1
|
Buscà R, Onesto C, Egensperger M, Pouysségur J, Pagès G, Lenormand P. N-terminal alanine-rich (NTAR) sequences drive precise start codon selection resulting in elevated translation of multiple proteins including ERK1/2. Nucleic Acids Res 2023; 51:7714-7735. [PMID: 37414542 PMCID: PMC10450180 DOI: 10.1093/nar/gkad528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
We report the discovery of N-terminal alanine-rich sequences, which we term NTARs, that act in concert with their native 5'-untranslated regions to promote selection of the proper start codon. NTARs also facilitate efficient translation initiation while limiting the production of non-functional polypeptides through leaky scanning. We first identified NTARs in the ERK1/2 kinases, which are among the most important signaling molecules in mammals. Analysis of the human proteome reveals that hundreds of proteins possess NTARs, with housekeeping proteins showing a particularly high prevalence. Our data indicate that several of these NTARs act in a manner similar to those found in the ERKs and suggest a mechanism involving some or all of the following features: alanine richness, codon rarity, a repeated amino acid stretch and a nearby second AUG. These features may help slow down the leading ribosome, causing trailing pre-initiation complexes (PICs) to pause near the native AUG, thereby facilitating accurate translation initiation. Amplification of erk genes is frequently observed in cancer, and we show that NTAR-dependent ERK protein levels are a rate-limiting step for signal output. Thus, NTAR-mediated control of translation may reflect a cellular need to precisely control translation of key transcripts such as potential oncogenes. By preventing translation in alternative reading frames, NTAR sequences may be useful in synthetic biology applications, e.g. translation from RNA vaccines.
Collapse
Affiliation(s)
- Roser Buscà
- Université Côte d’Azur (UCA), CNRS UMR 7284 and INSERM U 1081, Institute for Research on Cancer and Aging Nice (IRCAN), 28 Avenue de Valombrose, 06107 Nice, France
- Centre Antoine Lacassagne, Nice, France
| | - Cercina Onesto
- Université Côte d’Azur (UCA), CNRS UMR 7284 and INSERM U 1081, Institute for Research on Cancer and Aging Nice (IRCAN), 28 Avenue de Valombrose, 06107 Nice, France
- Centre Antoine Lacassagne, Nice, France
- Polytech’Nice Sophia, Bioengineering Department, Sophia-Antipolis, France
| | - Mylène Egensperger
- Université Côte d’Azur (UCA), CNRS UMR 7284 and INSERM U 1081, Institute for Research on Cancer and Aging Nice (IRCAN), 28 Avenue de Valombrose, 06107 Nice, France
- Centre Antoine Lacassagne, Nice, France
| | - Jacques Pouysségur
- Université Côte d’Azur (UCA), CNRS UMR 7284 and INSERM U 1081, Institute for Research on Cancer and Aging Nice (IRCAN), 28 Avenue de Valombrose, 06107 Nice, France
- Centre Antoine Lacassagne, Nice, France
- Centre Scientifique de Monaco, Biomedical Department, Principality of Monaco
| | - Gilles Pagès
- Université Côte d’Azur (UCA), CNRS UMR 7284 and INSERM U 1081, Institute for Research on Cancer and Aging Nice (IRCAN), 28 Avenue de Valombrose, 06107 Nice, France
- Centre Antoine Lacassagne, Nice, France
- Centre Scientifique de Monaco, Biomedical Department, Principality of Monaco
| | - Philippe Lenormand
- Université Côte d’Azur (UCA), CNRS UMR 7284 and INSERM U 1081, Institute for Research on Cancer and Aging Nice (IRCAN), 28 Avenue de Valombrose, 06107 Nice, France
- Centre Antoine Lacassagne, Nice, France
| |
Collapse
|
2
|
Ma X, Peng S, Zhou X, Li S, Jin P. The amphioxus ERK2 gene is involved in innate immune response to LPS stimulation. FISH & SHELLFISH IMMUNOLOGY 2019; 86:64-69. [PMID: 30439498 DOI: 10.1016/j.fsi.2018.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
