1
|
Crespo R, Rao S, Mahmoudi T. HibeRNAtion: HIV-1 RNA Metabolism and Viral Latency. Front Cell Infect Microbiol 2022; 12:855092. [PMID: 35774399 PMCID: PMC9237370 DOI: 10.3389/fcimb.2022.855092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/10/2022] [Indexed: 01/12/2023] Open
Abstract
HIV-1 infection remains non-curative due to the latent reservoir, primarily a small pool of resting memory CD4+ T cells bearing replication-competent provirus. Pharmacological reversal of HIV-1 latency followed by intrinsic or extrinsic cell killing has been proposed as a promising strategy to target and eliminate HIV-1 viral reservoirs. Latency reversing agents have been extensively studied for their role in reactivating HIV-1 transcription in vivo, although no permanent reduction of the viral reservoir has been observed thus far. This is partly due to the complex nature of latency, which involves strict intrinsic regulation at multiple levels at transcription and RNA processing. Still, the molecular mechanisms that control HIV-1 latency establishment and maintenance have been almost exclusively studied in the context of chromatin remodeling, transcription initiation and elongation and most known LRAs target LTR-driven transcription by manipulating these. RNA metabolism is a largely understudies but critical mechanistic step in HIV-1 gene expression and latency. In this review we provide an update on current knowledge on the role of RNA processing mechanisms in viral gene expression and latency and speculate on the possible manipulation of these pathways as a therapeutic target for future cure studies.
Collapse
Affiliation(s)
- Raquel Crespo
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Shringar Rao
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Pathology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Urology, Erasmus University Medical Center, Rotterdam, Netherlands
- *Correspondence: Tokameh Mahmoudi,
| |
Collapse
|
2
|
Abstract
After human immunodeficiency virus type 1 (HIV-1) was identified in the early 1980s, intensive work began to understand the molecular basis of HIV-1 gene expression. Subgenomic HIV-1 RNA regions, spread throughout the viral genome, were described to have a negative impact on the nuclear export of some viral transcripts. Those studies revealed an intrinsic RNA code as a new form of nuclear export regulation. Since such regulatory regions were later also identified in other viruses, as well as in cellular genes, it can be assumed that, during evolution, viruses took advantage of them to achieve more sophisticated replication mechanisms. Here, we review HIV-1 cis-acting repressive sequences that have been identified, and we discuss their possible underlying mechanisms and importance. Additionally, we show how current bioinformatic tools might allow more predictive approaches to identify and investigate them.
Collapse
|
3
|
Abstract
The human immunodeficiency virus type 1 (HIV-1) proteome is expressed from alternatively spliced and unspliced genomic RNAs. However, HIV-1 RNAs that are not fully spliced are perceived by the host machinery as defective and are retained in the nucleus. During late infection, HIV-1 bypasses this regulatory mechanism by expression of the Rev protein from a fully spliced mRNA. Once imported into the nucleus, Rev mediates the export of unprocessed HIV-1 RNAs to the cytoplasm, leading to the production of the viral progeny. While regarded as a canonical RNA export factor, Rev has also been linked to HIV-1 RNA translation, stabilization, splicing and packaging. However, Rev's functions beyond RNA export have remained poorly understood. Here, we revisit this paradigmatic protein, reviewing recent data investigating its structure and function. We conclude by asking: what remains unknown about this enigmatic viral protein?
Collapse
Affiliation(s)
| | - Aino Järvelin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Alfredo Castello
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, 464 Bearsden Road, Glasgow G61 1QH, UK
| |
Collapse
|
4
|
Interactions between the HIV-1 Unspliced mRNA and Host mRNA Decay Machineries. Viruses 2016; 8:v8110320. [PMID: 27886048 PMCID: PMC5127034 DOI: 10.3390/v8110320] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/12/2016] [Accepted: 11/14/2016] [Indexed: 02/06/2023] Open
Abstract
The human immunodeficiency virus type-1 (HIV-1) unspliced transcript is used both as mRNA for the synthesis of structural proteins and as the packaged genome. Given the presence of retained introns and instability AU-rich sequences, this viral transcript is normally retained and degraded in the nucleus of host cells unless the viral protein REV is present. As such, the stability of the HIV-1 unspliced mRNA must be particularly controlled in the nucleus and the cytoplasm in order to ensure proper levels of this viral mRNA for translation and viral particle formation. During its journey, the HIV-1 unspliced mRNA assembles into highly specific messenger ribonucleoproteins (mRNPs) containing many different host proteins, amongst which are well-known regulators of cytoplasmic mRNA decay pathways such as up-frameshift suppressor 1 homolog (UPF1), Staufen double-stranded RNA binding protein 1/2 (STAU1/2), or components of miRNA-induced silencing complex (miRISC) and processing bodies (PBs). More recently, the HIV-1 unspliced mRNA was shown to contain N⁶-methyladenosine (m⁶A), allowing the recruitment of YTH N⁶-methyladenosine RNA binding protein 2 (YTHDF2), an m⁶A reader host protein involved in mRNA decay. Interestingly, these host proteins involved in mRNA decay were shown to play positive roles in viral gene expression and viral particle assembly, suggesting that HIV-1 interacts with mRNA decay components to successfully accomplish viral replication. This review summarizes the state of the art in terms of the interactions between HIV-1 unspliced mRNA and components of different host mRNA decay machineries.
Collapse
|
5
|
Ohlmann T, Mengardi C, López-Lastra M. Translation initiation of the HIV-1 mRNA. ACTA ACUST UNITED AC 2014; 2:e960242. [PMID: 26779410 DOI: 10.4161/2169074x.2014.960242] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/23/2014] [Accepted: 06/17/2014] [Indexed: 12/17/2022]
Abstract
Translation initiation of the full-length mRNA of the human immunodeficiency virus can occur via several different mechanisms to maintain production of viral structural proteins throughout the replication cycle. HIV-1 viral protein synthesis can occur by the use of both a cap-dependant and IRES-driven mechanism depending on the physiological conditions of the cell and the status of the ongoing infection. For both of these mechanisms there is a need for several viral and cellular co-factors for optimal translation of the viral mRNA. In this review we will describe the mechanism used by the full-length mRNA to initiate translation highlighting the role of co-factors within this process. A particular emphasis will be given to the role of the DDX3 RNA helicase in HIV-1 mRNA translation initiation.
Collapse
Affiliation(s)
- Théophile Ohlmann
- CIRI; International Center for Infectiology Research; Université de Lyon; Lyon, France; Inserm; Lyon, France; Ecole Normale Supérieure de Lyon; Lyon, France; Université Lyon 1; Center International de Recherche en Infectiologie; Lyon, France; CNRS; Lyon, France
| | - Chloé Mengardi
- CIRI; International Center for Infectiology Research; Université de Lyon; Lyon, France; Inserm; Lyon, France; Ecole Normale Supérieure de Lyon; Lyon, France; Université Lyon 1; Center International de Recherche en Infectiologie; Lyon, France; CNRS; Lyon, France
| | - Marcelo López-Lastra
- Laboratorio de Virología Molecular; Instituto Milenio de Inmunología e Inmunoterapia; Centro de Investigaciones Médicas; Escuela de Medicina; Pontificia Universidad Católica de Chile ; Santiago, Chile
| |
Collapse
|
6
|
Karn J, Stoltzfus CM. Transcriptional and posttranscriptional regulation of HIV-1 gene expression. Cold Spring Harb Perspect Med 2013; 2:a006916. [PMID: 22355797 DOI: 10.1101/cshperspect.a006916] [Citation(s) in RCA: 287] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Control of HIV-1 gene expression depends on two viral regulatory proteins, Tat and Rev. Tat stimulates transcription elongation by directing the cellular transcriptional elongation factor P-TEFb to nascent RNA polymerases. Rev is required for the transport from the nucleus to the cytoplasm of the unspliced and incompletely spliced mRNAs that encode the structural proteins of the virus. Molecular studies of both proteins have revealed how they interact with the cellular machinery to control transcription from the viral LTR and regulate the levels of spliced and unspliced mRNAs. The regulatory feedback mechanisms driven by HIV-1 Tat and Rev ensure that HIV-1 transcription proceeds through distinct phases. In cells that are not fully activated, limiting levels of Tat and Rev act as potent blocks to premature virus production.
Collapse
Affiliation(s)
- Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | |
Collapse
|
7
|
Regulation of human papillomavirus gene expression by splicing and polyadenylation. Nat Rev Microbiol 2013; 11:239-51. [DOI: 10.1038/nrmicro2984] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Kutluay SB, Perez-Caballero D, Bieniasz PD. Fates of retroviral core components during unrestricted and TRIM5-restricted infection. PLoS Pathog 2013; 9:e1003214. [PMID: 23505372 PMCID: PMC3591316 DOI: 10.1371/journal.ppat.1003214] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 01/10/2013] [Indexed: 11/22/2022] Open
Abstract
TRIM5 proteins can restrict retroviral infection soon after delivery of the viral core into the cytoplasm. However, the molecular mechanisms by which TRIM5α inhibits infection have been elusive, in part due to the difficulty of developing and executing biochemical assays that examine this stage of the retroviral life cycle. Prevailing models suggest that TRIM5α causes premature disassembly of retroviral capsids and/or degradation of capsids by proteasomes, but whether one of these events leads to the other is unclear. Furthermore, how TRIM5α affects the essential components of the viral core, other than capsid, is unknown. To address these questions, we devised a biochemical assay in which the fate of multiple components of retroviral cores during infection can be determined. We utilized cells that can be efficiently infected by VSV-G-pseudotyped retroviruses, and fractionated the cytosolic proteins on linear gradients following synchronized infection. The fates of capsid and integrase proteins, as well as viral genomic RNA and reverse transcription products were then monitored. We found that components of MLV and HIV-1 cores formed a large complex under non-restrictive conditions. In contrast, when MLV infection was restricted by human TRIM5α, the integrase protein and reverse transcription products were lost from infected cells, while capsid and viral RNA were both solubilized. Similarly, when HIV-1 infection was restricted by rhesus TRIM5α or owl monkey TRIMCyp, the integrase protein and reverse transcription products were lost. However, viral RNA was also lost, and high levels of preexisting soluble CA prevented the determination of whether CA was solubilized. Notably, proteasome inhibition blocked all of the aforementioned biochemical consequences of TRIM5α-mediated restriction but had no effect on its antiviral potency. Together, our results show how TRIM5α affects various retroviral core components and indicate that proteasomes are required for TRIM5α-induced core disruption but not for TRIM5α-induced restriction. The TRIM5 proteins found in primates are inhibitors of retroviral infection that act soon after delivery of the viral core into the cytoplasm. It has been difficult to elucidate how TRIM5 proteins work, because techniques that can be applied to this step of the viral life cycle are cumbersome. We developed an experimental approach in which we can monitor TRIM5-induced changes in the viral core at early times after infection, when TRIM5 exerts its effects. Specifically, we monitored the fate of the viral capsid protein, the integrase enzyme and the viral genome. We show that TRIM5 induces disassembly of each of these core components, and while some core components simply dissociate, others are degraded. These dissociation and degradation events all appear to be dependent on the activity of the proteasome. However, we also find that each of these TRIM5-induced effects events are not necessary for inhibition. The assay developed herein provides important insight into the mechanism of TRIM5α restriction and can, in principle, be applied to other important processes that occur at this point in the retrovirus life cycle.
