1
|
Takahashi I. Role of Heparan Sulfate Proteoglycans in Insulin-producing Pancreatic β-cell Function. TRENDS GLYCOSCI GLYC 2021. [DOI: 10.4052/tigg.2028.1j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Iwao Takahashi
- Department of Medical Biochemistry, School of Pharmacy, Iwate Medical University
| |
Collapse
|
2
|
Takahashi I. Role of Heparan Sulfate Proteoglycans in Insulin-producing Pancreatic β-cell Function. TRENDS GLYCOSCI GLYC 2021. [DOI: 10.4052/tigg.2028.1e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Iwao Takahashi
- Department of Medical Biochemistry, School of Pharmacy, Iwate Medical University
| |
Collapse
|
3
|
Weiss RJ, Spahn PN, Chiang AW, Liu Q, Li J, Hamill KM, Rother S, Clausen TM, Hoeksema MA, Timm BM, Godula K, Glass CK, Tor Y, Gordts PL, Lewis NE, Esko JD. Genome-wide screens uncover KDM2B as a modifier of protein binding to heparan sulfate. Nat Chem Biol 2021; 17:684-692. [PMID: 33846619 PMCID: PMC8159865 DOI: 10.1038/s41589-021-00776-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 02/18/2021] [Indexed: 02/01/2023]
Abstract
Heparan sulfate (HS) proteoglycans bind extracellular proteins that participate in cell signaling, attachment and endocytosis. These interactions depend on the arrangement of sulfated sugars in the HS chains generated by well-characterized biosynthetic enzymes; however, the regulation of these enzymes is largely unknown. We conducted genome-wide CRISPR-Cas9 screens with a small-molecule ligand that binds to HS. Screening of A375 melanoma cells uncovered additional genes and pathways impacting HS formation. The top hit was the epigenetic factor KDM2B, a histone demethylase. KDM2B inactivation suppressed multiple HS sulfotransferases and upregulated the sulfatase SULF1. These changes differentially affected the interaction of HS-binding proteins. KDM2B-deficient cells displayed decreased growth rates, which was rescued by SULF1 inactivation. In addition, KDM2B deficiency altered the expression of many extracellular matrix genes. Thus, KDM2B controls proliferation of A375 cells through the regulation of HS structure and serves as a master regulator of the extracellular matrix.
Collapse
Affiliation(s)
- Ryan J. Weiss
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Philipp N. Spahn
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | - Austin W.T. Chiang
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | - Qing Liu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Jing Li
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Kristina M. Hamill
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA
| | - Sandra Rother
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Thomas M. Clausen
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA,Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Marten A. Hoeksema
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Bryce M. Timm
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA
| | - Kamil Godula
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA,Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA
| | - Christopher K. Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA,Department of Medicine, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA,Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA
| | - Philip L.S.M. Gordts
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA,Department of Medicine, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Nathan E. Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA,Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA,Co-corresponding authors
| | - Jeffrey D. Esko
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA,Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA,Co-corresponding authors
| |
Collapse
|
4
|
Kamimura K, Maeda N. Glypicans and Heparan Sulfate in Synaptic Development, Neural Plasticity, and Neurological Disorders. Front Neural Circuits 2021; 15:595596. [PMID: 33679334 PMCID: PMC7928303 DOI: 10.3389/fncir.2021.595596] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are components of the cell surface and extracellular matrix, which bear long polysaccharides called heparan sulfate (HS) attached to the core proteins. HSPGs interact with a variety of ligand proteins through the HS chains, and mutations in HSPG-related genes influence many biological processes and cause various diseases. In particular, recent findings from vertebrate and invertebrate studies have raised the importance of glycosylphosphatidylinositol-anchored HSPGs, glypicans, as central players in the development and functions of synapses. Glypicans are important components of the synapse-organizing protein complexes and serve as ligands for leucine-rich repeat transmembrane neuronal proteins (LRRTMs), leukocyte common antigen-related (LAR) family receptor protein tyrosine phosphatases (RPTPs), and G-protein-coupled receptor 158 (GPR158), regulating synapse formation. Many of these interactions are mediated by the HS chains of glypicans. Neurexins (Nrxs) are also synthesized as HSPGs and bind to some ligands in common with glypicans through HS chains. Therefore, glypicans and Nrxs may act competitively at the synapses. Furthermore, glypicans regulate the postsynaptic expression levels of ionotropic glutamate receptors, controlling the electrophysiological properties and non-canonical BMP signaling of synapses. Dysfunctions of glypicans lead to failures in neuronal network formation, malfunction of synapses, and abnormal behaviors that are characteristic of neurodevelopmental disorders. Recent human genetics revealed that glypicans and HS are associated with autism spectrum disorder, neuroticism, and schizophrenia. In this review, we introduce the studies showing the roles of glypicans and HS in synapse formation, neural plasticity, and neurological disorders, especially focusing on the mouse and Drosophila as potential models for human diseases.
Collapse
Affiliation(s)
- Keisuke Kamimura
- Developmental Neuroscience Project, Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Japan
| | - Nobuaki Maeda
- Developmental Neuroscience Project, Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Japan
| |
Collapse
|
5
|
Mochizuki H, Futatsumori H, Suzuki E, Kimata K. A quantitative method to detect non-antithrombin-binding 3-O-sulfated units in heparan sulfate. J Biol Chem 2021; 296:100115. [PMID: 33234593 PMCID: PMC7948761 DOI: 10.1074/jbc.ra120.015864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 11/22/2022] Open
Abstract
Heparan sulfate is synthesized by most animal cells and interacts with numerous proteins via specific sulfation motifs to regulate various physiological processes. Various 3-O-sulfated motifs are considered to be key in controlling the binding specificities to the functional proteins. One such motif synthesized by 3-O-sulfotransferase-1 (3OST-1) serves as a binding site for antithrombin (AT) and has been thoroughly studied because of its pharmacological importance. However, the physiological roles of 3-O-sulfates produced by other 3OST isoforms, which do not bind AT, remain obscure, in part due to the lack of a standard method to analyze this rare modification. This study aims to establish a method for quantifying 3-O-sulfated components of heparan sulfate, focusing on non-AT-binding units. We previously examined the reaction products of human 3OST isoforms and identified five 3-O-sulfated components, including three non-AT-binding disaccharides and two AT-binding tetrasaccharides, as digestion products of heparin lyases. In this study, we prepared these five components as a standard saccharide for HPLC analysis. Together with eight non-3-O-sulfated disaccharides, a standard mixture of 13 units was prepared. Using reverse-phase ion-pair HPLC with a postcolumn fluorescent labeling system, the separation conditions were optimized to quantify the 13 units. Finally, we analyzed the compositional changes of 3-O-sulfated units in heparan sulfate from P19 cells before and after neuronal differentiation. We successfully detected the 3-O-sulfated units specifically expressed in the differentiated neurons. This is the first report that shows the quantification of three non-AT-binding 3-O-sulfated units and establishes a new approach to explore the physiological functions of 3-O-sulfate.
Collapse
Affiliation(s)
- Hideo Mochizuki
- Central Research Laboratories, Seikagaku Corporation, Higashiyamato, Tokyo, Japan.
| | - Hideyuki Futatsumori
- Central Research Laboratories, Seikagaku Corporation, Higashiyamato, Tokyo, Japan
| | - Eriko Suzuki
- Central Research Laboratories, Seikagaku Corporation, Higashiyamato, Tokyo, Japan
| | - Koji Kimata
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
6
|
Ravikumar M, Smith RAA, Nurcombe V, Cool SM. Heparan Sulfate Proteoglycans: Key Mediators of Stem Cell Function. Front Cell Dev Biol 2020; 8:581213. [PMID: 33330458 PMCID: PMC7710810 DOI: 10.3389/fcell.2020.581213] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are an evolutionarily ancient subclass of glycoproteins with exquisite structural complexity. They are ubiquitously expressed across tissues and have been found to exert a multitude of effects on cell behavior and the surrounding microenvironment. Evidence has shown that heterogeneity in HSPG composition is crucial to its functions as an essential scaffolding component in the extracellular matrix as well as a vital cell surface signaling co-receptor. Here, we provide an overview of the significance of HSPGs as essential regulators of stem cell function. We discuss the various roles of HSPGs in distinct stem cell types during key physiological events, from development through to tissue homeostasis and regeneration. The contribution of aberrant HSPG production to altered stem cell properties and dysregulated cellular homeostasis characteristic of cancer is also reviewed. Finally, we consider approaches to better understand and exploit the multifaceted functions of HSPGs in influencing stem cell characteristics for cell therapy and associated culture expansion strategies.
Collapse
Affiliation(s)
- Maanasa Ravikumar
- Glycotherapeutics Group, Institute of Medical Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore.,Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Raymond Alexander Alfred Smith
- Glycotherapeutics Group, Institute of Medical Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Victor Nurcombe
- Glycotherapeutics Group, Institute of Medical Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University-Imperial College London, Singapore, Singapore
| | - Simon M Cool
- Glycotherapeutics Group, Institute of Medical Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore.,Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
7
|
Jin W, Li S, Chen J, Liu B, Li J, Li X, Zhang F, Linhardt RJ, Zhong W. Increased soluble heterologous expression of a rat brain 3-O-sulfotransferase 1 - A key enzyme for heparin biosynthesis. Protein Expr Purif 2018; 151:23-29. [PMID: 29894802 DOI: 10.1016/j.pep.2018.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/08/2018] [Accepted: 06/08/2018] [Indexed: 12/22/2022]
Abstract
Heparan sulfate (HS), is a glycosaminoglycan (GAG) involved in various biological processes, including blood coagulation, wound healing and embryonic development. HS 3-O-sulfotransferases (3-OST), which transfer the sulfo group to the 3-hydroxyl group of certain glucosamine residues, is a key enzyme in the biosynthesis of a number of biologically important HS chains. The 3-OST-1 isoform is one of the 7 known 3-OST isoforms and is important for the biosynthesis of anticoagulant HS chains. In this study, we cloned 3-OST-1 from the rat brain by reverse transcription-polymerase chain reaction (RT-PCR). After codon optimization and removal of the signal peptide, the recombinant plasmid was transformed into Escherichia coli BL21 (DE3) to obtain a His tagged-3-OST-1 fusion protein. SDS-PAGE analysis showed that the expressed 3-OST-1 was mainly found in inclusion bodies. The 3-OST-1 was purified by Ni affinity column and refolded by dialysis. The activity of obtained 3-OST-1 was 0.04 U/mL with a specific activity of 0.55 U/mg after renaturation. Furthermore, a co-expressed recombinant plasmid pET-28a-3-OST-1 with the chaperone expression system (pGro7) was constructed and transferred to E. coli BL21 (DE3) to co-express recombinant strain E. coli BL21 (DE3)/pET-28a-3-OST-1 + pGro7. The soluble expression of 3-OST-1 was significantly improved in the co-expressed recombinant strain, with enzyme activity reaching 0.06 U/mL and having a specific activity of 0.83 U/mg. N-sulfo, N-acetylheparosan (NSNAH) was modified by the recombinant expressed 3-OST-1 and the product was confirmed by 1H NMR showing the sulfo group was successfully transferred to NSNAH.
