, Chon CY, Ahn SH. Specific mutations in the enhancer II/core promoter/precore regions of hepatitis B virus subgenotype C2 in Korean patients with hepatocellular carcinoma. J Med Virol 2009; 81:1002-8. [PMID: 19382267 DOI: 10.1002/jmv.21501] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recently, hepatitis B virus (HBV) genotypes and mutations have been reported to be related to hepatocellular carcinoma (HCC). This cross-sectional case-control study examined the relationship between HCC and mutations in the enhancer II/core promoter and precore regions of HBV by comparing 135 Korean HCC patients infected with HBV genotype C2 (HBV/C2; HCC group) with 135 age-, sex-, and hepatitis B e antigen (HBeAg) status-matched patients without HCC (non- HCC group). Age and sex were also matched between HBeAg-positive and -negative patients. The prevalence of T1653, A1689, V1753, T1762/A1764, T1846, A1850, C1858, and A1896 mutations was evaluated in this population. The prevalence of the T1653 mutation in the box alpha region, the T1689 [corrected] mutation in between the box alpha and beta regions, and the T1762/A1764 mutations in the basal core promoter region was significantly higher in the HCC group compared to the non-HCC group (8.9% vs. 2.2%, P = 0.017; 19.3% vs. 4.4%, P < 0.001; and 60.7% vs. 22.2%; P < 0.001). Among HBeAg-negative patients, the frequency of the T1653 mutation was higher in the HCC group. Regardless of HBeAg status, the prevalence of the T1689, [corrected] and T1762/A1764 mutations was higher in the HCC group than in the non-HCC group. However, no association was observed between mutations in the precore region and HCC. Upon multivariate analysis, the presence of the T1653, T1689, [corrected] and T1762/A1764 mutations was an independent predictive factor for HCC. The addition of the T1653 or T1689 [corrected] mutation to T1762/A1764 increased the risk of HCC. In conclusion, the T1653, T1689, [corrected] and/or T1762/A1764 mutations were associated with the development of HCC in Korean patients infected with HBV/C2.
Collapse
Affiliation(s)
- Ja Kyung Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Tokunaga F, Sakata SI, Saeki Y, Satomi Y, Kirisako T, Kamei K, Nakagawa T, Kato M, Murata S, Yamaoka S, Yamamoto M, Akira S, Takao T, Tanaka K, Iwai K. Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation. Nat Cell Biol 2009; 11:123-32. [PMID: 19136968 DOI: 10.1038/ncb1821] [Citation(s) in RCA: 778] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 10/14/2008] [Indexed: 11/09/2022]
Abstract
Nuclear factor-kappaB (NF-kappaB) is a key transcription factor in inflammatory, anti-apoptotic and immune processes. The ubiquitin pathway is crucial in regulating the NF-kappaB pathway. We have found that the LUBAC ligase complex, composed of the two RING finger proteins HOIL-1L and HOIP, conjugates a head-to-tail-linked linear polyubiquitin chain to substrates. Here, we demonstrate that LUBAC activates the canonical NF-kappaB pathway by binding to NEMO (NF-kappaB essential modulator, also called IKKgamma) and conjugates linear polyubiquitin chains onto specific Lys residues in the CC2-LZ domain of NEMO in a Ubc13-independent manner. Moreover, in HOIL-1 knockout mice and cells derived from these mice, NF-kappaB signalling induced by pro-inflammatory cytokines such as TNF-alpha and IL-1beta was suppressed, resulting in enhanced TNF-alpha-induced apoptosis in hepatocytes of HOIL-1 knockout mice. These results indicate that LUBAC is involved in the physiological regulation of the canonical NF-kappaB activation pathway through linear polyubiquitylation of NEMO.
Collapse
Affiliation(s)
- Fuminori Tokunaga
- Department of Biophysics and Biochemistry, Graduate School of Medicine and Cell Biology and Metabolism Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhang M, Tian Y, Wang RP, Gao D, Zhang Y, Diao FC, Chen DY, Zhai ZH, Shu HB. Negative feedback regulation of cellular antiviral signaling by RBCK1-mediated degradation of IRF3. Cell Res 2008; 18:1096-104. [DOI: 10.1038/cr.2008.277] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
21
|
Zumbrennen KB, Hanson ES, Leibold EA. HOIL-1 is not required for iron-mediated IRP2 degradation in HEK293 cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1783:246-52. [PMID: 17822790 PMCID: PMC2274887 DOI: 10.1016/j.bbamcr.2007.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2007] [Revised: 07/19/2007] [Accepted: 07/26/2007] [Indexed: 01/11/2023]
Abstract
Iron regulatory protein 2 (IRP2) binds to iron-responsive elements (IREs) to regulate the translation and stability of mRNAs encoding several proteins involved in mammalian iron homeostasis. Increases in cellular iron stimulate the polyubiquitylation and proteasomal degradation of IRP2. One study has suggested that haem-oxidized IRP2 ubiquitin ligase-1 (HOIL-1) binds to a unique 73-amino acid (aa) domain in IRP2 in an iron-dependent manner to regulate IRP2 polyubiquitylation and degradation. Other studies have questioned the role of the 73-aa domain in iron-dependent IRP2 degradation. We investigated the potential role of HOIL-1 in the iron-mediated degradation of IRP2 in human embryonic kidney 293 (HEK293) cells. We found that transiently expressed HOIL-1 and IRP2 interact via the 73-aa domain, but this interaction is not iron-dependent, nor does it enhance the rate of IRP2 degradation by iron. In addition, stable expression of HOIL-1 does not alter the iron-dependent degradation or RNA-binding activity of endogenous IRP2. Reduction of endogenous HOIL-1 by siRNA has no affect on the iron-mediated degradation of endogenous IRP2. These data demonstrate that HOIL-1 is not required for iron-dependent degradation of IRP2 in HEK293 cells, and suggest that a HOIL-1 independent mechanism is used for IRP2 degradation in most cell types.
