1
|
Pogostin BH, Saenz G, Cole CC, Euliano EM, Hartgerink JD, McHugh KJ. Dynamic Imine Bonding Facilitates Mannan Release from a Nanofibrous Peptide Hydrogel. Bioconjug Chem 2023; 34:193-203. [PMID: 36580277 PMCID: PMC10061233 DOI: 10.1021/acs.bioconjchem.2c00461] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recently, there has been increased interest in using mannan as an immunomodulatory bioconjugate. Despite notable immunological and functional differences between the reduced (R-Man) and oxidized (O-Man) forms of mannan, little is known about the impact of mannan oxidation state on its in vivo persistence or its potential controlled release from biomaterials that may improve immunotherapeutic or prophylactic efficacy. Here, we investigate the impact of oxidation state on the in vitro and in vivo release of mannan from a biocompatible and immunostimulatory multidomain peptide hydrogel, K2(SL)6K2 (abbreviated as K2), that has been previously used for the controlled release of protein and small molecule payloads. We observed that O-Man released more slowly from K2 hydrogels in vitro than R-Man. In vivo, the clearance of O-Man from K2 hydrogels was slower than O-Man alone. We attributed the slower release rate to the formation of dynamic imine bonds between reactive aldehyde groups on O-Man and the lysine residues on K2. This imine interaction was also observed to improve K2 + O-Man hydrogel strength and shear recovery without significantly influencing secondary structure or peptide nanofiber formation. There were no observed differences in the in vivo release rates of O-Man loaded in K2, R-Man loaded in K2, and R-Man alone. These data suggest that, after subcutaneous injection, R-Man naturally persists longer in vivo than O-Man and minimally interacts with the peptide hydrogel. These results highlight a potentially critical, but previously unreported, difference in the in vivo behavior of O-Man and R-Man and demonstrate that K2 can be used to normalize the release of O-Man to that of R-Man. Further, since K2 itself is an adjuvant, a combination of O-Man and K2 could be used to enhance the immunostimulatory effects of O-Man for applications such as infectious disease vaccines and cancer immunotherapy.
Collapse
Affiliation(s)
- Brett H Pogostin
- Department of Bioengineering, Rice University, Houston, Texas77005, United States
| | - Gabriel Saenz
- Department of Chemistry, Rice University, Houston, Texas77005, United States
| | - Carson C Cole
- Department of Chemistry, Rice University, Houston, Texas77005, United States
| | - Erin M Euliano
- Department of Bioengineering, Rice University, Houston, Texas77005, United States
| | - Jeffrey D Hartgerink
- Department of Bioengineering, Rice University, Houston, Texas77005, United States
- Department of Chemistry, Rice University, Houston, Texas77005, United States
| | - Kevin J McHugh
- Department of Bioengineering, Rice University, Houston, Texas77005, United States
- Department of Chemistry, Rice University, Houston, Texas77005, United States
| |
Collapse
|
2
|
Novel vaccines targeting dendritic cells by coupling allergoids to mannan. ALLERGO JOURNAL 2018. [DOI: 10.1007/s15007-018-1764-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
3
|
Benito-Villalvilla C, Soria I, Subiza JL, Palomares O. Novel vaccines targeting dendritic cells by coupling allergoids to mannan. ACTA ACUST UNITED AC 2018; 27:256-262. [PMID: 30546997 PMCID: PMC6267119 DOI: 10.1007/s40629-018-0069-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 04/09/2018] [Indexed: 01/27/2023]
Abstract
Allergen-specific immunotherapy (AIT) is the single disease-modifying treatment for allergy. Clinical trials show AIT to be safe and effective for many patients; however, it still faces problems related to efficacy, safety, long treatment duration and low patient adherence. There has been intensive research to develop alternative strategies, including novel administration routes, adjuvants or hypoallergenic molecules. Promising results are reported for some of them, but clinical progress is still moderate. Allergoids conjugated to nonoxidized mannan from Saccharomyces cerevisiae have emerged as a novel concept of vaccine targeting dendritic cells (DCs). Preclinical human and animal models demonstrated that allergoids conjugated to mannan enhance allergen uptake, promote healthy responses to allergens by inducing Th1 and T regulatory (Treg) cells, and show clinical efficacy in veterinary medicine. Dose-finding phase II clinical trials in humans are currently ongoing. We review the current stage of allergoids conjugated to mannan as next generation vaccines for AIT.