Collapse
Affiliation(s)
- Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Shuai Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Jiale Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Bing Liu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Jie Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Xueliang Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA; Department of Biological Science, Departments of Chemistry and Chemical Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
8
|
Mizumoto S. Defects in Biosynthesis of Glycosaminoglycans Cause Hereditary Bone, Skin, Heart, Immune, and Neurological Disorders. TRENDS GLYCOSCI GLYC 2018. [DOI: 10.4052/tigg.1812.2j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University
| |
Collapse
|
9
|
Dinarvand P, Yang L, Villoutreix BO, Rezaie AR. Expression and functional characterization of two natural heparin-binding site variants of antithrombin. J Thromb Haemost 2018; 16:330-341. [PMID: 29215785 PMCID: PMC5809256 DOI: 10.1111/jth.13920] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Indexed: 02/02/2023]
Abstract
Essentials Heparin-binding site (HBS) variants of antithrombin (AT) are associated with thrombosis risk. HSB variants have, in general, normal progressive inhibitory activity but reduced heparin affinity. Thrombosis in HSB carriers has been primarily attributed to the loss of heparin cofactor activity. Results here demonstrate that HSB variants of AT also lack anti-inflammatory signaling functions. SUMMARY Background Several heparin-binding site (HBS) variants of antithrombin (AT) have been identified that predispose carriers to a higher incidence of thrombosis. Thrombosis in carriers of HBS variants has been primarily attributed to a loss in their heparin-dependent anticoagulant function. Objective The objective of this study was to determine whether HSB mutations affect the anti-inflammatory functions of variants. Methods Two HBS variants of AT (AT-I7N and AT-L99F), which are known to be associated with a higher incidence of thrombosis, were expressed in mammalian cells and purified to homogeneity. These variants were characterized by kinetic assays followed by analysis of their activities in established cellular and/or in vivo inflammatory models. The possible effects of mutations on AT structure were also evaluated by molecular modeling. Results The results indicated that, whereas progressive inhibitory activities of variants were minimally affected, their heparin affinity and inhibitory activity in the presence of heparin were markedly decreased. Unlike wild-type AT, neither AT variant was capable of inhibiting activation of nuclear factor-κB or downregulation of expression of cell adhesion molecules in response to lipopolysaccharide (LPS). Similarly, neither variant elicited barrier protective activity in response to LPS. Structural analysis suggested that the L99F substitution locally destabilizes AT structure. Conclusions It is concluded that the L99F mutation of AT is associated with destabilization of the serpin structure, and that the loss of anti-inflammatory signaling function of the HBS variants may also contribute to enhanced thrombosis in carriers of HBS mutations.
Collapse
Affiliation(s)
- Peyman Dinarvand
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis
| | - Likui Yang
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation
| | - Bruno O. Villoutreix
- Inserm U973, Université Paris Diderot, Sorbonne Paris Cité, Molécules Thérapeutiques In Silico, Paris, France
| | - Alireza R. Rezaie
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| |
Collapse
|
10
|
Schultz V, Suflita M, Liu X, Zhang X, Yu Y, Li L, Green DE, Xu Y, Zhang F, DeAngelis PL, Liu J, Linhardt RJ. Heparan Sulfate Domains Required for Fibroblast Growth Factor 1 and 2 Signaling through Fibroblast Growth Factor Receptor 1c. J Biol Chem 2017; 292:2495-2509. [PMID: 28031461 PMCID: PMC5313116 DOI: 10.1074/jbc.m116.761585] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/16/2016] [Indexed: 11/06/2022] Open
Abstract
A small library of well defined heparan sulfate (HS) polysaccharides was chemoenzymatically synthesized and used for a detailed structure-activity study of fibroblast growth factor (FGF) 1 and FGF2 signaling through FGF receptor (FGFR) 1c. The HS polysaccharide tested contained both undersulfated (NA) domains and highly sulfated (NS) domains as well as very well defined non-reducing termini. This study examines differences in the HS selectivity of the positive canyons of the FGF12-FGFR1c2 and FGF22-FGFR1c2 HS binding sites of the symmetric FGF2-FGFR2-HS2 signal transduction complex. The results suggest that FGF12-FGFR1c2 binding site prefers a longer NS domain at the non-reducing terminus than FGF22-FGFR1c2 In addition, FGF22-FGFR1c2 can tolerate an HS chain having an N-acetylglucosamine residue at its non-reducing end. These results clearly demonstrate the different specificity of FGF12-FGFR1c2 and FGF22-FGFR1c2 for well defined HS structures and suggest that it is now possible to chemoenzymatically synthesize precise HS polysaccharides that can selectively mediate growth factor signaling. These HS polysaccharides might be useful in both understanding and controlling the growth, proliferation, and differentiation of cells in stem cell therapies, wound healing, and the treatment of cancer.
Collapse
Affiliation(s)
| | | | - Xinyue Liu
- From the Departments of Chemistry and Chemical Biology
| | - Xing Zhang
- From the Departments of Chemistry and Chemical Biology
| | - Yanlei Yu
- From the Departments of Chemistry and Chemical Biology
| | - Lingyun Li
- the Wadsworth Center, New York State Department of Health, Albany, New York 12201
| | - Dixy E Green
- the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73126, and
| | - Yongmei Xu
- the Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Fuming Zhang
- From the Departments of Chemistry and Chemical Biology
| | - Paul L DeAngelis
- the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73126, and
| | - Jian Liu
- the Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Robert J Linhardt
- From the Departments of Chemistry and Chemical Biology,
- Biology
- Biomedical Engineering, and
- Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180
| |
Collapse
|
11
|
Smits NC, Kobayashi T, Srivastava PK, Skopelja S, Ivy JA, Elwood DJ, Stan RV, Tsongalis GJ, Sellke FW, Gross PL, Cole MD, DeVries JT, Kaplan AV, Robb JF, Williams SM, Shworak NW. HS3ST1 genotype regulates antithrombin's inflammomodulatory tone and associates with atherosclerosis. Matrix Biol 2017; 63:69-90. [PMID: 28126521 DOI: 10.1016/j.matbio.2017.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 01/19/2017] [Accepted: 01/20/2017] [Indexed: 12/21/2022]
Abstract
The HS3ST1 gene controls endothelial cell production of HSAT+ - a form of heparan sulfate containing a specific pentasaccharide motif that binds the anticoagulant protein antithrombin (AT). HSAT+ has long been thought to act as an endogenous anticoagulant; however, coagulation was normal in Hs3st1-/- mice that have greatly reduced HSAT+ (HajMohammadi et al., 2003). This finding indicates that HSAT+ is not essential for AT's anticoagulant activity. To determine if HSAT+ is involved in AT's poorly understood inflammomodulatory activities, Hs3st1-/- and Hs3st1+/+ mice were subjected to a model of acute septic shock. Compared with Hs3st1+/+ mice, Hs3st1-/- mice were more susceptible to LPS-induced death due to an increased sensitivity to TNF. For Hs3st1+/+ mice, AT treatment reduced LPS-lethality, reduced leukocyte firm adhesion to endothelial cells, and dilated isolated coronary arterioles. Conversely, for Hs3st1-/- mice, AT induced the opposite effects. Thus, in the context of acute inflammation, HSAT+ selectively mediates AT's anti-inflammatory activity; in the absence of HSAT+, AT's pro-inflammatory effects predominate. To explore if the anti-inflammatory action of HSAT+ also protects against a chronic vascular-inflammatory disease, atherosclerosis, we conducted a human candidate-gene association study on >2000 coronary catheterization patients. Bioinformatic analysis of the HS3ST1 gene identified an intronic SNP, rs16881446, in a putative transcriptional regulatory region. The rs16881446G/G genotype independently associated with the severity of coronary artery disease and atherosclerotic cardiovascular events. In primary endothelial cells, the rs16881446G allele associated with reduced HS3ST1 expression. Together with the mouse data, this leads us to conclude that the HS3ST1 gene is required for AT's anti-inflammatory activity that appears to protect against acute and chronic inflammatory disorders.
Collapse
Affiliation(s)
- Nicole C Smits
- Section of Cardiology, Department of Medicine, Heart and Vascular Center, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Takashi Kobayashi
- Section of Cardiology, Department of Medicine, Heart and Vascular Center, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Pratyaksh K Srivastava
- Section of Cardiology, Department of Medicine, Heart and Vascular Center, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Sladjana Skopelja
- Section of Cardiology, Department of Medicine, Heart and Vascular Center, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Julianne A Ivy
- Section of Cardiology, Department of Medicine, Heart and Vascular Center, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Dustin J Elwood
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Radu V Stan
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Gregory J Tsongalis
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Frank W Sellke
- Division of Cardiothoracic Surgery, Brown Medical School, Providence, RI, USA
| | - Peter L Gross
- Department of Medicine, Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Michael D Cole
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - James T DeVries
- Section of Cardiology, Department of Medicine, Heart and Vascular Center, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Aaron V Kaplan
- Section of Cardiology, Department of Medicine, Heart and Vascular Center, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - John F Robb
- Section of Cardiology, Department of Medicine, Heart and Vascular Center, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Scott M Williams
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Nicholas W Shworak
- Section of Cardiology, Department of Medicine, Heart and Vascular Center, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA; Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
| |
Collapse
|
12
|
Thacker BE, Seamen E, Lawrence R, Parker MW, Xu Y, Liu J, Vander Kooi CW, Esko JD. Expanding the 3-O-Sulfate Proteome--Enhanced Binding of Neuropilin-1 to 3-O-Sulfated Heparan Sulfate Modulates Its Activity. ACS Chem Biol 2016; 11:971-80. [PMID: 26731579 DOI: 10.1021/acschembio.5b00897] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Binding of proteins to heparan sulfate is driven predominantly by electrostatic interactions between positively charged amino acid residues in the protein and negatively charged sulfate groups located at various positions along the polysaccharide chain. Although many heparin/heparan-sulfate-binding proteins have been described, few exhibit preferential binding for heparan sulfates containing relatively rare 3-O-sulfated glucosamine residues. To expand the "3-O-sulfate proteome," affinity matrices were created from Chinese hamster ovary (CHO) cell heparan sulfate engineered in vitro with and without 3-O-sulfate groups. Fractionation of different animal sera yielded several proteins that bound specifically to columns containing 3-O-sulfated heparan sulfate modified by two members of the heparan sulfate 3-O-sulfotransferase superfamily, Hs3st1 and Hs3st2. Neuropilin-1 was analyzed in detail because it has been implicated in angiogenesis and axon guidance. We show that 3-O-sulfation enhanced the binding of neuropilin-1 to heparan sulfate immobilized on plastic plates and to heparan sulfate present on cultured cells. Chemoenzymatically synthesized 3-O-sulfated heparan sulfate dodecamers protected neuropilin-1 from thermal denaturation and inhibited neuropilin-1-dependent, semaphorin-3a-induced growth cone collapse of neurons derived from murine dorsal root ganglia. The effect of 3-O-sulfation was cell autonomous and specific to Hs3st2 based on collapse assays of neurons derived from Hs3st1- and Hs3st2-deficient mice. Finally, 3-O-sulfated heparan sulfate enhanced the inhibition of endothelial cell sprouting by exogenous heparan sulfate. These findings demonstrate a reliable method to identify members of the 3-O-sulfate proteome and that 3-O-sulfation of heparan sulfate can modulate axonal growth cone collapse and endothelial cell sprouting.
