1
|
Sun H, Yang T, Simon R, Xiong ZG, Leng T. Cholestane-3β,5α,6β-Triol Inhibits Acid-Sensing Ion Channels and Reduces Acidosis-Mediated Ischemic Brain Injury. Stroke 2024; 55:1660-1671. [PMID: 38660789 PMCID: PMC11126354 DOI: 10.1161/strokeaha.124.046963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Activation of the acid-sensing ion channels (ASICs) by tissue acidosis, a common feature of brain ischemia, contributes to ischemic brain injury, while blockade of ASICs results in protection. Cholestane-3β,5α,6β-triol (Triol), a major cholesterol metabolite, has been demonstrated as an endogenous neuroprotectant; however, the mechanism underlying its neuroprotective activity remains elusive. In this study, we tested the hypothesis that inhibition of ASICs is a potential mechanism. METHODS The whole-cell patch-clamp technique was used to examine the effect of Triol on ASICs heterogeneously expressed in Chinese hamster ovary cells and ASICs endogenously expressed in primary cultured mouse cortical neurons. Acid-induced injury of cultured mouse cortical neurons and middle cerebral artery occlusion-induced ischemic brain injury in wild-type and ASIC1 and ASIC2 knockout mice were studied to examine the protective effect of Triol. RESULTS Triol inhibits ASICs in a subunit-dependent manner. In Chinese hamster ovary cells, it inhibits homomeric ASIC1a and ASIC3 without affecting ASIC1β and ASIC2a. In cultured mouse cortical neurons, it inhibits homomeric ASIC1a and heteromeric ASIC1a-containing channels. The inhibition is use-dependent but voltage- and pH-independent. Structure-activity relationship analysis suggests that hydroxyls at the 5 and 6 positions of the A/B ring are critical functional groups. Triol alleviates acidosis-mediated injury of cultured mouse cortical neurons and protects against middle cerebral artery occlusion-induced brain injury in an ASIC1a-dependent manner. CONCLUSIONS Our study identifies Triol as a novel ASIC inhibitor, which may serve as a new pharmacological tool for studying ASICs and may also be developed as a potential drug for treating stroke.
Collapse
Affiliation(s)
- Huawei Sun
- Department of Neurobiology, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA 30329, USA
| | - Tao Yang
- Department of Neurobiology, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA 30329, USA
| | - Roger Simon
- Department of Neurobiology, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA 30329, USA
| | - Zhi-gang Xiong
- Department of Neurobiology, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA 30329, USA
| | - Tiandong Leng
- Department of Neurobiology, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA 30329, USA
| |
Collapse
|
2
|
Platonov M, Maximyuk O, Rayevsky A, Hurmach V, Iegorova O, Naumchyk V, Bulgakov E, Cherninskyi A, Ozheredov D, Ryabukhin SV, Krishtal O, Volochnyuk DM. 4-(Azolyl)-Benzamidines as a Novel Chemotype for ASIC1a Inhibitors. Int J Mol Sci 2024; 25:3584. [PMID: 38612396 PMCID: PMC11011685 DOI: 10.3390/ijms25073584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/03/2024] [Accepted: 03/13/2024] [Indexed: 04/14/2024] Open
Abstract
Acid-sensing ion channels (ASICs) play a key role in the perception and response to extracellular acidification changes. These proton-gated cation channels are critical for neuronal functions, like learning and memory, fear, mechanosensation and internal adjustments like synaptic plasticity. Moreover, they play a key role in neuronal degeneration, ischemic neuronal injury, seizure termination, pain-sensing, etc. Functional ASICs are homo or heterotrimers formed with (ASIC1-ASIC3) homologous subunits. ASIC1a, a major ASIC isoform in the central nervous system (CNS), possesses an acidic pocket in the extracellular region, which is a key regulator of channel gating. Growing data suggest that ASIC1a channels are a potential therapeutic target for treating a variety of neurological disorders, including stroke, epilepsy and pain. Many studies were aimed at identifying allosteric modulators of ASIC channels. However, the regulation of ASICs remains poorly understood. Using all available crystal structures, which correspond to different functional states of ASIC1, and a molecular dynamics simulation (MD) protocol, we analyzed the process of channel inactivation. Then we applied a molecular docking procedure to predict the protein conformation suitable for the amiloride binding. To confirm the effect of its sole active blocker against the ASIC1 state transition route we studied the complex with another MD simulation run. Further experiments evaluated various compounds in the Enamine library that emerge with a detectable ASIC inhibitory activity. We performed a detailed analysis of the structural basis of ASIC1a inhibition by amiloride, using a combination of in silico approaches to visualize its interaction with the ion pore in the open state. An artificial activation (otherwise, expansion of the central pore) causes a complex modification of the channel structure, namely its transmembrane domain. The output protein conformations were used as a set of docking models, suitable for a high-throughput virtual screening of the Enamine chemical library. The outcome of the virtual screening was confirmed by electrophysiological assays with the best results shown for three hit compounds.