The ERK2 gene is a member of the MAPK family, which plays very important roles in responses to external environmental pressures. However, the ERK2 has yet not been identified in amphioxus to date. To further illuminate the function and evolutionary mechanism of the ERK2 gene, in this present study, we have cloned the full length of the ERK2 gene of Branchiostoma belcheri (designed as AmphiERK2), which is highly homologous to these vertebrate ERK2 genes. The AmphiERK2 protein contains the conserved S_TKc domain and the TEY motif, and its 3D structure is also highly similar to human ERK2 protein. Taken together, our results indicate that the AmphiERK2 gene belongs to a member of the ERK2 gene family. We further use qRT-PCR technology to detect an ubiquitous expression of AmphiERK2 gene in all five investigated tissues (muscle, notochord, gill, hepatic caecum and intestine), and the expression level of AmphiERK2 in both notochord and muscle is significantly higher than the other three tissues. Meanwhile our results also demonstrate that LPS stimulation can induce the up-regulation expression of AmphiERK2 gene and significantly increase the phosphorylation level of AmphiERK2 protein, which seems to imply that the AmphiERK2 may be involved in amphioxus innate immune responses. Overall, our findings provide an important insight into amphioxus innate immune function and evolution of the ERK2 gene family.
Collapse
Affiliation(s)
- Xiangyu Ma
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, 211171, China; The Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Shuangli Peng
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Xue Zhou
- School of Chemistry and Biological Engineering, Nanjing Normal University Taizhou College, Taizhou, 225300, China
| | - Shengjie Li
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, 211171, China.
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| |
Collapse
|
3
|
Activation of the neuronal extracellular signal-regulated kinase 2 in the spinal cord dorsal horn is required for complete Freund's adjuvant-induced pain hypersensitivity. J Neurosci 2009; 28:14087-96. [PMID: 19109491 DOI: 10.1523/jneurosci.2406-08.2008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Extracellular signal-regulated kinase 1 (ERK1) and ERK2 signaling in the spinal cord dorsal horn (SCDH) has been implicated in injury-induced pain hypersensitivity. Available ERK pathway inhibitors cannot distinguish between ERK1 and ERK2, nor can they differentially target the expression of neuronal or glial ERK1/2. We selectively inhibited the expression of ERK2 in neurons of the adult mouse SCDH by use of an ERK2 small interfering RNA (siRNA) delivered by a neurotropic adenoassociated viral vector. In situ hybridization revealed a siRNA vector-induced decrease in ERK2 mRNA in the ipsilateral SCDH. Immunohistochemistry showed a decreased neuronal phospho-ERK1/2 (pERK1/2), and Western blot analysis revealed that both ERK2 expression and phosphorylation were reduced by the siRNA vector. In contrast, basal ERK1 expression was not affected, although pERK1 was slightly increased. The siRNA vector-induced knockdown of ERK2 expression in the SCDH did not alter the baseline mechanical or thermal paw withdrawal thresholds. Hindpaw intraplantar injection of complete Freund's adjuvant (CFA) produced peripheral inflammation, mechanical allodynia, and thermal hyperalgesia in vector control animals that persisted for at least 96 h. It also caused an increase in SCDH ERK1 and ERK2 levels at 96 h and pERK1 and pERK2 levels at 1 and 96 h. The ERK2 siRNA vector prevented changes in ERK1, ERK2, and pERK2. In addition, the siRNA vector protected the animals from developing mechanical allodynia and thermal hyperalgesia throughout the 96 h after CFA. These findings indicate that ERK2 in the SCDH neurons is critical for the development of inflammatory pain hypersensitivity.