Collapse
Affiliation(s)
- Sebla B. Kutluay
- Aaron Diamond AIDS Research Center, Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
| | - David Perez-Caballero
- Aaron Diamond AIDS Research Center, Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
| | - Paul D. Bieniasz
- Aaron Diamond AIDS Research Center, Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
9
|
Valiente-Echeverría F, Vallejos M, Monette A, Pino K, Letelier A, Huidobro-Toro JP, Mouland AJ, López-Lastra M. A cis-acting element present within the Gag open reading frame negatively impacts on the activity of the HIV-1 IRES. PLoS One 2013; 8:e56962. [PMID: 23451120 PMCID: PMC3581557 DOI: 10.1371/journal.pone.0056962] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 01/16/2013] [Indexed: 12/29/2022] Open
Abstract
Translation initiation from the human immunodeficiency virus type-1 (HIV-1) mRNA can occur through a cap or an IRES dependent mechanism. Cap-dependent translation initiation of the HIV-1 mRNA can be inhibited by the instability element (INS)-1, a cis-acting regulatory element present within the gag open reading frame (ORF). In this study we evaluated the impact of the INS-1 on HIV-1 IRES-mediated translation initiation. Using heterologous bicistronic mRNAs, we show that the INS-1 negatively impact on HIV-1 IRES-driven translation in in vitro and in cell-based experiments. Additionally, our results show that the inhibitory effect of the INS-1 is not general to all IRESes since it does not hinder translation driven by the HCV IRES. The inhibition by the INS-1 was partially rescued in cells by the overexpression of the viral Rev protein or hnRNPA1.
Collapse
Affiliation(s)
- Fernando Valiente-Echeverría
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Jeang KT. Multi-Faceted Post-Transcriptional Functions of HIV-1 Rev. BIOLOGY 2012; 1:165-74. [PMID: 24832222 PMCID: PMC4009778 DOI: 10.3390/biology1020165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 07/15/2012] [Accepted: 07/16/2012] [Indexed: 12/27/2022]
Abstract
Post-transcriptional regulation of HIV-1 gene expression is largely governed by the activities of the viral Rev protein. In this minireview, the multiple post-transcriptional activities of Rev in the export of partially spliced and unspliced HIV-1 RNAs from the nucleus to the cytoplasm, in the translation of HIV-1 transcripts, and in the packaging of viral genomic RNAs are reviewed in brief.
Collapse
Affiliation(s)
- Kuan-Teh Jeang
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institutes of Allergy and Infectious Diseases, the National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
11
|
Kula A, Marcello A. Dynamic Post-Transcriptional Regulation of HIV-1 Gene Expression. BIOLOGY 2012; 1:116-33. [PMID: 24832221 PMCID: PMC4009772 DOI: 10.3390/biology1020116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 06/15/2012] [Accepted: 06/18/2012] [Indexed: 01/08/2023]
Abstract
Gene expression of the human immunodeficiency virus type 1 (HIV-1) is a highly regulated process. Basal transcription of the integrated provirus generates early transcripts that encode for the viral products Tat and Rev. Tat promotes the elongation of RNA polymerase while Rev mediates the nuclear export of viral RNAs that contain the Rev-responsive RNA element (RRE). These RNAs are exported from the nucleus to allow expression of Gag-Pol and Env proteins and for the production of full-length genomic RNAs. A balance exists between completely processed mRNAs and RRE-containing RNAs. Rev functions as an adaptor that recruits cellular factors to re-direct singly spliced and unspliced viral RNAs to nuclear export. The aim of this review is to address the dynamic regulation of this post-transcriptional pathway in light of recent findings that implicate several novel cellular cofactors of Rev function.
Collapse
Affiliation(s)
- Anna Kula
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, Trieste 99 34012, Italy.
| | - Alessandro Marcello
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, Trieste 99 34012, Italy.
| |
Collapse
|
12
|
Yanagiya A, Delbes G, Svitkin YV, Robaire B, Sonenberg N. The poly(A)-binding protein partner Paip2a controls translation during late spermiogenesis in mice. J Clin Invest 2010; 120:3389-400. [PMID: 20739757 DOI: 10.1172/jci43350] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 07/14/2010] [Indexed: 11/17/2022] Open
Abstract
Translational control plays a key role in late spermiogenesis. A number of mRNAs encoding proteins required for late spermiogenesis are expressed in early spermatids but are stored as translationally inactive messenger ribonucleoprotein particles (mRNPs). The translation of these mRNAs is associated with shortening of their poly(A) tail in late spermiogenesis. Poly(A)-binding protein (Pabp) plays an important role in mRNA stabilization and translation. Three Pabp-interacting proteins, Paip1, Paip2a, and Paip2b, have been described. Paip2a is expressed in late spermatids. To investigate the role of Paip2 in spermiogenesis, we generated mice with knockout of either Paip2a or Paip2b and double-KO (DKO) mice lacking both Paip2a and Paip2b. Paip2a-KO and Paip2a/Paip2b-DKO mice exhibited male infertility. Translation of several mRNAs encoding proteins essential to male germ cell development was inhibited in late spermiogenesis in Paip2a/Paip2b-DKO mice, resulting in defective elongated spermatids. Inhibition of translation in Paip2a/Paip2b-DKO mice was caused by aberrant increased expression of Pabp, which impaired the interaction between eukaryotic initiation factor 4E (eIF4E) and the cap structure at the 5' end of the mRNA. We therefore propose a model whereby efficient mRNA translation in late spermiogenesis occurs at an optimal concentration of Pabp, a condition not fulfilled in Paip2a/Paip2b-DKO mice.
Collapse
Affiliation(s)
- Akiko Yanagiya
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
13
|
Warren K, Warrilow D, Meredith L, Harrich D. Reverse Transcriptase and Cellular Factors: Regulators of HIV-1 Reverse Transcription. Viruses 2009; 1:873-94. [PMID: 21994574 PMCID: PMC3185528 DOI: 10.3390/v1030873] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/06/2009] [Accepted: 11/09/2009] [Indexed: 01/16/2023] Open
Abstract
There is ample evidence that synthesis of HIV-1 proviral DNA from the viral RNA genome during reverse transcription requires host factors. However, only a few cellular proteins have been described in detail that affect reverse transcription and interact with reverse transcriptase (RT). HIV-1 integrase is an RT binding protein and a number of IN-binding proteins including INI1, components of the Sin3a complex, and Gemin2 affect reverse transcription. In addition, recent studies implicate the cellular proteins HuR, AKAP149, and DNA topoisomerase I in reverse transcription through an interaction with RT. In this review we will consider interactions of reverse transcription complex with viral and cellular factors and how they affect the reverse transcription process.
Collapse
Affiliation(s)
- Kylie Warren
- Division of Infectious Diseases, Queensland Institute of Medical Research, Brisbane, QLD, Australia; E-Mails: (K.W.); (D.W.); (L.M.)
- School of Natural Sciences, University of Western Sydney, Hawkesbury, NSW, Australia
| | - David Warrilow
- Division of Infectious Diseases, Queensland Institute of Medical Research, Brisbane, QLD, Australia; E-Mails: (K.W.); (D.W.); (L.M.)
| | - Luke Meredith
- Division of Infectious Diseases, Queensland Institute of Medical Research, Brisbane, QLD, Australia; E-Mails: (K.W.); (D.W.); (L.M.)
- Griffith Medical Research College, a joint program of Griffith University and the Queensland Institute of Medical Research, QIMR, Herston, QLD, 4006, Australia
| | - David Harrich
- Division of Infectious Diseases, Queensland Institute of Medical Research, Brisbane, QLD, Australia; E-Mails: (K.W.); (D.W.); (L.M.)
- Griffith Medical Research College, a joint program of Griffith University and the Queensland Institute of Medical Research, QIMR, Herston, QLD, 4006, Australia
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +61-7-3845-36791; Fax: +61-7-3362-0107
| |
Collapse
|
14
|
Japanese encephalitis virus-based replicon RNAs/particles as an expression system for HIV-1 Pr55 Gag that is capable of producing virus-like particles. Virus Res 2009; 144:298-305. [PMID: 19406175 DOI: 10.1016/j.virusres.2009.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2008] [Revised: 04/16/2009] [Accepted: 04/20/2009] [Indexed: 11/23/2022]
Abstract
Ectopic expression of the structural protein Pr55(Gag) of HIV-1 has been limited by the presence of inhibitory sequences in the gag coding region that must normally be counteracted by HIV-1 Rev and RRE. Here, we describe a cytoplasmic RNA replicon based on the RNA genome of Japanese encephalitis virus (JEV) that is capable of expressing HIV-1 gag without requiring Rev/RRE. This replicon system was constructed by deleting all three JEV structural protein-coding regions (C, prM, and E) from the 5'-proximal region of the genome and simultaneously inserting an HIV-1 gag expression cassette driven by the internal ribosome entry site of encephalomyocarditis virus into the 3'-proximal noncoding region of the genome. Transfection of this JEV replicon RNA led to expression of Pr55(Gag) in the absence of Rev/RRE in the cytoplasm of hamster BHK-21, human HeLa, and mouse NIH/3T3 cells. Production of the Pr55(Gag) derived from this JEV replicon RNA appeared to be increased by approximately 3-fold when compared to that based on an alphavirus replicon RNA. Biochemical and morphological analyses demonstrated that the Pr55(Gag) proteins were released into the culture medium in the form of virus-like particles. We also observed that the JEV replicon RNAs expressing the Pr55(Gag) could be encapsidated into single-round infectious JEV replicon particles when transfected into a stable packaging cell line that provided the three JEV structural proteins in trans. This ectopic expression of the HIV-1 Pr55(Gag) by JEV-based replicon RNAs/particles in diverse cell types may represent a useful molecular platform for various biological applications in medicine and industry.
