1
|
Jafarinia H, van der Giessen E, Onck PR. C9orf72 polyPR directly binds to various nuclear transport components. eLife 2024; 12:RP89694. [PMID: 38483313 PMCID: PMC10939497 DOI: 10.7554/elife.89694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
The disruption of nucleocytoplasmic transport (NCT) is an important mechanism in neurodegenerative diseases. In the case of C9orf72-ALS, trafficking of macromolecules through the nuclear pore complex (NPC) might get frustrated by the binding of C9orf72-translated arginine-containing dipeptide repeat proteins (R-DPRs) to the Kapβ family of nuclear transport receptors. Besides Kapβs, several other types of transport components have been linked to NCT impairments in R-DPR-expressed cells, but the molecular origin of these observations has not been clarified. Here, we adopt a coarse-grained molecular dynamics model at amino acid resolution to study the direct interaction between polyPR, the most toxic DPR, and various nuclear transport components to elucidate the binding mechanisms and provide a complete picture of potential polyPR-mediated NCT defects. We found polyPR to directly bind to several isoforms of the Impα family, CAS (the specific exporter of Impα) and RanGAP. We observe no binding between polyPR and Ran. Longer polyPRs at lower salt concentrations also make contact with RanGEF and NTF2. Analyzing the polyPR contact sites on the transport components reveals that polyPR potentially interferes with RanGTP/RanGDP binding, with nuclear localization signal (NLS)-containing cargoes (cargo-NLS) binding to Impα, with cargo-NLS release from Impα, and with Impα export from the nucleus. The abundance of polyPR-binding sites on multiple transport components combined with the inherent polyPR length dependence makes direct polyPR interference of NCT a potential mechanistic pathway of C9orf72 toxicity.
Collapse
Affiliation(s)
- Hamidreza Jafarinia
- Zernike Institute for Advanced Materials, University of GroningenGroningenNetherlands
| | - Erik van der Giessen
- Zernike Institute for Advanced Materials, University of GroningenGroningenNetherlands
| | - Patrick R Onck
- Zernike Institute for Advanced Materials, University of GroningenGroningenNetherlands
| |
Collapse
|
2
|
Chimeric Coupling Proteins Mediate Transfer of Heterologous Type IV Effectors through the Escherichia coli pKM101-Encoded Conjugation Machine. J Bacteriol 2016; 198:2701-18. [PMID: 27432829 PMCID: PMC5019051 DOI: 10.1128/jb.00378-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/13/2016] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Bacterial type IV secretion systems (T4SSs) are composed of two major subfamilies, conjugation machines dedicated to DNA transfer and effector translocators for protein transfer. We show here that the Escherichia coli pKM101-encoded conjugation system, coupled with chimeric substrate receptors, can be repurposed for transfer of heterologous effector proteins. The chimeric receptors were composed of the N-terminal transmembrane domain of pKM101-encoded TraJ fused to soluble domains of VirD4 homologs functioning in Agrobacterium tumefaciens, Anaplasma phagocytophilum, or Wolbachia pipientis A chimeric receptor assembled from A. tumefaciens VirD4 (VirD4At) mediated transfer of a MOBQ plasmid (pML122) and A. tumefaciens effector proteins (VirE2, VirE3, and VirF) through the pKM101 transfer channel. Equivalent chimeric receptors assembled from the rickettsial VirD4 homologs similarly supported the transfer of known or candidate effectors from rickettsial species. These findings establish a proof of principle for use of the dedicated pKM101 conjugation channel, coupled with chimeric substrate receptors, to screen for translocation competency of protein effectors from recalcitrant species. Many T4SS receptors carry sequence-variable C-terminal domains (CTDs) with unknown function. While VirD4At and the TraJ/VirD4At chimera with their CTDs deleted supported pML122 transfer at wild-type levels, ΔCTD variants supported transfer of protein substrates at strongly diminished or elevated levels. We were unable to detect binding of VirD4At's CTD to the VirE2 effector, although other VirD4At domains bound this substrate in vitro We propose that CTDs evolved to govern the dynamics of substrate presentation to the T4SS either through transient substrate contacts or by controlling substrate access to other receptor domains. IMPORTANCE Bacterial type IV secretion systems (T4SSs) display striking versatility in their capacity to translocate DNA and protein substrates to prokaryotic and eukaryotic target cells. A hexameric ATPase, the type IV coupling protein (T4CP), functions as a substrate receptor for nearly all T4SSs. Here, we report that chimeric T4CPs mediate transfer of effector proteins through the Escherichia coli pKM101-encoded conjugation system. Studies with these repurposed conjugation systems established a role for acidic C-terminal domains of T4CPs in regulating substrate translocation. Our findings advance a mechanistic understanding of T4CP receptor activity and, further, support a model in which T4SS channels function as passive conduits for any DNA or protein substrates that successfully engage with and pass through the T4CP specificity checkpoint.