Collapse
Affiliation(s)
- Maksym Platonov
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Zabolotnogo Str., 150, 03143 Kyiv, Ukraine; (M.P.); (V.H.)
- Enamine Ltd., 78 Winston Churchill Str., 02660 Kyiv, Ukraine; (V.N.); (E.B.); (D.M.V.)
| | - Oleksandr Maximyuk
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4 Bogomoletz Str., 01024 Kyiv, Ukraine; (O.M.); (O.I.); (A.C.); (O.K.)
| | - Alexey Rayevsky
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Zabolotnogo Str., 150, 03143 Kyiv, Ukraine; (M.P.); (V.H.)
- Enamine Ltd., 78 Winston Churchill Str., 02660 Kyiv, Ukraine; (V.N.); (E.B.); (D.M.V.)
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Osypovskoho Str., 2A, 04123 Kyiv, Ukraine;
| | - Vasyl Hurmach
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Zabolotnogo Str., 150, 03143 Kyiv, Ukraine; (M.P.); (V.H.)
- Enamine Ltd., 78 Winston Churchill Str., 02660 Kyiv, Ukraine; (V.N.); (E.B.); (D.M.V.)
| | - Olena Iegorova
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4 Bogomoletz Str., 01024 Kyiv, Ukraine; (O.M.); (O.I.); (A.C.); (O.K.)
| | - Vasyl Naumchyk
- Enamine Ltd., 78 Winston Churchill Str., 02660 Kyiv, Ukraine; (V.N.); (E.B.); (D.M.V.)
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601 Kyiv, Ukraine
| | - Elijah Bulgakov
- Enamine Ltd., 78 Winston Churchill Str., 02660 Kyiv, Ukraine; (V.N.); (E.B.); (D.M.V.)
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Osypovskoho Str., 2A, 04123 Kyiv, Ukraine;
| | - Andrii Cherninskyi
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4 Bogomoletz Str., 01024 Kyiv, Ukraine; (O.M.); (O.I.); (A.C.); (O.K.)
| | - Danil Ozheredov
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Osypovskoho Str., 2A, 04123 Kyiv, Ukraine;
| | - Serhiy V. Ryabukhin
- Enamine Ltd., 78 Winston Churchill Str., 02660 Kyiv, Ukraine; (V.N.); (E.B.); (D.M.V.)
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601 Kyiv, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Academik Kukhar Str., 02660 Kyiv, Ukraine
| | - Oleg Krishtal
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4 Bogomoletz Str., 01024 Kyiv, Ukraine; (O.M.); (O.I.); (A.C.); (O.K.)
| | - Dmytro M. Volochnyuk
- Enamine Ltd., 78 Winston Churchill Str., 02660 Kyiv, Ukraine; (V.N.); (E.B.); (D.M.V.)