Collapse
|
15
|
Abstract
Rev remains a hot topic. In this review, we revisit the insights that have been gained into the control of gene expression by the retroviral protein Rev and speculate on where current research is leading. We outline what is known about the role of Rev in translation and encapsidation and how these are linked to its more traditional role of nuclear export, underlining the multifaceted nature of this small viral protein. We discuss what more is to be learned in these fields and why continuing research on these 116 amino acids and understanding their function is still important in devising methods to combat AIDS.
Collapse
Affiliation(s)
- H C T Groom
- Department of Medicine, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK
| | - E C Anderson
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - A M L Lever
- Department of Medicine, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK
| |
Collapse
|
16
|
Mechanisms employed by retroviruses to exploit host factors for translational control of a complicated proteome. Retrovirology 2009; 6:8. [PMID: 19166625 PMCID: PMC2657110 DOI: 10.1186/1742-4690-6-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 01/24/2009] [Indexed: 12/14/2022] Open
Abstract
Retroviruses have evolved multiple strategies to direct the synthesis of a complex proteome from a single primary transcript. Their mechanisms are modulated by a breadth of virus-host interactions, which are of significant fundamental interest because they ultimately affect the efficiency of virus replication and disease pathogenesis. Motifs located within the untranslated region (UTR) of the retroviral RNA have established roles in transcriptional trans-activation, RNA packaging, and genome reverse transcription; and a growing literature has revealed a necessary role of the UTR in modulating the efficiency of viral protein synthesis. Examples include a 5' UTR post-transcriptional control element (PCE), present in at least eight retroviruses, that interacts with cellular RNA helicase A to facilitate cap-dependent polyribosome association; and 3' UTR constitutive transport element (CTE) of Mason-Pfizer monkey virus that interacts with Tap/NXF1 and SR protein 9G8 to facilitate RNA export and translational utilization. By contrast, nuclear protein hnRNP E1 negatively modulates HIV-1 Gag, Env, and Rev protein synthesis. Alternative initiation strategies by ribosomal frameshifting and leaky scanning enable polycistronic translation of the cap-dependent viral transcript. Other studies posit cap-independent translation initiation by internal ribosome entry at structural features of the 5' UTR of selected retroviruses. The retroviral armamentarium also commands mechanisms to counter cellular post-transcriptional innate defenses, including protein kinase R, 2',5'-oligoadenylate synthetase and the small RNA pathway. This review will discuss recent and historically-recognized insights into retrovirus translational control. The expanding knowledge of retroviral post-transcriptional control is vital to understanding the biology of the retroviral proteome. In a broad perspective, each new insight offers a prospective target for antiviral therapy and strategic improvement of gene transfer vectors.
Collapse
|
17
|
General RNA-binding proteins have a function in poly(A)-binding protein-dependent translation. EMBO J 2008; 28:58-68. [PMID: 19078965 DOI: 10.1038/emboj.2008.259] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 11/12/2008] [Indexed: 12/29/2022] Open
Abstract
The interaction between the poly(A)-binding protein (PABP) and eukaryotic translational initiation factor 4G (eIF4G), which brings about circularization of the mRNA, stimulates translation. General RNA-binding proteins affect translation, but their role in mRNA circularization has not been studied before. Here, we demonstrate that the major mRNA ribonucleoprotein YB-1 has a pivotal function in the regulation of eIF4F activity by PABP. In cell extracts, the addition of YB-1 exacerbated the inhibition of 80S ribosome initiation complex formation by PABP depletion. Rabbit reticulocyte lysate in which PABP weakly stimulates translation is rendered PABP-dependent after the addition of YB-1. In this system, eIF4E binding to the cap structure is inhibited by YB-1 and stimulated by a nonspecific RNA. Significantly, adding PABP back to the depleted lysate stimulated eIF4E binding to the cap structure more potently if this binding had been downregulated by YB-1. Conversely, adding nonspecific RNA abrogated PABP stimulation of eIF4E binding. These data strongly suggest that competition between YB-1 and eIF4G for mRNA binding is required for efficient stimulation of eIF4F activity by PABP.
Collapse
|
18
|
High-level antigen expression and sustained antigen presentation in dendritic cells nucleofected with wild-type viral mRNA but not DNA. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:1337-44. [PMID: 18667638 DOI: 10.1128/cvi.00154-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DC) are potent antigen-presenting cells that hold promise as cell-based therapeutic vaccines for infectious diseases and cancer. Ideally, DC would be engineered to express autologous viral or tumor antigens to ensure the presentation of relevant antigens to host T cells in vivo; however, expression of wild-type viral genes in primary cell lines can be problematic. Nucleofection is an effective means of delivering transgenes to primary cell lines, but its use in transfecting DNA or mRNA into DC has not been widely investigated. We show that nucleofection is a superior means of transfecting human and monkey monocyte-derived DC with DNA and mRNA compared to lipofection and conventional electroporation. However, the delivery of DNA and mRNA had significantly different outcomes in transfected DC. DC nucleofected with DNA encoding green fluorescent protein (GFP) had poor antigen expression and viability and were refractory to maturation with CD40 ligand. In contrast, >90% of DC expressed uniform and high levels of GFP from 3 h to 96 h postnucleofection with mRNA while maintaining a normal maturation response to CD40 ligation. Monkey DC nucleofected with wild-type, non-codon-optimized mRNA encoding simian immunodeficiency virus Gag stimulated robust antigen-specific effector T-cell responses at 24 h and 48 h postnucleofection, reflecting sustained antigen presentation in transfected DC, whereas no detectable T-cell response was noted when DC were nucleofected with DNA encoding the same Gag sequence. These data indicate that mRNA nucleofection may be an optimal means of transfecting DC with autologous tumor or viral antigen for DC-based immunotherapy.
Collapse
|
19
|
Diaz-Griffero F, Taube R, Muehlbauer SM, Brojatsch J. Efficient production of HIV-1 viral-like particles in mouse cells. Biochem Biophys Res Commun 2008; 368:463-9. [PMID: 18241668 DOI: 10.1016/j.bbrc.2007.12.195] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Accepted: 12/21/2007] [Indexed: 11/25/2022]
Abstract
Previous efforts to develop a mouse model for HIV/AIDS have been impaired by multiple blocks to HIV replication, including barriers to viral entry, proviral transcription, and assembly. Expression of human cofactors in murine cells overcomes early restrictions, but does not lead to the production of infectious HIV particles. Here we show that stable expression of a codon-optimized synthetic HIV-1 Gag-Pol construct (sGP) in murine cell lines results in efficient Gag production and viral-like particle (VLP) release. Stable expression of the sGP construct in murine cells such as NIH3T3 and A9 improved Gag processing resulting in efficient VLP release comparable to that found in human cells. Using highly efficient transient transfection procedures, we increased Gag expression, and were able to produce infectious HIV particles in NIH3T3 cells. However, the infectivity of VLPs produced in murine cells was significantly below that generated in 293T cells. Reduced infectivity of VLPs produced in murine cells correlated with lower HIV reporter RNA levels in these cells. Taken together, improving the expression of HIV-1 Gag-Pol by using the sGP construct overcomes, at least in part, late restrictions in murine cells.
Collapse
Affiliation(s)
- Felipe Diaz-Griffero
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
20
|
Zhao X, Schwartz S. Inhibition of HPV-16 L1 expression from L1 cDNAs correlates with the presence of hnRNP A1 binding sites in the L1 coding region. Virus Genes 2007; 36:45-53. [PMID: 18040766 DOI: 10.1007/s11262-007-0174-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Accepted: 10/31/2007] [Indexed: 01/01/2023]
Abstract
The human papillomavirus type 16 (HPV-16) L1 capsid protein is very poorly expressed from cDNA expression plasmids transiently transfected into mammalian cells. The results described herein demonstrate that inhibition of HPV-16 L1 expression from L1 cDNAs correlates with the presence of splicing regulatory sequences in the L1 coding region. This inhibitory effect correlates with the binding of hnRNP A1 to the RNA elements. Similar to unutilised splice sites that may retain mRNAs in the nucleus, regulatory splicing RNA elements may also inhibit gene expression in the absence of splicing. The results presented here explain the inefficient expression of HPV-16 L1 protein from the wild type L1 cDNA expression plasmids in mammalian cells. These results may be of general interest since alteration of RNA sequences to prevent unwanted RNA-protein interactions may increase expression of many different genes in transient transfections or after plasmid uptake in DNA vaccination approaches.
Collapse
Affiliation(s)
- Xiaomin Zhao
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Husargatan 3, Box 582, 751 23 Uppsala, Sweden
| | | |
Collapse
|
21
|
Abstract
Genomic RNA circularization has been proposed for several RNA viruses. In this study, we examined if the 5′ and 3′ ends of the 9-kb HIV-1 RNA genome can interact. In vitro assays demonstrated a specific interaction between transcripts encompassing the 5′ and 3′ terminal 1 kb, suggesting that the HIV-1 RNA genome can circularize. Truncation of the transcripts indicated that the 5′–3′ interaction is formed by 600–700 nt in the gag open reading frame and the terminal 123 nt of the genomic RNA. Detailed RNA structure probing indicates that sequences flanking the 3′ TAR hairpin interact with complementary sequences in the gag gene. Phylogenetic analysis indicates that all HIV-1 subtypes can form the 5′/3′ interaction despite considerable sequence divergence, suggesting an important role of RNA circularization in the HIV-1 replication cycle.
