1
|
Gorbunova IA, Sasin ME, Yachkov DV, Volkov DA, Vedyaykin AD, Nikiforov AA, Vasyutinskii OS. Two-Photon Excited Fluorescence of NADH-Alcohol Dehydrogenase Complex in a Mixture with Bacterial Enzymes. Biomolecules 2023; 13:biom13020256. [PMID: 36830625 PMCID: PMC9953378 DOI: 10.3390/biom13020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Thorough study of composition and fluorescence properties of a commercial reagent of active equine NAD-dependent alcohol dehydrogenase expressed and purified from E. coli has been carried out. Several experimental methods: spectral- and time-resolved two-photon excited fluorescence, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, fast protein liquid chromatography, and mass spectrometry were used for analysis. The reagent under study was found to contain also a number of natural fluorophores: free NAD(P)H, NADH-alcohol dehydrogenase, NADPH-isocitrate dehydrogenase, and pyridoxal 5-phosphate-serine hydroxymethyltransferase complexes. The results obtained demonstrated the potential and limitations of popular optical methods as FLIM for separation of fluorescence signals from free and protein-bound forms of NADH, NADPH, and FAD that are essential coenzymes in redox reactions in all living cells. In particular, NADH-alcohol dehydrogenase and NADPH-isocitrate dehydrogenase complexes could not be optically separated in our experimental conditions although fast protein liquid chromatography and mass spectrometry analysis undoubtedly indicated the presence of both enzymes in the molecular sample used. Also, the results of fluorescence, fast protein liquid chromatography, and mass spectrometry analysis revealed a significant contribution of the enzyme-bound coenzyme pyridoxal 5-phosphate to the fluorescence signal that could be separated from enzyme-bound NADH by using bandpass filters, but could effectively mask contribution from enzyme-bound FAD because the fluorescence spectra of the species practically overlapped. It was shown that enzyme-bound pyridoxal 5-phosphate fluorescence can be separated from enzyme-bound NAD(P)H and FAD through analysis of short fluorescence decay times of about tens of picoseconds. However, this analysis was found to be effective only at relatively high number of peak photon counts in recorded fluorescence signals. The results obtained in this study can be used for interpretation of fluorescence signals from a mixture of enzyme-bound fluorophores and should be taken into consideration when determining the intracellular NADH/FAD ratio using FLIM.
Collapse
Affiliation(s)
| | | | - Dmitry V. Yachkov
- Ioffe Intstitute, St. Petersburg 194021, Russia
- Institute of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
| | | | - Alexei D. Vedyaykin
- Institute of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
| | - Andrey A. Nikiforov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Oleg S. Vasyutinskii
- Ioffe Intstitute, St. Petersburg 194021, Russia
- Correspondence: ; Tel.: +7-981-802-7376
| |
Collapse
|
2
|
Spizzichino S, Boi D, Boumis G, Lucchi R, Liberati FR, Capelli D, Montanari R, Pochetti G, Piacentini R, Parisi G, Paone A, Rinaldo S, Contestabile R, Tramonti A, Paiardini A, Giardina G, Cutruzzolà F. Cytosolic localization and in vitro assembly of human de novo thymidylate synthesis complex. FEBS J 2021; 289:1625-1649. [PMID: 34694685 PMCID: PMC9299187 DOI: 10.1111/febs.16248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/21/2021] [Indexed: 11/27/2022]
Abstract
De novo thymidylate synthesis is a crucial pathway for normal and cancer cells. Deoxythymidine monophosphate (dTMP) is synthesized by the combined action of three enzymes: serine hydroxymethyltransferase (SHMT1), dihydrofolate reductase (DHFR) and thymidylate synthase (TYMS), with the latter two being targets of widely used chemotherapeutics such as antifolates and 5‐fluorouracil. These proteins translocate to the nucleus after SUMOylation and are suggested to assemble in this compartment into the thymidylate synthesis complex. We report the intracellular dynamics of the complex in cancer cells by an in situ proximity ligation assay, showing that it is also detected in the cytoplasm. This result indicates that the role of the thymidylate synthesis complex assembly may go beyond dTMP synthesis. We have successfully assembled the dTMP synthesis complex in vitro, employing tetrameric SHMT1 and a bifunctional chimeric enzyme comprising human thymidylate synthase and dihydrofolate reductase. We show that the SHMT1 tetrameric state is required for efficient complex assembly, indicating that this aggregation state is evolutionarily selected in eukaryotes to optimize protein–protein interactions. Lastly, our results regarding the activity of the complete thymidylate cycle in vitro may provide a useful tool with respect to developing drugs targeting the entire complex instead of the individual components.
Collapse
Affiliation(s)
- Sharon Spizzichino
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Dalila Boi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Giovanna Boumis
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Roberta Lucchi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Davide Capelli
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Roberta Montanari
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Giorgio Pochetti
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Roberta Piacentini
- Center for Life Nano & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Giacomo Parisi
- Center for Life Nano & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Alessio Paone
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Serena Rinaldo
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Angela Tramonti
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.,Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Rome, Italy
| | | | - Giorgio Giardina
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesca Cutruzzolà
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.,Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
3
|
Sinha D, Sinha D, Banerjee N, Rai P, Seal S, Chakraborty T, Chatterjee S, Sau S. A conserved arginine residue in a staphylococcal anti-sigma factor is required to preserve its kinase activity, structure, and stability. J Biomol Struct Dyn 2020; 40:4972-4986. [PMID: 33356973 DOI: 10.1080/07391102.2020.1864475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
RsbW, σB, and RsbV, encoded by Staphylococcus aureus and related bacteria, act as an anti-sigma factor, an sigma factor, and an anti-anti-sigma factor, respectively. The interaction between RsbW and σB blocks the transcription initiation activity of the latter protein. RsbW also functions as a serine kinase and phosphorylates RsbV in the presence of ATP. Our modeling study indicates that the RsbW-RsbV complex is stabilized by twenty-four intermolecular non-covalent bonds. Of the bond-forming RsbW residues, Arg 23, and Glu 49 are conserved residues. To understand the roles of Arg 23 in RsbW, rRsbW[R23A], a recombinant S. aureus RsbW (rRsbW) harboring Arg to Ala change at position 23, was investigated using various probes. The results reveal that rRsbW[R23A], like rRsbW, exists as the dimers in the aqueous solution. However, rRsbW[R23A], unlike rRsbW, neither interacted with a chimeric RsbV (rRsbV) nor formed the phosphorylated rRsbV in the presence of ATP. Furthermore, the tertiary structure and hydrophobic surface area of rRsbW[R23A] matched little with those of rRsbW. Conversely, both rRsbW[R23A] and rRsbW showed interaction with a recombinant σB (rσB). rRsbW and rRsbW[R23A] were also unfolded via the formation of at least one intermediate in the presence of urea. However, the thermodynamic stability of rRsbW significantly differed from that of rRsbW[R23A]. Our molecular dynamics (MD) simulation study also reveals the substantial change of structure, dimension, and stability of RsbW due to the above mutation. The ways side chain of critical Arg 23 contributes to maintaining the tertiary structure, and stability of RsbW was elaborately discussed.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Debasmita Sinha
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Debabrata Sinha
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Nilanjan Banerjee
- Department of Biophysics, Bose Institute, Kolkata, West Bengal, India
| | - Priya Rai
- Department of Biophysics, Bose Institute, Kolkata, West Bengal, India
| | - Soham Seal
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | | | | | - Subrata Sau
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| |
Collapse
|
4
|
Lakhssassi N, Piya S, Knizia D, El Baze A, Cullen MA, Meksem J, Lakhssassi A, Hewezi T, Meksem K. Mutations at the Serine Hydroxymethyltransferase Impact its Interaction with a Soluble NSF Attachment Protein and a Pathogenesis-Related Protein in Soybean. Vaccines (Basel) 2020; 8:vaccines8030349. [PMID: 32629961 PMCID: PMC7563484 DOI: 10.3390/vaccines8030349] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 01/01/2023] Open
Abstract
Resistance to soybean cyst nematodes (SCN) in “Peking-type” resistance is bigenic, requiring Rhg4-a and rhg1-a. Rhg4-a encodes a serine hydroxymethyltransferase (GmSHMT08) and rhg1-a encodes a soluble NSF attachment protein (GmSNAP18). Recently, it has been shown that a pathogenesis-related protein, GmPR08-Bet VI, potentiates the interaction between GmSHMT08 and GmSNAP18. Mutational analysis using spontaneously occurring and ethyl methanesulfonate (EMS)-induced mutations was carried out to increase our knowledge of the interacting GmSHMT08/GmSNAP18/GmPR08-Bet VI multi-protein complex. Mutations affecting the GmSHMT08 protein structure (dimerization and tetramerization) and interaction sites with GmSNAP18 and GmPR08-Bet VI proteins were found to impact the multi-protein complex. Interestingly, mutations affecting the PLP/THF substrate binding and catalysis did not affect the multi-protein complex, although they resulted in increased susceptibility to SCN. Most importantly, GmSHMT08 and GmSNAP18 from PI88788 were shown to interact within the cell, being potentiated in the presence of GmPR08-Bet VI. In addition, we have shown the presence of incompatibility between the GmSNAP18 (rhg1-b) of PI88788 and GmSHMT08 (Rhg4-a) from Peking. Components of the reactive oxygen species (ROS) pathway were shown to be induced in the SCN incompatible reaction and were mapped to QTLs for resistance to SCN using different mapping populations.