Collapse
|
3
|
Schulze B, Buhmann MT, Río Bártulos C, Kroth PG. Comprehensive computational analysis of leucine-rich repeat (LRR) proteins encoded in the genome of the diatom Phaeodactylum tricornutum. Mar Genomics 2015; 21:43-51. [DOI: 10.1016/j.margen.2015.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/19/2015] [Accepted: 02/19/2015] [Indexed: 11/30/2022]
|
4
|
Xu G, Jiang X, Jaffrey SR. A mental retardation-linked nonsense mutation in cereblon is rescued by proteasome inhibition. J Biol Chem 2013; 288:29573-85. [PMID: 23983124 DOI: 10.1074/jbc.m113.472092] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A nonsense mutation in cereblon (CRBN) causes autosomal recessive nonsyndromic mental retardation. Cereblon is a substrate receptor for the Cullin-RING E3 ligase complex and couples the ubiquitin ligase to specific ubiquitination targets. The CRBN nonsense mutation (R419X) results in a protein lacking 24 amino acids at its C terminus. Although this mutation has been linked to mild mental retardation, the mechanism by which the mutation affects CRBN function is unknown. Here, we used biochemical and mass spectrometric approaches to explore the function of this mutant. We show that the protein retains its ability to assemble into a Cullin-RING E3 ligase complex and catalyzes the ubiquitination of CRBN-target proteins. However, we find that this mutant exhibits markedly increased levels of autoubiquitination and is more readily degraded by the proteasome than the wild type protein. We also show that the level of the mutant protein can be restored by a treatment of cells with a clinically utilized proteasome inhibitor, suggesting that this agent may be useful for the treatment of mental retardation associated with the CRBN R419X mutation. These data demonstrate that enhanced autoubiquitination and degradation account for the defect in CRBN activity that leads to mental retardation.
