1
|
Momynaliev KT, Kashin SV, Chelysheva VV, Selezneva OV, Demina IA, Serebryakova MV, Alexeev D, Ivanisenko VA, Aman E, Govorun VM. Functional Divergence of Helicobacter pylori Related to Early Gastric Cancer. J Proteome Res 2009; 9:254-67. [DOI: 10.1021/pr900586w] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Kuvat T. Momynaliev
- Research Institute for Physico-Chemical Medicine, Moscow, Russia, Endoscopy, Yaroslavl Regional Oncologic Hospital, Yaroslavl, Russia, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia, and Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Sergey V. Kashin
- Research Institute for Physico-Chemical Medicine, Moscow, Russia, Endoscopy, Yaroslavl Regional Oncologic Hospital, Yaroslavl, Russia, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia, and Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Vera V. Chelysheva
- Research Institute for Physico-Chemical Medicine, Moscow, Russia, Endoscopy, Yaroslavl Regional Oncologic Hospital, Yaroslavl, Russia, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia, and Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Oksana V. Selezneva
- Research Institute for Physico-Chemical Medicine, Moscow, Russia, Endoscopy, Yaroslavl Regional Oncologic Hospital, Yaroslavl, Russia, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia, and Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Irina A. Demina
- Research Institute for Physico-Chemical Medicine, Moscow, Russia, Endoscopy, Yaroslavl Regional Oncologic Hospital, Yaroslavl, Russia, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia, and Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Marya V. Serebryakova
- Research Institute for Physico-Chemical Medicine, Moscow, Russia, Endoscopy, Yaroslavl Regional Oncologic Hospital, Yaroslavl, Russia, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia, and Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Dmitry Alexeev
- Research Institute for Physico-Chemical Medicine, Moscow, Russia, Endoscopy, Yaroslavl Regional Oncologic Hospital, Yaroslavl, Russia, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia, and Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Vladimir A. Ivanisenko
- Research Institute for Physico-Chemical Medicine, Moscow, Russia, Endoscopy, Yaroslavl Regional Oncologic Hospital, Yaroslavl, Russia, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia, and Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Ewgeniya Aman
- Research Institute for Physico-Chemical Medicine, Moscow, Russia, Endoscopy, Yaroslavl Regional Oncologic Hospital, Yaroslavl, Russia, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia, and Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Vadim M. Govorun
- Research Institute for Physico-Chemical Medicine, Moscow, Russia, Endoscopy, Yaroslavl Regional Oncologic Hospital, Yaroslavl, Russia, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia, and Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| |
Collapse
|
4
|
Falke S, Fisher MT, Gogol EP. Structural changes in GroEL effected by binding a denatured protein substrate. J Mol Biol 2001; 308:569-77. [PMID: 11350160 DOI: 10.1006/jmbi.2001.4613] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the absence of nucleotides or cofactors, the Escherichia coli chaperonin GroEL binds select proteins in non-native conformations, such as denatured glutamine synthetase (GS) monomers, preventing their aggregation and spontaneous renaturation. The nature of the GroEL-GS complexes thus formed, specifically the effect on the conformation of the GroEL tetradecamer, has been examined by electron microscopy. We find that specimens of GroEL-GS are visibly heterogeneous, due to incomplete loading of GroEL with GS. Images contain particles indistinguishable from GroEL alone, and also those with consistent identifiable differences. Side-views of the modified particles reveal additional protein density at one end of the GroEL-GS complex, and end-views display chirality in the heptameric projection not seen in the unliganded GroEL. The coordinate appearance of these two projection differences suggests that binding of GS, as representative of a class of protein substrates, induces or stabilizes a conformation of GroEL that differs from the unliganded chaperonin. Three-dimensional reconstruction of the GroEL-GS complex reveals the location of the bound protein substrate, as well as complex conformational changes in GroEL itself, both cis and trans with respect to the bound GS. The most apparent structural alterations are inward movements of the apical domains of both GroEL heptamers, protrusion of the substrate protein from the cavity of the cis ring, and a narrowing of the unoccupied opening of the trans ring.
Collapse
Affiliation(s)
- S Falke
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | |
Collapse
|
5
|
Inobe T, Makio T, Takasu-Ishikawa E, Terada TP, Kuwajima K. Nucleotide binding to the chaperonin GroEL: non-cooperative binding of ATP analogs and ADP, and cooperative effect of ATP. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1545:160-73. [PMID: 11342042 DOI: 10.1016/s0167-4838(00)00274-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Chaperonin-assisted protein folding proceeds through cycles of ATP binding and hydrolysis by GroEL, which undergoes a large structural change by the ATP binding or hydrolysis. One of the main concerns of GroEL is the mechanism of the productive and cooperative structural change of GroEL induced by the nucleotide. We studied the cooperative nature of GroEL by nucleotide titration using isothermal titration calorimetry and fluorescence spectroscopy. Our results indicated that the binding of ADP and ATP analogs to a single ring mutant (SR1), as well as that to GroEL, was non-cooperative. Only ATP induces an apparently cooperative conformational change in both proteins. Furthermore, the fluorescence changes of pyrene-labeled GroEL indicated that GroEL has two kinds of nucleotide binding sites. The fluorescence titration result fits well with a model in which two kinds of binding sites are both non-cooperative and independent of each other. These results suggest that the binding and hydrolysis of ATP may be necessary for the cooperative transition of GroEL.