Collapse
Affiliation(s)
- Naoufal Lakhssassi
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (D.K.); (A.E.B.); (M.A.C.)
| | - Sarbottam Piya
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA; (S.P.); (T.H.)
| | - Dounya Knizia
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (D.K.); (A.E.B.); (M.A.C.)
| | - Abdelhalim El Baze
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (D.K.); (A.E.B.); (M.A.C.)
| | - Mallory A. Cullen
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (D.K.); (A.E.B.); (M.A.C.)
| | - Jonas Meksem
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27708, USA;
| | - Aicha Lakhssassi
- Faculty of Sciences and Technologies, University of Lorraine, 54000 Nancy, France;
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA; (S.P.); (T.H.)
| | - Khalid Meksem
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (D.K.); (A.E.B.); (M.A.C.)
- Correspondence: ; Tel.: +1-618-453-3103
| |
Collapse
|
5
|
Haque MR, Hirowatari A, Nai N, Furuya S, Yamamoto K. Serine hydroxymethyltransferase from the silkworm Bombyx mori: Identification, distribution, and biochemical characterization. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 102:e21594. [PMID: 31298425 DOI: 10.1002/arch.21594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Serine hydroxymethyltransferase (SHMT) catalyzes the interconversion of serine and tetrahydrofolate (THF) to glycine and methylenetetrahydrofolate. cDNA encoding Bombyx mori SHMT (bmSHMT) was cloned and sequenced. The deduced amino acid sequence consisted of 465 amino acids and was found to share homology with other SHMTs. Recombinant bmSHMT was overexpressed in Escherichia coli and purified to homogeneity. The enzyme showed optimum activity at pH 3.0 and 30°C and was stable under acidic conditions. The Km and kcat /Km values for THF in the presence of Nicotinamide adenine dinucleotide phosphate (NADP+ ) were 0.055 mM and 0.081 mM-1 s-1 , respectively, whereas those toward NADP+ were 0.16 mM and 0.018 mM-1 s-1 and toward l-serine were 1.8 mM and 0.0022 mM-1 s-1 , respectively. Mutagenesis experiments revealed that His119, His132, and His135 are important for enzymatic activity. Our results provide insight into the roles and regulation mechanism of one-carbon metabolism in the silkworm B. mori.
Collapse
Affiliation(s)
- Mohammad R Haque
- Department of Bioscience and Biotechnology, Kyushu University Graduate School, Nishi-ku, Fukuoka, Japan
| | - Aiko Hirowatari
- Department of Bioscience and Biotechnology, Kyushu University Graduate School, Nishi-ku, Fukuoka, Japan
| | - Nonoko Nai
- Department of Bioscience and Biotechnology, Kyushu University Graduate School, Nishi-ku, Fukuoka, Japan
| | - Shigeki Furuya
- Department of Bioscience and Biotechnology, Kyushu University Graduate School, Nishi-ku, Fukuoka, Japan
| | - Kohji Yamamoto
- Department of Bioscience and Biotechnology, Kyushu University Graduate School, Nishi-ku, Fukuoka, Japan
| |
Collapse
|
6
|
Desmons S, Fauré R, Bontemps S. Formaldehyde as a Promising C1 Source: The Instrumental Role of Biocatalysis for Stereocontrolled Reactions. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03128] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Sarah Desmons
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
- TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Régis Fauré
- TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | | |
Collapse
|
7
|
Walden M, Tian L, Ross RL, Sykora UM, Byrne DP, Hesketh EL, Masandi SK, Cassel J, George R, Ault JR, El Oualid F, Pawłowski K, Salvino JM, Eyers PA, Ranson NA, Del Galdo F, Greenberg RA, Zeqiraj E. Metabolic control of BRISC-SHMT2 assembly regulates immune signalling. Nature 2019; 570:194-199. [PMID: 31142841 PMCID: PMC6914362 DOI: 10.1038/s41586-019-1232-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 04/29/2019] [Indexed: 02/04/2023]
Abstract
Serine hydroxymethyltransferase 2 (SHMT2) regulates one-carbon transfer reactions that are essential for amino acid and nucleotide metabolism, and uses pyridoxal-5'-phosphate (PLP) as a cofactor. Apo SHMT2 exists as a dimer with unknown functions, whereas PLP binding stabilizes the active tetrameric state. SHMT2 also promotes inflammatory cytokine signalling by interacting with the deubiquitylating BRCC36 isopeptidase complex (BRISC), although it is unclear whether this function relates to metabolism. Here we present the cryo-electron microscopy structure of the human BRISC-SHMT2 complex at a resolution of 3.8 Å. BRISC is a U-shaped dimer of four subunits, and SHMT2 sterically blocks the BRCC36 active site and inhibits deubiquitylase activity. Only the inactive SHMT2 dimer-and not the active PLP-bound tetramer-binds and inhibits BRISC. Mutations in BRISC that disrupt SHMT2 binding impair type I interferon signalling in response to inflammatory stimuli. Intracellular levels of PLP regulate the interaction between BRISC and SHMT2, as well as inflammatory cytokine responses. These data reveal a mechanism in which metabolites regulate deubiquitylase activity and inflammatory signalling.
Collapse
Affiliation(s)
- Miriam Walden
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Lei Tian
- Department of Cancer Biology, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca L Ross
- Leeds Institute of Rheumatic and Musculoskeletal Medicine and NIHR Biomedical Research Centre, University of Leeds, Leeds, UK
| | - Upasana M Sykora
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Dominic P Byrne
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Emma L Hesketh
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Safi K Masandi
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Joel Cassel
- The Wistar Cancer Center for Molecular Screening, The Wistar Institute, Philadelphia, PA, USA
| | - Rachel George
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - James R Ault
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | | - Krzysztof Pawłowski
- Warsaw University of Life Sciences, Warsaw, Poland
- Department of Translational Medicine, Clinical Sciences, Lund University, Lund, Sweden
| | - Joseph M Salvino
- The Wistar Cancer Center for Molecular Screening, The Wistar Institute, Philadelphia, PA, USA
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Francesco Del Galdo
- Leeds Institute of Rheumatic and Musculoskeletal Medicine and NIHR Biomedical Research Centre, University of Leeds, Leeds, UK
| | - Roger A Greenberg
- Department of Cancer Biology, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Elton Zeqiraj
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
8
|
Lakhssassi N, Patil G, Piya S, Zhou Z, Baharlouei A, Kassem MA, Lightfoot DA, Hewezi T, Barakat A, Nguyen HT, Meksem K. Genome reorganization of the GmSHMT gene family in soybean showed a lack of functional redundancy in resistance to soybean cyst nematode. Sci Rep 2019; 9:1506. [PMID: 30728404 PMCID: PMC6365578 DOI: 10.1038/s41598-018-37815-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/13/2018] [Indexed: 12/21/2022] Open
Abstract
In soybeans, eighteen members constitute the serine hydroxymethyltransferase (GmSHMT) gene family, of which the cytosolic-targeted GmSHMT08c member has been reported to mediate resistance to soybean cyst nematode (SCN). This work presents a comprehensive study of the SHMT gene family members, including synteny, phylogeny, subcellular localizations, haplotypes, protein homology modeling, mutational, and expression analyses. Phylogenetic analysis showed that SHMT genes are divided into four classes reflecting their subcellular distribution (cytosol, nucleus, mitochondrion, and chloroplast). Subcellular localization of selected GmSHMT members supports their in-silico predictions and phylogenetic distribution. Expression and functional analyses showed that GmSHMT genes display many overlapping, but some divergent responses during SCN infection. Furthermore, mutational analysis reveals that all isolated EMS mutants that lose their resistance to SCN carry missense and nonsense mutations at the GmSHMT08c, but none of the Gmshmt08c mutants carried mutations in the other GmSHMT genes. Haplotype clustering analysis using the whole genome resequencing data from a collection of 106 diverse soybean germplams (15X) was performed to identify allelic variants and haplotypes within the GmSHMT gene family. Interestingly, only the cytosolic-localized GmSHMT08c presented SNP clusters that were associated with SCN resistance, supporting our mutational analysis. Although eight GmSHMT members respond to the nematode infestation, functional and mutational analysis has shown the absence of functional redundancy in resistance to SCN. Structural analysis and protein homology modeling showed the presence of spontaneous mutations at important residues within the GmSHMT proteins, suggesting the presence of altered enzyme activities based on substrate affinities. Due to the accumulation of mutations during the evolution of the soybean genome, the other GmSHMT members have undergone neofunctionalization and subfunctionalization events.