Collapse
Affiliation(s)
| | | | | | - Matthew W. Parker
- Center
for Structural Biology, Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Yongmei Xu
- Division
of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jian Liu
- Division
of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Craig W. Vander Kooi
- Center
for Structural Biology, Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536, United States
| | | |
Collapse
|
13
|
Zhang L, Song K, Zhou L, Xie Z, Zhou P, Zhao Y, Han Y, Xu X, Li P. Heparan sulfate D-glucosaminyl 3-O-sulfotransferase-3B1 (HS3ST3B1) promotes angiogenesis and proliferation by induction of VEGF in acute myeloid leukemia cells. J Cell Biochem 2016; 116:1101-12. [PMID: 25536282 DOI: 10.1002/jcb.25066] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 12/18/2014] [Indexed: 01/01/2023]
Abstract
Heparan sulfate (HS) are complex polysaccharides that reside on the plasma membrane of almost all mammalian cells, and play an important role in physiological and pathological conditions. Heparan sulfate D-glucosamine 3-O-sulfotransferase 3B1 (HS3ST3B1) participates in the last biosynthetic steps of HS and transfers sulfate to the 3-O-position of glucosamine residues to yield mature sugar chains. To date very few biological processes or proteins have been described that are modulated by HS3ST3B1. In this study, we observed that HS3ST3B1 positively contributed to acute myeloid leukemia (AML) progression in vitro and in vivo, and these activities were associated with an induction of the proangiogenic factor VEGF expression and shedding. Moreover, the effects of HS3ST3B1 on VEGF release can be attenuated after treatment of heparanase inhibitor suramin, which prevented VEGF secretion and subsequently blocked VEGF-induced activation of ERK and AKT, suggesting that 3-O-sulfation of HS by HS3ST3B1 facilitated VEGF shedding; the effects of HS3ST3B1 on activation of ERK and AKT can also be blocked by VEGFR inhibitor axitinib, suggestive of a relationship between 3-O-sulfation of HS and VEGF-activated signaling pathways. Taken together, our findings support that VEGF is an important functional target of HS3ST3B1 and provide a new mechanism of HS3ST3B1 in AML.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Yabe T, Maeda N. Histochemical analysis of heparan sulfate 3-O-sulfotransferase expression in mouse brain. Methods Mol Biol 2015; 1229:377-87. [PMID: 25325966 DOI: 10.1007/978-1-4939-1714-3_29] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In situ hybridization provides information for understanding the localization of gene expression in various tissues. The relative expression levels of mRNAs in a single cell can be sensitively visualized by this technique. Furthermore, since in situ hybridization is a histological technique, tissue structure is maintained after fixation, and it is possible to accurately identify cell types. We have examined the expression of heparan sulfate sulfotransferases by in situ hybridization to better understand the functions of heparan sulfate in the development of mouse nervous system. This chapter describes methods of in situ hybridization analyses using cRNA probes labeled with nonradioactive nucleotides.
Collapse
Affiliation(s)
- Tomio Yabe
- Faculty of Applied Biological Sciences, Department of Applied Life Science, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan,
| | | |
Collapse
|
15
|
Abstract
Heparan sulfate is a polysaccharide that plays essential physiological functions in the animal kingdom. Heparin, a highly sulfated form of heparan sulfate, is a widely prescribed anticoagulant drug worldwide. The heparan sulfate and heparin isolated from natural sources are highly heterogeneous mixtures differing in their polysaccharide chain lengths and sulfation patterns. The access to structurally defined heparan sulfate and heparin is critical to probe the contribution of specific sulfated saccharide structures to the biological functions as well as for the development of the next generation of heparin-based anticoagulant drugs. The synthesis of heparan sulfate and heparin, using a purely chemical approach, has proven extremely difficult, especially for targets larger than octasaccharides having a high degree of site-specific sulfation. A new chemoenzymatic method has emerged as an effective alternative approach. This method uses recombinant heparan sulfate biosynthetic enzymes combined with unnatural uridine diphosphate-monosaccharide donors. Recent examples demonstrate the successful synthesis of ultra-low molecular weight heparin, low-molecular weight heparin and bioengineered heparin with unprecedented efficiency. The new method provides an opportunity to develop improved heparin-based therapeutics.
Collapse
Affiliation(s)
- Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Rm 1044, Genetic Medicine Building, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
16
|
Comprehensive analysis of herpes simplex virus 1 (HSV-1) entry mediated by zebrafish 3-O-Sulfotransferase isoforms: implications for the development of a zebrafish model of HSV-1 infection. J Virol 2014; 88:12915-22. [PMID: 25142596 DOI: 10.1128/jvi.02071-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Binding of herpes simplex virus 1 (HSV-1) envelope glycoprotein D (gD) to the receptor 3-O-sulfated heparan sulfate (3-OS HS) mediates viral entry. 3-O-Sulfation of HS is catalyzed by the 3-O-sulfotransferase (3-OST) enzyme. Multiple isoforms of 3-OST are differentially expressed in tissues of zebrafish (ZF) embryos. Here, we performed a comprehensive analysis of the role of ZF 3-OST isoforms (3-OST-1, 3-OST-5, 3-OST-6, and 3-OST-7) in HSV-1 entry. We found that a group of 3-OST gene family isoforms (3-OST-2, -3, -4, and -6) with conserved catalytic and substrate-binding residues of the enzyme mediates HSV-1 entry and spread, while the other group (3-OST-1, -5, and -7) lacks these properties. These results demonstrate that HSV-1 entry can be recapitulated by certain ZF 3-OST enzymes, a significant step toward the establishment of a ZF model of HSV-1 infection and tissue-specific tropism.
Collapse
|
17
|
Guo Y, Li Z, Lin X. Hs3st-A and Hs3st-B regulate intestinal homeostasis in Drosophila adult midgut. Cell Signal 2014; 26:2317-25. [PMID: 25049075 DOI: 10.1016/j.cellsig.2014.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 07/09/2014] [Indexed: 12/27/2022]
Abstract
Intrinsic and extrinsic signals as well as the extracellular matrix (ECM) tightly regulate stem cells for tissue homeostasis and regenerative capacity. Little is known about the regulation of tissue homeostasis by the ECM. Heparan sulfate proteoglycans (HSPGs), important components of the ECM, are involved in a variety of biological events. Two heparin sulfate 3-O sulfotransferase (Hs3st) genes, Hs3st-A and Hs3st-B, encode the modification enzymes in heparan sulfate (HS) biosynthesis. Here we demonstrate that Hs3st-A and Hs3st-B are required for adult midgut homeostasis. Depletion of Hs3st-A in enterocytes (ECs) results in increased intestinal stem cell (ISC) proliferation and tissue homeostasis loss. Moreover, increased ISC proliferation is also observed in Hs3st-B null mutant alone, or in combination with Hs3st-A RNAi. Hs3st-A depletion-induced ISC proliferation is effectively suppressed by simultaneous inhibition of the EGFR signaling pathway, suggesting that tissue homeostasis loss in Hs3st-A-deficient intestines is due to increased EGFR signaling. Furthermore, we find that Hs3st-A-depleted ECs are unhealthy and prone to death, while ectopic expression of the antiapoptotic p35 is able to greatly suppress tissue homeostasis loss in these intestines. Together, our data suggest that Drosophila Hs3st-A and Hs3st-B are involved in the regulation of ISC proliferation and midgut homeostasis maintenance.
Collapse
Affiliation(s)
- Yueqin Guo
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhouhua Li
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, Capital Normal University, Beijing 100048, China.
| | - Xinhua Lin
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
18
|
Mizumoto S, Yamada S, Sugahara K. Human genetic disorders and knockout mice deficient in glycosaminoglycan. BIOMED RESEARCH INTERNATIONAL 2014; 2014:495764. [PMID: 25126564 PMCID: PMC4122003 DOI: 10.1155/2014/495764] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/08/2014] [Indexed: 12/20/2022]
Abstract
Glycosaminoglycans (GAGs) are constructed through the stepwise addition of respective monosaccharides by various glycosyltransferases and maturated by epimerases and sulfotransferases. The structural diversity of GAG polysaccharides, including their sulfation patterns and sequential arrangements, is essential for a wide range of biological activities such as cell signaling, cell proliferation, tissue morphogenesis, and interactions with various growth factors. Studies using knockout mice of enzymes responsible for the biosynthesis of the GAG side chains of proteoglycans have revealed their physiological functions. Furthermore, mutations in the human genes encoding glycosyltransferases, sulfotransferases, and related enzymes responsible for the biosynthesis of GAGs cause a number of genetic disorders including chondrodysplasia, spondyloepiphyseal dysplasia, and Ehlers-Danlos syndromes. This review focused on the increasing number of glycobiological studies on knockout mice and genetic diseases caused by disturbances in the biosynthetic enzymes for GAGs.
Collapse
Affiliation(s)
- Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Kazuyuki Sugahara
- Laboratory of Proteoglycan Signaling and Therapeutics, Frontier Research Center for Post-Genomic Science and Technology, Graduate School of Life Science, Hokkaido University, West-11, North-21, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
19
|
Guo Y, Feng Y, Li Z, Lin X. Drosophila heparan sulfate 3-O sulfotransferase B null mutant is viable and exhibits no defects in Notch signaling. J Genet Genomics 2014; 41:369-78. [PMID: 25064676 DOI: 10.1016/j.jgg.2014.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/18/2014] [Accepted: 04/24/2014] [Indexed: 11/26/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) are critically involved in a variety of biological events. The functions of HSPGs are determined by the nature of the core proteins and modifications of heparan sulfate (HS) glycosaminoglycan (GAG) chains. The distinct O-sulfotransferases are important for nonrandom modifications at specific positions. Two HS 3-O sulfotransferase (Hs3st) genes, Hs3st-A and Hs3st-B, were identified in Drosophila. Previous experiments using RNA interference (RNAi) suggested that Hs3st-B was required for Notch signaling. Here, we generated a null mutant of Hs3st-B via ends-out gene targeting and examined its role(s) in development. We found that homozygous Hs3st-B mutants have no neurogenic defects or alterations in the expression of Notch signaling target gene. Thus, our results strongly argue against an essential role for Hs3st-B in Notch signaling. Moreover, we have generated two independent Hs3st-A RNAi lines which worked to deplete Hs3st-A. Importantly, Hs3st-A RNAi combined with Hs3st-B mutant flies did not alter the expression of Notch signaling components, arguing that both Hs3st-A and Hs3st-B were not essential for Notch signaling. The establishment of Hs3st-B mutant and effective Hs3st-A RNAi lines provides essential tools for further studies of the physiological roles of Hs3st-A and Hs3st-B in development and homeostasis.