Collapse
Affiliation(s)
- Guoqiang Xu
- From the Department of Pharmacology, College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Translational Research for Neuro-Psycho-Diseases, Soochow University, Suzhou, Jiangsu 215123, China and
| | | | | |
Collapse
|
5
|
Expression, purification and preliminary biochemical and structural characterization of the leucine rich repeat namesake domain of leucine rich repeat kinase 2. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:450-60. [DOI: 10.1016/j.bbapap.2011.12.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 12/10/2011] [Accepted: 12/27/2011] [Indexed: 01/13/2023]
|
6
|
Cleavable linkers in chemical biology. Bioorg Med Chem 2012; 20:571-82. [DOI: 10.1016/j.bmc.2011.07.048] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 07/08/2011] [Accepted: 07/23/2011] [Indexed: 01/11/2023]
|
7
|
Takeda E, Hieda M, Katahira J, Yoneda Y. Phosphorylation of RanGAP1 stabilizes its interaction with Ran and RanBP1. Cell Struct Funct 2006; 30:69-80. [PMID: 16428860 DOI: 10.1247/csf.30.69] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Ran is a nuclear Ras-like GTPase that is required for various nuclear events including the bi-directional transport of proteins and ribonucleoproteins through the nuclear pore complex, spindle formation, and reassembly of the nuclear envelope. One of the key regulators of Ran is RanGAP1, a Ran specific GTPase activating protein. The question of whether a mechanism exists for controlling nucleocytoplasmic transport through the regulation of RanGAP1 activity continues to be debated. Here we show that RanGAP1 is phosphorylated in vivo and in vitro. Serine-358 (358S) was identified as the major phosphorylation site, by MALDI-TOF-MS spectrometry. Site directed mutagenesis at this position abolished the phosphorylation. Experiments using purified recombinant kinase and specific inhibitors such as DRB and apigenin strongly suggest that casein kinase II (CK2) is the responsible kinase. Although the phosphorylation of 358S of RanGAP1 did not significantly alter its GAP activity, the phosphorylated wild type RanGAP1, but not a mutant harboring a mutation at the phosphorylation site 358S, efficiently formed a stable ternary complex with Ran and RanBP1 in vivo, suggesting that the 358S phosphorylation of RanGAP1 affects the Ran system.
Collapse
Affiliation(s)
- Eri Takeda
- Department of Cell Biology and Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
8
|
Albertson R, Chabu C, Sheehan A, Doe CQ. Scribble protein domain mapping reveals a multistep localization mechanism and domains necessary for establishing cortical polarity. J Cell Sci 2004; 117:6061-70. [PMID: 15536119 DOI: 10.1242/jcs.01525] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The Drosophila tumor suppressor protein Scribble is required for epithelial polarity, neuroblast polarity, neuroblast spindle asymmetry and limiting cell proliferation. It is a member of the newly described LAP protein family, containing 16 leucine rich repeats (LRRs), four PDZ domains and an extensive carboxyl-terminal (CT) domain. LRR and PDZ domains mediate protein-protein interactions, but little is know about their function within LAP family proteins. We have determined the role of the LRR, PDZ and CT domains for Scribble localization in neuroblasts and epithelia, and for Scribble function in neuroblasts. We found that the LRR and PDZ domains are both required for proper targeting of Scribble to septate junctions in epithelia; that the LRR domain is necessary and sufficient for cortical localization in mitotic neuroblasts, and that the PDZ2 domain is required for efficient cortical and apical localization of Scribble in neuroblasts. In addition, we show that the LRR domain is sufficient to target Miranda protein to the neuroblast cortex, but that LRR+PDZ will exclude Miranda from the cortex. Our results highlight the importance of both LRR and PDZ domains for the proper localization and function of Scribble in neuroblasts.
Collapse
Affiliation(s)
- Roger Albertson
- Institute of Molecular Biology, Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon 1254, Eugene, OR 97403, USA
| | | | | | | |
Collapse
|
9
|
Yang R, Bartle S, Otto R, Stassinopoulos A, Rogers M, Plamann L, Hartzell P. AglZ is a filament-forming coiled-coil protein required for adventurous gliding motility of Myxococcus xanthus. J Bacteriol 2004; 186:6168-78. [PMID: 15342587 PMCID: PMC515175 DOI: 10.1128/jb.186.18.6168-6178.2004] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aglZ gene of Myxococcus xanthus was identified from a yeast two-hybrid assay in which MglA was used as bait. MglA is a 22-kDa cytoplasmic GTPase required for both adventurous and social gliding motility and sporulation. Genetic studies showed that aglZ is part of the A motility system, because disruption or deletion of aglZ abolished movement of isolated cells and aglZ sglK double mutants were nonmotile. The aglZ gene encodes a 153-kDa protein that interacts with purified MglA in vitro. The N terminus of AglZ shows similarity to the receiver domain of two-component response regulator proteins, while the C terminus contains heptad repeats characteristic of coiled-coil proteins, such as myosin. Consistent with this motif, expression of AglZ in Escherichia coli resulted in production of striated lattice structures. Similar to the myosin heavy chain, the purified C-terminal coiled-coil domain of AglZ forms filament structures in vitro.