Collapse
Affiliation(s)
- Kimberly B. Zumbrennen
- Eccles Program in Human Molecular Biology and Genetics, University of Utah, Salt Lake City, Utah, 84112
- Oncological Sciences, University of Utah, Salt Lake City, Utah, 84112
| | - Eric S. Hanson
- Eccles Program in Human Molecular Biology and Genetics, University of Utah, Salt Lake City, Utah, 84112
- Departments of Medicine, University of Utah, Salt Lake City, Utah, 84112
| | - Elizabeth A. Leibold
- Eccles Program in Human Molecular Biology and Genetics, University of Utah, Salt Lake City, Utah, 84112
- Departments of Medicine, University of Utah, Salt Lake City, Utah, 84112
- Oncological Sciences, University of Utah, Salt Lake City, Utah, 84112
- Address correspondence to: Elizabeth A. Leibold, University of Utah, Program in Human Molecular Biology, 15 North 2030 East, SLC, UT 84112; Tel. 1−801−585−5002; Fax. 1−801−585−3501; E-Mail:
| |
Collapse
|
22
|
Shinkai N, Tanaka Y, Ito K, Mukaide M, Hasegawa I, Asahina Y, Izumi N, Yatsuhashi H, Orito E, Joh T, Mizokami M. Influence of hepatitis B virus X and core promoter mutations on hepatocellular carcinoma among patients infected with subgenotype C2. J Clin Microbiol 2007; 45:3191-7. [PMID: 17652471 PMCID: PMC2045330 DOI: 10.1128/jcm.00411-07] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hepatitis B virus (HBV) genotypes/subgenotypes and their related mutations in the HBV genome have been reported to be associated with hepatocellular carcinoma (HCC). To determine the HCC-associated mutations of the HBV genome in the entire X, core promoter, and precore/core regions, a cross-sectional control study was conducted comparing 80 Japanese patients infected with HBV C2 and suffering from HCC with 80 age-, sex-, and hepatitis B e antigen (HBeAg) status-matched patients without HCC (non-HCC group). Each HBeAg-positive group (31 with HCC; 29 without HCC) and HBeAg-negative group (49 with HCC; 51 without HCC) was also matched with respect to age and sex. The C1479, T1485, H1499, A1613, T1653, V1753, T1762/A1764, and A1896 mutations were frequent in this population. The prevalences of the T1653 mutation in the box alpha region and the V1753 and T1762/A1764 mutations in the basal core promoter region were significantly higher in the HCC group than in the non-HCC group (56% versus 30%, 50% versus 24%, and 91% versus 73% [P = 0.0013, P = 0.0010, and P = 0.0035, respectively]). The platelet count was significantly lower for the HCC group than for the non-HCC group (10.7 x 10(4) +/- 5.1 x 10(4) versus 17.3 x 10(4) +/- 5.1 x 10(4) platelets/mm(3) [P < 0.0001]). Regardless of HBeAg status, the prevalence of the T1653 mutation was higher in the HCC group (52% versus 24% [P = 0.036] for HBeAg-positive patients and 59% versus 33% [P = 0.029] for HBeAg-negative patients). In the multivariate analysis, the presence of T1653, the presence of V1753, and a platelet count of < or =10 x 10(4)/mm(3) were independent predictive factors for HCC (odds ratios [95% confidence intervals], 4.37 [1.53 to 12.48], 7.98 [2.54 to 25.10], and 24.39 [8.11 to 73.33], respectively). Regardless of HBeAg status, the T1653 mutation increases the risk of HCC in Japanese patients with HBV/C2.
Collapse
Affiliation(s)
- Noboru Shinkai
- Department of Clinical Molecular Informative Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
An overview of the large and functionally diverse RBR protein family that mediates protein-protein interactions of various kinds in development and disease. Summary Proteins of the ring between ring fingers (RBR)-domain family are characterized by three groups of specifically clustered (typically eight) cysteine and histidine residues. Whereas the amino-terminal ring domain (N-RING) binds two zinc ions and folds into a classical cross-brace ring finger, the carboxy-terminal ring domain (C-RING) involves only one zinc ion. The three-dimensional structure of the central ring domain, the IBR domain, is still unsolved. About 400 genes coding for RBR proteins have been identified in the genomes of uni- and multicellular eukaryotes and some of their viruses, but the family has not been found in archaea or bacteria. The RBR proteins are classified into 15 major subfamilies (besides some orphan cases) by the phylogenetic relationships of the RBR segments and the conservation of their sequence architecture. The RBR domain mediates protein-protein interactions and a subset of RBR proteins has been shown to function as E3 ubiquitin ligases. RBR proteins have attracted interest because of their involvement in diseases such as parkinsonism, dementia with Lewy bodies, and Alzheimer's disease, and in susceptibility to some intracellular bacterial pathogens. Here, we present an overview of the RBR-domain containing proteins and their subcellular localization, additional domains, function, specificity, and regulation.
Collapse
Affiliation(s)
- Birgit Eisenhaber
- Research Institute of Molecular Pathology (IMP), Dr Bohr-Gasse, A-1030 Vienna, Austria
| | - Nina Chumak
- Institute of Applied Genetics and Cell Biology, Department of Plant Science and Plant Biotechnology, University of Natural Resources and Applied Life Sciences, Muthgasse, A-1190 Vienna, Austria
| | - Frank Eisenhaber
- Research Institute of Molecular Pathology (IMP), Dr Bohr-Gasse, A-1030 Vienna, Austria
| | - Marie-Theres Hauser
- Institute of Applied Genetics and Cell Biology, Department of Plant Science and Plant Biotechnology, University of Natural Resources and Applied Life Sciences, Muthgasse, A-1190 Vienna, Austria
| |
Collapse
|
24
|
Tian Y, Zhang Y, Zhong B, Wang YY, Diao FC, Wang RP, Zhang M, Chen DY, Zhai ZH, Shu HB. RBCK1 negatively regulates tumor necrosis factor- and interleukin-1-triggered NF-kappaB activation by targeting TAB2/3 for degradation. J Biol Chem 2007; 282:16776-82. [PMID: 17449468 DOI: 10.1074/jbc.m701913200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Inflammation is a homeostatic mechanism that limits the effects of infectious agents. Tumor necrosis factor (TNF) and interleukin (IL)-1 are two cytokines that induce inflammation through activation of the transcription factor NF-kappaB. Various studies have suggested that two homologous and structurally related adapter proteins TAB2 and TAB3 play redundant roles in TNF- and IL-1-mediated NF-kappaB activation pathways. Both TAB2 and TAB3 contain CUE, coiled-coil, and nuclear protein localization 4 zinc finger (NZF) domains. The NZF domains of TAB2/3 are critical for TAB2/3 to bind to Lys(63)-linked polyubiquitin chains of other adaptor proteins, such as receptor-interacting protein and TRAF6, which are two signaling proteins essential for TNF- and IL-1-induced NF-kappaB activation, respectively. In a search for proteins containing NZF domains conserved with those of TAB2/3, we identified RBCK1, which has been shown to act as an E3 ubiquitin ligase in iron metabolism. Overexpression of RBCK1 negatively regulates TAB2/3-mediated and TNF- and IL-1-induced NF-kappaB activation, whereas knockdown of RBCK1 by RNA interference potentiates TNF- and IL-1-induced NF-kappaB activation. RBCK1 physically interacts with TAB2/3 and facilitates degradation of TAB2/3 through a proteasome-dependent process. Taken together, our findings suggest that RBCK1 is involved in negative regulation of inflammatory signaling triggered by TNF and IL-1 through targeting TAB2/3 for degradation.