Collapse
Affiliation(s)
- Yueqin Guo
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Feng
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou 325000, China; State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhouhua Li
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, Capital Normal University, Beijing 100048, China.
| | - Xinhua Lin
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
20
|
Sterner E, Masuko S, Li G, Li L, Green DE, Otto NJ, Xu Y, DeAngelis PL, Liu J, Dordick JS, Linhardt RJ. Fibroblast growth factor-based signaling through synthetic heparan sulfate blocks copolymers studied using high cell density three-dimensional cell printing. J Biol Chem 2014; 289:9754-65. [PMID: 24563485 DOI: 10.1074/jbc.m113.546937] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Four well-defined heparan sulfate (HS) block copolymers containing S-domains (high sulfo group content) placed adjacent to N-domains (low sulfo group content) were chemoenzymatically synthesized and characterized. The domain lengths in these HS block co-polymers were ~40 saccharide units. Microtiter 96-well and three-dimensional cell-based microarray assays utilizing murine immortalized bone marrow (BaF3) cells were developed to evaluate the activity of these HS block co-polymers. Each recombinant BaF3 cell line expresses only a single type of fibroblast growth factor receptor (FGFR) but produces neither HS nor fibroblast growth factors (FGFs). In the presence of different FGFs, BaF3 cell proliferation showed clear differences for the four HS block co-polymers examined. These data were used to examine the two proposed signaling models, the symmetric FGF2-HS2-FGFR2 ternary complex model and the asymmetric FGF2-HS1-FGFR2 ternary complex model. In the symmetric FGF2-HS2-FGFR2 model, two acidic HS chains bind in a basic canyon located on the top face of the FGF2-FGFR2 protein complex. In this model the S-domains at the non-reducing ends of the two HS proteoglycan chains are proposed to interact with the FGF2-FGFR2 protein complex. In contrast, in the asymmetric FGF2-HS1-FGFR2 model, a single HS chain interacts with the FGF2-FGFR2 protein complex through a single S-domain that can be located at any position within an HS chain. Our data comparing a series of synthetically prepared HS block copolymers support a preference for the symmetric FGF2-HS2-FGFR2 ternary complex model.
Collapse
Affiliation(s)
- Eric Sterner
- From the Department of Chemical and Biological Engineering
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Antoine TE, Yakoub A, Maus E, Shukla D, Tiwari V. Zebrafish 3-O-sulfotransferase-4 generated heparan sulfate mediates HSV-1 entry and spread. PLoS One 2014; 9:e87302. [PMID: 24498308 PMCID: PMC3911948 DOI: 10.1371/journal.pone.0087302] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 12/23/2013] [Indexed: 01/12/2023] Open
Abstract
Rare modification of heparan sulfate (HS) by glucosaminyl 3-O sulfotransferase (3-OST) isforms generates an entry receptor for herpes simplex virus type-1 (HSV-1). In the zebrafish (ZF) model multiple 3-OST isoforms are differentially expressed. One such isoform is 3-OST-4 which is widely expressed in the central nervous system of ZF. In this report we characterize the role of ZF encoded 3-OST-4 isoform for HSV-1 entry. Expression of ZF 3-OST-4 into resistant Chinese hamster ovary (CHO-K1) cells promoted susceptibility to HSV-1 infection. This entry was 3-O sulfated HS (3-OS HS) dependent as pre-treatment of ZF 3-OST-4 cells with enzyme HS lyases (heparinase II/III) significantly reduced HSV-1 entry. Interestingly, co-expression of ZF 3-OST-4 along with ZF 3-OST-2 which is also expressed in brain rendered cells more susceptible to HSV-1 than 3-OST-4 alone. The role of ZF-3-OST-4 in the spread of HSV-1 was also evaluated as CHO-K1 cells that expressed HSV-1 glycoproteins fused with ZF 3-OST-4 expressing effector CHO-K1 cells. Finally, adding further evidence ZF 3-OST-4 mediated HSV-1 entry was inhibited by anti-3O HS G2 peptide. Taken together our results demonstrate a role for ZF 3-OST-4 in HSV-1 pathogenesis and support the use of ZF as a model to study it.
Collapse
Affiliation(s)
- Thessicar E. Antoine
- Departments of Ophthalmology and Visual Sciences & Microbiology/Immunology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Abraam Yakoub
- Departments of Ophthalmology and Visual Sciences & Microbiology/Immunology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Erika Maus
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, Illinois, United States of America
| | - Deepak Shukla
- Departments of Ophthalmology and Visual Sciences & Microbiology/Immunology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Vaibhav Tiwari
- Departments of Ophthalmology and Visual Sciences & Microbiology/Immunology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, Illinois, United States of America
- * E-mail:
| |
Collapse
|
22
|
Thacker BE, Xu D, Lawrence R, Esko JD. Heparan sulfate 3-O-sulfation: a rare modification in search of a function. Matrix Biol 2013; 35:60-72. [PMID: 24361527 DOI: 10.1016/j.matbio.2013.12.001] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/03/2013] [Accepted: 12/03/2013] [Indexed: 02/02/2023]
Abstract
Many protein ligands bind to heparan sulfate, which results in their presentation, protection, oligomerization or conformational activation. Binding depends on the pattern of sulfation and arrangement of uronic acid epimers along the chains. Sulfation at the C3 position of glucosamine is a relatively rare, yet biologically significant modification, initially described as a key determinant for binding and activation of antithrombin and later for infection by type I herpes simplex virus. In mammals, a family of seven heparan sulfate 3-O-sulfotransferases installs sulfate groups at this position and constitutes the largest group of sulfotransferases involved in heparan sulfate formation. However, to date very few proteins or biological systems have been described that are influenced by 3-O-sulfation. This review describes our current understanding of the prevalence and structure of 3-O-sulfation sites, expression and substrate specificity of the 3-O-sulfotransferase family and the emerging roles of 3-O-sulfation in biology.
Collapse
Affiliation(s)
- Bryan E Thacker
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093-0687, United States; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093-0687, United States
| | - Ding Xu
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093-0687, United States
| | - Roger Lawrence
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093-0687, United States
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093-0687, United States; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093-0687, United States.
| |
Collapse
|
23
|
Gasimli L, Glass CA, Datta P, Yang B, Li G, Gemmill TR, Baik JY, Sharfstein ST, Esko JD, Linhardt RJ. Bioengineering murine mastocytoma cells to produce anticoagulant heparin. Glycobiology 2013; 24:272-80. [PMID: 24326668 DOI: 10.1093/glycob/cwt108] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Heparin (HP), an important anticoagulant polysaccharide, is produced in a complex biosynthetic pathway in connective tissue-type mast cells. Both the structure and size of HP are critical factors determining the anticoagulation activity. A murine mastocytoma (MST) cell line was used as a model system to gain insight into this pathway. As reported, MST cells produce a highly sulfated HP-like polysaccharide that lacks anticoagulant activity (Montgomery RI, Lidholt K, Flay NW, Liang J, Vertel B, Lindahl U, Esko JD. 1992. Stable heparin-producing cell lines derived from the Furth murine mastocytoma. Proc Natl Acad Sci USA 89:11327-11331). Here, we show that transfection of MST cells with a retroviral vector containing heparan sulfate 3-O-sulfotransferase-1 (Hs3st1) restores anticoagulant activity. The MST lines express N-acetylglucosamine N-deacetylase/N-sulfotransferase-1, uronosyl 2-O-sulfotransferase and glucosaminyl 6-O-sulfotransferase-1, which are sufficient to make the highly sulfated HP. Overexpression of Hs3st1 in MST-10H cells resulted in a change in the composition of heparan sulfate (HS)/HP and CS/dermatan sulfate (DS) glycosaminoglycans. The cell-associated HS/HP closely resembles HP with 3-O-sulfo group-containing glucosamine residues and shows anticoagulant activity. This study contributes toward a better understanding of the HP biosynthetic pathway with the goal of providing tools to better control the biosynthesis of HP chains with different structures and activities.
Collapse
|
24
|
Distinct 3-O-sulfated heparan sulfate modification patterns are required for kal-1-dependent neurite branching in a context-dependent manner in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2013; 3:541-52. [PMID: 23451335 PMCID: PMC3583460 DOI: 10.1534/g3.112.005199] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 01/13/2013] [Indexed: 12/30/2022]
Abstract
Heparan sulfate (HS) is an unbranched glycosaminoglycan exhibiting substantial molecular diversity due to multiple, nonuniformly introduced modifications, including sulfations, epimerization, and acetylation. HS modifications serve specific and instructive roles in neuronal development, leading to the hypothesis of a HS code that regulates nervous system patterning. Although the in vivo roles of many of the HS modifications have been investigated, very little is known about the function of HS 3-O-sulfation in vivo. By examining patterning of the Caenorhabditis elegans nervous system in loss of function mutants of the two 3-O-sulfotransferases, hst-3.1 and hst-3.2, we found HS 3-O-sulfation to be largely dispensable for overall neural development. However, generation of stereotypical neurite branches in hermaphroditic-specific neurons required hst-3.1, hst-3.2, as well as an extracellular cell adhesion molecule encoded by kal-1, the homolog of Kallmann Syndrome associated gene 1/anosmin-1. In contrast, kal-1−dependent neurite branching in AIY neurons required catalytic activity of hst-3.2 but not hst-3.1. The context-dependent requirement for hst-3.2 and hst-3.1 indicates that both enzymes generate distinct types of HS modification patterns in different cell types, which regulate kal-1 to promote neurite branching. We conclude that HS 3-O-sulfation does not play a general role in establishing the HS code in C. elegans but rather plays a specialized role in a context-dependent manner to establish defined aspects of neuronal circuits.