Collapse
Affiliation(s)
- T Inobe
- Department of Physics, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-0033, Tokyo, Japan
| | | | | | | | | |
Collapse
|
6
|
Hammarström P, Persson M, Owenius R, Lindgren M, Carlsson U. Protein substrate binding induces conformational changes in the chaperonin GroEL. A suggested mechanism for unfoldase activity. J Biol Chem 2000; 275:22832-8. [PMID: 10811634 DOI: 10.1074/jbc.m000649200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chaperonins are molecules that assist proteins during folding and protect them from irreversible aggregation. We studied the chaperonin GroEL and its interaction with the enzyme human carbonic anhydrase II (HCA II), which induces unfolding of the enzyme. We focused on conformational changes that occur in GroEL during formation of the GroEL-HCA II complex. We measured the rate of GroEL cysteine reactivity toward iodo[2-(14)C]acetic acid and found that the cysteines become more accessible during binding of a cysteine free mutant of HCA II. Spin labeling of GroEL with N-(1-oxyl-2,2,5, 5-tetramethyl-3-pyrrolidinyl)iodoacetamide revealed that this additional binding occurred because buried cysteine residues become accessible during HCA II binding. In addition, a GroEL variant labeled with 6-iodoacetamidofluorescein exhibited decreased fluorescence anisotropy upon HCA II binding, which resembles the effect of GroES/ATP binding. Furthermore, by producing cysteine-modified GroEL with the spin label N-(1-oxyl-2,2,5, 5-tetramethyl-3-pyrrolidinyl)iodoacetamide and the fluorescent label 5-((((2-iodoacetyl)amino)ethyl)amino)naphthalene-1-sulfonic acid, we detected increases in spin-label mobility and fluorescence intensity in GroEL upon HCA II binding. Together, these results show that conformational changes occur in the chaperonin as a consequence of protein substrate binding. Together with previous results on the unfoldase activity of GroEL, we suggest that the chaperonin opens up as the substrate protein binds. This opening mechanism may induce stretching of the protein, which would account for reported unfoldase activity of GroEL and might explain how GroEL can actively chaperone proteins larger than HCA II.
Collapse
Affiliation(s)
- P Hammarström
- IFM Department of Chemistry and Chemical Physics, Linköping University, S-581 83 Linköping, Sweden
| | | | | | | | | |
Collapse
|
9
|
Li J, Wang CC. "Half of the sites" binding of D-glyceraldehyde-3-phosphate dehydrogenase folding intermediate with GroEL. J Biol Chem 1999; 274:10790-4. [PMID: 10196153 DOI: 10.1074/jbc.274.16.10790] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) folding intermediate subunits bind with chaperonin 60 (GroEL) to form a stable complex, which can no longer bind with additional GAPDH intermediate subunits, but does bind with one more lysozyme folding intermediate or one chaperonin 10 (GroES) molecule, suggesting that the two GAPDH subunits bind at one end of the GroEL molecule displaying a "half of the sites" binding profile. For lysozyme, GroEL binds with either one or two folding intermediates to form a stable 1:1 or 1:2 complex with one substrate on each end of the GroEL double ring for the latter. The 1:1 complex of GroEL.GroES binds with one lysozyme or one dimeric GAPDH folding intermediate to form a stable ternary complex. Both complexes of GroEL.lysozyme1 and GroEL.GAPDH2 bind with one GroES molecule only at the other end of the GroEL molecule forming a trans ternary complex. According to the stoichiometry of GroEL binding with the GAPDH folding intermediate and the formation of ternary complexes containing GroEL.GAPDH2, it is suggested that the folding intermediate of GAPDH binds, very likely in the dimeric form, with GroEL at one end only.
Collapse
Affiliation(s)
- J Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Academia Sinica, Beijing 100101, China
| | | |
Collapse
|
11
|
Martin J. Role of the GroEL chaperonin intermediate domain in coupling ATP hydrolysis to polypeptide release. J Biol Chem 1998; 273:7351-7. [PMID: 9516431 DOI: 10.1074/jbc.273.13.7351] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Modification of the Escherichia coli chaperonin GroEL with N-ethylmaleimide at residue Cys138 affects the structural and functional integrity of the complex. Nucleotide affinity and ATPase activity of the modified chaperonin are increased, whereas cooperativity of ATP hydrolysis and affinity for GroES are reduced. As a consequence, release and folding of substrate proteins are strongly impaired and uncoupled from ATP hydrolysis in a temperature-dependent manner. Folding of dihydrofolate reductase at 25 degrees C becomes dependent on GroES, whereas folding of typically GroES-dependent proteins is blocked completely. At 37 degrees C, GroES binding is restored to normal levels, and the modified GroEL regains its chaperone activity to some extent. These results assign a central role to the intermediate GroEL domain for transmitting conformational changes between apical and central domains, and for coupling ATP hydrolysis to productive protein release.
Collapse
Affiliation(s)
- J Martin
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Box G-J2, Providence, Rhode Island 02912, USA.
| |
Collapse
|