Collapse
Affiliation(s)
- Yang Tian
- College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Nakamura M, Tokunaga F, Sakata SI, Iwai K. Mutual regulation of conventional protein kinase C and a ubiquitin ligase complex. Biochem Biophys Res Commun 2006; 351:340-7. [PMID: 17069764 DOI: 10.1016/j.bbrc.2006.09.163] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Accepted: 09/30/2006] [Indexed: 12/13/2022]
Abstract
Several isoforms of protein kinase C (PKC) are degraded by the ubiquitin-proteasome pathway after phorbol ester-mediated activation. However, little is known about the ubiquitin ligase (E3) that targets activated PKCs. We recently showed that an E3 complex composed of HOIL-1L and HOIP (LUBAC) generates linear polyubiquitin chains and induces the proteasomal degradation of a model substrate. HOIL-1L has also been characterized as a PKC-binding protein. Here we show that LUBAC preferentially binds activated conventional PKCs and their constitutively active mutants. LUBAC efficiently ubiquitinated activated PKC in vitro, and degradation of activated PKCalpha was delayed in HOIL-1L-deficient cells. Conversely, PKC activation induced cleavage of HOIL-1L and led to downregulation of the ligase activity of LUBAC. These results indicate that LUBAC is an E3 for activated conventional PKC, and that PKC and LUBAC regulate each other for proper PKC signaling.
Collapse
Affiliation(s)
- Munehiro Nakamura
- Department of Molecular Cell Biology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | | | | | | |
Collapse
|
26
|
Wallander ML, Leibold EA, Eisenstein RS. Molecular control of vertebrate iron homeostasis by iron regulatory proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:668-89. [PMID: 16872694 PMCID: PMC2291536 DOI: 10.1016/j.bbamcr.2006.05.004] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 05/09/2006] [Accepted: 05/10/2006] [Indexed: 02/06/2023]
Abstract
Both deficiencies and excesses of iron represent major public health problems throughout the world. Understanding the cellular and organismal processes controlling iron homeostasis is critical for identifying iron-related diseases and in advancing the clinical treatments for such disorders of iron metabolism. Iron regulatory proteins (IRPs) 1 and 2 are key regulators of vertebrate iron metabolism. These RNA binding proteins post-transcriptionally control the stability or translation of mRNAs encoding proteins involved in iron homeostasis thereby controlling the uptake, utilization, storage or export of iron. Recent evidence provides insight into how IRPs selectively control the translation or stability of target mRNAs, how IRP RNA binding activity is controlled by iron-dependent and iron-independent effectors, and the pathological consequences of dysregulation of the IRP system.
Collapse
Affiliation(s)
- Michelle L. Wallander
- Department of Oncological Sciences, University of Utah, 15N. 2030E., Salt Lake City, UT 84112, USA
- Eccles Program in Human Molecular Biology and Genetics, University of Utah, 15N. 2030E., Salt Lake City, UT 84112, USA
| | - Elizabeth A. Leibold
- Department of Medicine, University of Utah, 15N. 2030E., Salt Lake City, UT 84112, USA
- Department of Oncological Sciences, University of Utah, 15N. 2030E., Salt Lake City, UT 84112, USA
- Eccles Program in Human Molecular Biology and Genetics, University of Utah, 15N. 2030E., Salt Lake City, UT 84112, USA
| | - Richard S. Eisenstein
- Department of Nutritional Sciences, University of Wisconsin, 1415 Linden Drive, Madison, WI 53706, USA
- Corresponding author. Tel.: +1 608 262 5830. E-mail address: (R.S. Eisenstein)
| |
Collapse
|
27
|
Bayle J, Lopez S, Iwaï K, Dubreuil P, De Sepulveda P. The E3 ubiquitin ligase HOIL-1 induces the polyubiquitination and degradation of SOCS6 associated proteins. FEBS Lett 2006; 580:2609-14. [PMID: 16643902 DOI: 10.1016/j.febslet.2006.03.093] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2006] [Revised: 03/28/2006] [Accepted: 03/29/2006] [Indexed: 11/17/2022]
Abstract
The suppressor of cytokine signaling (SOCS) proteins are thought to exert their function through the recruitment of interacting-proteins to the ubiquitin/proteasome degradation pathway. All SOCS proteins bind an Elongin BC E3 ubiquitin ligase complex through the common Socs-box. Here, we show that haem-oxidized IRP2 ubiquitin ligase-1 (HOIL-1), another E3 ubiquitin ligase, interacts with SOCS6. The Ubl domain of HOIL-1 and the SH2 and Socs-box domains of SOCS6 are required for the interaction. HOIL-1 expression stabilizes SOCS6 and induces the ubiquitination and degradation of proteins associated with SOCS6. These data suggest that SOCS proteins may interact with different E3 ubiquitin ligases in addition to a common Elongin BC E3 complex.