Collapse
Affiliation(s)
- Naoufal Lakhssassi
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Gunvant Patil
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65201, USA
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Sarbottam Piya
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Zhou Zhou
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Azam Baharlouei
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL, 62901, USA
| | - My Abdelmajid Kassem
- Department of Biological Sciences, Fayetteville State University, Fayetteville, NC, 28301, USA
| | - David A Lightfoot
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Abdelali Barakat
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA
| | - Henry T Nguyen
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65201, USA
| | - Khalid Meksem
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL, 62901, USA.
| |
Collapse
|
9
|
Santatiwongchai J, Gleeson D, Gleeson MP. Theoretical Evaluation of the Reaction Mechanism of Serine Hydroxymethyltransferase. J Phys Chem B 2019; 123:407-418. [PMID: 30522268 DOI: 10.1021/acs.jpcb.8b10196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Serine hydroxymethyltransferase (SHMT) is a pyridoxal phosphate (PLP)-dependent enzyme that catalyzes the reversible conversion of serine and tetrahydrofolate (THF) to glycine and 5,10-methylene THF. SHMT is a folate pathway enzyme and is therefore of considerable medical interest due to its role as an important intervention point for antimalarial, anticancer, and antibacterial treatments. Despite considerable experimental effort, the precise reaction mechanism of SHMT remains unclear. In this study, we explore the mechanism of SHMT to determine the roles of active site residues and the nature and the sequence of chemical steps. Molecular dynamics (MD) methods were employed to generate a suitable starting structure which then underwent analysis using hybrid quantum mechanical/molecular mechanical (QM/MM) simulations. The QM region consisted of 12 key residues, two substrates, and explicit solvent. Our results show that the catalytic reaction proceeds according to a retro-aldol synthetic process with His129 acting as the general base in the reaction. The rate-determining step involves the cleavage of the PLP-serine aldimine Cα-Cβ bond and the formation of formaldehyde in line with experimental evidence. The pyridyl ring of the PLP-serine aldimine substrate exists in deprotonated form, being stabilized directly by Asp208 via a strong H-bond, as well as through interactions with Arg371, Lys237, and His211, and with the surrounding protein which was electrostatically embedded. This knowledge has the potential to impact the design and development of new inhibitors.
Collapse
Affiliation(s)
- Jirapat Santatiwongchai
- Department of Chemistry, Faculty of Science , Kasetsart University , Bangkok 10900 , Thailand
| | - Duangkamol Gleeson
- Department of Chemistry, Faculty of Science , King Mongkut's Institute of Technology Ladkrabang , Bangkok 10520 , Thailand
| | - M Paul Gleeson
- Department of Chemistry, Faculty of Science , Kasetsart University , Bangkok 10900 , Thailand.,Department of Biomedical Engineering, Faculty of Engineering , King Mongkut's Institute of Technology Ladkrabang , Bangkok 10520 , Thailand
| |
Collapse
|
10
|
Giardina G, Brunotti P, Fiascarelli A, Cicalini A, Costa MGS, Buckle AM, di Salvo ML, Giorgi A, Marani M, Paone A, Rinaldo S, Paiardini A, Contestabile R, Cutruzzolà F. How pyridoxal 5'-phosphate differentially regulates human cytosolic and mitochondrial serine hydroxymethyltransferase oligomeric state. FEBS J 2015; 282:1225-41. [PMID: 25619277 DOI: 10.1111/febs.13211] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/15/2015] [Accepted: 01/20/2015] [Indexed: 01/16/2023]
Abstract
Adaptive metabolic reprogramming gives cancer cells a proliferative advantage. Tumour cells extensively use glycolysis to sustain anabolism and produce serine, which not only refuels the one-carbon units necessary for the synthesis of nucleotide precursors and for DNA methylation, but also affects the cellular redox homeostasis. Given its central role in serine metabolism, serine hydroxymethyltransferase (SHMT), a pyridoxal 5'-phosphate (PLP)-dependent enzyme, is an attractive target for tumour chemotherapy. In humans, the cytosolic isoform (SHMT1) and the mitochondrial isoform (SHMT2) have distinct cellular roles, but high sequence identity and comparable catalytic properties, which may complicate development of successful therapeutic strategies. Here, we investigated how binding of the cofactor PLP controls the oligomeric state of the human isoforms. The fact that eukaryotic SHMTs are tetrameric proteins while bacterial SHMTs function as dimers may suggest that the quaternary assembly in eukaryotes provides an advantage to fine-tune SHMT function and differentially regulate intertwined metabolic fluxes, and may provide a tool to address the specificity problem. We determined the crystal structure of SHMT2, and compared it to the apo-enzyme structure, showing that PLP binding triggers a disorder-to-order transition accompanied by a large rigid-body movement of the two cofactor-binding domains. Moreover, we demonstrated that SHMT1 exists in solution as a tetramer, both in the absence and presence of PLP, while SHMT2 undergoes a dimer-to-tetramer transition upon PLP binding. These findings indicate an unexpected structural difference between the two human SHMT isoforms, which opens new perspectives for understanding their differing behaviours, roles or regulation mechanisms in response to PLP availability in vivo.
Collapse
Affiliation(s)
- Giorgio Giardina
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wei Z, Sun K, Sandoval FJ, Cross JM, Gordon C, Kang C, Roje S. Folate polyglutamylation eliminates dependence of activity on enzyme concentration in mitochondrial serine hydroxymethyltransferases from Arabidopsis thaliana. Arch Biochem Biophys 2013; 536:87-96. [DOI: 10.1016/j.abb.2013.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 06/11/2013] [Accepted: 06/11/2013] [Indexed: 11/27/2022]
|
12
|
Chiba Y, Terada T, Kameya M, Shimizu K, Arai H, Ishii M, Igarashi Y. Mechanism for folate-independent aldolase reaction catalyzed by serine hydroxymethyltransferase. FEBS J 2011; 279:504-14. [PMID: 22141341 DOI: 10.1111/j.1742-4658.2011.08443.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Serine hydroxymethyltransferase catalyzes the cleavage of β-hydroxyamino acids into glycine and aldehydes in the absence of tetrahydrofolate. The enzyme accepts various β-hydroxyamino acids as the substrate of this reaction. The reaction rate varies depending on the substituent and stereochemistry at the Cβ atom: the erythro forms and the β-phenyl substituent are preferred over the threo forms and the β-methyl substituent, respectively. Although several mechanisms have been proposed, what determines the substrate preference remains unclear. We first performed quantum mechanical calculations to assess the validity of the reaction mechanisms. The results indicate that the retro-aldol mechanism starting with abstraction of the proton from the β-hydroxyl group is plausible. This also suggests that Cα-Cβ bond cleavage is the rate-limiting step. We next measured the dependence of the rate constants on temperature with four representative substrates and calculated the activation energies and pre-exponential factors from the Arrhenius plots. The activation energies of the erythro forms were lower than those of the threo forms. The β-phenyl substituent lowered the activation energy in the threo form, whereas it did not alter the activation energy but increased the pre-exponential factor in the erythro form. We present a unified model to explain the origin of the substituent and stereochemical preferences by combining the theoretical and experimental results. A possible biological role of the tetrahydrofolate-independent activity in thermophiles is also discussed.