Collapse
|
4
|
Satoh Y, Endo S, Ikeda T, Yamada K, Ito M, Kuroki M, Hiramoto T, Imamura O, Kobayashi Y, Watanabe Y, Itohara S, Takishima K. Extracellular signal-regulated kinase 2 (ERK2) knockdown mice show deficits in long-term memory; ERK2 has a specific function in learning and memory. J Neurosci 2007; 27:10765-76. [PMID: 17913910 PMCID: PMC6672813 DOI: 10.1523/jneurosci.0117-07.2007] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The extracellular signal-regulated kinase (ERK) 1 and 2 are important signaling components implicated in learning and memory. These isoforms display a high degree of sequence homology and share a similar substrate profile. However, recent findings suggest that these isoforms may have distinct roles: whereas ERK1 seems to be not so important for associative learning, ERK2 might be critically involved in learning and memory. Thus, the individual role of ERK2 has received considerable attention, although it is yet to be understood. Here, we have generated a series of mice in which ERK2 expression decreased in an allele dose-dependent manner. Null ERK2 knock-out mice were embryonic lethal, and the heterozygous mice were anatomically impaired. To gain a better understanding of the influence of ERK2 on learning and memory, we also generated knockdown mice in which ERK2 expression was partially (20-40%) reduced. These mutant mice were viable and fertile with normal appearance. The mutant mice showed a deficit in long-term memory in classical fear conditioning, whereas short-term memory was normal. The mice also showed learning deficit in the water maze and the eight-arm radial maze. The ERK1 expression level of the knockdown mice was comparable with the wild-type control. Together, our results indicate a noncompensable role of ERK2-dependent signal transduction in learning and memory.
Collapse
Affiliation(s)
| | - Shogo Endo
- Unit for Molecular Neurobiology of Learning and Memory, Initial Research Project, Okinawa Institute of Science and Technology, Uruma 904-2234, Japan
| | - Toshio Ikeda
- Laboratory of Experimental Animal Model Research, National Center for Geriatrics and Gerontology, Morioka-machi, Obu 474-8511, Japan, and
| | | | | | | | - Takeshi Hiramoto
- Pharmacology, National Defense Medical College, Tokorozawa 359-8513, Japan
| | | | | | - Yasuhiro Watanabe
- Pharmacology, National Defense Medical College, Tokorozawa 359-8513, Japan
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, Brain Science Institute, RIKEN, Wako, 351-0198, Japan
| | | |
Collapse
|
5
|
Hahn CN, Su ZJ, Drogemuller CJ, Tsykin A, Waterman SR, Brautigan PJ, Yu S, Kremmidiotis G, Gardner A, Solomon PJ, Goodall GJ, Vadas MA, Gamble JR. Expression profiling reveals functionally important genes and coordinately regulated signaling pathway genes during in vitro angiogenesis. Physiol Genomics 2005; 22:57-69. [PMID: 15840639 DOI: 10.1152/physiolgenomics.00278.2004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Angiogenesis is a complex multicellular process requiring the orchestration of many events including migration, alignment, proliferation, lumen formation, remodeling, and maturation. Such complexity indicates that not only individual genes but also entire signaling pathways will be crucial in angiogenesis. To define an angiogenic blueprint of regulated genes, we utilized our well-characterized three-dimensional collagen gel model of in vitro angiogenesis, in which the majority of cells synchronously progress through defined morphological stages culminating in the formation of capillary tubes. We developed a comprehensive three-tiered approach using microarray analysis, which allowed us to identify genes known to be involved in angiogenesis and genes hitherto unlinked to angiogenesis as well as novel genes and has proven especially useful for genes where the magnitude of change is small. Of interest is the ability to recognize complete signaling pathways that are regulated and genes clustering into ontological groups implicating the functional importance of particular processes. We have shown that consecutive members of the mitogen-activated protein kinase and leukemia inhibitory factor signaling pathways are altered at the mRNA level during in vitro angiogenesis. Thus, at least for the mitogen-activated protein kinase pathway, mRNA changes as well as the phosphorylation changes of these gene products may be important in the control of blood vessel morphogenesis. Furthermore, in this study, we demonstrated the power of virtual Northern blot analysis, as an alternative to quantitative RT-PCR, for measuring the magnitudes of differential gene expression.