Collapse
Affiliation(s)
- Ruifeng Yang
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, ID 83844, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Seewald MJ, Kraemer A, Farkasovsky M, Körner C, Wittinghofer A, Vetter IR. Biochemical characterization of the Ran-RanBP1-RanGAP system: are RanBP proteins and the acidic tail of RanGAP required for the Ran-RanGAP GTPase reaction? Mol Cell Biol 2003; 23:8124-36. [PMID: 14585972 PMCID: PMC262373 DOI: 10.1128/mcb.23.22.8124-8136.2003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RanBP type proteins have been reported to increase the catalytic efficiency of the RanGAP-mediated GTPase reaction on Ran. Since the structure of the Ran-RanBP1-RanGAP complex showed RanBP1 to be located away from the active site, we reinvestigated the reaction using fluorescence spectroscopy under pre-steady-state conditions. We can show that RanBP1 indeed does not influence the rate-limiting step of the reaction, which is the cleavage of GTP and/or the release of product P(i). It does, however, influence the dynamics of the Ran-RanGAP interaction, its most dramatic effect being the 20-fold stimulation of the already very fast association reaction such that it is under diffusion control (4.5 x 10(8) M(-1) s(-1)). Having established a valuable kinetic system for the interaction analysis, we also found, in contrast to previous findings, that the highly conserved acidic C-terminal end of RanGAP is not required for the switch-off reaction. Rather, genetic experiments in Saccharomyces cerevisiae demonstrate a profound effect of the acidic tail on microtubule organization during mitosis. We propose that the acidic tail of RanGAP is required for a process during mitosis.
Collapse
Affiliation(s)
- Michael J Seewald
- Max-Planck Institut für Molekulare Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Seewald MJ, Körner C, Wittinghofer A, Vetter IR. RanGAP mediates GTP hydrolysis without an arginine finger. Nature 2002; 415:662-6. [PMID: 11832950 DOI: 10.1038/415662a] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
GTPase-activating proteins (GAPs) increase the rate of GTP hydrolysis on guanine nucleotide-binding proteins by many orders of magnitude. Studies with Ras and Rho have elucidated the mechanism of GAP action by showing that their catalytic machinery is both stabilized by GAP binding and complemented by the insertion of a so-called 'arginine finger' into the phosphate-binding pocket. This has been proposed as a universal mechanism for GAP-mediated GTP hydrolysis. Ran is a nuclear Ras-related protein that regulates both transport between the nucleus and cytoplasm during interphase, and formation of the mitotic spindle and/or nuclear envelope in dividing cells. Ran-GTP is hydrolysed by the combined action of Ran-binding proteins (RanBPs) and RanGAP. Here we present the three-dimensional structure of a Ran-RanBP1-RanGAP ternary complex in the ground state and in a transition-state mimic. The structure and biochemical experiments show that RanGAP does not act through an arginine finger, that the basic machinery for fast GTP hydrolysis is provided exclusively by Ran and that correct positioning of the catalytic glutamine is essential for catalysis.