Collapse
Affiliation(s)
- Yoko Chiba
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Sopitthummakhun K, Maenpuen S, Yuthavong Y, Leartsakulpanich U, Chaiyen P. Serine hydroxymethyltransferase from Plasmodium vivax is different in substrate specificity from its homologues. FEBS J 2009; 276:4023-36. [PMID: 19549189 DOI: 10.1111/j.1742-4658.2009.07111.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The putative gene of Plasmodium vivax serine hydroxymethyltransferase (PvSHMT; EC 2.1.2.1) was cloned and expressed in Escherichia coli. The purified enzyme was shown to be a dimeric protein with a monomeric molecular mass of 49 kDa. PvSHMT has a maximum absorption peak at 422 nm with a molar absorption coefficient of 6370 M(-1) x cm(-1). The K(d) for binding of the enzyme and pyridoxal-5-phosphate was 0.14 +/- 0.01 microM. An alternative assay for measuring the tetrahydrofolate-dependent SHMT activity based on the coupled reaction with 5,10-methylenetetrahydrofolate reductase (EC 1.5.1.20) from E. coli was developed. PvSHMT uses a ternary-complex mechanism with a k(cat) value of 0.98 +/- 0.06 s(-1) and K(m) values of 0.18 +/- 0.03 and 0.14 +/- 0.02 mM for L-serine and tetrahydrofolate, respectively. The optimum pH of the SHMT reaction was 8.0 and an Arrhenius's plot showed a transition temperature of 19 degrees C. Besides L-serine, PvSHMT forms an external aldimine complex with D-serine, L-alanine, L-threonine and glycine. PvSHMT also catalyzes the tetrahydrofolate-independent retro-aldol cleavage of 3-hydroxy amino acids. Although L-serine is a physiological substrate for SHMT in the tetrahydrofolate-dependent reaction, PvSHMT can also use D-serine. In the absence of tetrahydrofolate at high pH, PvSHMT forms an enzyme-quinonoid complex with D-serine, but not with L-serine, whereas SHMT from rabbit liver was reported to form an enzyme-quinonoid complex with L-serine. The substrate specificity difference between PvSHMT and the mammalian enzyme indicates the dissimilarity between their active sites, which could be exploited for the development of specific inhibitors against PvSHMT.
Collapse
Affiliation(s)
- Kittipat Sopitthummakhun
- Department of Biochemistry and Center for Excellence in Protein Structure and Function, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | | | | | | |
Collapse
|
14
|
Bhavani BS, Rajaram V, Bisht S, Kaul P, Prakash V, Murthy MRN, Appaji Rao N, Savithri HS. Importance of tyrosine residues of Bacillus stearothermophilus serine hydroxymethyltransferase in cofactor binding and l-allo-Thr cleavage. FEBS J 2008; 275:4606-19. [DOI: 10.1111/j.1742-4658.2008.06603.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Rajaram V, Bhavani BS, Kaul P, Prakash V, Appaji Rao N, Savithri HS, Murthy MRN. Structure determination and biochemical studies on Bacillus stearothermophilus E53Q serine hydroxymethyltransferase and its complexes provide insights on function and enzyme memory. FEBS J 2007; 274:4148-60. [PMID: 17651438 DOI: 10.1111/j.1742-4658.2007.05943.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Serine hydroxymethyltransferase (SHMT) belongs to the alpha-family of pyridoxal 5'-phosphate-dependent enzymes and catalyzes the reversible conversion of L-Ser and tetrahydrofolate to Gly and 5,10-methylene tetrahydrofolate. 5,10-Methylene tetrahydrofolate serves as a source of one-carbon fragment in many biological processes. SHMT also catalyzes the tetrahydrofolate-independent conversion of L-allo-Thr to Gly and acetaldehyde. The crystal structure of Bacillus stearothermophilus SHMT (bsSHMT) suggested that E53 interacts with the substrate, L-Ser and tetrahydrofolate. To elucidate the role of E53, it was mutated to Q and structural and biochemical studies were carried out with the mutant enzyme. The internal aldimine structure of E53QbsSHMT was similar to that of the wild-type enzyme, except for significant changes at Q53, Y60 and Y61. The carboxyl of Gly and side chain of L-Ser were in two conformations in the respective external aldimine structures. The mutant enzyme was completely inactive for tetrahydrofolate-dependent cleavage of L-Ser, whereas there was a 1.5-fold increase in the rate of tetrahydrofolate-independent reaction with L-allo-Thr. The results obtained from these studies suggest that E53 plays an essential role in tetrahydrofolate/5-formyl tetrahydrofolate binding and in the proper positioning of Cbeta of L-Ser for direct attack by N5 of tetrahydrofolate. Most interestingly, the structure of the complex obtained by cocrystallization of E53QbsSHMT with Gly and 5-formyl tetrahydrofolate revealed the gem-diamine form of pyridoxal 5'-phosphate bound to Gly and active site Lys. However, density for 5-formyl tetrahydrofolate was not observed. Gly carboxylate was in a single conformation, whereas pyridoxal 5'-phosphate had two distinct conformations. The differences between the structures of this complex and Gly external aldimine suggest that the changes induced by initial binding of 5-formyl tetrahydrofolate are retained even though 5-formyl tetrahydrofolate is absent in the final structure. Spectral studies carried out with this mutant enzyme also suggest that 5-formyl tetrahydrofolate binds to the E53QbsSHMT-Gly complex forming a quinonoid intermediate and falls off within 4 h of dialysis, leaving behind the mutant enzyme in the gem-diamine form. This is the first report to provide direct evidence for enzyme memory based on the crystal structure of enzyme complexes.
Collapse
Affiliation(s)
- V Rajaram
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | | | | | | | | | | | |
Collapse
|
16
|
Schirch V, Szebenyi DM. Serine hydroxymethyltransferase revisited. Curr Opin Chem Biol 2006; 9:482-7. [PMID: 16125438 DOI: 10.1016/j.cbpa.2005.08.017] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Accepted: 08/12/2005] [Indexed: 11/19/2022]
Abstract
Recent structural data and the properties of several active site mutants of serine hydroxymethyltransferase have resolved some key questions concerning the catalytic mechanism and broad substrate specificity of this enzyme. In the tetrahydrofolate-dependent conversion of serine to glycine, an early proposed mechanism involved a retroaldol cleavage and a formaldehyde intermediate, while a more recent suggestion posits a direct nucleophilic displacement of the serine hydroxyl by N(5) of tetrahydrofolate, without creation of free formaldehyde. Geometric and chemical difficulties with both options led to a new proposal, a modified retroaldol mechanism in which N(5) of tetrahydrofolate makes a nucleophilic attack on serine C(3) leading to breakage of the C(3)-C(2)-bond of serine rather than the C(3)-hydroxyl bond. Molecular modeling revealed how a variety of substrates could be accommodated in the folate-independent cleavage of 3-hydroxyamino acids and shed light on the mechanism of this reaction.
Collapse
Affiliation(s)
- Verne Schirch
- Department of Biochemistry and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, USA.
| | | |
Collapse
|
17
|
Bhavani S, Trivedi V, Jala VR, Subramanya HS, Kaul P, Prakash V, Appaji Rao N, Savithri HS. Role of Lys-226 in the Catalytic Mechanism of Bacillus Stearothermophilus Serine HydroxymethyltransferaseCrystal Structure and Kinetic Studies,. Biochemistry 2005; 44:6929-37. [PMID: 15865438 DOI: 10.1021/bi047800x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Serine hydroxymethyltransferase (SHMT), a pyridoxal 5'-phosphate (PLP)-dependent enzyme catalyzes the reversible conversion of l-Ser and tetrahydropteroylglutamate (H(4)PteGlu) to Gly and 5,10-methylene tetrahydropteroylglutamate (CH(2)-H(4)PteGlu). Biochemical and structural studies on this enzyme have implicated several residues in the catalytic mechanism, one of them being the active site lysine, which anchors PLP. It has been proposed that this residue is crucial for product expulsion. However, in other PLP-dependent enzymes, the corresponding residue has been implicated in the proton abstraction step of catalysis. In the present investigation, Lys-226 of Bacillus stearothermophilus SHMT (bsSHMT) was mutated to Met and Gln to evaluate the role of this residue in catalysis. The mutant enzymes contained 1 mol of PLP per mol of subunit suggesting that Schiff base formation with lysine is not essential for PLP binding. The 3D structure of the mutant enzymes revealed that PLP was bound at the active site in an orientation different from that of the wild-type enzyme. In the presence of substrate, the PLP ring was in an orientation superimposable with that of the external aldimine complex of wild-type enzyme. However, the mutant enzymes were inactive, and the kinetic analysis of the different steps of catalysis revealed that there was a drastic reduction in the rate of formation of the quinonoid intermediate. Analysis of these results along with the crystal structures suggested that K-226 is responsible for flipping of PLP from one orientation to another which is crucial for H(4)PteGlu-dependent Calpha-Cbeta bond cleavage of l-Ser.