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601 Kyiv, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Academik Kukhar Str., 02660 Kyiv, Ukraine
| |
Collapse
|
3
|
Hori A, Fukazawa A, Katanosaka K, Mizuno M, Hotta N. Mechanosensitive channels in the mechanical component of the exercise pressor reflex. Auton Neurosci 2023; 250:103128. [PMID: 37925831 DOI: 10.1016/j.autneu.2023.103128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
The cardiovascular response is appropriately regulated during exercise to meet the metabolic demands of the active muscles. The exercise pressor reflex is a neural feedback mechanism through thin-fiber muscle afferents activated by mechanical and metabolic stimuli in the active skeletal muscles. The mechanical component of this reflex is referred to as skeletal muscle mechanoreflex. Its initial step requires mechanotransduction mediated by mechanosensors, which convert mechanical stimuli into biological signals. Recently, various mechanosensors have been identified, and their contributions to muscle mechanoreflex have been actively investigated. Nevertheless, the mechanosensitive channels responsible for this muscular reflex remain largely unknown. This review discusses progress in our understanding of muscle mechanoreflex under healthy conditions, focusing on mechanosensitive channels.
Collapse
Affiliation(s)
- Amane Hori
- College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan; Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-8472, Japan; Department of Applied Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390-9174, USA
| | - Ayumi Fukazawa
- Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-8472, Japan; Department of Applied Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390-9174, USA
| | - Kimiaki Katanosaka
- College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Masaki Mizuno
- Department of Applied Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390-9174, USA
| | - Norio Hotta
- College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan.
| |
Collapse
|
4
|
Elkhatib W, Yanez-Guerra LA, Mayorova TD, Currie MA, Singh A, Perera M, Gauberg J, Senatore A. Function and phylogeny support the independent evolution of an ASIC-like Deg/ENaC channel in the Placozoa. Commun Biol 2023; 6:951. [PMID: 37723223 PMCID: PMC10507113 DOI: 10.1038/s42003-023-05312-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 09/01/2023] [Indexed: 09/20/2023] Open
Abstract
ASIC channels are bilaterian proton-gated sodium channels belonging to the large and functionally-diverse Deg/ENaC family that also includes peptide- and mechanically-gated channels. Here, we report that the non-bilaterian invertebrate Trichoplax adhaerens possesses a proton-activated Deg/ENaC channel, TadNaC2, with a unique combination of biophysical features including tachyphylaxis like ASIC1a, reduced proton sensitivity like ASIC2a, biphasic macroscopic currents like ASIC3, as well as low sensitivity to the Deg/ENaC channel blocker amiloride and Ca2+ ions. Structural modeling and mutation analyses reveal that TadNaC2 proton gating is different from ASIC channels, lacking key molecular determinants, and involving unique residues within the palm and finger regions. Phylogenetic analysis reveals that a monophyletic clade of T. adhaerens Deg/ENaC channels, which includes TadNaC2, is phylogenetically distinct from ASIC channels, instead forming a clade with BASIC channels. Altogether, this work suggests that ASIC-like channels evolved independently in T. adhaerens and its phylum Placozoa. Our phylogenetic analysis also identifies several clades of uncharacterized metazoan Deg/ENaC channels, and provides phylogenetic evidence for the existence of Deg/ENaC channels outside of Metazoa, present in the gene data of select unicellular heterokont and filasterea-related species.
Collapse
Affiliation(s)
- Wassim Elkhatib
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Luis A Yanez-Guerra
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, England
| | | | - Mark A Currie
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Anhadvir Singh
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Maria Perera
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Julia Gauberg
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Adriano Senatore
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada.
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada.