Collapse
Affiliation(s)
- Julie Bayle
- INSERM UMR599, Laboratoire d'hématopoïèse moléculaire et fonctionnelle, Marseille, France
| | | | | | | | | |
Collapse
|
28
|
Tatematsu K, Yoshimoto N, Koyanagi T, Tokunaga C, Tachibana T, Yoneda Y, Yoshida M, Okajima T, Tanizawa K, Kuroda S. Nuclear-Cytoplasmic Shuttling of a RING-IBR Protein RBCK1 and Its Functional Interaction with Nuclear Body Proteins. J Biol Chem 2005; 280:22937-44. [PMID: 15833741 DOI: 10.1074/jbc.m413476200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The intracellular localization of a RING-IBR protein, RBCK1, possessing DNA binding and transcriptional activities, has been investigated. The endogenous RBCK1 was found in both the cytoplasm and nucleus. Particularly in the nucleus, it was localized in the granular structures, most likely nuclear bodies. In contrast, the over-expressed RBCK1 was detected exclusively in the cytoplasm. When the cells were treated with leptomycin B, the over-expressed RBCK1 accumulated in the nuclear bodies. These results suggest that RBCK1 possesses the signal sequences responsible for the nuclearcytoplasmic translocation. Mutational analysis of RBCK1 has indicated that an N-terminal region containing Leu-142 and Leu-145 and a C-terminal one containing the RING-IBR domain serve as the nuclear export and localization signals, respectively. Thus, RBCK1 is a transcription factor dynamically shuttling between cytoplasm and nucleus. Furthermore, RBCK1 was found to interact with nuclear body proteins, CREB-binding protein (CBP), and promyelocytic leukemia protein (PML). Coexpression of RBCK1 with CBP significantly enhanced the transcriptional activity of RBCK1. Although PML per se showed no effect on the transcriptional activity of RBCK1, the CBP-enhanced activity was repressed by coexpression with PML, presumably through the interaction of PML and CBP. Taken together, our data demonstrate that RBCK1 is involved in transcriptional machinery in the nuclear bodies, and its transcriptional activity is regulated by nucleocytoplasmic shuttling.
Collapse
Affiliation(s)
- Kenji Tatematsu
- Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Iwai K, Ishikawa H, Kirisako T. Identification, Expression, and Assay of an Oxidation‐Specific Ubiquitin Ligase, HOIL‐1. Methods Enzymol 2005; 398:256-71. [PMID: 16275334 DOI: 10.1016/s0076-6879(05)98021-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The ubiquitin system plays important roles in the regulation of numerous cellular processes. It is well established that ubiquitin ligases (E3s) are key components in determining the specificity of the system and that the modification of substrates such as phosphorylation often plays a critical role in selective substrate recognition by E3s. Through studies analyzing iron-mediated degradation of iron regulatory protein 2 (IRP2), a central regulator of iron metabolism in mammalian cells, we have identified a RING finger protein, HOIL-1, as an ubiquitin ligase recognizing IRP2 through a signal created by heme-mediated oxidative modification of the protein. We have utilized several types of in vitro ubiquitination assays that detect IRP2 ubiquitination and a differential yeast two-hybrid screen in which yeast cells were cultured either in the presence or in the absence of oxygen to control the oxidation state of the bait in the cells in our studies. This chapter describes the detailed methods used for the identification and functional analysis of the HOIL-1 ligase.
Collapse
Affiliation(s)
- Kazuhiro Iwai
- Department of Molecular Cell Biology, Graduate School of Medicine, Osaka City University, and Japan Science and Technology Agency, Osaka 545-8585, Japan
| | | | | |
Collapse
|
30
|
Li D, Wang XZ, Yu JP, Chen ZX, Huang YH, Tao QM. Cytochrome C oxidase III interacts with hepatitis B virus X protein in vivo by yeast two-hybrid system. World J Gastroenterol 2004; 10:2805-8. [PMID: 15334674 PMCID: PMC4572106 DOI: 10.3748/wjg.v10.i19.2805] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: To screen and identify the proteins which interact with hepatitis B virus (HBV) X protein in hepatocytes by yeast two-hybrid system and to explore the effects of X protein in the development of hepatocellular carcinoma (HCC).
METHODS: With HBV X gene amplified by polymerase chain reaction (PCR), HBV X bait plasmid, named pAS2-1-X, was constructed by yeast-two hybridization system3 and verified by auto-sequencing assay. pAS2-1-X was transformed into the yeast AH109, and X-BD fusion protein expressed in the yeast cells was detected by Western blotting. The yeast cells cotransformed with pAS2-1-X and normal human liver cDNA library were grown in selective SC/-trp-leu-his-ade medium. The second screen was performed with β-gal activity detection, and false positive clones were eliminated by segregation analysis, true positive clones were amplified, sequenced and analyzed with bioinformatics. Mating experiment was peformed to confirm the binding of putative proteins to X protein in the yeast cells.
RESULTS: Bait plasmid pAS2-1-X was successfully constructed and pAS2-1-X correctly expressed BD-X fusion protein in yeast AH109. One hundred and three clones grew in the selective SC/-trp-leu-his-ade medium, and only one clone passed through β-gal activity detection and segregation analysis. The inserted cDNA fragment showed high homology with Homo sapiens cytochrome C oxidase III (cox III). Furthermore, mating experiment identified that the binding of cox III to X protein was specific.
CONCLUSION: cox III protein is a novel protein that can interact with X protein in vivo by yeast two-hybrid system, and may contribute to the development of HCC through the interaction with X protein.
Collapse
Affiliation(s)
- Dan Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China.
| | | | | | | | | | | |
Collapse
|
31
|
Marín I, Lucas JI, Gradilla AC, Ferrús A. Parkin and relatives: the RBR family of ubiquitin ligases. Physiol Genomics 2004; 17:253-63. [PMID: 15152079 DOI: 10.1152/physiolgenomics.00226.2003] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mutations in the parkin gene cause autosomal-recessive juvenile parkinsonism. Parkin encodes a ubiquitin-protein ligase characterized by having the RBR domain, composed of two RING fingers plus an IBR/DRIL domain. The RBR family is defined as the group of genes whose products contain an RBR domain. RBR family members exist in all eukaryotic species for which significant sequence data is available, including animals, plants, fungi, and several protists. The integration of comparative genomics with structural and functional data allows us to conclude that RBR proteins have multiple roles, not only in protein quality control mechanisms, but also as indirect regulators of transcription. A recently formulated hypothesis, based on a case of gene fusion, suggested that RBR proteins may be often part of cullin-containing ubiquitin ligase complexes. Recent data on Parkin protein agrees with that hypothesis. We discuss the involvement of RBR proteins in several neurodegenerative diseases and cancer.