Collapse
Affiliation(s)
| | | | | | - Ben Berkhout
- *To whom correspondence should be addressed.+31 205 664 822+31 206 916 531
| |
Collapse
|
22
|
Stefanizzi I, Cañete-Soler R. Coregulation of light neurofilament mRNA by poly(A)-binding protein and aldolase C: Implications for neurodegeneration. Brain Res 2007; 1139:15-28. [PMID: 17276415 DOI: 10.1016/j.brainres.2006.12.092] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 12/14/2006] [Accepted: 12/31/2006] [Indexed: 11/16/2022]
Abstract
The multifunctional proteins aldolase C and poly (A)-binding protein (PABP) undergo competitive interactions in cells coexpressing aldolase C and NF-L. A specific in vivo interaction between aldolase C and NF-L mRNA had been localized to a 68 nt segment of the transcript spanning the translation termination signal. It is shown here that the poly (A)-binding protein (PABP) binds the body of the NF-L transcript and increases its levels of expression when an excess of PABP is transiently provided in trans. Immunoprecipitation of PABP-associated ribonucleoprotein complexes of human spinal cord pulls down the dimeric form of aldolase C suggesting that their co-regulation of NF-L expression could be linked to the oligomerization status of aldolase C. An ex vivo model of mRNA decay has assessed mechanisms whereby aldolase C and PABP control NF-L expression. This model shows that aldolase C is a zinc-activated ribonuclease that cleaves the transcript at sites closed to the end-terminal structures. Immunological and biochemical depletion of endogenous PABP increases the instability of the transcript suggesting that PABP shields the NF-L mRNA from aldolase attack. An in vitro model shows that a mutant NF-L 68, in which the 45 nt of proximal 3'-UTR is replaced with unrelated sequence, is not degraded by aldolase C. Taken together, the findings might have important consequences for understanding causal mechanisms underlying neurodegeneration.
Collapse
Affiliation(s)
- Ida Stefanizzi
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, 608 Stellar Chance, University of Pennsylvania Medical Center, Philadelphia, PA 19104, USA
| | | |
Collapse
|
23
|
Felber BK, Zolotukhin AS, Pavlakis GN. Posttranscriptional Control of HIV‐1 and Other Retroviruses and Its Practical Applications. ADVANCES IN PHARMACOLOGY 2007; 55:161-97. [PMID: 17586315 DOI: 10.1016/s1054-3589(07)55005-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | | | | |
Collapse
|
24
|
Gallois-Montbrun S, Kramer B, Swanson CM, Byers H, Lynham S, Ward M, Malim MH. Antiviral protein APOBEC3G localizes to ribonucleoprotein complexes found in P bodies and stress granules. J Virol 2006; 81:2165-78. [PMID: 17166910 PMCID: PMC1865933 DOI: 10.1128/jvi.02287-06] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Members of the APOBEC (apolipoprotein B mRNA-editing enzyme catalytic polypeptide 1-like) family of cytidine deaminases inhibit host cell genome invasion by exogenous retroviruses and endogenous retrotransposons. Because these enzymes can edit DNA or RNA and potentially mutate cellular targets, their activities are presumably regulated; for instance, APOBEC3G (A3G) recruitment into high-molecular-weight ribonucleoprotein (RNP) complexes has been shown to suppress its enzymatic activity. We used tandem affinity purification together with mass spectrometry (MS) to identify protein components within A3G-containing RNPs. We report that numerous cellular RNA-binding proteins with diverse roles in RNA function, metabolism, and fate determination are present in A3G RNPs but that most interactions with A3G are mediated via binding to shared RNAs. Confocal microscopy demonstrated that substantial quantities of A3G localize to cytoplasmic microdomains that are known as P bodies and stress granules (SGs) and are established sites of RNA storage and metabolism. Indeed, subjecting cells to stress induces the rapid redistribution of A3G and a number of P-body proteins to SGs. Among these proteins are Argonaute 1 (Ago1) and Argonaute 2 (Ago2), factors that are important for RNA silencing and whose interactions with A3G are resistant to RNase treatment. Together, these findings reveal that A3G associates with RNPs that are found throughout the cytosol as well as in discrete microdomains. We also speculate that the interplay between A3G, RNA-silencing pathways, and cellular sites of RNA metabolism may contribute to A3G's role as an inhibitor of retroelement mobility and as a possible regulator of cellular RNA function.
Collapse
Affiliation(s)
- Sarah Gallois-Montbrun
- Department of Infectious Diseases, King's College London School of Medicine, 2nd floor, New Guy's House, Guy's Hospital, London Bridge, London SE1 9RT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
25
|
Kozak SL, Marin M, Rose KM, Bystrom C, Kabat D. The Anti-HIV-1 Editing Enzyme APOBEC3G Binds HIV-1 RNA and Messenger RNAs That Shuttle between Polysomes and Stress Granules. J Biol Chem 2006; 281:29105-19. [PMID: 16887808 DOI: 10.1074/jbc.m601901200] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Deoxycytidine deaminases APOBEC3G (A3G) and APOBEC3F (A3F) (members of the apolipoprotein B mRNA-editing catalytic polypeptide 3 family) have RNA-binding motifs, invade assembling human immunodeficiency virus (HIV-1), and hypermutate reverse transcripts. Antagonistically, HIV-1 viral infectivity factor degrades these enzymes. A3G is enzymatically inhibited by binding RNA within an unidentified large cytosolic ribonucleoprotein, implying that RNA degradation during reverse transcription may activate intravirion A3G at the necessary moment. We purified a biologically active tandem affinity-tagged A3G from human HEK293T cells. Mass spectrometry and coimmunoprecipitation from HEK293T and T lymphocyte extracts identified many RNA-binding proteins specifically associated with A3G and A3F, including poly(A)-binding proteins (PABPs), YB-1, Ro-La, RNA helicases, ribosomal proteins, and Staufen1. Most strikingly, nearly all A3G-associated proteins were known to bind exclusively or intermittently to translating and/or dormant mRNAs. Accordingly, A3G in HEK293T and T lymphocyte extracts was almost completely in A3G-mRNA-PABP complexes that shifted reversibly between polysomes and dormant pools in response to translational inhibitors. For example arsenite, which inhibits 5'-cap-dependent translational initiation, shifted mRNA-A3G-PABP from polysomes into stress granules in a manner that was blocked and reversed by the elongation inhibitor cycloheximide. Immunofluorescence microscopy showed A3G-mRNA-PABP stress granules only partially overlapping with Staufen1. A3G coimmunoprecipitated HIV-1 RNA and many mRNAs. Ribonuclease released nearly all A3G-associated proteins, including A3G homo-oligomers and A3G-A3F hetero-oligomers, but the viral infectivity factor remained bound. Many proteins and RNAs associated with A3G are excluded from A3G-containing virions, implying that A3G competitively partitions into virions based on affinity for HIV-1 RNA.
Collapse
Affiliation(s)
- Susan L Kozak
- Department of Biochemistry and Molecular Biology and Proteomics Shared Resource, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | | | |
Collapse
|
26
|
Satterfield TF, Pallanck LJ. Ataxin-2 and its Drosophila homolog, ATX2, physically assemble with polyribosomes. Hum Mol Genet 2006; 15:2523-32. [PMID: 16835262 DOI: 10.1093/hmg/ddl173] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations resulting in the expansion of a polyglutamine tract in the protein ataxin-2 give rise to the neurodegenerative disorders spinocerebellar ataxia type 2 and Parkinson's disease. The normal cellular function of ataxin-2 and the mechanism by which polyglutamine expansion of ataxin-2 causes neurodegeneration are unknown. Here, we demonstrate that ataxin-2 and its Drosophila homolog, ATX2, assemble with polyribosomes and poly(A)-binding protein (PABP), a key regulator of mRNA translation. The assembly of ATX2 with polyribosomes is mediated independently by two distinct evolutionarily conserved regions of ATX2: an N-terminal Lsm/Lsm-associated domain (LsmAD), found in proteins that function in nuclear RNA processing and mRNA decay, and a PAM2 motif, found in proteins that interact physically with PABP. We further show that the PAM2 motif mediates a physical interaction of ATX2 with PABP in addition to promoting ATX2 assembly with polyribosomes. Our results suggest a model in which ATX2 binds mRNA directly through its Lsm/LsmAD domain and indirectly via binding PABP that is itself directly bound to mRNA. These findings, coupled with work on other ataxin-2 family members, suggest that ATX2 plays a direct role in translational regulation. Our results raise the possibility that polyglutamine expansions within ataxin-2 cause neurodegeneration by interfering with the translational regulation of particular mRNAs.
Collapse
Affiliation(s)
- Terrence F Satterfield
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195-7730, USA
| | | |
Collapse
|
27
|
Svitkin YV, Sonenberg N. Translational control by the poly(A) binding protein: A check for mRNA integrity. Mol Biol 2006. [DOI: 10.1134/s0026893306040133] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Graf M, Ludwig C, Kehlenbeck S, Jungert K, Wagner R. A quasi-lentiviral green fluorescent protein reporter exhibits nuclear export features of late human immunodeficiency virus type 1 transcripts. Virology 2006; 352:295-305. [PMID: 16777165 DOI: 10.1016/j.virol.2006.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Revised: 02/23/2006] [Accepted: 05/02/2006] [Indexed: 10/24/2022]
Abstract
We have previously shown that Rev-dependent expression of HIV-1 Gag from CMV immediate early promoter critically depends on the AU-rich codon bias of the gag gene. Here, we demonstrate that adaptation of the green fluorescent protein (GFP) reporter gene to HIV codon bias is sufficient to turn this hivGFP RNA into a quasi-lentiviral message following the rules of late lentiviral gene expression. Accordingly, GFP expression was significantly decreased in transfected cells strictly correlating with reduced RNA levels. In the presence of the HIV 5' major splice donor, the hivGFP RNAs were stabilized in the nucleus and efficiently exported to the cytoplasm following fusion of the 3' Rev-responsive element (RRE) and coexpression of HIV-1 Rev. This Rev-dependent translocation was specifically inhibited by leptomycin B suggesting export via the CRM1-dependent pathway used by late lentiviral transcripts. In conclusion, this quasi-lentiviral reporter system may provide a new platform for developing sensitive Rev screening assays.
Collapse
Affiliation(s)
- Marcus Graf
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology and Gene Therapy, University of Regensburg, 93053 Regensburg, Germany
| | | | | | | | | |
Collapse
|
29
|
Cochrane AW, McNally MT, Mouland AJ. The retrovirus RNA trafficking granule: from birth to maturity. Retrovirology 2006; 3:18. [PMID: 16545126 PMCID: PMC1475878 DOI: 10.1186/1742-4690-3-18] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Accepted: 03/17/2006] [Indexed: 11/10/2022] Open
Abstract
Post-transcriptional events in the life of an RNA including RNA processing, transport, translation and metabolism are characterized by the regulated assembly of multiple ribonucleoprotein (RNP) complexes. At each of these steps, there is the engagement and disengagement of RNA-binding proteins until the RNA reaches its final destination. For retroviral genomic RNA, the final destination is the capsid. Numerous studies have provided crucial information about these processes and serve as the basis for studies on the intracellular fate of retroviral RNA. Retroviral RNAs are like cellular mRNAs but their processing is more tightly regulated by multiple cis-acting sequences and the activities of many trans-acting proteins. This review describes the viral and cellular partners that retroviral RNA encounters during its maturation that begins in the nucleus, focusing on important events including splicing, 3' end-processing, RNA trafficking from the nucleus to the cytoplasm and finally, mechanisms that lead to its compartmentalization into progeny virions.