Collapse
|
25
|
Mahapatra S, Klee EW, Young CYF, Sun Z, Jimenez RE, Klee GG, Tindall DJ, Donkena KV. Global methylation profiling for risk prediction of prostate cancer. Clin Cancer Res 2012; 18:2882-95. [PMID: 22589488 DOI: 10.1158/1078-0432.ccr-11-2090] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The aim of this study was to investigate the promoter hypermethylation as diagnostic markers to detect malignant prostate cells and as prognostic markers to predict the clinical recurrence of prostate cancer. EXPERIMENTAL DESIGN DNA was isolated from prostate cancer and normal adjacent tissues. After bisulfite conversion, methylation of 14,495 genes was evaluated using the Methylation27 microarrays in 238 prostate tissues. We analyzed methylation profiles in four different groups: (i) tumor (n = 198) versus matched normal tissues (n = 40), (ii) recurrence (n = 123) versus nonrecurrence (n = 75), (iii) clinical recurrence (n = 80) versus biochemical recurrence (n = 43), and (iv) systemic recurrence (n = 36) versus local recurrence (n = 44). Group 1, 2, 3, and 4 genes signifying biomarkers for diagnosis, prediction of recurrence, clinical recurrence, and systemic progression were determined. Univariate and multivariate analyses were conducted to predict risk of recurrence. We validated the methylation of genes in 20 independent tissues representing each group by pyrosequencing. RESULTS Microarray analysis revealed significant methylation of genes in four different groups of prostate cancer tissues. The sensitivity and specificity of methylation for 25 genes from 1, 2, and 4 groups and 7 from group 3 were shown. Validation of genes by pyrosequencing from group 1 (GSTP1, HIF3A, HAAO, and RARβ), group 2 (CRIP1, FLNC, RASGRF2, RUNX3, and HS3ST2), group 3 (PHLDA3, RASGRF2, and TNFRSF10D), and group 4 (BCL11B, POU3F3, and RASGRF2) confirmed the microarray results. CONCLUSIONS Our study provides a global assessment of DNA methylation in prostate cancer and identifies the significance of genes as diagnostic and progression biomarkers of prostate cancer.
Collapse
Affiliation(s)
- Saswati Mahapatra
- Department of Urology and Laboratory Medicine and Pathology, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
McCarthy KJ, Wassenhove-McCarthy DJ. The glomerular basement membrane as a model system to study the bioactivity of heparan sulfate glycosaminoglycans. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2012; 18:3-21. [PMID: 22258721 PMCID: PMC3351113 DOI: 10.1017/s1431927611012682] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The glomerular basement membrane and its associated cells are critical elements in the renal ultrafiltration process. Traditionally the anionic charge associated with several carbohydrate moieties in the glomerular basement membrane are thought to form a charge selective barrier that restricts the transmembrane flux of anionic proteins across the glomerular basement membrane into the urinary space. The charge selective function, along with the size selective component of the basement membrane, serves to limit the efflux of plasma proteins from the capillary lumen. Heparan sulfate glycosaminoglycans are anionically charged carbohydrate structures attached to proteoglycan core proteins and have a role in establishing the charge selective function of the glomerular basement membrane. Although there are a large number of studies in the literature that support this concept, the results of several recent studies using molecular genetic approaches to minimize the anionic charge of the glomerular basement membrane would suggest that the role of heparan sulfate glycosaminoglycans in the glomerular capillary wall are still not yet entirely resolved, suggesting that this research area still requires new and novel exploration.
Collapse
Affiliation(s)
- Kevin J McCarthy
- Department of Pathology, LSU Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA 71130-3932, USA.
| | | |
Collapse
|
27
|
Abstract
Heparin and heparan sulfate share the same polysaccharide backbone structure but differ in sulfation degree and expression pattern. Whereas heparan sulfate is found in virtually all cells of the human body, heparin expression is restricted to mast cells, where it has a function in storage of granular components such as histamine and mast cell specific proteases. Although differing in charge and sulfation pattern, current knowledge indicates that the same pathway is used for synthesis of heparin and heparan sulfate, with a large number of different enzymes taking part in the process. At present, little is known about how the individual enzymes are coordinated and how biosynthesis is regulated. These questions are addressed in this chapter together with a review of the basic enzymatic steps involved in initiation, elongation, and modification of the polysaccharides.
Collapse
Affiliation(s)
- Pernilla Carlsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
28
|
Herpes simplex virus infects most cell types in vitro: clues to its success. Virol J 2011; 8:481. [PMID: 22029482 PMCID: PMC3223518 DOI: 10.1186/1743-422x-8-481] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 10/26/2011] [Indexed: 01/10/2023] Open
Abstract
Herpes simplex virus (HSV) type-1 and type-2 have evolved numerous strategies to infect a wide range of hosts and cell types. The result is a very successful prevalence of the virus in the human population infecting 40-80% of people worldwide. HSV entry into host cell is a multistep process that involves the interaction of the viral glycoproteins with various cell surface receptors. Based on the cell type, HSV enter into host cell using different modes of entry. The combination of various receptors and entry modes has resulted in a virus that is capable of infecting virtually all cell types. Identifying the common rate limiting steps of the infection may help the development of antiviral agents that are capable of preventing the virus entry into host cell. In this review we describe the major features of HSV entry that have contributed to the wide susceptibility of cells to HSV infection.
Collapse
|
29
|
Tran VM, Nguyen TKN, Raman K, Kuberan B. Applications of isotopes in advancing structural and functional heparanomics. Anal Bioanal Chem 2010; 399:559-70. [PMID: 20838780 DOI: 10.1007/s00216-010-4166-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 08/23/2010] [Accepted: 08/24/2010] [Indexed: 12/11/2022]
Abstract
Heparanomics is the study of all the biologically active oligosaccharide domain structures in the entire heparanome and the nature of the interactions among these domains and their protein ligands. Structural elucidation of heparan sulfate and heparin oligosaccharides is a major obstacle in advancing structure-function relationships and heparanomics. There are several factors that exacerbate the challenges involved in the structural elucidation of heparin and heparan sulfate; therefore, there is great interest in developing novel strategies and analytical tools to overcome the barriers in decoding the enigmatic heparanome. This review focuses on the applications of isotopes, both radioisotopes and stable isotopes, in the structural elucidation of the complex heparanome at the disaccharide or oligosaccharide level using liquid chromatography, nuclear magnetic resonance spectroscopy, and mass spectrometry. This review also outlines the utility of isotopes in determining the substrate specificity of biosynthetic enzymes that eventually dictate the emergence of biologically active oligosaccharides.
Collapse
Affiliation(s)
- Vy M Tran
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|
30
|
Heparin sulphate D-glucosaminyl 3-O-sulfotransferase 3B1 plays a role in HBV replication. Virology 2010; 406:280-5. [PMID: 20705311 DOI: 10.1016/j.virol.2010.07.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 06/22/2010] [Accepted: 07/20/2010] [Indexed: 12/16/2022]
Abstract
Hepatitis B virus infection is a worldwide epidemic and is closely associated with the development of hepatocellular carcinoma. Nevertheless, the molecular mechanisms of HBV infection and carcinogenesis remain elusive. Using a hepatocyte model of HBV infection and comparing the gene expression profiling analysis we found that heparan sulfate D-glucosaminyl 3-O-sulfotransferase 3 B1 (HS3ST3B1,3-OST3-B) is down-regulated in the hepatocytes of chronic HBV infection model. HS3ST3B1 showed potent inhibitory effect on HBV replication. The inhibitory effect of HS3ST3B1 overexpression was lost upon gene silencing of HS3ST3B1 or when a catalytic inactive mutant of HS3ST3B1 was expressed. Our study revealed the anti-viral activity of HS3ST3B1 on HBV replication. It is conceivable that possible therapeutic applications of HBV infection could be devised by manipulating HS3ST3B1 activity.
Collapse
|
31
|
Shworak NW, Kobayashi T, de Agostini A, Smits NC. Anticoagulant heparan sulfate to not clot--or not? PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 93:153-78. [PMID: 20807645 DOI: 10.1016/s1877-1173(10)93008-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Vascular endothelial cells (ECs) produce anticoagulant heparan sulfate (HSAT+)-a small subpopulation of heparan sulfate (HS) containing a specific pentasaccharide motif with high affinity for plasma antithrombin (AT). This pentasaccharide is responsible for the anticoagulant action of therapeutic heparin, which dramatically catalyzes AT neutralization of coagulation proteases. Consequently, HSAT+ has been designated as "anticoagulant HS," and has long been thought to convey antithrombotic properties to the blood vessel wall. The Hs3st1 gene encodes HS 3-O-sulfotransferase-1, whose rate limiting action regulates EC production of HSAT+. To elucidate the biologic role of HSAT+, we generated Hs3st1-/- knock-out mice that have undetectable EC HSAT+. Despite long held historic expectations, hemostasis was unaffected in Hs3st1-/- mice. In light of this surprising finding, herein we evaluate historic, biochemical, kinetic, physiologic, and molecular genetic studies of AT, heparin, and HSAT+. We find that a hemostatic role for HSAT+ cannot presently be excluded; however, HSAT+ may well not be essential for AT's anticoagulant function. Specifically, in the absence of glycosaminoglycans, physiologic levels of AT can neutralize coagulation proteases at a sufficiently high throughput to account for most of AT's anticoagulant function. Moreover, at the vessel wall surface, glycosaminoglycans distinct from HSAT+ may be the predominant catalysts of AT's anticoagulant activity. We then explore the possibility that HSAT+ regulates a less well known function of AT, anti-inflammatory activity. We find that Hs3st1-/- mice exhibit a strong proinflammatory phenotype that is unresponsive to AT's anti-inflammatory activity. We conclude that the predominant function of HSAT+ is to mediate AT's anti-inflammatory activity.
Collapse
Affiliation(s)
- Nicholas W Shworak
- Department of Medicine, Dartmouth Medical School, Hanover, New Hampshire, USA
| | | | | | | |
Collapse
|
32
|
Abstract
Heparan sulfate proteoglycans (HSPGs) play vital roles in every step of tumor progression allowing cancer cells to proliferate, escape from immune response, invade neighboring tissues, and metastasize to distal sites away from the primary site. Several cancers including breast, lung, brain, pancreatic, skin, and colorectal cancers show aberrant modulation of several key HS biosynthetic enzymes such as 3-O Sulfotransferase and 6-O Sulfotransferase, and also catabolic enzymes such as HSulf-1, HSulf-2 and heparanase. The resulting tumor specific HS fine structures assist cancer cells to breakdown ECM to spread, misregulate signaling pathways to facilitate their proliferation, promote angiogenesis to receive nutrients, and protect themselves against natural killer cells. This review focuses on the changes in the expression of HS biosynthetic and catabolic enzymes in several cancers, the resulting changes in HS fine structures, and the effects of these tumor specific HS signatures on promoting invasion, proliferation, and metastasis. It is possible to retard tumor progression by modulating the deregulated biosynthetic and catabolic pathways of HS chains through novel chemical biology approaches.
Collapse
Affiliation(s)
- Karthik Raman
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
33
|
Ringvall M, Kjellén L. Mice deficient in heparan sulfate N-deacetylase/N-sulfotransferase 1. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 93:35-58. [PMID: 20807640 DOI: 10.1016/s1877-1173(10)93003-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ndsts (N-deacetylase/N-sulfotransferases) are enzymes responsible for N-sulfation during heparan sulfate (HS) and heparin biosynthesis. In this review, basic features of the Ndst1 enzyme are covered and a brief description of HS biosynthesis and its regulation is presented. Effects of Ndst1 deficiency on embryonic development are described. These include immature lungs, craniofacial dysplasia and eye developmental defects, branching defect during lacrimal gland development, delayed mineralization of the skeleton, and reduced pericyte recruitment during vascular development. A brief account of the effects of Ndst1 deficiency in selective cell types in adult mice is also given.