| |
Collapse
|
5
|
Fischer L, Schmidt A, Dopychai A, Joussen S, Joeres N, Oslender-Bujotzek A, Schmalzing G, Gründer S. Physiologically relevant acid-sensing ion channel (ASIC) 2a/3 heteromers have a 1:2 stoichiometry. Commun Biol 2023; 6:701. [PMID: 37422581 PMCID: PMC10329638 DOI: 10.1038/s42003-023-05087-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 06/29/2023] [Indexed: 07/10/2023] Open
Abstract
Acid-sensing ion channels (ASICs) sense extracellular protons and are involved in synaptic transmission and pain sensation. ASIC1a and ASIC3 are the ASIC subunits with the highest proton sensitivity. ASIC2a in contrast has low proton sensitivity but increases the variability of ASICs by forming heteromers with ASIC1a or ASIC3. ASICs are trimers and for the ASIC1a/2a heteromer it has been shown that subunits randomly assemble with a flexible 1:2/2:1 stoichiometry. Both heteromers have almost identical proton sensitivity intermediate between ASIC1a and ASIC2a. Here, we investigated the stoichiometry of the ASIC2a/3 heteromer. Using electrophysiology, we extensively characterized, first, cells expressing ASIC2a and ASIC3 at different ratios, second, concatemeric channels with a fixed subunit stoichiometry, and, third, channels containing loss-of-functions mutations in specific subunits. Our results conclusively show that only ASIC2a/3 heteromers with a 1:2 stoichiometry had a proton-sensitivity intermediate between ASIC2a and ASIC3. In contrast, the proton sensitivity of ASIC2a/3 heteromers with a 2:1 stoichiometry was strongly acid-shifted by more than one pH unit, which suggests that they are not physiologically relevant. Together, our results reveal that the proton sensitivity of the two ASIC2a/3 heteromers is clearly different and that ASIC3 and ASIC1a make remarkably different contributions to heteromers with ASIC2a.
Collapse
Affiliation(s)
- Leon Fischer
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, D-52074, Aachen, Germany
- Department of Anesthesiology, Technical University Dresden, Dresden, Germany
| | - Axel Schmidt
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, D-52074, Aachen, Germany
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Anke Dopychai
- Institute of Clinical Pharmacology, RWTH Aachen University, Wendlingweg, D-52074, Aachen, Germany
| | - Sylvia Joussen
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, D-52074, Aachen, Germany
| | - Niko Joeres
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, D-52074, Aachen, Germany
- Department of Nephrology and Clinical Immunology, RWTH Aachen University, Pauwelsstrasse 30, D-52074, Aachen, Germany
| | | | - Günther Schmalzing
- Institute of Clinical Pharmacology, RWTH Aachen University, Wendlingweg, D-52074, Aachen, Germany
| | - Stefan Gründer
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, D-52074, Aachen, Germany.
| |
Collapse
|
6
|
López-Ramírez O, González-Garrido A. The role of acid sensing ion channels in the cardiovascular function. Front Physiol 2023; 14:1194948. [PMID: 37389121 PMCID: PMC10300344 DOI: 10.3389/fphys.2023.1194948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/05/2023] [Indexed: 07/01/2023] Open
Abstract
Acid Sensing Ion Channels (ASIC) are proton sensors involved in several physiological and pathophysiological functions including synaptic plasticity, sensory systems and nociception. ASIC channels have been ubiquitously localized in neurons and play a role in their excitability. Information about ASIC channels in cardiomyocyte function is limited. Evidence indicates that ASIC subunits are expressed in both, plasma membrane and intracellular compartments of mammalian cardiomyocytes, suggesting unrevealing functions in the cardiomyocyte physiology. ASIC channels are expressed in neurons of the peripheral nervous system including the nodose and dorsal root ganglia (DRG), both innervating the heart, where they play a dual role as mechanosensors and chemosensors. In baroreceptor neurons from nodose ganglia, mechanosensation is directly associated with ASIC2a channels for detection of changes in arterial pressure. ASIC channels expressed in DRG neurons have several roles in the cardiovascular function. First, ASIC2a/3 channel has been proposed as the molecular sensor of cardiac ischemic pain for its pH range activation, kinetics and the sustained current. Second, ASIC1a seems to have a critical role in ischemia-induced injury. And third, ASIC1a, 2 and 3 are part of the metabolic component of the exercise pressure reflex (EPR). This review consists of a summary of several reports about the role of ASIC channels in the cardiovascular system and its innervation.