Collapse
Affiliation(s)
- Siddegowda Bhavani
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Scheer JB, Mackey AD, Gregory JF. Activities of hepatic cytosolic and mitochondrial forms of serine hydroxymethyltransferase and hepatic glycine concentration are affected by vitamin B-6 intake in rats. J Nutr 2005; 135:233-8. [PMID: 15671219 DOI: 10.1093/jn/135.2.233] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Serine hydroxymethyltransferase (SHMT) is a pyridoxal phosphate (PLP)-dependent enzyme that exists as cytosolic and mitochondrial isozymes that catalyze the reversible interconversion of serine and tetrahydrofolate (THF) to glycine and 5,10-methyleneTHF. SHMT is a major source of one-carbon units for cellular metabolism, but its sensitivity to various degrees of altered vitamin B-6 nutritional status has not been determined. In this study, cytosolic and mitochondrial SHMT activities were measured in liver from rats fed dietary pyridoxine (PN) ranging from adequate to deficient levels (2, 1, 0.5, 0.1, and 0 mg PN/kg diet; n = 10 per group). Both mitochondrial and cytosolic SHMT activities increased (P < 0.001) with increasing dietary PN over this range, and activities were a linear function of liver PLP concentration. Mitochondrial SHMT comprised approximately 70% of total activity. Assays conducted with and without in vitro addition of PLP indicated that total SHMT (apo- and holoenzyme forms) varied with dietary PN for each isoform, but that the proportion of each present as the apoenzyme was not affected by PN intake. This aspect of SHMT nutritional regulation differs from that of many other PLP-dependent enzymes. Hepatic glycine concentration was inversely related to vitamin B-6 intake (P < 0.05), which suggests a functional effect of altered SHMT activity. Overall these results demonstrate the potential for disruption of SHMT-mediated one-carbon metabolism by inadequate vitamin B-6 intake.
Collapse
Affiliation(s)
- Jennifer B Scheer
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | | | | |
Collapse
|
19
|
Szebenyi DME, Musayev FN, di Salvo ML, Safo MK, Schirch V. Serine hydroxymethyltransferase: role of glu75 and evidence that serine is cleaved by a retroaldol mechanism. Biochemistry 2004; 43:6865-76. [PMID: 15170323 DOI: 10.1021/bi049791y] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Serine hydroxymethyltransferase (SHMT) catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate serving as the one-carbon carrier. SHMT also catalyzes the folate-independent retroaldol cleavage of allothreonine and 3-phenylserine and the irreversible conversion of 5,10-methenyltetrahydrofolate to 5-formyltetrahydrofolate. Studies of wild-type and site mutants of SHMT have failed to clearly establish the mechanism of this enzyme. The cleavage of 3-hydroxy amino acids to glycine and an aldehyde occurs by a retroaldol mechanism. However, the folate-dependent cleavage of serine can be described by either the same retroaldol mechanism with formaldehyde as an enzyme-bound intermediate or by a nucleophilic displacement mechanism in which N5 of tetrahydrofolate displaces the C3 hydroxyl of serine, forming a covalent intermediate. Glu75 of SHMT is clearly involved in the reaction mechanism; it is within hydrogen bonding distance of the hydroxyl group of serine and the formyl group of 5-formyltetrahydrofolate in complexes of these species with SHMT. This residue was changed to Leu and Gln, and the structures, kinetics, and spectral properties of the site mutants were determined. Neither mutation significantly changed the structure of SHMT, the spectral properties of its complexes, or the kinetics of the retroaldol cleavage of allothreonine and 3-phenylserine. However, both mutations blocked the folate-dependent serine-to-glycine reaction and the conversion of methenyltetrahydrofolate to 5-formyltetrahydrofolate. These results clearly indicate that interaction of Glu75 with folate is required for folate-dependent reactions catalyzed by SHMT. Moreover, we can now propose a promising modification to the retroaldol mechanism for serine cleavage. As the first step, N5 of tetrahydrofolate makes a nucleophilic attack on C3 of serine, breaking the C2-C3 bond to form N5-hydroxymethylenetetrahydrofolate and an enzyme-bound glycine anion. The transient formation of formaldehyde as an intermediate is possible, but not required. This mechanism explains the greatly enhanced rate of serine cleavage in the presence of folate, and avoids some serious difficulties presented by the nucleophilic displacement mechanism involving breakage of the C3-OH bond.
Collapse
Affiliation(s)
- Doletha M E Szebenyi
- MacCHESS at Cornell High Energy Synchrotron Source, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
20
|
Appaji Rao N, Ambili M, Jala VR, Subramanya HS, Savithri HS. Structure-function relationship in serine hydroxymethyltransferase. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1647:24-9. [PMID: 12686103 DOI: 10.1016/s1570-9639(03)00043-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Serine hydroxymethyltransferase (SHMT), a pyridoxal-5'-phosphate (PLP)-dependent enzyme catalyzes the tetrahydrofolate (H(4)-folate)-dependent retro-aldol cleavage of serine to form 5,10-methylene H(4)-folate and glycine. The structure-function relationship of SHMT was studied in our laboratory initially by mutation of residues that are conserved in all SHMTs and later by structure-based mutagenesis of residues located in the active site. The analysis of mutants showed that K71, Y72, R80, D89, W110, S202, C203, H304, H306 and H356 residues are involved in maintenance of the oligomeric structure. The mutation of D227, a residue involved in charge relay system, led to the formation of inactive dimers, indicating that this residue has a role in maintaining the tetrameric structure and catalysis. E74, a residue appropriately positioned in the structure of the enzyme to carry out proton abstraction, was shown by characterization of E74Q and E74K mutants to be involved in conversion of the enzyme from an 'open' to 'closed' conformation rather than proton abstraction from the hydroxyl group of serine. K256, the residue involved in the formation of Schiffs base with PLP, also plays a crucial role in the maintenance of the tetrameric structure. Mutation of R262 residue established the importance of distal interactions in facilitating catalysis and Y82 is not involved in the formaldehyde transfer via the postulated hemiacetal intermediate but plays a role in stabilizing the quinonoid intermediate. The mutational analysis of scSHMT along with the structure of recombinant Bacillus stearothermophilus SHMT and its substrate(s) complexes was used to provide evidence for a direct transfer mechanism rather than retro-aldol cleavage for the reaction catalyzed by SHMT.
Collapse
Affiliation(s)
- N Appaji Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | | | | | | | | |
Collapse
|
21
|
Zanetti KA, Stover PJ. Pyridoxal phosphate inhibits dynamic subunit interchange among serine hydroxymethyltransferase tetramers. J Biol Chem 2003; 278:10142-9. [PMID: 12514178 DOI: 10.1074/jbc.m211569200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytoplasmic serine hydroxymethyltransferase (cSHMT) is a tetrameric, pyridoxal phosphate (PLP)-dependent enzyme that catalyzes the reversible interconversion of serine and tetrahydrofolate to glycine and methylenetetrahydrofolate. The enzyme has four active sites and is best described as a dimer of obligate dimers. Each monomeric subunit within the obligate dimer contributes catalytically important amino acid residues to both active sites. To investigate the interchange of subunits among cSHMT tetramers, a dominant-negative human cSHMT enzyme (DNcSHMT) was engineered by making three amino acid substitutions: K257Q, Y82A, and Y83F. Purified recombinant DNcSHMT protein was catalytically inactive and did not bind 5-formyltetrahydrofolate. Coexpression of the cSHMT and DNcSHMT proteins in bacteria resulted in the formation of heterotetramers with a cSHMT/DNcSHMT subunit ratio of 1. Characterization of the cSHMT/DNcSHMT heterotetramers indicates that DNcSHMT and cSHMT monomers randomly associate to form tetramers and that cSHMT/DNcSHMT obligate dimers are catalytically inactive. Incubation of recombinant cSHMT protein with recombinant DNcSHMT protein did not result in the formation of hetero-oligomers, indicating that cSHMT subunits do not exchange once the tetramer is assembled. However, removal of the active site PLP cofactor does permit exchange of obligate dimers among preformed cSHMT and DNcSHMT tetramers, and the formation of heterotetramers from cSHMT and DNcSHMT homodimers does not affect the activity of the cSHMT homodimers. The results of these studies demonstrate that PLP inhibits dimer exchange among cSHMT tetramers and suggests that cellular PLP concentrations may influence the stability of cSHMT protein in vivo.