Collapse
Affiliation(s)
- C N Hahn
- Vascular Biology Laboratory, Human Immunology, Hanson Institute, Adelaide, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Hernández R, García F, Encío I, De Miguel C. Promoter analysis of the human p44 mitogen-activated protein kinase gene (MAPK3): transcriptional repression under nonproliferating conditions. Genomics 2005; 84:222-6. [PMID: 15203221 DOI: 10.1016/j.ygeno.2004.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2003] [Accepted: 01/26/2004] [Indexed: 10/26/2022]
Abstract
We have analyzed the promoter of the human p44mapk gene (approved symbol MAPK3) and found that the elements responsible for basal transcriptional activity are located within 200 bp upstream of the initiation codon in the 5' UTR. This sequence has a high G/C content (80.5%), with four Sp1 sites and an E box as the most relevant motifs. Site-directed mutagenesis, EMSA, and DNase I footprinting experiments demonstrate that all these elements are essential to achieve a significant level of transcription. We also report that the promoter activity is strongly repressed when the cells are brought under growth arrest conditions, such as confluence or serum withdrawal. This finding suggests that in the process of cell proliferation, together with the modulation of p44mapk kinase activity by the rapid mechanism of phosphorylation/dephosphorylation, a long-term more adaptive regulation, based on gene transcription, might also be important.
Collapse
Affiliation(s)
- Rafael Hernández
- Departamento de Bioquímica y Biología Molecular, Universidad de Navarra, Apartado Postal 177, 31080 Pamplona, Spain
| | | | | | | |
Collapse
|
7
|
Yao Y, Li W, Wu J, Germann UA, Su MSS, Kuida K, Boucher DM. Extracellular signal-regulated kinase 2 is necessary for mesoderm differentiation. Proc Natl Acad Sci U S A 2003; 100:12759-64. [PMID: 14566055 PMCID: PMC240691 DOI: 10.1073/pnas.2134254100] [Citation(s) in RCA: 245] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2003] [Indexed: 01/19/2023] Open
Abstract
The extracellular signal-regulated kinase (ERK) is a component of the mitogen-activated protein kinase cascade. Exon 2 of erk2 was deleted by homologous recombination and resulted in embryonic lethality at embryonic day 6.5. erk2 mutant embryos did not form mesoderm and showed increased apoptosis but comparable levels of BrdUrd incorporation, indicating a defect in differentiation. erk2 null embryonic stem (ES) cells exhibited reduced total ERK activity upon serum stimulation, augmented ERK1 phosphorylation, and decreased downstream p90Rsk phosphorylation and activity; yet ES cell proliferation was unaffected. Mutant ES cells were capable of forming mesoderm; however, treatment of mutant ES cells with the mitogen-activated protein kinase kinase inhibitor PD184352 decreased total ERK activity and expression of the mesodermal marker brachyury, suggesting that ERK1 can compensate for ERK2 in vitro. Normal embryos at embryonic day 6.5 expressed activated ERK1/2 in the extraembryonic ectoderm, whereas erk2 mutant embryos had no detectable activated ERK1/2 in this region, suggesting that activated ERK1 was not expressed, and therefore cannot compensate for loss of ERK2 in vivo. These data indicate that ERK2 plays an essential role in mesoderm differentiation during embryonic development.
Collapse
Affiliation(s)
| | | | | | | | | | - Keisuke Kuida
- Department of Biology, Vertex Pharmaceuticals, 130 Waverly Street, Cambridge, MA 02139
| | | |
Collapse
|
8
|
Hatano N, Mori Y, Oh-hora M, Kosugi A, Fujikawa T, Nakai N, Niwa H, Miyazaki JI, Hamaoka T, Ogata M. Essential role for ERK2 mitogen-activated protein kinase in placental development. Genes Cells 2003; 8:847-56. [PMID: 14622137 DOI: 10.1046/j.1365-2443.2003.00680.x] [Citation(s) in RCA: 232] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Extracellular signal-regulated kinase 2 (ERK2) has been implicated in cell proliferation, differentiation, and survival. However, its role in vivo remains to be determined. RESULTS Here we show that the targeted disruption of the mouse ERK2 gene results in embryonic lethality by E11.5 and severe abnormality of the placenta. In these animals, the labyrinthine layer of the placenta is very thin and few foetal blood vessels are observed. ERK2 mutants can be rescued by the transgenic expression of ERK2, demonstrating that these abnormalities are caused by ERK2-deficiency. Although ERK2-deficient fetuses are much smaller than wild-type littermates, this seems to be secondary to malfunction of the placenta. When the placental defect is rescued by tetraploid-aggregation, ERK2-deficient foetuses grow as well as littermate controls. CONCLUSION These observations indicate that ERK2 is essential for placental development and suggest that ERK2 in the trophoblast compartment may be indispensable for the vascularization of the labyrinth.