Collapse
Affiliation(s)
- Michael J Seewald
- Max-Planck-Institut für molekulare Physiologie, Abteilung Strukturelle Biologie, Dortmund, Germany
| | | | | | | |
Collapse
|
12
|
Affiliation(s)
- F Ralf Bischoff
- Division for Molecular Biology of Mitosis, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
13
|
Rose A, Meier I. A domain unique to plant RanGAP is responsible for its targeting to the plant nuclear rim. Proc Natl Acad Sci U S A 2001; 98:15377-82. [PMID: 11752475 PMCID: PMC65037 DOI: 10.1073/pnas.261459698] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ran is a small signaling GTPase that is involved in nucleocytoplasmic transport. Two additional functions of animal Ran in the formation of spindle asters and the reassembly of the nuclear envelope in mitotic cells have been recently reported. In contrast to Ras or Rho, Ran is not associated with membranes. Instead, the spatial sequestering of its accessory proteins, the Ran GTPase-activating protein RanGAP and the nucleotide exchange factor RCC1, appears to define the local concentration of RanGTP vs. RanGDP involved in signaling. Mammalian RanGAP is bound to the nuclear pore by a mechanism involving the attachment of small ubiquitin-related modifier protein (SUMO) to its C terminus and the subsequent binding of the SUMOylated domain to the nucleoporin Nup358. Here we show that plant RanGAP utilizes a different mechanism for nuclear envelope association, involving a novel targeting domain that appears to be unique to plants. The N-terminal WPP domain is highly conserved among plant RanGAPs and the small, plant-specific nuclear envelope-associated protein MAF1, but not present in yeast or animal RanGAP. Confocal laser scanning microscopy of green fluorescent protein (GFP) fusion proteins showed that it is necessary for RanGAP targeting and sufficient to target the heterologous protein GFP to the plant nuclear rim. The highly conserved tryptophan and proline residues of the WPP motif are necessary for its function. The 110-aa WPP domain is the first nuclear-envelope targeting domain identified in plants. Its fundamental difference to its mammalian counterpart implies that different mechanisms have evolved in plants and animals to anchor RanGAP at the nuclear surface.
Collapse
Affiliation(s)
- A Rose
- Plant Biotechnology Center and Department of Plant Biology, Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
14
|
Kusano A, Staber C, Ganetzky B. Nuclear mislocalization of enzymatically active RanGAP causes segregation distortion in Drosophila. Dev Cell 2001; 1:351-61. [PMID: 11702947 DOI: 10.1016/s1534-5807(01)00042-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Segregation Distorter (SD) is a meiotic drive system in Drosophila that causes preferential transmission of the SD chromosome from SD/SD+ males owing to dysfunction of SD+ spermatids. The Sd locus, which is essential for distortion, encodes a truncated RanGAP (Ran GTPase activating protein), a key nuclear transport factor. Here, we show that Sd-RanGAP retains normal enzyme activity but is mislocalized to nuclei. Distortion is abolished when enzymatic activity or nuclear localization of Sd-RanGAP is perturbed. Overexpression of Ran or RanGEF (Ran GTPase exchange factor) in the male germline fully suppresses distortion. We conclude that mislocalization of Sd-RanGAP causes distortion by reducing nuclear RanGTP, thereby disrupting the Ran signaling pathway. Nuclear transport of a GFP reporter in salivary glands is impaired by SD, suggesting that a defect in nuclear transport may underlie sperm dysfunction.
Collapse
Affiliation(s)
- A Kusano
- Laboratory of Genetics, University of Wisconsin-Madison, 53706, USA
| | | | | |
Collapse
|
15
|
Kehlenbach RH, Assheuer R, Kehlenbach A, Becker J, Gerace L. Stimulation of nuclear export and inhibition of nuclear import by a Ran mutant deficient in binding to Ran-binding protein 1. J Biol Chem 2001; 276:14524-31. [PMID: 11278834 DOI: 10.1074/jbc.m011087200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Receptor-mediated nucleocytoplasmic transport is dependent on the GTPase Ran and Ran-binding protein 1 (RanBP1). The acidic C terminus of Ran is required for high affinity interaction between Ran and RanBP1. We found that a novel Ran mutant with four of its five acidic C-terminal amino acids modified to alanine (RanC4A) has an approximately 20-fold reduced affinity for RanBP1. We investigated the effects of RanC4A on nuclear import and export in permeabilized HeLa cells. Although RanC4A promotes accumulation of the nuclear export receptor CRM1 at the cytoplasmic nucleoporin Nup214, it strongly stimulates nuclear export of GFP-NFAT. Since RanC4A exhibits an elevated affinity for CRM1 and other nuclear transport receptors, this suggests that formation of the export complex containing CRM1, Ran-GTP, and substrate is a rate-limiting step in export, not release from Nup214. Conversely, importin alpha/beta-dependent nuclear import of bovine serum albumin, coupled to a classical nuclear localization sequence is strongly inhibited by RanC4A. Inhibition can be reversed by additional importin alpha, which promotes the formation of an importin alpha/beta complex. These results provide physiological evidence that release of Ran-GTP from importin beta by RanBP1 and importin alpha is critical for the recycling of importin beta to a transport-competent state.