Collapse
Affiliation(s)
- Maria Ringvall
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
34
|
Fujita K, Takechi E, Sakamoto N, Sumiyoshi N, Izumi S, Miyamoto T, Matsuura S, Tsurugaya T, Akasaka K, Yamamoto T. HpSulf, a heparan sulfate 6-O-endosulfatase, is involved in the regulation of VEGF signaling during sea urchin development. Mech Dev 2009; 127:235-45. [PMID: 20036737 DOI: 10.1016/j.mod.2009.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 12/03/2009] [Accepted: 12/15/2009] [Indexed: 01/12/2023]
Abstract
Cell surface heparan sulfate proteoglycans (HSPGs) play significant roles in the regulation of developmental signaling, including vascular endothelial growth factor (VEGF), fibroblast growth factor, Wnt and bone morphogenetic protein signaling, through modification of their sulfation patterns. Recent studies have revealed that one of the functions of heparan sulfate 6-O-endosulfatase (Sulf) is to remove the sulfate from the 6-O position of HSPGs at the cell surface, thereby regulating the binding activities of heparan sulfate (HS) chains to numerous ligands and receptors in animal species. In this study, we focused on the sea urchin Hemicentrotus pulcherrimus homolog of Sulf (HpSulf), and analyzed its expression pattern and functions during development. HpSulf protein was present throughout development and localized at cell surface of all blastomeres. In addition, the HS-specific epitope 10E4 was detected at the cell surface and partially colocalized with HpSulf. Knockdown of HpSulf using morpholino antisense oligonucleotides (MO) caused abnormal morphogenesis, and the development of MO-injected embryos was arrested before the hatched blastula stage, indicating that HpSulf is necessary for the early developmental process of sea urchin embryos. Furthermore, we found that injection of HpSulf mRNA suppressed the abnormal skeleton induced by overexpression of HpVEGF mRNA, whereas injection of an inactive form of HpSulf mRNA, containing mutated cysteines in the sulfatase domain, did not have this effect. Taken together, these results suggest that HpSulf is involved in the regulation of various signal transductions, including VEGF signaling, during sea urchin development.
Collapse
Affiliation(s)
- Kazumasa Fujita
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Deligny A, Denys A, Marcant A, Melchior A, Mazurier J, van Kuppevelt TH, Allain F. Synthesis of heparan sulfate with cyclophilin B-binding properties is determined by cell type-specific expression of sulfotransferases. J Biol Chem 2009; 285:1701-15. [PMID: 19940140 DOI: 10.1074/jbc.m109.018184] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclophilin B (CyPB) induces migration and adhesion of T lymphocytes via a mechanism that requires interaction with 3-O-sulfated heparan sulfate (HS). HS biosynthesis is a complex process with many sulfotransferases involved. N-Deacetylases/N-sulfotransferases are responsible for N-sulfation, which is essential for subsequent modification steps, whereas 3-O-sulfotransferases (3-OSTs) catalyze the least abundant modification. These enzymes are represented by several isoforms, which differ in term of distribution pattern, suggesting their involvement in making tissue-specific HS. To elucidate how the specificity of CyPB binding is determined, we explored the relationships between the expression of these sulfotransferases and the generation of HS motifs with CyPB-binding properties. We demonstrated that high N-sulfate density and the presence of 2-O- and 3-O-sulfates determine binding of CyPB, as evidenced by competitive experiments with heparin derivatives, soluble HS, and anti-HS antibodies. We then showed that target cells, i.e. CD4+ lymphocyte subsets, monocytes/macrophages, and related cell lines, specifically expressed high levels of NDST2 and 3-OST3 isoforms. Silencing the expression of NDST1, NDST2, 2-OST, and 3-OST3 by RNA interference efficiently decreased binding and activity of CyPB, thus confirming their involvement in the biosynthesis of binding sequences for CyPB. Moreover, we demonstrated that NDST1 was able to partially sulfate exogenous substrate in the absence of NDST2 but not vice versa, suggesting that both isoenzymes do not have redundant activities but do have rather complementary activities in making N-sulfated sequences with CyPB-binding properties. Altogether, these results suggest a regulatory mechanism in which cell type-specific expression of certain HS sulfotransferases determines the specific binding of CyPB to target cells.
Collapse
Affiliation(s)
- Audrey Deligny
- Unité de Glycobiologie Structurale et Fonctionnelle, Unité Mixte de Recherche 8576 du CNRS, Institut de Recherche Fédératif 147, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Bui C, Ouzzine M, Talhaoui I, Sharp S, Prydz K, Coughtrie MWH, Fournel-Gigleux S. Epigenetics: methylation-associated repression of heparan sulfate 3-O-sulfotransferase gene expression contributes to the invasive phenotype of H-EMC-SS chondrosarcoma cells. FASEB J 2009; 24:436-50. [PMID: 19812376 DOI: 10.1096/fj.09-136291] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs), strategically located at the cell-tissue-organ interface, regulate major biological processes, including cell proliferation, migration, and adhesion. These vital functions are compromised in tumors, due, in part, to alterations in heparan sulfate (HS) expression and structure. How these modifications occur is largely unknown. Here, we investigated whether epigenetic abnormalities involving aberrant DNA methylation affect HS biosynthetic enzymes in cancer cells. Analysis of the methylation status of glycosyltransferase and sulfotransferase genes in H-HEMC-SS chondrosarcoma cells showed a typical hypermethylation profile of 3-OST sulfotransferase genes. Exposure of chondrosarcoma cells to 5-aza-2'-deoxycytidine (5-Aza-dc), a DNA-methyltransferase inhibitor, up-regulated expression of 3-OST1, 3-OST2, and 3-OST3A mRNAs, indicating that aberrant methylation affects transcription of these genes. Furthermore, HS expression was restored on 5-Aza-dc treatment or reintroduction of 3-OST expression, as shown by indirect immunofluorescence microscopy and/or analysis of HS chains by anion-exchange and gel-filtration chromatography. Notably, 5-Aza-dc treatment of HEMC cells or expression of 3-OST3A cDNA reduced their proliferative and invading properties and augmented adhesion of chondrosarcoma cells. These results provide the first evidence for specific epigenetic regulation of 3-OST genes resulting in altered HSPG sulfation and point to a defect of HS-3-O-sulfation as a factor in cancer progression.
Collapse
Affiliation(s)
- Catherine Bui
- UMR CNRS 7561-University Henri Poincaré Nancy 1, Faculty of Medicine, BP 184, 54505 Vandoeuvre-lès-Nancy, France
| | | | | | | | | | | | | |
Collapse
|
37
|
Lindahl U, Li JP. Interactions between heparan sulfate and proteins-design and functional implications. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 276:105-59. [PMID: 19584012 DOI: 10.1016/s1937-6448(09)76003-4] [Citation(s) in RCA: 210] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heparan sulfate (HS) proteoglycans at cell surfaces and in the extracellular matrix of most animal tissues are essential in development and homeostasis, and variously implicated in disease processes. Functions of HS polysaccharide chains depend on ionic interactions with a variety of proteins including growth factors and their receptors. Negatively charged sulfate and carboxylate groups are arranged in various types of domains, generated through strictly regulated biosynthetic reactions and with enormous potential for structural variability. The level of specificity of HS-protein interactions is assessed through binding experiments in vitro using saccharides of defined composition, signaling assays in cell culture, and targeted disruption of genes for biosynthetic enzymes followed by phenotype analysis. While some protein ligands appear to require strictly defined HS structure, others bind to variable saccharide domains without any apparent dependence on distinct saccharide sequence. These findings raise intriguing questions concerning the functional significance of regulation in HS biosynthesis.
Collapse
Affiliation(s)
- Ulf Lindahl
- Department of Medical Biochemistry and Microbiology, University of Uppsala, Uppsala, Sweden
| | | |
Collapse
|
38
|
Mochizuki H, Yoshida K, Shibata Y, Kimata K. Tetrasulfated disaccharide unit in heparan sulfate: enzymatic formation and tissue distribution. J Biol Chem 2008; 283:31237-45. [PMID: 18757372 DOI: 10.1074/jbc.m801586200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously reported that the heparan sulfate 3-O-sulfotransferase (3OST)-5 produces a novel component of heparan sulfate, i.e. the tetrasulfated disaccharide (Di-tetraS) unit ( Mochizuki, H., Yoshida, K., Gotoh, M., Sugioka, S., Kikuchi, N., Kwon, Y.-D., Tawada, A., Maeyama, K., Inaba, N., Hiruma, T., Kimata, K., and Narimatsu, H. (2003) J. Biol. Chem. 278, 26780-26787 ). In the present study, we investigated the potential of other 3OST isoforms to produce Di-tetraS with heparan sulfate and heparin as acceptor substrates. 3OST-2, 3OST-3, and 3OST-4 produce Di-tetraS units as a major product from both substrates. 3OST-5 showed the same specificity for heparin, but the production from heparan sulfate was very low. Di-tetraS production by 3OST-1 was negligible. We then investigated the presence of Di-tetraS units in heparan sulfates from various rat tissues. Di-tetraS was detected in all of the tissues analyzed. Liver and spleen contain relatively high levels of Di-tetraS, 1.6 and 0.95%, respectively. However, the content of this unit in heart, large intestine, ileum, and lung is low, less than 0.2%. We further determined the expression levels of 3OST transcripts by quantitative real time PCR. The 3OST-3 transcripts are highly expressed in spleen and liver. The 3OST-2 and -4 are specifically expressed in brain. These results indicate that the Di-tetraS unit is widely distributed throughout the body as a rare and unique component of heparan sulfate and is synthesized by tissue-specific 3OST isoforms specific for Di-tetraS production.
Collapse
Affiliation(s)
- Hideo Mochizuki
- Central Research Laboratories, Seikagaku Corporation, 3-1253 Tateno, Higashiyamato, Tokyo 207-0021, Japan.
| | | | | | | |
Collapse
|
39
|
Krenn EC, Wille I, Gesslbauer B, Poteser M, van Kuppevelt TH, Kungl AJ. Glycanogenomics: a qPCR-approach to investigate biological glycan function. Biochem Biophys Res Commun 2008; 375:297-302. [PMID: 18692483 DOI: 10.1016/j.bbrc.2008.07.144] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 07/18/2008] [Indexed: 02/05/2023]
Abstract
As an indirect approach towards glycan structures, qRT-PCR analyses using the DeltaDeltaC(T) method were performed to investigate changes in expression levels of heparan sulfate-synthesising enzymes of stimulated and unstimulated HMVECs. We chose NDSTs as early enzymes initiating sulfation and 3OSTs which act late generating specific binding sites. Major changes in expression patterns were found for the NDST3 and 3OST1 isoforms. Both enzymes were down-regulated 7- and 6-fold, respectively, following TNF-alpha stimulation, and 3.5- and 7.6-fold following LPS-stimulation suggesting a common restructuring process of HS in inflammation leading to a less diverse sulfation pattern. Immunostaining of TNF-alpha-stimulated cells using a phage display-derived antibody specific for 3-O-sulfation and unsulfated regions of HS resulted in significant fluorescence changes between unstimulated and stimulated.