Collapse
Affiliation(s)
- Naoya Hatano
- Department of Pathology and Pathophysiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kim HJ, Jung KJ, Yu BP, Cho CG, Chung HY. Influence of aging and calorie restriction on MAPKs activity in rat kidney. Exp Gerontol 2002; 37:1041-53. [PMID: 12213555 DOI: 10.1016/s0531-5565(02)00082-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mitogen-activated protein kinases (MAPK), which include the extracellular signal-related kinases (ERK), the c-Jun N-terminal kinases (JNK), and the p38 MAPK, are important regulatory proteins by which a wide variety of extracellular signals are transduced into intracellular sites. Recent studies reported that mitogenic signal transduction in various cell types are exquisitely sensitive to reactive oxygen species (ROS) and the celluar redox status. In the present study, we investigated the activation of MAPK activity by aging and calorie restriction (CR) in rat kidneys isolated from Fischer 344 rats, ages 6, 12, 18, and 24 months fed ad libitum (AL) and CR diets. Results showed that the aging process strongly enhanced all three of the MAPK activities studied, ERK, JNK, and p38 MAPK, in parallel to increased ROS status. In contrast, we observed CR to markedly suppress the age-related activation of MAPKs. Based on these data, we concluded that an age-related increase in MAPK activity is associated with increased ROS, which was effectively suppressed by the anti-oxidative action of CR.
Collapse
Affiliation(s)
- Hyon Jeen Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Gumjung-ku, Pusan 609-735, South Korea
| | | | | | | | | |
Collapse
|
10
|
Li M, Walter R, Torres C, Sierra F. Impaired signal transduction in mitogen activated rat splenic lymphocytes during aging. Mech Ageing Dev 2000; 113:85-99. [PMID: 10708257 DOI: 10.1016/s0047-6374(99)00096-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitogen activated protein kinases (MAPK) are activated by a wide variety of signals leading to cell proliferation and differentiation in different cell types. With aging, there is a marked decrease in proliferation of T-lymphocytes in response to a variety of mitogens. Several age-related changes in the activation of MAPK pathways in T-lymphocytes activated via the T-cell receptor (TCR) have been described in different species. This way, some TCR proximal defects in tyrosine kinase activity have been delineated. In this study, we have used rat splenic lymphocytes to measure the effect of aging on the activation of two MAP kinase families: ERK and JNK. In order to bypass the receptor-proximal age-dependent defects previously described, we used phorbol ester (PMA) and Ca2+ ionophore (A23187) as co-mitogens. Our results demonstrate that splenic lymphocytes from old rats have a disturbance in the activation of the ERK and JNK MAPK signal transduction pathways, that are located downstream of the receptor-proximal events. At least part of the age-related defect leading to decreased ERK activity appears to be located upstream of ERK itself, since activation of MEK is also impaired. On the other hand, the observed defects in MAPK activation do result in decreased activation of downstream events, such as c-Jun phosphorylation. Thus, we conclude that aging of splenic lymphocytes results in a functional decline in signal transduction, and at least some of these defects are located downstream of the receptor-proximal events previously described by others. The impaired activity of these two MAP kinase pathways is likely to play a role in the diminished lymphoproliferation observed in old individuals.
Collapse
Affiliation(s)
- M Li
- Center for Gerontological Research, MCP Hahnemann University, Philadelphia, PA 19129, USA
| | | | | | | |
Collapse
|