Collapse
Affiliation(s)
- R H Kehlenbach
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | | | | | |
Collapse
|
16
|
Hillig RC, Renault L, Vetter IR, Drell T, Wittinghofer A, Becker J. The crystal structure of rna1p: a new fold for a GTPase-activating protein. Mol Cell 1999; 3:781-91. [PMID: 10394366 DOI: 10.1016/s1097-2765(01)80010-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
rna1p is the Schizosaccharomyces pombe ortholog of the mammalian GTPase-activating protein (GAP) of Ran. Both proteins are essential for nuclear transport. Here, we report the crystal structure of rna1p at 2.66 A resolution. It contains 11 leucine-rich repeats that adopt the nonglobular shape of a crescent, bearing no resemblance to RhoGAP or RasGAP. The invariant residues of RanGAP form a contiguous surface, strongly indicating the Ran-binding interface. Alanine mutations identify Arg-74 as a critical residue for GTP hydrolysis. In contrast to RasGAP and RhoGAP, Arg-74 could be substituted by lysine and contributed significantly to the binding of Ran. Therefore, we suggest a GAP mechanism for rna1p, which constitutes a variation of the arginine finger mechanism found for Ras GAP and RhoGAP.
Collapse
Affiliation(s)
- R C Hillig
- Max-Planck-Institut für molekulare Physiologie, Abteilung Strukturelle Biologie, Dortmund, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Spenneberg R, Osterloh D, Gerke V. Phospholipid vesicle binding and aggregation by four novel fish annexins are differently regulated by Ca2+. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1448:311-9. [PMID: 9920421 DOI: 10.1016/s0167-4889(98)00131-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Four members of the annexin family, herein referred to as max (for medaka annexin) 1-4, have recently been identified through hybridization cloning in the killifish Oryzias latipes (D. Osterloh, J. Wittbrodt and V. Gerke, Characterization and developmentally regulated expression of four annexins in the killifish medaka. DNA and Cell Biol., in press). These annexins which are expressed in a developmentally regulated manner are present as a maternal pool in unfertilized eggs of another fish species, Misgurnus fossilis, and it has been proposed that they play a role in the Ca2+-regulated exocytosis of cortical granules occurring after fertilization. To characterize biochemical properties of the medaka proteins possibly relevant to their function in early development, we analyzed the ability of recombinantly expressed max 1-4 to interact with the principal structures of the egg cortex, phospholipid membranes and actin filaments. We show that all medaka annexins bind to acidic phospholipids in a Ca2+-regulated manner, although exhibiting different Ca2+ sensitivities. All medaka annexins, but max 1, are also capable of inducing, in a Ca2+-dependent manner, phospholipid vesicle aggregation, albeit only max 3 displays this activity at Ca2+ concentrations met in stimulated (i.e. fertilized) eggs. Max 3 is also the only medaka annexin able to interact with F-actin in the presence of Ca2+. These data identify by biochemical criteria max 3 as a close relative of the mammalian annexins I and II, thus supporting previous sequence-based comparisons. Max 3 is therefore the prime annexin candidate for being involved in cortical granule exocytosis, possibly by providing granule granule, granule plasma membrane and/or granule cytoskeleton contacts.
Collapse
Affiliation(s)
- R Spenneberg
- Institute for Medical Biochemistry, ZMBE, University of Münster, Germany
| | | | | |
Collapse
|