Collapse
Affiliation(s)
- Ignacio Marín
- Departamento de Genética, Universidad de Valencia, 46100 Burjassot, Valencia, Spain.
| | | | | | | |
Collapse
|
32
|
N/A. N/A. Shijie Huaren Xiaohua Zazhi 2003; 11:1261-1264. [DOI: 10.11569/wcjd.v11.i8.1261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
33
|
N/A. N/A. Shijie Huaren Xiaohua Zazhi 2003; 11:1027-1030. [DOI: 10.11569/wcjd.v11.i7.1027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
34
|
Reddi H, Kumar R, Jain SK, Kumar V. A carboxy-terminal region of the hepatitis B virus X protein promotes DNA interaction of CREB and mimics the native protein for transactivation function. Virus Genes 2003; 26:227-38. [PMID: 12876451 DOI: 10.1023/a:1024491028647] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Earlier we had shown that the conserved region E (residues 120-140) of HBV X protein (HBx) is crucial for transactivation. To investigate this region further, its oligomerisation was considered necessary to augment intracellular biochemical stability. Two to ten unit long tandem repeats of the E region (X16-n) were generated and their expression vectors constructed. Transient transfection of the E expression vectors along with different CAT constructs showed increase in the reporter activity. Interestingly a direct correlation was observed between the number of E repeat units in an expression vector and the level of transactivation. The transactivation levels with decameric X16 on different reporter constructs were comparable to those of the wild type HBx. Co-expression of X16 in a stable CHO-K1 cell line expressing the native HBx, showed co-operativity for transactivation. Further, X16 facilitated the binding of cAMP response element binding protein (CREB) to its responsive element just like the native HBx. The present study suggests that the C-terminal 'E' region of HBx represents its transactivation domain that acts by promoting the interaction of transcription factors to their cognate response elements.
Collapse
Affiliation(s)
- Honey Reddi
- Virology Group, International Centre for Genetic Engineering and Biotechnology, P.O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | |
Collapse
|
35
|
Yamanaka K, Ishikawa H, Megumi Y, Tokunaga F, Kanie M, Rouault TA, Morishima I, Minato N, Ishimori K, Iwai K. Identification of the ubiquitin-protein ligase that recognizes oxidized IRP2. Nat Cell Biol 2003; 5:336-40. [PMID: 12629548 DOI: 10.1038/ncb952] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2002] [Revised: 11/29/2002] [Accepted: 12/18/2002] [Indexed: 12/31/2022]
Abstract
The ubiquitin system is involved in several basic cellular functions. Ubiquitination is carried out by a cascade of three reactions catalysed by the E1, E2 and E3 enzymes. Among these, the E3 ubiquitin-protein ligases have a pivotal role in determining the specificity of the system by recognizing the target substrates through defined targeting motifs. Although RING finger proteins constitute an important family of E3 ligases, only a few post-transcriptional modifications, including phosphorylation, proline hydroxylation and glycosylation, are known to function as recognition signals for E3. Iron regulatory protein 2 (IRP2), a modulator of iron metabolism, is regulated by iron-induced ubiquitination and degradation. Here we show that the RING finger protein HOIL-1 functions as an E3 ligase for oxidized IRP2, suggesting that oxidation is a specific recognition signal for ubiquitination. The oxidation of IRP2 is generated by haem, which binds to IRP2 in iron-rich cells, and by oxygen, indicating that the iron sensing of IRP2 depends on the synthesis and availability of haem.
Collapse
Affiliation(s)
- Koji Yamanaka
- Department of Molecular & System Biology, Graduate School of Biostudies, Kyoto University, Sakyo-Ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Marín I, Ferrús A. Comparative genomics of the RBR family, including the Parkinson's disease-related gene parkin and the genes of the ariadne subfamily. Mol Biol Evol 2002; 19:2039-50. [PMID: 12446796 DOI: 10.1093/oxfordjournals.molbev.a004029] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genes of the RBR family are characterized by the RBR signature (two RING finger domains separated by an IBR/DRIL domain). The RBR family is widespread in eukaryotes, with numerous members in animals (mammals, Drosophila, Caenorhabditis) and plants (Arabidopsis). But yeasts, such as Saccharomyces cerevisiae or Schizosaccharomyces pombe, contain only two RBR genes. We determined the phylogenetic relationships and the most likely orthologs in different species of several family members for which functional data are available. These include: (1) parkin, whose mutations are involved in forms of familial Parkinson's disease; (2) the ariadne genes, recently characterized in Drosophila and mammals; (3) XYbp and Dorfin, two mammalian genes whose products interact with the centrosome; (4) XAP3, RBCK1, and UIP28, mammalian genes encoding Protein Kinase-C-binding proteins; and (5) ARA54, an androgen receptor coactivator. Because several of these genes are involved in ubiquitination, we used phylogenetic and structural analyses to explore the hypothesis that all RBR proteins might play a role in ubiquitination. We show that the involvement of RBR proteins in ubiquitination predates the animals-plants-fungi divergence. On the basis of the evidence provided by cases of gene fusion, we suggest that Ariadne proteins interact with cullin domain-containing proteins to form complexes with ubiquitin-ligase activity.
Collapse
Affiliation(s)
- Ignacio Marín
- Departamento de Genética, Universidad de Valencia, Calle Doctor Moliner 50, Burjassot 46100, Valencia, Spain.
| | | |
Collapse
|
37
|
Abstract
Hepatitis B infection is associated with an increased risk of hepatocellular carcinoma development. Hepatitis B proteins, such as the hepatitis B x protein, the large hepatitis B surface protein, or truncated middle hepatitis B surface proteins, regulate transcription of many candidate genes for liver carcinogenesis by trans-mechanisms. They also alter mechanisms of apoptosis and interfere with nucleotide excision repair of damaged DNA. Together with an influence on cellular signaling, these mechanisms may favor the cell's clonal expansion.