Collapse
Affiliation(s)
- Alan W Cochrane
- Department of Medical Genetics and Microbiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Mark T McNally
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Andrew J Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute for Medical Research-Sir Mortimer B. Davis Jewish General Hospital and McGill University, 3755 Côte-Ste-Catherine Road, H3T 1E2, Canada
| |
Collapse
|
30
|
Kahvejian A, Svitkin YV, Sukarieh R, M'Boutchou MN, Sonenberg N. Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms. Genes Dev 2005; 19:104-13. [PMID: 15630022 PMCID: PMC540229 DOI: 10.1101/gad.1262905] [Citation(s) in RCA: 368] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Translation initiation is a multistep process involving several canonical translation factors, which assemble at the 5'-end of the mRNA to promote the recruitment of the ribosome. Although the 3' poly(A) tail of eukaryotic mRNAs and its major bound protein, the poly(A)-binding protein (PABP), have been studied extensively, their mechanism of action in translation is not well understood and is confounded by differences between in vivo and in vitro systems. Here, we provide direct evidence for the involvement of PABP in key steps of the translation initiation pathway. Using a new technique to deplete PABP from mammalian cell extracts, we show that extracts lacking PABP exhibit dramatically reduced rates of translation, reduced efficiency of 48S and 80S ribosome initiation complex formation, and impaired interaction of eIF4E with the mRNA cap structure. Supplementing PABP-depleted extracts with wild-type PABP completely rectified these deficiencies, whereas a mutant of PABP, M161A, which is incapable of interacting with eIF4G, failed to restore translation. In addition, a stronger inhibition (approximately twofold) of 80S as compared to 48S ribosome complex formation (approximately 65% vs. approximately 35%, respectively) by PABP depletion suggests that PABP plays a direct role in 60S subunit joining. PABP can thus be considered a canonical translation initiation factor, integral to initiation complex formation at the 5'-end of mRNA.
Collapse
Affiliation(s)
- Avak Kahvejian
- Department of Biochemistry, McGill Cancer Center, McGill University, Montreal, Quebec, H3G 1Y6,Canada
| | | | | | | | | |
Collapse
|
31
|
Gao W, Rzewski A, Sun H, Robbins PD, Gambotto A. UpGene: Application of a web-based DNA codon optimization algorithm. Biotechnol Prog 2004; 20:443-8. [PMID: 15058988 DOI: 10.1021/bp0300467] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although DNA codon optimization is a standard molecular biology strategy to overcome poor gene expression, to date no public software exists to facilitate this process. Among the uses of codon optimization, human immunodeficiency virus (HIV) vaccine development represents one of the most difficult challenges. A key obstacle to an effective DNA-based vaccine is the low-level expression of HIV genes in mammalian cells, which is due primarily to the instability of HIV mRNAs resulting from AU-rich elements and rare codon usage. In this report we describe the development of a DNA optimization algorithm integrated with a PCR primer design program to redesign specific coding sequences for maximal gene expression. Using this algorithm combination, together with PCR-based gene assembly, we have successfully optimized gene sequences for simian immunodeficiency virus (SIV) strain mac239 structural antigenic proteins gag and env, resulting in high-level gene expression in eukaryotic cells. Our findings demonstrate that our user-friendly algorithm is a valuable tool for DNA-based HIV vaccine development. Moreover, it can be used to optimize any other genes of interest and is freely available online at http://www.vectorcore.pitt.edu/upgene.html.
Collapse
Affiliation(s)
- Wentao Gao
- Department of Molecular Genetics and Biochemistry and Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
32
|
Mullin C, Duning K, Barnekow A, Richter D, Kremerskothen J, Mohr E. Interaction of rat poly(A)-binding protein with poly(A)- and non-poly(A) sequences is preferentially mediated by RNA recognition motifs 3+4. FEBS Lett 2004; 576:437-41. [PMID: 15498576 DOI: 10.1016/j.febslet.2004.09.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Accepted: 09/20/2004] [Indexed: 11/25/2022]
Abstract
Vasopressin (VP) mRNA and the non-coding BC200 RNA are sorted to neuronal dendrites. Among proteins interacting specifically with both RNAs is the multifunctional poly(A)-binding protein (PABP) consisting of four RNA recognition motifs (RRMs) and a C-terminal auxiliary domain. The protein/RNA interaction studies presented here reveal that PABPs association with VP- and BC200 RNA is exclusively mediated by RRMs 3+4. Quantitative binding studies with PABP deletion mutants demonstrate preferential binding of RRMs 3+4 even to poly(A)-homopolymers, while RRMs 1+2 exhibit a lower affinity for those sequences. An optimal interaction with both poly(A)- and non-poly(A) sequences is only achieved by full-size PABP.
Collapse
Affiliation(s)
- Carola Mullin
- Department for Cell Biochemistry and Clinical Neurobiology, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Bériault V, Clément JF, Lévesque K, Lebel C, Yong X, Chabot B, Cohen EA, Cochrane AW, Rigby WFC, Mouland AJ. A late role for the association of hnRNP A2 with the HIV-1 hnRNP A2 response elements in genomic RNA, Gag, and Vpr localization. J Biol Chem 2004; 279:44141-53. [PMID: 15294897 DOI: 10.1074/jbc.m404691200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two cis-acting RNA trafficking sequences (heterogenous ribonucleoprotein A2 (hnRNP A2)-response elements 1 and 2 or A2RE-1 and A2RE-2) have been identified in HIV-1 vpr and gag mRNAs and were found to confer cytoplasmic RNA trafficking in a murine oligodendrocyte assay. Their activities were assessed during HIV-1 proviral gene expression in COS7 cells. Single point mutations that were shown to severely block RNA trafficking were introduced into each of the A2REs. In both cases, this resulted in a marked decrease in hnRNP A2 binding to HIV-1 genomic RNA in whole cell extracts and hnRNP A2-containing polysomes. This also resulted in an accumulation of HIV-1 genomic RNA in the nucleus and a significant reduction in genomic RNA encapsidation levels. Immunofluorescence analyses revealed altered expression patterns for pr55Gag and particularly that for Vpr. Vpr localization became almost completely nuclear and this was reflected in a significant reduction in virion-associated Vpr levels. These effects coincided with late steps of the viral replication cycle and were not seen at early time points post-transfection. Transcription, splicing, steady state RNA levels, and pr55Gag processing were not affected. On the other hand, viral replication was markedly compromised in A2RE-2 mutant viruses and this correlated with lowered genomic RNA encapsidation levels. These data reveal new insights into the virus-host interactions between hnRNP A2 and the HIV-1 A2REs and their influence on the patterns of HIV-1 gene expression and viral assembly.
Collapse
Affiliation(s)
- Véronique Bériault
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute for Medical Research-Sir Mortimer B. Davis Jewish General Hospital, Room 323A, 3755 Côte-Ste-Catherine Road, Montréal, Québec H3T 1E2, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Dunn SJ, Khan IH, Chan UA, Scearce RL, Melara CL, Paul AM, Sharma V, Bih FY, Holzmayer TA, Luciw PA, Abo A. Identification of cell surface targets for HIV-1 therapeutics using genetic screens. Virology 2004; 321:260-73. [PMID: 15051386 DOI: 10.1016/j.virol.2004.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Revised: 12/17/2003] [Accepted: 01/09/2004] [Indexed: 10/26/2022]
Abstract
Human immunodeficiency virus (HIV) drugs designed to interfere with obligatory utilization of certain host cell factors by virus are less likely to encounter development of resistant strains than drugs directed against viral components. Several cellular genes required for productive infection by HIV were identified by the use of genetic suppressor element (GSE) technology as potential targets for anti-HIV drug development. Fragmented cDNA libraries from various pools of human peripheral blood mononuclear cells (PBMC) were expressed in vitro in human immunodeficiency virus type 1 (HIV-1)-susceptible cell lines and subjected to genetic screens to identify GSEs that interfered with viral replication. After three rounds of selection, more than 15000 GSEs were sequenced, and the cognate genes were identified. The GSEs that inhibited the virus were derived from a diverse set of genes including cell surface receptors, cytokines, signaling proteins, transcription factors, as well as genes with unknown function. Approximately 2.5% of the identified genes were previously shown to play a role in the HIV-1 life cycle; this finding supports the biological relevance of the assay. GSEs were derived from the following 12 cell surface proteins: CXCR4, CCR4, CCR7, CD11C, CD44, CD47, CD68, CD69, CD74, CSF3R, GABBR1, and TNFR2. Requirement of some of these genes for viral infection was also investigated by using RNA interference (RNAi) technology; accordingly, 10 genes were implicated in early events of the viral life cycle, before viral DNA synthesis. Thus, these cell surface proteins represent novel targets for the development of therapeutics against HIV-1 infection and AIDS.
Collapse
|
35
|
Zolotukhin AS, Michalowski D, Bear J, Smulevitch SV, Traish AM, Peng R, Patton J, Shatsky IN, Felber BK. PSF acts through the human immunodeficiency virus type 1 mRNA instability elements to regulate virus expression. Mol Cell Biol 2003; 23:6618-30. [PMID: 12944487 PMCID: PMC193712 DOI: 10.1128/mcb.23.18.6618-6630.2003] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV) gag/pol and env mRNAs contain cis-acting regulatory elements (INS) that impair stability, nucleocytoplasmic transport, and translation by unknown mechanisms. This downregulation can be counteracted by the viral Rev protein, resulting in efficient export and expression of these mRNAs. Here, we show that the INS region in HIV-1 gag mRNA is a high-affinity ligand of p54nrb/PSF, a heterodimeric transcription/splicing factor. Both subunits bound INS RNA in vitro with similar affinity and specificity. Using an INS-containing subgenomic gag mRNA, we show that it specifically associated with p54nrb in vivo and that PSF inhibited its expression, acting via INS. Studying the authentic HIV-1 mRNAs produced from an infectious molecular clone, we found that PSF affected specifically the INS-containing, Rev-dependent transcripts encoding Gag-Pol and Env. Both subunits contained nuclear export and nuclear retention signals, whereas p54nrb was continuously exported from the nucleus and associated with INS-containing mRNA in the cytoplasm, suggesting its additional role at late steps of mRNA metabolism. Thus, p54nrb and PSF have properties of key factors mediating INS function and likely define a novel mRNA regulatory pathway that is hijacked by HIV-1.