Collapse
Affiliation(s)
- Evelyn C Krenn
- Institute for Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Universitätsplatz 1, A-8010 Graz, Austria
| | | | | | | | | | | |
Collapse
|
40
|
Hydrogen peroxide as a potential mediator of the transcriptional regulation of heparan sulphate biosynthesis in keratinocytes. Cell Mol Biol Lett 2008; 13:475-92. [PMID: 18463796 PMCID: PMC6275676 DOI: 10.2478/s11658-008-0016-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 02/07/2008] [Indexed: 11/20/2022] Open
Abstract
Ionizing radiation is one of the types of oxidative stress that has a number of damaging effects on cutaneous tissues. One of the histological features of radiation-induced cutaneous fibrosis is the accumulation of extracellular matrix (ECM) components, including heparan sulfate proteoglycan (HSPG), which are required for the repair of tissue damage, and operate by interacting with a variety of growth factors. In this study, we established a model of human HaCaT keratinocytes overexpressing anti-oxidative enzyme genes to elucidate the mechanism of oxidative stress leading to the accumulation of HSPG and the role of its accumulation. Catalase overexpression induced an increase in anti-HS antibody (10E4) epitope expression in these cells. Western blotting showed that the smeared bands of HSPG were obviously shifted to a higher molecular weight in the catalase transfectants due to glycosylation. After heparitinase I treatment, the core proteins of HSPG were expressed in the catalase transfectants to almost the same extent as in the control cells. In addition, the transcript levels of all the enzymes required for the synthesis of the heparan sulfate chain were estimated in the catalase transfectant clones. The levels of five enzyme transcripts — xylosyltransferase-II (XT-II), EXTL2, D-glucuronyl C5-epimerase (GLCE), HS2-O-sulfotransferase (HS2ST), and HS6-O-sulfotransferase (HS6ST) — were significantly increased in the transfectants. Moreover, hydrogen peroxide was found to down-regulate the levels of these enzymes. By contrast, siRNA-mediated repression of catalase decreased 10E4 epitope expression, the transcript level of HS2ST1, and the growth rate of HaCaT cells. These findings suggested that peroxide-mediated transcriptional regulation of HS metabolism-related genes modified the HS chains in the HaCaT keratinocytes.
Collapse
|
41
|
Yang R, Frank B, Hemminki K, Bartram CR, Wappenschmidt B, Sutter C, Kiechle M, Bugert P, Schmutzler RK, Arnold N, Weber BHF, Niederacher D, Meindl A, Burwinkel B. SNPs in ultraconserved elements and familial breast cancer risk. Carcinogenesis 2008; 29:351-5. [PMID: 18174240 DOI: 10.1093/carcin/bgm290] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ultraconserved elements (UCEs) are segments of >200 bp length showing absolute sequence identity between orthologous regions of human, rat and mouse genomes. The selection factors acting on these UCEs are still unknown. Recent studies have shown that UCEs function as long-range enhancers of flanking genes or are involved in splicing when overlapping with exons. The depletion of UCEs among copy number variation as well as the significant under-representation of single-nucleotide polymorphisms (SNPs) within UCEs have also revealed their evolutional and functional importance indicating their potential impact on disease, such as cancer. In the present study, we investigated the influence of six SNPs within UCEs on familial breast cancer risk. Two out of six SNPs showed an association with familial breast cancer risk. Whereas rs9572903 showed only a borderline significant association, the frequency of the rare [G] allele of rs2056116 was higher in cases than in controls indicating an increased familial breast cancer risk ([G] versus [A]: odds ratio (OR) = 1.18, 95% confidence interval (CI) 1.06-1.30, P = 0.0020; [GG] versus [AA]: OR = 1.41, 95% CI 1.15-1.74, P = 0.0011). Interestingly, comparing with the older age group, the ORs were increased in woman younger than 50 years of age ([G] versus [A]: OR = 1.27, 95% CI 1.11-1.45, P = 0.0005; [GG] versus [AA]: OR = 1.60, 95% CI 1.22-2.10, P = 0.0007) pointing to an age- or hormone-related effect. This is the first study indicating that SNPs in UCEs might be associated with cancer risk.
Collapse
Affiliation(s)
- Rongxi Yang
- Helmholtz-University Group Molecular Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Moon HJ, Lee SR, Shim SN, Jeong SH, Stonik VA, Rasskazov VA, Zvyagintseva T, Lee YH. Fucoidan Inhibits UVB-Induced MMP-1 Expression in Human Skin Fibroblasts. Biol Pharm Bull 2008; 31:284-9. [DOI: 10.1248/bpb.31.284] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hee Jung Moon
- Institute of Natural Products for Health Promotion and Department of Preventive Medicine, College of Medicine, Kosin University
| | - Soon Rye Lee
- Institute of Natural Products for Health Promotion and Department of Preventive Medicine, College of Medicine, Kosin University
| | - Sun Nyu Shim
- Institute of Natural Products for Health Promotion and Department of Preventive Medicine, College of Medicine, Kosin University
| | - Seok Hoon Jeong
- Department of Laboratory Medicine College of Medicine, Kosin University
| | - Valentine A. Stonik
- Pacific Institute of Bioorganic Chemistry of Far East Branch of the Russian Academy of Sciences
| | - Valery A. Rasskazov
- Pacific Institute of Bioorganic Chemistry of Far East Branch of the Russian Academy of Sciences
| | - Tatyana Zvyagintseva
- Pacific Institute of Bioorganic Chemistry of Far East Branch of the Russian Academy of Sciences
| | - Yong Hwan Lee
- Institute of Natural Products for Health Promotion and Department of Preventive Medicine, College of Medicine, Kosin University
| |
Collapse
|
43
|
Wille I, Rek A, Krenn E, Kungl AJ. Biophysical investigation of human heparan sulfate D-glucosaminyl 3-O-sulfotransferase-3A: a mutual effect of enzyme oligomerisation and glycosaminoglycan ligand binding. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:1470-6. [PMID: 17936096 DOI: 10.1016/j.bbapap.2007.08.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2007] [Revised: 07/10/2007] [Accepted: 08/20/2007] [Indexed: 10/22/2022]
Abstract
3-O-sulfation of heparan sulfate (HS) is the rarest modification within heparan sulfate biosynthesis resulting in unique biological activities. Heparan sulfate d-glucosaminyl 3-O-sulfotransferase-3A (3-OST-3A) (EC 2.8.2.23) generates a binding site for the envelope glycoprotein D (gD) of herpes simplex virus 1. We have expressed the sulfotransferase domain of the human heparan sulfate 3-OST-3A isoform in Escherichia coli and subsequently purified the active enzyme which was found to be present as an oligomer under nonreducing conditions. The activity of the enzyme was tested by a novel gD-dependent gel mobility assay. A biophysical characterisation of 3-OST-3A was performed to study ligand binding and ligand-induced structural changes. Interestingly, the natural substrate HS did not cause a secondary structural change in the enzyme, whereas heparin and chondroitin sulfate did, both of which also exhibited similar high affinity binding to 3-OST-3A compared to HS as detected by isothermal fluorescence titrations. In cross-link assays, only HS was found to induce high molecular aggregates of 3-OST-3A whereas other GAG ligands did not or even inhibited enzyme oligomerisation like the K5 polysaccharide, which was nevertheless found to bind to the enzyme. We therefore conclude that since 3-OST-3A is able to bind also non-substrate GAG ligands with high affinity, discrimination among ligands is triggered by protein oligomerisation.
Collapse
Affiliation(s)
- Iris Wille
- Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 1, A-8010 Graz, Austria
| | | | | | | |
Collapse
|
44
|
Vanpouille C, Deligny A, Delehedde M, Denys A, Melchior A, Liénard X, Lyon M, Mazurier J, Fernig DG, Allain F. The heparin/heparan sulfate sequence that interacts with cyclophilin B contains a 3-O-sulfated N-unsubstituted glucosamine residue. J Biol Chem 2007; 282:24416-29. [PMID: 17588944 DOI: 10.1074/jbc.m701835200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many of the biological functions of heparan sulfate (HS) proteoglycans can be attributed to specialized structures within HS moieties, which are thought to modulate binding and function of various effector proteins. Cyclophilin B (CyPB), which was initially identified as a cyclosporin A-binding protein, triggers migration and integrin-mediated adhesion of peripheral blood T lymphocytes by a mechanism dependent on interaction with cell surface HS. Here we determined the structural features of HS that are responsible for the specific binding of CyPB. In addition to the involvement of 2-O,6-O, and N-sulfate groups, we also demonstrated that binding of CyPB was dependent on the presence of N-unsubstituted glucosamine residues (GlcNH2), which have been reported to be precursors for sulfation by 3-O-sulfotransferases-3 (3-OST-3). Interestingly, 3-OST-3B isoform was found to be the main 3-OST isoenzyme expressed in peripheral blood T lymphocytes and Jurkat T cells. Moreover, down-regulation of the expression of 3-OST-3 by RNA interference potently reduced CyPB binding and consequent activation of p44/42 mitogen-activated protein kinases. Altogether, our results strongly support the hypothesis that 3-O-sulfation of GlcNH2 residues could be a key modification that provides specialized HS structures for CyPB binding to responsive cells. Given that 3-O-sulfation of GlcNH2-containing HS by 3-OST-3 also provides binding sites for glycoprotein gD of herpes simplex virus type I, these findings suggest an intriguing structural linkage between the HS sequences involved in CyPB binding and viral infection.