Collapse
Affiliation(s)
- C Rabe
- Department of Medicine I, University of Bonn, Germany
| | | | | |
Collapse
|
38
|
Shamay M, Barak O, Doitsh G, Ben-Dor I, Shaul Y. Hepatitis B virus pX interacts with HBXAP, a PHD finger protein to coactivate transcription. J Biol Chem 2002; 277:9982-8. [PMID: 11788598 DOI: 10.1074/jbc.m111354200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hepatitis B virus (HBV) gene expression is mainly regulated at the transcription initiation level. The viral X protein (pX) is a transcription coactivator/mediator targeting TFIIB for the recruitment of RNA polymerase II. Here we report a novel pX nuclear target designated HBXAP (hepatitis B virus X-associated protein). HBXAP is a novel cellular nuclear protein containing a PHD (plant homology domain) finger, a domain shared by many proteins that play roles in chromatin remodeling, transcription coactivation, and oncogenesis. pX physically interacts with HBXAP in vitro and in vivo via the HBXAP region containing the PHD finger. At the functional level HBXAP increases HBV transcription in a pX-dependent manner suggesting a role for this interaction in the virus life cycle. Interestingly, HBXAP collaborates with pX in coactivating the transcriptional activator NF-kappaB. Coactivation of NF-kappaB was also observed in tumor necrosis factor alpha-treated cells suggesting that pX-HBXAP functional collaboration localized downstream to the NF-kappaB nuclear import. Collectively our data suggest that pX recruits and potentiates a novel putative transcription coactivator to regulate NF-kappaB. The implication of pX-HBXAP interaction in the development of hepatocellular carcinoma is discussed.
Collapse
Affiliation(s)
- Meir Shamay
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
39
|
Wang XZ, Jiang XR, Chen XC, Chen ZX, Li D, Lin JY, Tao QM. Seek protein which can interact with hepatitis B virus X protein from human liver cDNA library by yeast two-hybrid system. World J Gastroenterol 2002; 8:95-8. [PMID: 11833080 PMCID: PMC4656635 DOI: 10.3748/wjg.v8.i1.95] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To seek the X associated protein (XAP) with the constructed bait vector pAS2-1X from normal human liver cDNA library.
METHODS: The X region of the HBV gene was amplied by PCR and cloned into the eukaryotic expression vector pAS2-1.The reconstituted plasmid pAS2-1X was transformed into the yeast cells and the expression of X protein (pX) was confirmed by Western blot analysis. Yeast cells were cotransformed with pAS2-1X and the normal human liver cDNA library and were grown in selective SC/-trp-leu-his-ade medium, the second screen was performed with the LacZ report gene. Furthermore, segregation analysis and mating experiment were performed to eliminate the false positive and the true positive clones were selected for PCR and sequencing.
RESULTS: Reconstituted plasmid pAS2-1X including the anticipated fragment of X gene was proved by auto-sequencing assay. Western blot analysis showed that reconstituted plasmid pAS2-1X expressed BD:X fusion protein in yeast cells. Of 5 × 106 transformed colonies screened, 65 grew in the selective SC/-trp-leu-his-ade medium, 5 scored positive for β-gal activity, and only 2 remaining clones passed through the segregation analysis and mating experiment. Sequence analysis identified that two clones contained similar cDNA fragment: GAACTTGCG.
CONCLUSION: The short peptide (glutacid-leucine-alanine)is a possible required site for XAP binding to pX. Normal human liver cDNA library has difficulties in expressing the integrated XAP on yeast cells.
Collapse
Affiliation(s)
- Xiao-Zhong Wang
- Department of Gastroenterology, Union Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, China.
| | | | | | | | | | | | | |
Collapse
|
40
|
Nijhara R, Jana SS, Goswami SK, Kumar V, Sarkar DP. An internal segment (residues 58-119) of the hepatitis B virus X protein is sufficient to activate MAP kinase pathways in mouse liver. FEBS Lett 2001; 504:59-64. [PMID: 11522297 DOI: 10.1016/s0014-5793(01)02773-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The human hepatitis B virus X protein (HBx) is known as a dual-specificity transactivator stimulating the transcriptional machinery in the nucleus and signal transduction pathways in the cytoplasm. HBx-induced activation of mitogen-activated protein kinase (MAPK) signaling cascades is considered to play an important role in hepatitis B virus-mediated hepatocarcinogenesis. Herein, we have identified the regions of HBx that are crucial for activating such signaling cascades in vivo. A truncated mutant incorporating regions C-E (amino acids 58-140) was as effective as the full-length HBx in activating MAPKs and enhancing activator protein-1 binding activity. While deletion of region C (amino acids 58-84) or D (amino acids 85-119) led to a drastic loss of function, region E (amino acids 120-140) was dispensable for the activation of signaling cascades. Overall, these findings provide the first evidence for the requirement of domain 58-119 of HBx in transmitting mitogenic signals to the nucleus in vivo.
Collapse
Affiliation(s)
- R Nijhara
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez, New Delhi, India
| | | | | | | | | |
Collapse
|
41
|
Diao J, Garces R, Richardson CD. X protein of hepatitis B virus modulates cytokine and growth factor related signal transduction pathways during the course of viral infections and hepatocarcinogenesis. Cytokine Growth Factor Rev 2001; 12:189-205. [PMID: 11325602 DOI: 10.1016/s1359-6101(00)00034-4] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatitis B virus produces chronic infections of the liver leading to cirrhosis and hepatocellular carcinoma. The X protein of hepatitis B virus (HBx) is a multifunctional protein that can interact with p53 but can also influence a variety of signal transduction pathways within the cell. In most instances this small viral protein favors cell survival and probably initiates hepatocarcinogenesis. HBx upregulates the activity of a number of transcription factors including NF-kappa B, AP-1, CREB, and TBP. However, the majority of HBx is localized to the cytoplasm where it interacts with and stimulates protein kinases such as protein kinase C, Janus kinase/STAT, IKK, PI-3-K, stress-activated protein kinase/Jun N-terminal kinase, and protein kinase B/Akt. This small viral protein can localize to the mitochondrion. HBx may act as an adaptor or kinase activator to influence signal transduction pathways. This review will attempt to analyze the involvement of HBx in signal transduction pathways during hepatitis B viral infections and hepatocellular carcinoma development.