Collapse
MESH Headings
- Cells, Cultured/virology
- DNA-Binding Proteins
- Fusion Proteins, gag-pol/genetics
- Fusion Proteins, gag-pol/metabolism
- Gene Expression Regulation, Viral
- Gene Products, env/genetics
- Gene Products, env/metabolism
- Gene Products, gag/genetics
- Gene Products, gag/metabolism
- Gene Products, rev/genetics
- Gene Products, rev/metabolism
- HIV-1/drug effects
- HIV-1/genetics
- Humans
- Nuclear Matrix-Associated Proteins/genetics
- Nuclear Matrix-Associated Proteins/metabolism
- Octamer Transcription Factors
- PTB-Associated Splicing Factor
- Proviruses/genetics
- RNA Processing, Post-Transcriptional
- RNA Stability
- RNA, Messenger/metabolism
- RNA, Viral/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/pharmacology
- Regulatory Sequences, Ribonucleic Acid
- rev Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Andrei S Zolotukhin
- Human Retrovirus Pathogenesis Section, Basic Research Laboratory, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, MD 21702-1201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wolff H, Brack-Werner R, Neumann M, Werner T, Schneider R. Integrated functional and bioinformatics approach for the identification and experimental verification of RNA signals: application to HIV-1 INS. Nucleic Acids Res 2003; 31:2839-51. [PMID: 12771211 PMCID: PMC156724 DOI: 10.1093/nar/gkg390] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2003] [Revised: 02/25/2003] [Accepted: 04/04/2003] [Indexed: 12/15/2022] Open
Abstract
Regulation of gene expression involves sequence elements in nucleic acids. In promoters, multiple sequence elements cooperate as functional modules, which in combination determine overall promoter activity. We previously developed computational tools based on this hierarchical structure for in silico promoter analysis. Here we address the functional organization of post-transcriptional control elements, using the HIV-1 genome as a model. Numerous mutagenesis studies demonstrate that expression of HIV structural proteins is restricted by inhibitory sequences (INS) in HIV mRNAs in the absence of the HIV-1 Rev protein. However, previous attempts to detect conserved sequence patterns of HIV-1 INS have failed. We defined four distinct sequence patterns for inhibitory motifs (weight matrices), which identified 22 out of the 25 known INS as well as several new candidate INS regions contained in numerous HIV-1 strains. The conservation of INS motifs within the HIV genome was not due to overall sequence conservation. The functionality of two candidate INS regions was analyzed with a new assay that measures the effect of non-coding mRNA sequences on production of red fluorescent reporter protein. Both new INS regions showed inhibitory activity in sense but not in antisense orientation. Inhibitory activity increased by combining both INS regions in the same mRNA. Inhibitory activity of known and new INS regions was overcome by co-expression of the HIV-1 Rev protein.
Collapse
Affiliation(s)
- Horst Wolff
- Institute of Molecular Virology and. Institute of Experimental Genetics, GSF-National Research Center for Environment and Health, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| | | | | | | | | |
Collapse
|
37
|
Mohr E, Richter D. Molecular determinants and physiological relevance of extrasomatic RNA localization in neurons. Front Neuroendocrinol 2003; 24:128-39. [PMID: 12763001 DOI: 10.1016/s0091-3022(03)00011-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Specific sorting of mRNA molecules to subcellular microdomains is an evolutionarily conserved mechanism by which the polarized nature of eukayotic cells may be established and maintained. The molecular composition of the RNA localization machinery is complex. Sequence motifs within RNA molecules to be transported, called cis-acting elements, and proteins, referred to as trans-acting factors, are essential components. Transport of the resulting ribonucleoprotein complexes to distinct cytoplasmic regions occurs along the cytoskeletal network. The pathway is observed in organisms as diverse as yeast and human and it plays a critical role in development and cell differentiation. Moreover, RNA localization takes place in differentiated cell types including neurons. There is ample evidence to suggest that sorting of defined mRNA species to the neurites of nerve cells and on-site translation has an impact on various aspects of nerve cell biology.
Collapse
Affiliation(s)
- Evita Mohr
- Institute for Cell Biochemistry and Clinical Neurobiology, University Clinic Hamburg-Eppendorf, Martinistr 52, D-20246, Hamburg, Germany.
| | | |
Collapse
|
38
|
Giles KM, Daly JM, Beveridge DJ, Thomson AM, Voon DC, Furneaux HM, Jazayeri JA, Leedman PJ. The 3'-untranslated region of p21WAF1 mRNA is a composite cis-acting sequence bound by RNA-binding proteins from breast cancer cells, including HuR and poly(C)-binding protein. J Biol Chem 2003; 278:2937-46. [PMID: 12431987 DOI: 10.1074/jbc.m208439200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite promoting growth in many cell types, epidermal growth factor (EGF) induces growth inhibition in a variety of cancer cells that overexpress its receptor. The cyclin-dependent kinase inhibitor p21(WAF1) is a central component of this pathway. We found in human MDA-468 breast cancer cells that EGF up-regulates p21(WAF1) mRNA and protein, through a combination of increased mRNA stability and transcription. The decay rate of a hybrid luciferase reporter full-length p21(WAF1) 3'-untranslated region (UTR) mRNA was significantly faster than that of a control mRNA. Transfections with a variety of p21(WAF1) 3'-UTR constructs identified multiple cis-acting elements capable of reducing basal reporter activity. Short wavelength ultraviolet light induced reporter activity in constructs containing the 5' region of the p21(WAF1) 3'-UTR, whereas EGF induced reporter activity in constructs containing sequences 3' of the UVC-responsive region. These cis-elements bound multiple proteins from MDA-468 cells, including HuR and poly(C)-binding protein 1 (CP1). Immunoprecipitation studies confirmed that HuR and CP1 associate with p21(WAF1) mRNA in MDA-468 cells. Over- and underexpression of HuR in MDA-468 cells did not affect EGF-induced p21(WAF1) protein expression or growth inhibition. However, binding of HuR to its target 3'-UTR cis-element was regulated by UVC but not by EGF, suggesting that these stimuli modulate the stability of p21(WAF1) mRNA via different mechanisms. We conclude that EGF-induced p21(WAF1) protein expression is mediated largely by stabilization of p21(WAF1) mRNA elicited via multiple 3'-UTR cis-elements. Although HuR binds at least one of these elements, it does not appear to be a major modulator of p21(WAF1) expression or growth inhibition in this system. CP1 is a novel p21(WAF1) mRNA-binding protein that may function cooperatively with other mRNA-binding proteins to regulate p21(WAF1) mRNA stability.
Collapse
Affiliation(s)
- Keith M Giles
- Laboratory for Cancer Medicine and University Department of Medicine, Western Australian Institute for Medical Research and Centre for Medical Research, the University of Western Australia, Perth, Western Australia 6001, Australia
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Kong W, Tian C, Liu B, Yu XF. Stable expression of primary human immunodeficiency virus type 1 structural gene products by use of a noncytopathic sindbis virus vector. J Virol 2002; 76:11434-9. [PMID: 12388704 PMCID: PMC136792 DOI: 10.1128/jvi.76.22.11434-11439.2002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Efficient expression of the human immunodeficiency virus type 1 (HIV-1) structural gene products Gag, Pol, and Env involves the regulation by viral Rev and Rev-responsive elements (RRE). Removal of multiple inhibitory sequences (INS) in the coding regions of these structural genes or modification of the codon usage patterns of HIV-1 genes to those used by highly expressed human genes has been found to significantly increase HIV-1 structural protein expression in the absence of Rev and RRE. In this study, we show that efficient and stable expression of the HIV-1 structural gene products Gag and Env could be achieved by transfection with a noncytopathic Sindbis virus expression vector by using HIV-1 sequences from primary isolates without any sequence modification. Stable expression of these Gag and Env proteins was observed for more than 12 months. The fact that the Sindbis virus expression vector replicates its RNA only in the cytoplasm of the transfected cells and the fact that the lack of expression of HIV-1 Gag by the DNA vector containing unmodified HIV-1 gag sequences was associated with a lack of detectable cytoplasmic gag RNA suggest that a major blockage in the expression of HIV-1 structural proteins in the absence of Rev/RRE is caused by inefficient accumulation of mRNA in the cytoplasm. Efficient long-term expression of structural proteins of diverse HIV-1 strains by the noncytopathic Sindbis virus expression system may be a useful tool for functional study of HIV-1 gene products and vaccine research.
Collapse
Affiliation(s)
- Wei Kong
- Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Hygiene and Public Health, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
40
|
Abstract
The heterogeneous, short RNAs produced from the high, copy, short mobile elements (SINEs) interact with proteins to form RNA-protein (RNP) complexes. In particular, the BC1 RNA, which is transcribed to high levels specifically in brain and testis from one locus of the ID SINE family, exists as a discrete RNP complex. We expressed a series of altered BC1, and other SINE-related RNAs, in several cell lines and tested for the mobility of the resulting RNP complexes in a native PAGE assay to determine which portions of these SINE RNAs contribute to protein binding. When different SINE RNAs were substituted for the BC1 ID sequence, the resulting RNPs exhibited the same mobility as BC1. This indicates that the protein(s) binding to the ID portion of BC1 is not sequence specific and may be more dependent upon the secondary structure of the RNA. It also suggests that all SINE RNAs may bind a similar set of cellular proteins. Deletion of the A-rich region of BC1 RNA has a marked effect on the mobility of the RNP. Rodent cell lines exhibit a slightly different mobility for this shifted complex when compared to human cell lines, reflecting evolutionary differences in one or more of the protein components. On the basis of mobility change observed in RNP complexes when the A-rich region is removed, we decided to examine poly(A) binding protein (PABP) as a candidate member of the RNP. An antibody against the C terminus of PABP is able to immunoprecipitate BC1 RNA, confirming PABP's presence in the BC1 RNP. Given the ubiquitous role of poly(A) regions in the retrotransposition process, these data suggest that PABP may contribute to the SINE retrotransposition process.