Collapse
Affiliation(s)
- Christophe Vanpouille
- Unité de Glycobiologie Structurale et Fonctionnelle, Unité Mixte de Recherche Number 8576 du CNRS, Institut de Recherche Fédératif No. 147, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lawrence R, Yabe T, HajMohammadi S, Rhodes J, McNeely M, Liu J, Lamperti ED, Toselli PA, Lech M, Spear PG, Rosenberg RD, Shworak NW. The principal neuronal gD-type 3-O-sulfotransferases and their products in central and peripheral nervous system tissues. Matrix Biol 2007; 26:442-55. [PMID: 17482450 PMCID: PMC1993827 DOI: 10.1016/j.matbio.2007.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 03/19/2007] [Accepted: 03/20/2007] [Indexed: 10/23/2022]
Abstract
Within the nervous system, heparan sulfate (HS) of the cell surface and extracellular matrix influences developmental, physiologic and pathologic processes. HS is a functionally diverse polysaccharide that employs motifs of sulfate groups to selectively bind and modulate various effector proteins. Specific HS activities are modulated by 3-O-sulfated glucosamine residues, which are generated by a family of seven 3-O-sulfotransferases (3-OSTs). Most isoforms we herein designate as gD-type 3-OSTs because they generate HS(gD+), 3-O-sulfated motifs that bind the gD envelope protein of herpes simplex virus 1 (HSV-1) and thereby mediate viral cellular entry. Certain gD-type isoforms are anticipated to modulate neurobiologic events because a Drosophila gD-type 3-OST is essential for a conserved neurogenic signaling pathway regulated by Notch. Information about 3-OST isoforms expressed in the nervous system of mammals is incomplete. Here, we identify the 3-OST isoforms having properties compatible with their participation in neurobiologic events. We show that 3-OST-2 and 3-OST-4 are principal isoforms of brain. We find these are gD-type enzymes, as they produce products similar to a prototypical gD-type isoform, and they can modify HS to generate receptors for HSV-1 entry into cells. Therefore, 3-OST-2 and 3-OST-4 catalyze modifications similar or identical to those made by the Drosophila gD-type 3-OST that has a role in regulating Notch signaling. We also find that 3-OST-2 and 3-OST-4 are the predominant isoforms expressed in neurons of the trigeminal ganglion, and 3-OST-2/4-type 3-O-sulfated residues occur in this ganglion and in select brain regions. Thus, 3-OST-2 and 3-OST-4 are the major neural gD-type 3-OSTs, and so are prime candidates for participating in HS-dependent neurobiologic events.
Collapse
Affiliation(s)
- Roger Lawrence
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Tomio Yabe
- Department Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Sassan HajMohammadi
- Department of Medicine , Dartmouth Medical School, Hanover, NH 03756, United States
| | - John Rhodes
- Department of Medicine , Dartmouth Medical School, Hanover, NH 03756, United States
| | - Melissa McNeely
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jian Liu
- Department of Medicinal Chemistry and Natural Products, University of North Carolina, Chapel Hill, NC , United States
| | - Edward D. Lamperti
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, United States
| | - Paul A. Toselli
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, United States
| | - Miroslaw Lech
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Patricia G. Spear
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Robert D. Rosenberg
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Nicholas W. Shworak
- Department of Medicine , Dartmouth Medical School, Hanover, NH 03756, United States
- *Address correspondence to: Nicholas W. Shworak, Angiogenesis Research Center, Section of Cardiology, Borwell Building 540W, HB7504, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, New Hampshire 03756, Tel. 603 650-6401; Fax. 603 653-0510; E-Mail:
| |
Collapse
|
46
|
Cadwallader AB, Yost HJ. Combinatorial expression patterns of heparan sulfate sulfotransferases in zebrafish: I. The 3-O-sulfotransferase family. Dev Dyn 2007; 235:3423-31. [PMID: 17075882 DOI: 10.1002/dvdy.20991] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Heparan sulfate (HS) is an unbranched chain of repetitive disaccharides, which specifically binds ligands when attached to the cell surface or secreted extracellularly. HS chains contain sulfated domains termed the HS fine structure, which gives HS specific binding affinities for extracellular ligands. HS 3-O-sulfotransferases (3-OST) catalyze the transfer of sulfate groups to the 3-O position of glucosamine residues of HS, a rare, but essential HS chain modification required for HS fine structure. We report here the first characterization and developmental expression analysis of the 3-OST gene family in a vertebrate. There are eight 3-OST genes in zebrafish: seven genes with homology to known 3-OST genes in mouse and human, as well as a novel, 3-OST-7. A phylogenetic comparison of human, mouse, and zebrafish indicates the 3-OST family can be subdivided into two distinct subgroups. We examined the mRNA expression patterns in several tissues/organs throughout early zebrafish development, including early cleavage stages, somites, brain, internal body organ primordial, and pectoral fin development. The 3-OST gene family has both specifically expressed and ubiquitously expressed genes, suggesting in vivo functional differences exist between members of this family.
Collapse
Affiliation(s)
- Adam B Cadwallader
- Huntsman Cancer Institute, Center for Children, Department of Oncological Sciences, University of Utah, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
47
|
Hrtska SCL, Kemp MM, Muñoz EM, Azizad O, Banerjee M, Raposo C, Kumaran J, Ghosh P, Linhardt RJ. Investigation of the mechanism of binding between internalin B and heparin using surface plasmon resonance. Biochemistry 2007; 46:2697-706. [PMID: 17305366 PMCID: PMC2034450 DOI: 10.1021/bi062021x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Listeria monocytogenes, a food-borne pathogen that infects immunocompromised patients, enters and proliferates within mammalian cells by taking advantage of host cell machinery. While entry into macrophages and other phagocytic cells occurs constitutively, intracellular invasion of nonphagocytic cells, such as epithelial and endothelial cells, occurs through induced phagocytosis. Invasion of these nonphagocytic cell types is under the control of the secreted L. monocytogenes protein internalin B (InlB), which directly associates with and activates the receptor tyrosine kinase Met. Activation of Met by InlB has previously been shown to be potentiated by binding of glycosaminoglycans to the GW domains of this protein. We studied the interaction between heparin and full-length InlB as well as a truncated, functional form of InlB to understand the mode of interaction between these two molecules. InlB preferred long-chain (>or=dp14) heparin oligosaccharides, and the interaction with heparin fit a complicated binding model with a dissociation constant in the nanomolar range. While there are various explanations for this complicated binding model, one supported by our data involves binding and rebinding of InlB to multiple binding sites on heparin in a positive and weakly cooperative manner. This mode is consistent with enhancement of interaction of InlB with glycosaminoglycans for activation of Met.
Collapse
Affiliation(s)
- Sybil C Lang Hrtska
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kitagawa H, Izumikawa T, Mizuguchi S, Dejima K, Nomura KH, Egusa N, Taniguchi F, Tamura JI, Gengyo-Ando K, Mitani S, Nomura K, Sugahara K. Expression of rib-1, a Caenorhabditis elegans homolog of the human tumor suppressor EXT genes, is indispensable for heparan sulfate synthesis and embryonic morphogenesis. J Biol Chem 2007; 282:8533-44. [PMID: 17237233 DOI: 10.1074/jbc.m611107200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proteins encoded by all of the five cloned human EXT family genes (EXT1, EXT2, EXTL1, EXTL2, and EXTL3), members of the hereditary multiple exostoses gene family of tumor suppressors, are glycosyltransferases required for the biosynthesis of heparan sulfate. In the Caenorhabditis elegans genome, only two genes, rib-1 and rib-2, homologous to the mammalian EXT genes have been identified. Although rib-2 encodes an N-acetylglucosaminyltransferase involved in initiating the biosynthesis and elongation of heparan sulfate, the involvement of the protein encoded by rib-1 in the biosynthesis of heparan sulfate remains unclear. Here we report that RIB-1 is indispensable for the biosynthesis and for embryonic morphogenesis. Despite little individual glycosyltransferase activity by RIB-1, the polymerization of heparan sulfate chains was demonstrated when RIB-1 was coexpressed with RIB-2 in vitro. In addition, RIB-1 and RIB-2 were demonstrated to interact by pulldown assays. To investigate the functions of RIB-1 in vivo, we depleted the expression of rib-1 by deletion mutagenesis. The null mutant worms showed reduced synthesis of heparan sulfate and embryonic lethality. Notably, the null mutant embryos showed abnormality at the gastrulation cleft formation stage or later and arrested mainly at the 1-fold stage. Nearly 100% of the embryos died before L1 stage, although the differentiation of some of the neurons and muscle cells proceeded normally. Similar phenotypes have been observed in rib-2 null mutant embryos. Thus, RIB-1 in addition to RIB-2 is indispensable for the biosynthesis of heparan sulfate in C. elegans, and the two cooperate to synthesize heparan sulfate in vivo. These findings also show that heparan sulfate is essential for post-gastrulation morphogenic movement of embryonic cells and is indispensable for ensuring the normal spatial organization of differentiated tissues and organs.
Collapse
Affiliation(s)
- Hiroshi Kitagawa
- Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Liu J, Pedersen LC. Anticoagulant heparan sulfate: structural specificity and biosynthesis. Appl Microbiol Biotechnol 2006; 74:263-72. [PMID: 17131147 PMCID: PMC1876722 DOI: 10.1007/s00253-006-0722-x] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 10/11/2006] [Accepted: 10/12/2006] [Indexed: 12/11/2022]
Abstract
Heparan sulfate (HS) is present on the surface of endothelial and surrounding tissues in large quantities. It plays important roles in regulating numerous functions of the blood vessel wall, including blood coagulation, inflammation response, and cell differentiation. HS is a highly sulfated polysaccharide containing glucosamine and glucuronic/iduronic acid repeating disaccharide units. The unique sulfated saccharide sequences of HS determine its specific functions. Heparin, an analog of HS, is the most commonly used anticoagulant drug. Because of its wide range of biological functions, HS has become an interesting molecule to biochemists, medicinal chemists, and developmental biologists. In this review, we summarize recent progress toward understanding the interaction between HS and blood-coagulating factors, the biosynthesis of anticoagulant HS and the mechanism of action of HS biosynthetic enzymes. Furthermore, knowledge of the biosynthesis of HS facilitates the development of novel enzymatic approaches to synthesize HS from bacterial capsular polysaccharides and to produce polysaccharide end products with high specificity for the biological target. These advancements provide the foundation for the development of polysaccharide-based therapeutic agents.
Collapse
Affiliation(s)
- Jian Liu
- Division of Medicinal Chemistry and Natural Products, School of Pharmacy, University of North Carolina, Rm 309, Beard Hall, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
50
|
Habuchi H, Habuchi O, Uchimura K, Kimata K, Muramatsu T. Determination of Substrate Specificity of Sulfotransferases and Glycosyltransferases (Proteoglycans). Methods Enzymol 2006; 416:225-43. [PMID: 17113869 DOI: 10.1016/s0076-6879(06)16014-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Proteoglycans have sulfated linear polysaccharide chains, that is, heparan sulfate, heparin, chondroitin sulfates, dermatan sulfate, and keratan sulfate. Many glycosyltransferases and sulfotransferases are involved in biosynthesis of the polysaccharides. Specificities of these enzymes have been mainly determined by evaluating their activities to various acceptor carbohydrates and by analyzing the structure of the products. For the latter purpose, enzymatic hydrolysis using heparitinases, heparinase, and chondroitinases or chemical degradation employing nitrous acid deamination has been effectively used in combination with high-performance liquid chromatography (HPLC) of the degraded products. As examples, we describe methods for assays and product characterization of sulfotransferases involved in biosynthesis of these polysaccharides, namely heparan sulfate 2-sulfotransferase, heparan sulfate 6-sulfotransferases, chondroitin 4-sulfotransferases, chondroitin 6-sulfotransferase, N-acetylgalactosamine 4-sulfate 6-sulfotransferase, and N-acetylglucosamine 6-sulfotransferases.
Collapse
Affiliation(s)
- Hiroko Habuchi
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Japan
| | | | | | | | | |
Collapse
|