Collapse
Affiliation(s)
- J Diao
- Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, Ontario, Canada M5G 2M9
| | | | | |
Collapse
|
42
|
Bouchard M, Giannakopoulos S, Wang EH, Tanese N, Schneider RJ. Hepatitis B virus HBx protein activation of cyclin A-cyclin-dependent kinase 2 complexes and G1 transit via a Src kinase pathway. J Virol 2001; 75:4247-57. [PMID: 11287574 PMCID: PMC114170 DOI: 10.1128/jvi.75.9.4247-4257.2001] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Numerous studies have demonstrated that the hepatitis B virus HBx protein stimulates signal transduction pathways and may bind to certain transcription factors, particularly the cyclic AMP response element binding protein, CREB. HBx has also been shown to promote early cell cycle progression, possibly by functionally replacing the TATA-binding protein-associated factor 250 (TAF(II)250), a transcriptional coactivator, and/or by stimulating cytoplasmic signal transduction pathways. To understand the basis for early cell cycle progression mediated by HBx, we characterized the molecular mechanism by which HBx promotes deregulation of the G0 and G1 cell cycle checkpoints in growth-arrested cells. We demonstrate that TAF(II)250 is absolutely required for HBx activation of the cyclin A promoter and for promotion of early cell cycle transit from G0 through G1. Thus, HBx does not functionally replace TAF(II)250 for transcriptional activity or for cell cycle progression, in contrast to a previous report. Instead, HBx is shown to activate the cyclin A promoter, induce cyclin A-cyclin-dependent kinase 2 complexes, and promote cycling of growth-arrested cells into G1 through a pathway involving activation of Src tyrosine kinases. HBx stimulation of Src kinases and cyclin gene expression was found to force growth-arrested cells to transit through G1 but to stall at the junction with S phase, which may be important for viral replication.
Collapse
Affiliation(s)
- M Bouchard
- Department of Microbiology, NYU School of Medicine, New York, New York 10016, USA
| | | | | | | | | |
Collapse
|
43
|
Abstract
The HBV X protein (HBx) is implicated in infection and development of hepatocellular carcinoma. HBx has a pleiotropic effect on cells, suggesting multiple targets in the virus-host cell interaction. We employed the cytoplasmic-based two-hybrid screen and identified the HIV Tat-binding protein 1 (Tbp1) as a novel HBx interacting protein. Tbp1 interacts in vivo with HBx both in yeast and in animal cells. This interaction maps to the functionally important ATP-binding motif of Tbp1. Furthermore, HBx and Tbp1 interaction is functionally significant and regulates HBV transcription. Tbp1 homologues, such as Sug1, are known members of the proteasome 19S regulatory cap particle and have also been implicated in transcription coactivation. Remarkably, Tbp1 and Sug1 interact with multiple viral effector proteins including HIV Tat, SV40 large T antigen, and adenovirus E1A, establishing these proteins as important targets of the viral oncogenes.
Collapse
Affiliation(s)
- O Barak
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
44
|
Diao J, Khine AA, Sarangi F, Hsu E, Iorio C, Tibbles LA, Woodgett JR, Penninger J, Richardson CD. X protein of hepatitis B virus inhibits Fas-mediated apoptosis and is associated with up-regulation of the SAPK/JNK pathway. J Biol Chem 2001; 276:8328-40. [PMID: 11099494 DOI: 10.1074/jbc.m006026200] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The X protein from a chronic strain of hepatitis B virus (HBx) was determined to inhibit Fas-mediated apoptosis and promote cell survival. Fas-mediated apoptosis is the major cause of hepatocyte damage during liver disease. Experiments demonstrated that cell death caused by anti-Fas antibodies was blocked by the expression of HBx in human primary hepatocytes and mouse embryo fibroblasts. This effect was also observed in mouse erythroleukemia cells that lacked p53, indicating that protection against Fas-mediated apoptosis was independent of p53. Components of the signal transduction pathways involved in this protection were studied. The SAPK/JNK pathway has previously been suggested to be a survival pathway for some cells undergoing Fas-mediated apoptosis, and kinase assays showed that SAPK activity was highly up-regulated in cells expressing the HBx protein. Normal mouse fibroblasts expressing HBx were protected from death, whereas identical fibroblasts lacking the SEK1 component from the SAPK pathway succumbed to Fas-mediated apoptosis, whether HBx was present or not. Assays showed that caspase 3 and 8 activities and the release of cytochrome c from mitochondria were inhibited, in the presence of HBx, following stimulation with anti-Fas antibodies. Coprecipitation and confocal immunofluorescence microscopy experiments demonstrated that HBx localizes with a cytoplasmic complex containing MEKK1, SEK1, SAPK, and 14-3-3 proteins. Finally, mutational analysis of HBx demonstrated that a potential binding region for 14-3-3 proteins was essential for induction of SAPK/JNK activity and protection from Fas-mediated apoptosis.
Collapse
Affiliation(s)
- J Diao
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Su F, Theodosis CN, Schneider RJ. Role of NF-kappaB and myc proteins in apoptosis induced by hepatitis B virus HBx protein. J Virol 2001; 75:215-25. [PMID: 11119591 PMCID: PMC113915 DOI: 10.1128/jvi.75.1.215-225.2001] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Chronic infection with hepatitis B virus (HBV) promotes a high level of liver disease and cancer in humans. The HBV HBx gene encodes a small regulatory protein that is essential for viral replication and is suspected to play a role in viral pathogenesis. HBx stimulates cytoplasmic signal transduction pathways, moderately stimulates a number of transcription factors, including several nuclear factors, and in certain settings sensitizes cells to apoptosis by proapoptotic stimuli, including tumor necrosis factor alpha (TNF-alpha) and etopocide. Paradoxically, HBx activates members of the NF-kappaB transcription factor family, some of which are antiapoptotic in function. HBx induces expression of Myc protein family members in certain settings, and Myc can sensitize cells to killing by TNF-alpha. We therefore examined the roles of NF-kappaB, c-Myc, and TNF-alpha in apoptotic killing of cells by HBx. RelA/NF-kappaB is shown to be induced by HBx and to suppress HBx-mediated apoptosis. HBx also induces c-Rel/NF-kappaB, which can promote apoptotic cell death in some contexts or block it in others. Induction of c-Rel by HBx was found to inhibit its ability to directly mediate apoptotic killing of cells. Thus, HBx induction of NF-kappaB family members masks its ability to directly mediate apoptosis, whereas ablation of NF-kappaB reveals it. Investigation of the role of Myc protein demonstrates that overexpression of Myc is essential for acute sensitization of cells to killing by HBx plus TNF-alpha. This study therefore defines a specific set of parameters which must be met for HBx to possibly contribute to HBV pathogenesis.