Collapse
Affiliation(s)
- Cristina Benito-Villalvilla
- 1Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain
| | | | | | - Oscar Palomares
- 1Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
4
|
Structural studies of novel glycoconjugates from polymerized allergens (allergoids) and mannans as allergy vaccines. Glycoconj J 2015; 33:93-101. [PMID: 26603537 PMCID: PMC4722057 DOI: 10.1007/s10719-015-9640-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/15/2015] [Accepted: 11/18/2015] [Indexed: 10/26/2022]
Abstract
Immunotherapy for treating IgE-mediated allergies requires high doses of the corresponding allergen. This may result in undesired side effects and, to avoid them, hypoallergenic allergens (allergoids) polymerized with glutaraldehyde are commonly used. Targeting allergoids to dendritic cells to enhance cell uptake may result in a more effective immunotherapy. Allergoids coupled to yeast mannan, as source of polymannoses, would be suitable for this purpose, since mannose-binding receptors are expressed on these cells. Conventional conjugation procedures of mannan to proteins use oxidized mannan to release reactive aldehydes able to bind to free amino groups in the protein; yet, allergoids lack these latter because their previous treatment with glutaraldehyde. The aim of this study was to obtain allergoids conjugated to mannan by an alternative approach based on just glutaraldehyde treatment, taking advantage of the mannoprotein bound to the polymannose backbone. Allergoid-mannan glycoconjugates were produced in a single step by treating with glutaraldehyde a defined mixture of allergens derived from Phleum pratense grass pollen and native mannan (non-oxidized) from Saccharomyces cerevisae. Analytical and structural studies, including 2D-DOSY and (1)H-(13)C HSQC nuclear magnetic resonance spectra, demonstrated the feasibility of such an approach. The glycoconjugates obtained were polymers of high molecular weight showing a higher stability than the native allergen or the conventional allergoid without mannan. The allergoid-mannan glycoconjugates were hypoallergenic as detected by the IgE reactivity with sera from grass allergic patients, even with lower reactivity than conventional allergoid without mannan. Thus, stable hypoallergenic allergoids conjugated to mannan suitable for using in immunotherapy can be achieved using glutaraldehyde. In contrast to mannan oxidation, the glutaraldehyde approach allows to preserve mannoses with their native geometry, which may be functionally important for its receptor-mediated recognition.
Collapse
|
5
|
Van Damme EJM, Nakamura-Tsuruta S, Smith DF, Ongenaert M, Winter HC, Rougé P, Goldstein IJ, Mo H, Kominami J, Culerrier R, Barre A, Hirabayashi J, Peumans WJ. Phylogenetic and specificity studies of two-domain GNA-related lectins: generation of multispecificity through domain duplication and divergent evolution. Biochem J 2007; 404:51-61. [PMID: 17288538 PMCID: PMC1868831 DOI: 10.1042/bj20061819] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A re-investigation of the occurrence and taxonomic distribution of proteins built up of protomers consisting of two tandem arrayed domains equivalent to the GNA [Galanthus nivalis (snowdrop) agglutinin] revealed that these are widespread among monotyledonous plants. Phylogenetic analysis of the available sequences indicated that these proteins do not represent a monophylogenetic group but most probably result from multiple independent domain duplication/in tandem insertion events. To corroborate the relationship between inter-domain sequence divergence and the widening of specificity range, a detailed comparative analysis was made of the sequences and specificity of a set of two-domain GNA-related lectins. Glycan microarray analyses, frontal affinity chromatography and surface plasmon resonance measurements demonstrated that the two-domain GNA-related lectins acquired a marked diversity in carbohydrate-binding specificity that strikingly contrasts the canonical exclusive specificity of their single domain counterparts towards mannose. Moreover, it appears that most two-domain GNA-related lectins interact with both high mannose and complex N-glycans and that this dual specificity relies on the simultaneous presence of at least two different independently acting binding sites. The combined phylogenetic, specificity and structural data strongly suggest that plants used domain duplication followed by divergent evolution as a mechanism to generate multispecific lectins from a single mannose-binding domain. Taking into account that the shift in specificity of some binding sites from high mannose to complex type N-glycans implies that the two-domain GNA-related lectins are primarily directed against typical animal glycans, it is tempting to speculate that plants developed two-domain GNA-related lectins for defence purposes.
Collapse
Affiliation(s)
- Els J M Van Damme
- Department of Molecular Biotechnology, Laboratory of Biochemistry and Glycobiology, Ghent University, Coupure Links 653, B-9000 Gent, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kakehi K, Oda Y, Kinoshita M. Fluorescence polarization: analysis of carbohydrate-protein interaction. Anal Biochem 2001; 297:111-6. [PMID: 11673876 DOI: 10.1006/abio.2001.5309] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fluorescence polarization has been widely used for the studies on the molecular motion in solution and has been applied to immunoassays for proteins, therapeutic drug monitoring in clinical pharmacy, and assays for environmentally toxic compounds. Because fluorescence polarization is most readily applicable to the kinetic analysis of the binding reaction between a substance having small molecular mass and a receptor molecule, this method is easily applied to the analysis of carbohydrate-lectin binding. In this tutorial Thematic Review, we briefly introduce the principles of fluorescence polarization and some applications of fluorescence polarization technique to glycobiology.