Collapse
Affiliation(s)
- Neva West
- Tulane Cancer Center, SL-66, Department of Environmental Health Sciences, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
41
|
Roy G, De Crescenzo G, Khaleghpour K, Kahvejian A, O'Connor-McCourt M, Sonenberg N. Paip1 interacts with poly(A) binding protein through two independent binding motifs. Mol Cell Biol 2002; 22:3769-82. [PMID: 11997512 PMCID: PMC133836 DOI: 10.1128/mcb.22.11.3769-3782.2002] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 3' poly(A) tail of eukaryotic mRNAs plays an important role in the regulation of translation. The poly(A) binding protein (PABP) interacts with eukaryotic initiation factor 4G (eIF4G), a component of the eIF4F complex, which binds to the 5' cap structure. The PABP-eIF4G interaction brings about the circularization of the mRNA by joining its 5' and 3' termini, thereby stimulating mRNA translation. The activity of PABP is regulated by two interacting proteins, Paip1 and Paip2. To study the mechanism of the Paip1-PABP interaction, far-Western, glutathione S-transferase pull-down, and surface plasmon resonance experiments were performed. Paip1 contains two binding sites for PABP, PAM1 and PAM2 (for PABP-interacting motifs 1 and 2). PAM2 consists of a 15-amino-acid stretch residing in the N terminus, and PAM1 encompasses a larger C-terminal acidic-amino-acid-rich region. PABP also contains two Paip1 binding sites, one located in RNA recognition motifs 1 and 2 and the other located in the C-terminal domain. Paip1 binds to PABP with a 1:1 stoichiometry and an apparent K(d) of 1.9 nM.
Collapse
Affiliation(s)
- Guylaine Roy
- Department of Biochemistry and McGill Cancer Centre, McGill University, Montréal, Québec, Canada H3G 1Y6
| | | | | | | | | | | |
Collapse
|
42
|
Krummheuer J, Lenz C, Kammler S, Scheid A, Schaal H. Influence of the small leader exons 2 and 3 on human immunodeficiency virus type 1 gene expression. Virology 2001; 286:276-89. [PMID: 11485396 DOI: 10.1006/viro.2001.0974] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) uses an elaborate alternative splicing pattern for the generation of both the 1.8-kb as well as the 4-kb classes of mRNA. An additional diversity of transcripts in both classes is created by the optional inclusion of the small exons 2 and 3 in the leader sequence. To analyze a possible influence of these leader exons on HIV-1 gene expression, several series of expression vectors with different leaders were constructed, expressing either Rev and Env or a heterologous coding sequence, i.e., the chloramphenicol acetyl transferase (CAT) ORF. Transfection experiments of HeLa-T4(+) cells revealed for all series of constructs that mRNA as well as protein expression was stimulated by the presence of exon 2 and reduced by exon 3. The function of the leader exons 2 and 3 is neither dependent on the regulatory proteins Tat or Rev nor on viral coding sequences. Neither transcription rates nor stability of polyadenylated RNAs were found to be responsible for the different levels of steady-state mRNA. When either exon 2 or 3 was inserted into a heterologous intron, processing of the primary transcripts generated identical mRNA species while maintaining the differences in exon 2/3-dependent mRNA steady-state levels. These results may be explained by exon-specific nuclear RNA degradation rates, as also indicated by results from an in vitro degradation assay using a HeLa nuclear extract.
Collapse
MESH Headings
- Alternative Splicing
- Cell Line
- Cytoplasm/genetics
- Exons
- Gene Expression Regulation, Viral
- Gene Products, tat/genetics
- Gene Products, tat/metabolism
- Genetic Vectors
- HIV Long Terminal Repeat
- HIV-1/genetics
- HIV-1/metabolism
- HeLa Cells
- Humans
- Introns
- RNA Stability
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Nuclear
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Transcription, Genetic
- Transcriptional Activation
- Viral Proteins/genetics
- Viral Proteins/metabolism
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- J Krummheuer
- Institut für Medizinische Mikrobiologie und Virologie, Heinrich-Heine-Universität, D-40225 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
43
|
Khaleghpour K, Kahvejian A, De Crescenzo G, Roy G, Svitkin YV, Imataka H, O'Connor-McCourt M, Sonenberg N. Dual interactions of the translational repressor Paip2 with poly(A) binding protein. Mol Cell Biol 2001; 21:5200-13. [PMID: 11438674 PMCID: PMC87244 DOI: 10.1128/mcb.21.15.5200-5213.2001] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cap structure and the poly(A) tail of eukaryotic mRNAs act synergistically to enhance translation. This effect is mediated by a direct interaction of eukaryotic initiation factor 4G and poly(A) binding protein (PABP), which brings about circularization of the mRNA. Of the two recently identified PABP-interacting proteins, one, Paip1, stimulates translation, and the other, Paip2, which competes with Paip1 for binding to PABP, represses translation. Here we studied the Paip2-PABP interaction. Biacore data and far-Western analysis revealed that Paip2 contains two binding sites for PABP, one encompassing a 16-amino-acid stretch located in the C terminus and a second encompassing a larger central region. PABP also contains two binding regions for Paip2, one located in the RNA recognition motif (RRM) region and the other in the carboxy-terminal region. A two-to-one stoichiometry for binding of Paip2 to PABP with two independent K(d)s of 0.66 and 74 nM was determined. Thus, our data demonstrate that PABP and Paip2 could form a trimeric complex containing one PABP molecule and two Paip2 molecules. Significantly, only the central Paip2 fragment, which binds with high affinity to the PABP RRM region, inhibits PABP binding to poly(A) RNA and translation.
Collapse
Affiliation(s)
- K Khaleghpour
- Department of Biochemistry and McGill Cancer Center, McGill University, Montréal, Québec, Canada H3G 1Y6
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Heger P, Lohmaier J, Schneider G, Schweimer K, Stauber RH. Qualitative highly divergent nuclear export signals can regulate export by the competition for transport cofactors in vivo. Traffic 2001; 2:544-55. [PMID: 11489212 DOI: 10.1034/j.1600-0854.2001.20804.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nucleo-cytoplasmic transport of proteins is mediated by nuclear export signals, identified in various proteins executing heterologous biological functions. However, the molecular mechanism underlying the orchestration of export is only poorly understood. Using microinjection of defined recombinant export substrates, we now demonstrate that leucine-rich nuclear export signals varied dramatically in determining the kinetics of export in vivo. Thus, nuclear export signals could be kinetically classified which correlated with their affinities for CRM1-containing export complexes in vitro. Strikingly, cotransfection experiments revealed that proteins containing a fast nuclear export signal inhibited export and the biological activity of proteins harboring a slower nuclear export signal in vivo. The affinity for export complexes seems therefore predominantly controlled by the nuclear export signal itself, even in the context of the complete protein in vivo. Overexpression of FG-rich repeats of nucleoporins affected a medium nuclear export signal containing protein to the same extent as a fast nuclear export signal containing protein, indicating that nucleoporins appear not to contribute significantly to nuclear export signal-specific export regulation. Our results imply a novel mode for controlling the biological activity of shuttle proteins already by the composition of the nuclear export signal itself.
Collapse
Affiliation(s)
- P Heger
- Institute for Clinical and Molecular Virology, University of Erlangen-Nürnberg, Schlossgarten 4, D-91054 Erlangen, Germany
| | | | | | | | | |
Collapse
|
45
|
Calado A, Tomé FM, Brais B, Rouleau GA, Kühn U, Wahle E, Carmo-Fonseca M. Nuclear inclusions in oculopharyngeal muscular dystrophy consist of poly(A) binding protein 2 aggregates which sequester poly(A) RNA. Hum Mol Genet 2000; 9:2321-8. [PMID: 11001936 DOI: 10.1093/oxfordjournals.hmg.a018924] [Citation(s) in RCA: 186] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset disease characterized by progressive eyelid drooping, swallowing difficulties and proximal limb weakness. The autosomal dominant form of the disease is caused by short (GCG)(8-13) expansions in the PABP2 gene. This gene encodes the poly(A) binding protein 2 (PABP2), an abundant nuclear protein that binds with high affinity to nascent poly(A) tails, stimulating their extension and controlling their length. In this work we report that PABP2 is detected in filamentous nuclear inclusions, which are the pathological hallmark of OPMD. Using both immunoelectron microscopy and fluorescence confocal microscopy, the OPMD-specific nuclear inclusions appeared decorated by anti-PABP2 antibodies. In addition, the inclusions were labeled with antibodies directed against ubiquitin and the subunits of the proteasome and contained a form of PABP2 that was more resistant to salt extraction than the protein dispersed in the nucleoplasm. This suggests that the polyalanine expansions in PABP2 induce a misfolding and aggregation of the protein into insoluble inclusions, similarly to events in neurodegenerative diseases caused by CAG/polyglutamine expansions. No significant differences were observed in the steady-state poly(A) tail length in OPMD and normal myoblasts. However, the nuclear inclusions were shown to sequester poly(A) RNA. This raises the possibility that in OPMD the polyalanine expansions in the PABP2 protein may interfere with the cellular traffic of poly(A) RNA.
Collapse
Affiliation(s)
- A Calado
- Institute of Histology and Embryology, Faculty of Medicine, University of Lisbon, Avenida Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | | | | | | | | | | | | |
Collapse
|
46
|
Mouland AJ, Mercier J, Luo M, Bernier L, DesGroseillers L, Cohen EA. The double-stranded RNA-binding protein Staufen is incorporated in human immunodeficiency virus type 1: evidence for a role in genomic RNA encapsidation. J Virol 2000; 74:5441-51. [PMID: 10823848 PMCID: PMC112028 DOI: 10.1128/jvi.74.12.5441-5451.2000] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Human Staufen (hStau), a double-stranded RNA (dsRNA)-binding protein that is involved in mRNA transport, is incorporated in human immunodeficiency virus type 1 (HIV-1) and in other retroviruses, including HIV-2 and Moloney murine leukemia virus. Sucrose and Optiprep gradient analyses reveal cosedimentation of hStau with purified HIV-1, while subtilisin assays demonstrate that it is internalized. hStau incorporation in HIV-1 is selective, is dependent on an intact functional dsRNA-binding domain, and quantitatively correlates with levels of encapsidated HIV-1 genomic RNA. By coimmunoprecipitation and reverse transcription-PCR analyses, we demonstrate that hStau is associated with HIV-1 genomic RNA in HIV-1-expressing cells and purified virus. Overexpression of hStau enhances virion incorporation levels, and a corresponding, threefold increase in HIV-1 genomic RNA encapsidation levels. This coordinated increase in hStau and genomic RNA packaging had a significant negative effect on viral infectivity. This study is the first to describe hStau within HIV-1 particles and provides evidence that hStau binds HIV-1 genomic RNA, indicating that it may be implicated in retroviral genome selection and packaging into assembling virions.