Collapse
Affiliation(s)
- Krista A Zanetti
- Cornell University, Division of Nutritional Sciences, Ithaca, New York 14853, USA
| | | |
Collapse
|
22
|
Jala VR, Appaji Rao N, Savithri HS. Identification of amino acid residues, essential for maintaining the tetrameric structure of sheep liver cytosolic serine hydroxymethyltransferase, by targeted mutagenesis. Biochem J 2003; 369:469-76. [PMID: 12392447 PMCID: PMC1223116 DOI: 10.1042/bj20021160] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2002] [Revised: 10/04/2002] [Accepted: 10/22/2002] [Indexed: 11/17/2022]
Abstract
Serine hydroxymethyltransferase (SHMT), a pyridoxal 5'-phosphate (PLP)-dependent enzyme, catalyses the transfer of the hydroxymethyl group from serine to tetrahydrofolate to yield glycine and N (5), N (10)-methylenetetrahydrofolate. An analysis of the known SHMT sequences indicated that several amino acid residues were conserved. In this paper, we report the identification of the amino acid residues essential for maintaining the oligomeric structure of sheep liver cytosolic recombinant SHMT (scSHMT) through intra- and inter-subunit interactions and by stabilizing the binding of PLP at the active site. The mutation of Lys-71, Arg-80 and Asp-89, the residues involved in intra-subunit ionic interactions, disturbed the oligomeric structure and caused a loss of catalytic activity. Mutation of Trp-110 to Phe was without effect, while its mutation to Ala resulted in the enzyme being present in the insoluble fraction. These results suggested that Trp-110 located in a cluster of hydrophobic residues was essential for proper folding of the enzyme. Arg-98 and His-304, residues involved in the inter-subunit interactions, were essential for maintaining the tetrameric structure. Mutation of Tyr-72, Asp-227 and His-356 at the active site which interact with PLP resulted in the loss of PLP, and hence loss of tetrameric structure. Mutation of Cys-203, located away from the active site, weakened PLP binding indirectly. The results demonstrate that in addition to residues involved in inter-subunit interactions, those involved in PLP binding and intra-subunit interactions also affect the oligomeric structure of scSHMT.
Collapse
|
23
|
Kielkopf CL, Burley SK. X-ray Structures of Threonine Aldolase Complexes: Structural Basis of Substrate Recognition†,‡. Biochemistry 2002; 41:11711-20. [PMID: 12269813 DOI: 10.1021/bi020393+] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
L-Threonine acetaldehyde-lyase (threonine aldolase, TA) is a pyridoxal-5'-phosphate-dependent (PLP) enzyme that catalyzes conversion of L-threonine or L-allo-threonine to glycine and acetaldehyde in a secondary glycine biosynthetic pathway. X-ray structures of Thermatoga maritima TA have been determined as the apo-enzyme at 1.8 A resolution and bound to substrate L-allo-threonine and product glycine at 1.9 and 2.0 A resolution, respectively. Despite low pairwise sequence identities, TA is a member of aspartate aminotransferase (AATase) fold family of PLP enzymes. The enzyme forms a 222 homotetramer with the PLP cofactor bound via a Schiff-base linkage to Lys199 within a domain interface. The structure reveals bound calcium and chloride ions that appear to contribute to catalysis and oligomerization, respectively. Although L-threonine and L-allo-threonine are substrates for T. maritima TA, enzymatic assays revealed a strong preference for L-allo-threonine. Structures of the external aldimines with substrate/product reveal a pair of histidines that may provide flexibility in substrate recognition. Variation in the threonine binding pocket may explain preferences for L-allo-threonine versus L-threonine among TA family members.
Collapse
Affiliation(s)
- Clara L Kielkopf
- Laboratories of Molecular Biophysics and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
24
|
Trivedi V, Gupta A, Jala VR, Saravanan P, Rao GSJ, Rao NA, Savithri HS, Subramanya HS. Crystal structure of binary and ternary complexes of serine hydroxymethyltransferase from Bacillus stearothermophilus: insights into the catalytic mechanism. J Biol Chem 2002; 277:17161-9. [PMID: 11877399 DOI: 10.1074/jbc.m111976200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serine hydroxymethyltransferase (SHMT), a member of the alpha-class of pyridoxal phosphate-dependent enzymes, catalyzes the reversible conversion of serine to glycine and tetrahydrofolate to 5,10-methylene tetrahydrofolate. We present here the crystal structures of the native enzyme and its complexes with serine, glycine, glycine, and 5-formyl tetrahydrofolate (FTHF) from Bacillus stearothermophilus. The first structure of the serine-bound form of SHMT allows identification of residues involved in serine binding and catalysis. The SHMT-serine complex does not show any significant conformational change compared with the native enzyme, contrary to that expected for a conversion from an "open" to "closed" form of the enzyme. However, the ternary complex with FTHF and glycine shows the reported conformational changes. In contrast to the Escherichia coli enzyme, this complex shows asymmetric binding of the FTHF to the two monomers within the dimer in a way similar to the murine SHMT. Comparison of the ternary complex with the native enzyme reveals the structural basis for the conformational change and asymmetric binding of FTHF. The four structures presented here correspond to the various reaction intermediates of the catalytic pathway and provide evidence for a direct displacement mechanism for the hydroxymethyl transfer rather than a retroaldol cleavage.
Collapse
Affiliation(s)
- Vishal Trivedi
- Molecular and Structural Biology Division, Central Drug Research Institute, Chattar Manzil Palace, Mahatma Gandhi Marg, P. B. No. 173, Lucknow 226001, India
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Metzler DE, Metzler CM, Sauke DJ. Coenzymes. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Rao JV, Prakash V, Rao NA, Savithri HS. The role of Glu74 and Tyr82 in the reaction catalyzed by sheep liver cytosolic serine hydroxymethyltransferase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:5967-76. [PMID: 10998057 DOI: 10.1046/j.1432-1327.2000.01667.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The three-dimensional structures of human and rabbit liver cytosolic recombinant serine hydroxymethyltransferases (hcSHMT and rcSHMT) revealed that E75 and Y83 (numbering according to hcSHMT) are probable candidates for proton abstraction and Calpha-Cbeta bond cleavage in the reaction catalyzed by serine hydroxymethyltransferase. Both these residues are completely conserved in all serine hydroxymethyltransferases sequenced to date. In an attempt to decipher the role of these residues in sheep liver cytosolic recombinant serine hydroxymethyltransferase (scSHMT), E74 (corresponding residue is E75 in hcSHMT) was mutated to Q and K, and Y82 (corresponding residue is Y83 in hcSHMT) was mutated to F. The specific activities using serine as the substrate for the E74Q and E74K mutant enzymes were drastically reduced. These mutant enzymes catalyzed the transamination of D-alanine and 5,6,7, 8-tetrahydrofolate independent retroaldol cleavage of Lallo threonine at rates comparable with wild-type enzyme, suggesting that E74 was not involved directly in the proton abstraction step of catalysis, as predicted earlier from crystal structures of hcSHMT and rcSHMT. There was no change in the apparent Tm value of E74Q upon the addition of L-serine, whereas the apparent Tm value of scSHMT was enhanced by 10 degrees C. Differential scanning calorimetric data and proteolytic digestion patterns in the presence of L-serine showed that E74Q was different to scSHMT. These results indicated that E74 might be required for the conformational change involved in reaction specificity. It was predicted from the crystal structures of hcSHMT and rcSHMT that Y82 was involved in hemiacetal formation following Calpha-Cbeta bond cleavage of L-serine and mutation of this residue to F could lead to a rapid release of HCHO. However, the Y82F mutant had only 5% of the activity and failed to form a quinonoid intermediate, suggesting that this residue is not involved in the formation of the hemiacetal intermediate, but might be involved indirectly in the abstraction of the proton and in stabilizing the quinonoid intermediate.