Collapse
Affiliation(s)
- K Kakehi
- Faculty of Pharmaceutical Sciences, Kinki University, Kowakae 3-4-1, Higashi-Osaka, 577, Japan.
| | | | | |
Collapse
|
7
|
Wu AM, Song SC, Tsai MS, Herp A. A Guide to the Carbohydrate Specificities of Applied Lectins-2. THE MOLECULAR IMMUNOLOGY OF COMPLEX CARBOHYDRATES —2 2001; 491:551-85. [PMID: 14533822 DOI: 10.1007/978-1-4615-1267-7_37] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- A M Wu
- Glyco-Immunochemistry Research Laboratory, Chang-Gung Medical College, Chang-Gung University, Kwei-San, Tao-Yuan 33332, Taiwan.
| | | | | | | |
Collapse
|
8
|
Oda Y, Nakayama K, Abdul-Rahman B, Kinoshita M, Hashimoto O, Kawasaki N, Hayakawa T, Kakehi K, Tomiya N, Lee YC. Crocus sativus Lectin Recognizes Man3GlcNAc in the N-Glycan Core Structure. J Biol Chem 2000. [DOI: 10.1016/s0021-9258(19)61442-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
9
|
Van Damme EJ, Astoul CH, Barre A, Rougé P, Peumans WJ. Cloning and characterization of a monocot mannose-binding lectin from Crocus vernus (family Iridaceae). EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:5067-77. [PMID: 10931189 DOI: 10.1046/j.1432-1327.2000.01563.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The molecular structure and carbohydrate-binding activity of the lectin from bulbs of spring crocus (Crocus vernus) has been determined unambiguously using a combination of protein analysis and cDNA cloning. Molecular cloning revealed that the lectin called C. vernus agglutinin (CVA) is encoded by a precursor consisting of two tandemly arrayed lectin domains with a reasonable sequence similarity to the monocot mannose-binding lectins. Post-translational cleavage of the precursor yields two equally sized polypeptides. Mature CVA consists of two pairs of polypeptides and hence is a heterotetrameric protein. Surface plasmon resonance studies of the interaction of the crocus lectin with high mannose-type glycans showed that the lectin interacts specifically with exposed alpha-1,3-dimannosyl motifs. Molecular modelling studies confirmed further the close relationships in overall fold and three-dimensional structure of the mannose-binding sites of the crocus lectin and other monocot mannose-binding lectins. However, docking experiments indicate that only one of the six putative mannose-binding sites of the CVA protomer is active. These results can explain the weak carbohydrate-binding activity and low specific agglutination activity of the lectin. As the cloning and characterization of the spring crocus lectin demonstrate that the monocot mannose-binding lectins occur also within the family Iridaceae a refined model of the molecular evolution of this lectin family is proposed.
Collapse
Affiliation(s)
- E J Van Damme
- Laboratory of Phytopathology and Plant Protection, Katholieke Universiteit Leuven, Belgium; Institut de Pharmacologie et Biologie Structurale, Toulouse, France.
| | | | | | | | | |
Collapse
|
10
|
Escribano J, Rubio A, Alvarez-Ortí M, Molina A, Fernández JA. Purification and characterization of a mannan-binding lectin specifically expressed in corms of saffron plant (Crocus sativus L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2000; 48:457-463. [PMID: 10691656 DOI: 10.1021/jf990735r] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Despite the economical interest of Crocus sativus, its biochemistry has been poorly studied. Herein, we have isolated a lectin present in saffron corm by gel-filtration, anion-exchange, and reversed-phase chromatography. One- and two-dimensional PAGE, MALDI-MS, and N-terminal amino acid sequence analyses indicated that the native protein forms noncovalently linked aggregates of about 80 kDa apparent molecular mass, mainly composed of two charged heterogeneous (pI's, 6.69-6.93) basic subunits of approximately 12 kDa. Their N-terminal sequences shared 25% similarity and were homologous to the N- and C-terminal domains of monocotyledonous mannose-binding lectins, respectively. An additional polypeptide of around 28 kDa apparent molecular mass was also detected, probably corresponding to a precursor processed into two mature subunits. In addition, the N-terminal domain subunit exhibited 56% similarity with curculin, a sweet protein with taste-modifying activity. The native lectin specifically interacts with a yeast mannan and is a major corm protein specifically expressed in this organ.
Collapse
Affiliation(s)
- J Escribano
- Grupo de Genética y Biotecnología, Departamento de Ciencia y Tecnología Agroforestal-UCLM, E.T.S. Ingenieros Agrónomos, Campus Universitario s/n, 02071 Albacete, Spain
| | | | | | | | | |
Collapse
|