Collapse
MESH Headings
- Binding Sites
- Cell Line
- Centrifugation, Density Gradient
- Cloning, Molecular
- Drosophila Proteins
- Gene Expression
- Gene Products, gag/genetics
- Gene Products, gag/metabolism
- Genome, Viral
- HIV-1/chemistry
- HIV-1/genetics
- HIV-1/metabolism
- HIV-1/pathogenicity
- HIV-2/chemistry
- HIV-2/metabolism
- Humans
- Moloney murine leukemia virus/chemistry
- Moloney murine leukemia virus/metabolism
- Mutation/genetics
- Precipitin Tests
- Protein Precursors/genetics
- Protein Precursors/metabolism
- RNA, Double-Stranded/genetics
- RNA, Double-Stranded/metabolism
- RNA, Viral/analysis
- RNA, Viral/genetics
- RNA, Viral/metabolism
- RNA-Binding Proteins/analysis
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Substrate Specificity
- Subtilisin/metabolism
- Transfection
- Virus Assembly
Collapse
Affiliation(s)
- A J Mouland
- Departments of Microbiology & Immunology, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | | | | | | | | | | |
Collapse
|
47
|
Kotsopoulou E, Kim VN, Kingsman AJ, Kingsman SM, Mitrophanous KA. A Rev-independent human immunodeficiency virus type 1 (HIV-1)-based vector that exploits a codon-optimized HIV-1 gag-pol gene. J Virol 2000; 74:4839-52. [PMID: 10775623 PMCID: PMC112007 DOI: 10.1128/jvi.74.10.4839-4852.2000] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus (HIV) genome is AU rich, and this imparts a codon bias that is quite different from the one used by human genes. The codon usage is particularly marked for the gag, pol, and env genes. Interestingly, the expression of these genes is dependent on the presence of the Rev/Rev-responsive element (RRE) regulatory system, even in contexts other than the HIV genome. The Rev dependency has been explained in part by the presence of RNA instability sequences residing in these coding regions. The requirement for Rev also places a limitation on the development of HIV-based vectors, because of the requirement to provide an accessory factor. We have now synthesized a complete codon-optimized HIV-1 gag-pol gene. We show that expression levels are high and that expression is Rev independent. This effect is due to an increase in the amount of gag-pol mRNA. Provision of the RRE in cis did not lower protein or RNA levels or stimulate a Rev response. Furthermore we have used this synthetic gag-pol gene to produce HIV vectors that now lack all of the accessory proteins. These vectors should now be safer than murine leukemia virus-based vectors.
Collapse
Affiliation(s)
- E Kotsopoulou
- Retrovirus Molecular Biology Group, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | | | | | |
Collapse
|
48
|
Qiu JT, Song R, Dettenhofer M, Tian C, August T, Felber BK, Pavlakis GN, Yu XF. Evaluation of novel human immunodeficiency virus type 1 Gag DNA vaccines for protein expression in mammalian cells and induction of immune responses. J Virol 1999; 73:9145-52. [PMID: 10516021 PMCID: PMC112947 DOI: 10.1128/jvi.73.11.9145-9152.1999] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus (HIV)-specific cytotoxic T lymphocytes (CTL) are an important parameter of host defenses that limit viral replication after infection. Induction of effective CTL against conserved viral proteins such as Gag may be essential to the development of a safe and effective HIV type 1 (HIV-1) vaccine. DNA vaccination represents a novel strategy for inducing potent CD8(+) CTL responses in vivo. However, expression of HIV-1 structural proteins by DNA vectors has been hampered by a stringent requirement for coexpression with other viral components, such as Rev and RRE. Furthermore, even with Rev and RRE present, the level of expression of HIV-1 Gag, Pol, or Env is very low in murine cells. These problems have limited our ability to address the key issue of how to generate effective CTL responses to Gag in a mouse model. To overcome this problem, we compared several novel DNA expression vectors for HIV-1 Gag protein expression in primate and mouse cells and for generating immune responses in mice after DNA vaccination. A DNA vector containing wild type HIV-1 gag coding sequences did not induce detectable Gag expression in any of the cells tested. Attempts to increase nuclear export of Gag expression RNA by adding the constitutive transport element yielded only a moderate increase in Gag expression in monkey-derived COS cells and an even lower increase in Gag expression in HeLa cells or several mouse cell lines. In contrast, silent-site mutations in the HIV-1 gag coding sequences significantly increased Gag expression levels in all cells tested. Furthermore, this construct induced both Gag-specific antibody and CTL responses in mice after DNA vaccination. Using this construct, we achieved stable expression of HIV-1 Gag in the mouse cell line p815, which can now be used as a target cell for measuring HIV-1 Gag-specific CTL responses in immunized mice. The DNA vectors described in this study should make it possible to systematically evaluate the approaches for maximizing the induction of CTL responses against HIV-1 Gag in mouse and other animal systems.
Collapse
Affiliation(s)
- J T Qiu
- Department of Molecular Microbiology, The Johns Hopkins School of Hygiene and Public Health, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Butsch M, Hull S, Wang Y, Roberts TM, Boris-Lawrie K. The 5' RNA terminus of spleen necrosis virus contains a novel posttranscriptional control element that facilitates human immunodeficiency virus Rev/RRE-independent Gag production. J Virol 1999; 73:4847-55. [PMID: 10233946 PMCID: PMC112528 DOI: 10.1128/jvi.73.6.4847-4855.1999] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous work has shown that spleen necrosis virus (SNV) long terminal repeats (LTRs) are associated with Rex/Rex-responsive element-independent expression of bovine leukemia virus RNA and supports the hypothesis that SNV RNA contains a cis-acting element that interacts with cellular Rex-like proteins. To test this hypothesis, the human immunodeficiency virus type 1 (HIV) Rev/RRE-dependent gag gene was used as a reporter to analyze various SNV sequences. Gag enzyme-linked immunosorbent assay and Western blot analyses reveal that HIV Gag production is enhanced at least 20, 000-fold by the 5' SNV LTR in COS, D17, and 293 cells. Furthermore, SNV RU5 in the sense but not the antisense orientation is sufficient to confer Rev/RRE-independent expression onto a cytomegalovirus-gag plasmid. In contrast, the SNV 3' LTR and 3' untranslated sequence between env and the LTR did not support Rev-independent gag expression. Quantitative RNase protection assays indicate that the SNV 5' RNA terminus enhances cytoplasmic accumulation and polysome association of HIV unspliced and spliced transcripts. However, comparison of the absolute amounts of polysomal RNA indicates that polysome association is not sufficient to account for the significant increase in Gag production by the SNV sequences. Our analysis reveals that the SNV 5' RNA terminus contains a unique cis-acting posttranscriptional control element that interacts with hypothetical cellular Rev-like proteins to facilitate HIV RNA transport and efficient translation.
Collapse
Affiliation(s)
- M Butsch
- Department of Veterinary Biosciences, Center for Retrovirus Research, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210-1093, USA
| | | | | | | | | |
Collapse
|
50
|
Najera I, Krieg M, Karn J. Synergistic stimulation of HIV-1 rev-dependent export of unspliced mRNA to the cytoplasm by hnRNP A1. J Mol Biol 1999; 285:1951-64. [PMID: 9925777 DOI: 10.1006/jmbi.1998.2473] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structural and accessory proteins of human immunodeficiency virus type 1 are expressed by unspliced or partially spliced mRNAs. Efficient transport of these mRNAs from the nucleus requires the binding of the viral nuclear transport protein Rev to an RNA stem-loop structure called the RRE (Rev response element). However, the RRE does not permit Rev to stimulate the export of unspliced mRNAs from the efficiently spliced beta-globin gene in the absence of additional cis-acting RNA regulatory signals. The p17gag gene instability (INS) element contains RNA elements that can complement Rev activity. In the presence of the INS element and the RRE, Rev permits up to 30 % of the total beta-globin mRNA to be exported to the cytoplasm as unspliced mRNA. Here, we show that a minimal sequence of 30 nt derived from the 5' end of the p17 gag gene INS element (5' INS) is functional and permits the export to the cytoplasm of 14% of the total beta-globin mRNA as unspliced pre-mRNA. Gel mobility shift assays and UV cross-linking experiments have shown that heterogeneous nuclear ribonucleoprotein (hnRNP) A1 and a cellular RNA-binding protein of 50 kDa form a complex on the 5' INS. Mutants in the 5' INS that prevent hnRNP A1 and 50 kDa protein binding are inactive in the transport assay. To confirm that the hnRNP A1 complex is responsible for INS activity, a synthetic high-affinity binding site for hnRNP A1 was also analysed. When the high affinity hnRNP A1 binding site was inserted into the beta-globin reporter, Rev was able to increase the cytoplasmic levels of unspliced mRNAs to 14%. In contrast, the mutant hnRNP A1 binding site, or binding sites for hnRNP C and L are unable to stimulate Rev-mediated RNA transport. We conclude that hnRNP A1 is able to direct unspliced globin pre-mRNA into a nuclear compartment where it is recognised by Rev and then transported to the cytoplasm.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Cell Nucleus/genetics
- Cytoplasm/genetics
- Cytoplasm/metabolism
- Gene Expression Regulation, Viral
- Gene Products, gag/genetics
- Gene Products, rev/genetics
- Gene Products, rev/metabolism
- Globins/genetics
- HIV Antigens/genetics
- HIV-1/genetics
- HIV-1/metabolism
- Heterogeneous Nuclear Ribonucleoprotein A1
- Heterogeneous-Nuclear Ribonucleoprotein Group A-B
- Heterogeneous-Nuclear Ribonucleoprotein Group C
- Heterogeneous-Nuclear Ribonucleoproteins
- Humans
- Molecular Sequence Data
- Mutation
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- RNA Splicing
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Regulatory Sequences, Nucleic Acid
- Response Elements
- Ribonucleoproteins/genetics
- Ribonucleoproteins/metabolism
- Viral Proteins/genetics
- Viral Proteins/metabolism
- gag Gene Products, Human Immunodeficiency Virus
- rev Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- I Najera
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, UK
| | | | | |
Collapse
|