Collapse
Affiliation(s)
- J V Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | | | | |
Collapse
|
27
|
Snell K, Baumann U, Byrne PC, Chave KJ, Renwick SB, Sanders PG, Whitehouse SK. The genetic organization and protein crystallographic structure of human serine hydroxymethyltransferase. ADVANCES IN ENZYME REGULATION 2000; 40:353-403. [PMID: 10828359 DOI: 10.1016/s0065-2571(99)00035-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- K Snell
- Section of Structural Biology, Institute of Cancer Research, University of London, SW7 3RP, London, UK.
| | | | | | | | | | | | | |
Collapse
|
28
|
Rao NA, Talwar R, Savithri HS. Molecular organization, catalytic mechanism and function of serine hydroxymethyltransferase--a potential target for cancer chemotherapy. Int J Biochem Cell Biol 2000; 32:405-16. [PMID: 10762066 DOI: 10.1016/s1357-2725(99)00126-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Serine hydroxymethyltransferase, a pyridoxal-5'-phosphate dependent enzyme, catalyzes the retro-aldol cleavage of serine to yield glycine and the hydroxymethyl group is transferred to 5,6,7,8-tetrahydrofolate to generate 5,10-methylene-H4-folate. The enzyme plays a pivotal role in channeling metabolites between amino acid and nucleotide metabolism. Dihydrofolate reductase and thymidylate synthase have been favorite targets for the development of anticancer drugs. However, development of resistance to drugs, due to a variety of reasons, has necessitated the identification of alternate targets for cancer chemotherapy and serine hydroxymethyltransferase is one such potential target. A detailed study of the kinetics of interaction of serine and folate analogs with this enzyme revealed several unique features that can be exploited for the design of new chemotherapeutic agents. The pathways for the reversible unfolding of the dimeric Escherichia coli and the tetrameric sheep liver enzyme, although different, revealed a requirement for the cofactor in the final step for generating an active enzyme. The gly A gene of Escherichia coli has been shown to code for this enzyme. Analysis of available gene sequences indicate that serine hydroxymethyltransferase is one of the most highly conserved proteins. The isolation of the cDNA clones for the enzyme and their overexpression in heterologous systems has enabled the probing of the molecular mechanisms of catalysis and the role of lysine, arginine and histidine in cofactor, substrate(s) binding and in maintaining the structure of the protein. Recently, the three-dimensional structure of the human liver serine hydroxymethyltransferase has been published. This, along with the information already available, provides a framework for the rational design of drugs targeted specifically towards this enzyme.
Collapse
Affiliation(s)
- N A Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore
| | | | | |
Collapse
|
29
|
Talwar R, Jagath JR, Rao NA, Savithri HS. His230 of serine hydroxymethyltransferase facilitates the proton abstraction step in catalysis. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:1441-6. [PMID: 10691982 DOI: 10.1046/j.1432-1327.2000.01142.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The three-dimensional structures of rabbit and human liver cytosolic serine hydroxymethyltransferase revealed that H231 interacts with the O3' of pyridoxal-5'-phosphate and other residues at the active site such as S203, K257, H357 and R402 (numbering as per the human enzyme). This and the conserved nature of H231 in all serine hydroxymethyltransferases highlights its importance in catalysis and/or maintenance of oligomeric structure of the enzyme. In an attempt to decipher the role of H230 (H231 of the human enzyme) in the catalytic mechanism and/or maintenance of oligomeric structure of sheep liver serine hydroxymethyltransferase, the residue was mutated to arginine, phenylalanine, alanine, asparagine or tyrosine. Our results suggest that the nature of the amino acid substitution has a marked effect on the catalytic activity of the enzyme. H230R and H230F mutant proteins were completely inactive, dimeric and did not bind pyridoxal-5'-phosphate. On the other hand, mutation to alanine and asparagine retained the oligomeric structure and ability to bind pyridoxal-5'-phosphate. These mutants had only 2-3% catalytic activity. The side reactions like transamination and 5,6,7, 8-tetrahydrofolate independent aldol cleavage were much more severely affected. They were able to form the external aldimine with glycine and serine but the quinonoid intermediate was not observed upon the addition of 5,6,7,8-tetrahydrofolate. Mutation to tyrosine did not affect the oligomeric structure and pyridoxal-5'-phosphate binding. The H230Y enzyme was 10% active and showed a correspondingly lower amount of quinonoid intermediate. The kcat / Km values for L-serine and Lallothreonine were 10-fold and 174-fold less for this mutant enzyme compared to the wild-type protein. These results suggest that H230 is involved in the step prior to the formation of the quinonoid intermediate, possibly in orienting the pyridine ring of the cofactor, in order to facilitate effective proton abstraction.
Collapse
Affiliation(s)
- R Talwar
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | | | | |
Collapse
|
30
|
Scarsdale JN, Radaev S, Kazanina G, Schirch V, Wright HT. Crystal structure at 2.4 A resolution of E. coli serine hydroxymethyltransferase in complex with glycine substrate and 5-formyl tetrahydrofolate. J Mol Biol 2000; 296:155-68. [PMID: 10656824 DOI: 10.1006/jmbi.1999.3453] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Serine hydroxymethyltransferase (EC 2.1.2.1), a member of the alpha-class of pyridoxal phosphate enzymes, catalyzes the reversible interconversion of serine and glycine, changing the chemical bonding at the C(alpha)-C(beta) bond of the serine side-chain mediated by the pyridoxal phosphate cofactor. Scission of the C(alpha)-C(beta) bond of serine substrate produces a glycine product and most likely formaldehyde, which reacts without dissociation with tetrahydropteroylglutamate cofactor. Crystal structures of the human and rabbit cytosolic serine hydroxymethyltransferases (SHMT) confirmed their close similarity in tertiary and dimeric subunit structure to each other and to aspartate aminotransferase, the archetypal alpha-class pyridoxal 5'-phosphate enzyme. We describe here the structure at 2.4 A resolution of Escherichia coli serine hydroxymethyltransferase in ternary complex with glycine and 5-formyl tetrahydropteroylglutamate, refined to an R-factor value of 17.4 % and R(free) value of 19.6 %. This structure reveals the interactions of both cofactors and glycine substrate with the enzyme. Comparison with the E. coli aspartate aminotransferase structure shows the distinctions in sequence and structure which define the folate cofactor binding site in serine hydroxymethyltransferase and the differences in orientation of the amino terminal arm, the evolution of which was necessary for elaboration of the folate binding site. Comparison with the unliganded rabbit cytosolic serine hydroxymethyltransferase structure identifies changes in the conformation of the enzyme, similar to those observed in aspartate aminotransferase, that probably accompany the binding of substrate. The tetrameric quaternary structure of liganded E. coli serine hydroxymethyltransferase also differs in symmetry and relative disposition of the functional tight dimers from that of the unliganded eukaryotic enzymes. SHMT tetramers have surface charge distributions which suggest distinctions in folate binding between eukaryotic and E. coli enzymes. The structure of the E. coli ternary complex provides the basis for a thorough investigation of its mechanism through characterization and structure determination of site mutants.
Collapse
Affiliation(s)
- J N Scarsdale
- Department of Biochemistry and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, 800 E. Leigh St. Suite 212, Richmond, VA 23219, USA
| | | | | | | | | |
Collapse
|
31
|
Talwar R, Rao NA, Savithri HS. A change in reaction specificity of sheep liver serine hydroxymethyltransferase. Induction of NADH oxidation upon mutation of His230 to Tyr. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:929-34. [PMID: 10671998 DOI: 10.1046/j.1432-1327.2000.01085.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Both serine hydroxymethyltransferase and aspartate aminotransferase belong to the alpha-class of pyridoxal-5'-phosphate (pyridoxalP)-dependent enzymes but exhibit different reaction and substrate specificities. A comparison of the X-ray structure of these two enzymes reveals that their active sites are nearly superimposable. In an attempt to change the reaction specificity of serine hydroxymethyltransferase to a transaminase, His 230 was mutated to Tyr which is the equivalent residue in aspartate aminotransferase. Surprisingly, the H230Y mutant was found to catalyze oxidation of NADH in an enzyme concentration dependent manner instead of utilizing L-aspartate as a substrate. The NADH oxidation could be linked to oxygen consumption or reduction of nitrobluetetrazolium. The reaction was inhibited by radical scavengers like superoxide dismutase and D-mannitol. The Km and kcat values for the reaction of the enzyme with NADH were 74 microM and 5. 2 x 10-3 s-1, respectively. This oxidation was not observed with either the wild type serine hydroxymethyltransferase or H230A, H230F or H230N mutants. Thus, mutation of H230 of sheep liver serine hydroxymethyltransferase to Tyr leads to induction of an NADH oxidation activity implying that tyrosyl radicals may be mediating the reaction.