Collapse
Affiliation(s)
- F Su
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | | | | |
Collapse
|
46
|
Jaitovitch-Groisman I, Fotouhi-Ardakani N, Schecter RL, Woo A, Alaoui-Jamali MA, Batist G. Modulation of glutathione S-transferase alpha by hepatitis B virus and the chemopreventive drug oltipraz. J Biol Chem 2000; 275:33395-403. [PMID: 10934196 DOI: 10.1074/jbc.m003754200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Persistent infection by hepatitis B virus (HBV) and exposure to chemical carcinogens correlates with the prevalence of hepatocellular carcinoma in endemic areas. The precise nature of the interaction between these factors is not known. Glutathione S-transferases (GST) are responsible for the cellular metabolism and detoxification of a variety of cytotoxic and carcinogenic compounds by catalysis of their conjugation with glutathione. Diminished GST activity could enhance cellular sensitivity to chemical carcinogens. We have investigated GST isozyme expression in hepatocellular HepG2 cells and in an HBV-transfected subline. Total GST activity and selenium-independent glutathione peroxidase activity are significantly decreased in HBV transfected cells. On immunoblotting, HBV transfected cells demonstrate a significant decrease in the level of GST Alpha class. Cytotoxicity assays reveal that the HBV transfected cells are more sensitive to a wide range of compounds known to be detoxified by GST Alpha conjugation. Although no significant difference in protein half-life between the two cell lines was found, semi-quantitative reverse transcription-polymerase chain reaction shows a reduced amount of GST Alpha mRNA in the transfected cells. Because the HBV x protein (HBx) seems to play a role in HBV transfection, we also demonstrated that expression of the HBx gene into HepG2 cells decreased the amount of GST Alpha protein. Transient transfection experiments using both rat and human GST Alpha (rGSTA5 and hGSTA1) promoters in HepG2 cells show a decreased CAT activity upon HBx expression, supporting a transcriptional regulation of both genes by HBx. This effect is independent of HBx interaction with Sp1. Treatment with oltipraz, an inducer of GST Alpha, partially overcomes the effect of HBx on both promoters. Promoter deletion studies indicate that oltipraz works through responsive elements distinct from AP1 or NF-kappaB transcription factors. Thus, HBV infection alters phase II metabolizing enzymes via different mechanisms than those modulated by treatment with oltipraz.
Collapse
Affiliation(s)
- I Jaitovitch-Groisman
- Lady Davis Institute of the Sir Mortimer B. Davis Jewish General Hospital, The Center for Translational Research in Cancer, Department of Medicine, McGill University, Montreal, Quebec H3T 1E2, Canada
| | | | | | | | | | | |
Collapse
|
47
|
Rabe C, Caselmann WH. Interaction of Hepatitis B virus with cellular processes in liver carcinogenesis. Crit Rev Clin Lab Sci 2000; 37:407-29. [PMID: 11078055 DOI: 10.1080/10408360091174277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatitis B infection is strongly linked epidemiologically to hepatocellular carcinoma development. This article reviews the molecular mechanisms by which hepatitis B encoded proteins such as hepatitis B x and hepatitis B surface transactivators may interact with gene transcription, tumor suppression, apoptosis, and signalling pathways of the liver cell with the possible consequence of tumor induction. Data on the interaction between hepatitis B proteins and cellular processes are often conflicting indicating a non-specific simultaneous interaction with antagonistic cellular processes that result in the formation of escape mutants that are not subject to these selective pressures.
Collapse
Affiliation(s)
- C Rabe
- Department of Medicine I, University of Bonn, Germany
| | | |
Collapse
|
48
|
Abstract
Hepatitis B virus (HBV) is an important etiologic agent of chronic hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). Although the mechanism whereby HBV causes HCC is not fully understood, it is likely that there are many relevant molecular pathways that contribute to the development of HBV-associated HCC. This review provides an overview of some of these proposed pathways and their relative importance. It also raises questions on basic and translational research that will signficantly contribute to the better understanding of underlying mechanisms, prevention, and treatment of this tumor type.
Collapse
Affiliation(s)
- M A Feitelson
- Department of Pathology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
49
|
Abstract
The X gene is conserved among mammalian hepadnaviruses and the X protein, pX, is essential for viral propagation at least in the woodchuck. During the last decade, efforts have centered on elucidating the oncogenic role of pX in hepatitis B virus infection. The accumulating knowledge on pX indicates that it is a multifunctional regulatory protein which modulates many host functions by communicating directly or indirectly with a variety of host targets as is the case for many viral regulatory proteins, such as T antigens, E1A, and human T cell lymphotropic virus tax. pX, which modulates the transcription machinery and/or modulation protein kinase signaling cascades, transactivates many host genes involved in cell proliferation, cytokine networks, acute immune response, and house-keeping functions. Distinct from the transactivation, pX also modulates DNA repair processes by interacting with p53 and/or repair enzymes which may accumulate mutations and sensitize cells to genotoxic stimuli. Several X-interaction host proteins remain to be characterized as targets of pX. The biological roles of pX have been addressed in various systems in addition to the role of pX on viral reproduction. pX may affect cell cycle progress, response to apoptotic stimuli, cell transformation, and carcinogenesis in the presence or absence of additional oncogenic factors. These biological roles of pX have not been described in terms of pX functions and targets and remain subjects of future research using improved experimental systems and technologies. Such efforts will identify important function(s) of pX for hepatocarcinogenesis.
Collapse
Affiliation(s)
- S Murakami
- Department of Molecular Biology, Division of Molecular Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
50
|
Ron D, Kazanietz MG. New insights into the regulation of protein kinase C and novel phorbol ester receptors. FASEB J 1999. [DOI: 10.1096/fasebj.13.13.1658] [Citation(s) in RCA: 463] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Dorit Ron
- Department of NeurologyErnest Gallo Clinic and Research CenterUniversity of California San Francisco San Francisco California 94110‐3518 USA
| | - Marcelo G. Kazanietz
- Center for Experimental TherapeuticsDepartment of PharmacologyUniversity of Pennsylvania School of Medicine Philadelphia Pennsylvania 19104‐6160 USA
| |
Collapse
|