Collapse
Affiliation(s)
- R Talwar
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | | |
Collapse
|
32
|
Webster SP, Alexeev D, Campopiano DJ, Watt RM, Alexeeva M, Sawyer L, Baxter RL. Mechanism of 8-amino-7-oxononanoate synthase: spectroscopic, kinetic, and crystallographic studies. Biochemistry 2000; 39:516-28. [PMID: 10642176 DOI: 10.1021/bi991620j] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
8-Amino-7-oxononanoate synthase (also known as 7-keto-8-aminopelargonate synthase, EC 2.3.1.47) is a pyridoxal 5'-phosphate-dependent enzyme which catalyzes the decarboxylative condensation of L-alanine with pimeloyl-CoA in a stereospecific manner to form 8(S)-amino-7-oxononanoate. This is the first committed step in biotin biosynthesis. The mechanism of Escherichia coli AONS has been investigated by spectroscopic, kinetic, and crystallographic techniques. The X-ray structure of the holoenzyme has been refined at a resolution of 1.7 A (R = 18.6%, R(free) = 21. 2%) and shows that the plane of the imine bond of the internal aldimine deviates from the pyridine plane. The structure of the enzyme-product external aldimine complex has been refined at a resolution of 2.0 A (R = 21.2%, R(free) = 27.8%) and shows a rotation of the pyridine ring with respect to that in the internal aldimine, together with a significant conformational change of the C-terminal domain and subtle rearrangement of the active site hydrogen bonding. The first step in the reaction, L-alanine external aldimine formation, is rapid (k(1) = 2 x 10(4) M(-)(1) s(-)(1)). Formation of an external aldimine with D-alanine, which is not a substrate, is significantly slower (k(1) = 125 M(-)(1) s(-)(1)). Binding of D-alanine to AONS is enhanced approximately 2-fold in the presence of pimeloyl-CoA. Significant substrate quinonoid formation only occurs upon addition of pimeloyl-CoA to the preformed L-alanine external aldimine complex and is preceded by a distinct lag phase ( approximately 30 ms) which suggests that binding of the pimeloyl-CoA causes a conformational transition of the enzyme external aldimine complex. This transition, which is inferred by modeling to require a rotation around the Calpha-N bond of the external aldimine complex, promotes abstraction of the Calpha proton by Lys236. These results have been combined to form a detailed mechanistic pathway for AONS catalysis which may be applied to the other members of the alpha-oxoamine synthase subfamily.
Collapse
Affiliation(s)
- S P Webster
- Edinburgh Centre for Protein Technology, Department of Chemistry, University of Edinburgh, King's Buildings, Edinburgh EH9 3JJ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
33
|
Vatcher GP, Barbazuk WB, O'Neil NJ, Marra MA, Ha T, Baillie DL. Identification and characterization of a serine hydroxymethyltransferase isoform in Caenorhabditis briggsae. Gene X 1999; 230:137-44. [PMID: 10216251 DOI: 10.1016/s0378-1119(99)00076-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the nematode Caenorhabditis elegans, the maternal effect lethal gene mel-32 encodes a serine hydroxymethyltransferase isoform. Since interspecies DNA comparison is a valuable tool for identifying sequences that have been conserved because of their functional importance or role in regulating gene activity, mel-32(SHMT) genomic DNA from C. elegans was used to screen a genomic library from the closely related nematode Caenorhabditis briggsae. The C. briggsae genomic clone identified fully rescues the Mel-32 phenotype in C. elegans, indicating functional and regulatory conservation. Computer analysis reveals that CbMEL-32(SHMT) is 92% identical (97% similar) to CeMEL-32(SHMT) at the amino acid level over the entire length of the protein (484 amino acids), whereas the coding DNA is 82.5% identical (over 1455 nucleotides). Several highly conserved non-coding regions upstream and downstream of the mel-32(SHMT) gene reveal potential regulatory sites that may bind trans-acting protein factors.
Collapse
Affiliation(s)
- G P Vatcher
- Institute of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
34
|
Venkatesha B, Udgaonkar JB, Rao NA, Savithri HS. Guanidine hydrochloride-induced reversible unfolding of sheep liver serine hydroxymethyltransferase. J Biosci 1999. [DOI: 10.1007/bf02941109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Renwick SB, Snell K, Baumann U. The crystal structure of human cytosolic serine hydroxymethyltransferase: a target for cancer chemotherapy. Structure 1998; 6:1105-16. [PMID: 9753690 DOI: 10.1016/s0969-2126(98)00112-9] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Serine hydroxymethyltransferase (SHMT) is a ubiquitous enzyme found in all prokaryotes and eukaryotes. As an enzyme of the thymidylate synthase metabolic cycle, SHMT catalyses the retro-aldol cleavage of serine to glycine, with the resulting hydroxymethyl group being transferred to tetrahydrofolate to form 5, 10-methylene-tetrahydrofolate. The latter is the major source of one-carbon units in metabolism. Elevated SHMT activity has been shown to be coupled to the increased demand for DNA synthesis in rapidly proliferating cells, particularly tumour cells. Consequently, the central role of SHMT in nucleotide biosynthesis makes it an attractive target for cancer chemotherapy. RESULTS We have solved the crystal structure of human cytosolic SHMT by multiple isomorphous replacement to 2.65 A resolution. The monomer has a fold typical for alpha class pyridoxal 5'-phosphate (PLP) dependent enzymes. The tetramer association is best described as a 'dimer of dimers' where residues from both subunits of one 'tight' dimer contribute to the active site. CONCLUSIONS The crystal structure shows the evolutionary relationship between SHMT and other alpha class PLP-dependent enzymes, as the fold is highly conserved. Many of the results of site-directed mutagenesis studies can easily be rationalised or re-interpreted in light of the structure presented here. For example, His 151 is not the catalytic base, contrary to the findings of others. A mechanism for the cleavage of serine to glycine and formaldehyde is proposed.
Collapse
Affiliation(s)
- S B Renwick
- Section of Structural Biology Institute of Cancer Research University of London Cotswold Road, Sutton, Surrey, SM2 5NG, Celltech plc 216 Bath Road, Slough, Berkshire, SL1 4EN, UK
| | | | | |
Collapse
|
36
|
Pascarella S, Angelaccio S, Contestabile R, Delle Fratte S, Di Salvo M, Bossa F. The structure of serine hydroxymethyltransferase as modeled by homology and validated by site-directed mutagenesis. Protein Sci 1998; 7:1976-82. [PMID: 9761478 PMCID: PMC2144154 DOI: 10.1002/pro.5560070913] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We describe a model for the three-dimensional structure of E. coli serine hydroxymethyltransferase based on its sequence homology with other PLP enzymes of the alpha-family and whose tertiary structures are known. The model suggests that certain amino acid residues at the putative active site of the enzyme can adopt specific roles in the catalytic mechanism. These proposals were supported by analysis of the properties of a number of site-directed mutants. New active site features are also proposed for further experimental testing.
Collapse
Affiliation(s)
- S Pascarella
- Dipartimento di Scienze Biochimiche A. Rossi Fanelli and Centro di Biologia Molecolare del CNR, Università La Sapienza, Roma, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Barth HG, Boyes BE, Jackson C. Size Exclusion Chromatography and Related Separation Techniques. Anal Chem 1998. [DOI: 10.1021/a1980015t] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Howard G. Barth
- Central Research and Development, DuPont Company, Experimental Station, P.O. Box 80228, Wilmington, Delaware 19880-0228, Little Falls Analytical DivisionNewport, Hewlett-Packard Company, 538 First State Boulevard, Newport, Delaware 19804, and Marshall Laboratory, DuPont Automative Products, 3401 Grays Ferry Avenue, Philadelphia, Pennsylvania 19146
| | - Barry E. Boyes
- Central Research and Development, DuPont Company, Experimental Station, P.O. Box 80228, Wilmington, Delaware 19880-0228, Little Falls Analytical DivisionNewport, Hewlett-Packard Company, 538 First State Boulevard, Newport, Delaware 19804, and Marshall Laboratory, DuPont Automative Products, 3401 Grays Ferry Avenue, Philadelphia, Pennsylvania 19146
| | - Christian Jackson
- Central Research and Development, DuPont Company, Experimental Station, P.O. Box 80228, Wilmington, Delaware 19880-0228, Little Falls Analytical DivisionNewport, Hewlett-Packard Company, 538 First State Boulevard, Newport, Delaware 19804, and Marshall Laboratory, DuPont Automative Products, 3401 Grays Ferry Avenue, Philadelphia, Pennsylvania 19146
| |
Collapse
|