Collapse
Affiliation(s)
- Omar López-Ramírez
- Instituto de Oftalmología Fundación de Asistencia Privada Conde de Valenciana, I.A.P., Mexico City, Mexico
| | - Antonia González-Garrido
- Laboratorio de Enfermedades Mendelianas, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
7
|
Hung CH, Chin Y, Fong YO, Lee CH, Han DS, Lin JH, Sun WH, Chen CC. Acidosis-related pain and its receptors as targets for chronic pain. Pharmacol Ther 2023; 247:108444. [PMID: 37210007 DOI: 10.1016/j.pharmthera.2023.108444] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/24/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Sensing acidosis is an important somatosensory function in responses to ischemia, inflammation, and metabolic alteration. Accumulating evidence has shown that acidosis is an effective factor for pain induction and that many intractable chronic pain diseases are associated with acidosis signaling. Various receptors have been known to detect extracellular acidosis and all express in the somatosensory neurons, such as acid sensing ion channels (ASIC), transient receptor potential (TRP) channels and proton-sensing G-protein coupled receptors. In addition to sense noxious acidic stimulation, these proton-sensing receptors also play a vital role in pain processing. For example, ASICs and TRPs are involved in not only nociceptive activation but also anti-nociceptive effects as well as some other non-nociceptive pathways. Herein, we review recent progress in probing the roles of proton-sensing receptors in preclinical pain research and their clinical relevance. We also propose a new concept of sngception to address the specific somatosensory function of acid sensation. This review aims to connect these acid-sensing receptors with basic pain research and clinical pain diseases, thus helping with better understanding the acid-related pain pathogenesis and their potential therapeutic roles via the mechanism of acid-mediated antinociception.
Collapse
Affiliation(s)
- Chih-Hsien Hung
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yin Chin
- Department of Life Science & Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-On Fong
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Han Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Der-Shen Han
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Bei-Hu Branch, Taipei, Taiwan
| | - Jiann-Her Lin
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan; Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Wei-Hsin Sun
- Department of Life Science & Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Cheng Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan; Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
8
|
Cherninskyi A, Storozhuk M, Maximyuk O, Kulyk V, Krishtal O. Triggering of Major Brain Disorders by Protons and ATP: The Role of ASICs and P2X Receptors. Neurosci Bull 2023; 39:845-862. [PMID: 36445556 PMCID: PMC9707125 DOI: 10.1007/s12264-022-00986-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/14/2022] [Indexed: 11/30/2022] Open
Abstract
Adenosine triphosphate (ATP) is well-known as a universal source of energy in living cells. Less known is that this molecule has a variety of important signaling functions: it activates a variety of specific metabotropic (P2Y) and ionotropic (P2X) receptors in neuronal and non-neuronal cell membranes. So, a wide variety of signaling functions well fits the ubiquitous presence of ATP in the tissues. Even more ubiquitous are protons. Apart from the unspecific interaction of protons with any protein, many physiological processes are affected by protons acting on specific ionotropic receptors-acid-sensing ion channels (ASICs). Both protons (acidification) and ATP are locally elevated in various pathological states. Using these fundamentally important molecules as agonists, ASICs and P2X receptors signal a variety of major brain pathologies. Here we briefly outline the physiological roles of ASICs and P2X receptors, focusing on the brain pathologies involving these receptors.
Collapse
Affiliation(s)
- Andrii Cherninskyi
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine.
| | - Maksim Storozhuk
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| | - Oleksandr Maximyuk
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| | - Vyacheslav Kulyk
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| | - Oleg Krishtal
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| |
Collapse
|
9
|
Kaulich E, McCubbin PTN, Schafer WR, Walker DS. Physiological insight into the conserved properties of Caenorhabditis elegans acid-sensing degenerin/epithelial sodium channels. J Physiol 2023; 601:1625-1653. [PMID: 36200489 PMCID: PMC10424705 DOI: 10.1113/jp283238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/28/2022] [Indexed: 11/08/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are members of the diverse family of degenerin/epithelial sodium channels (DEG/ENaCs). They perform a wide range of physiological roles in healthy organisms, including in gut function and synaptic transmission, but also play important roles in disease, as acidosis is a hallmark of painful inflammatory and ischaemic conditions. We performed a screen for acid sensitivity on all 30 subunits of the Caenorhabditis elegans DEG/ENaC family using two-electrode voltage clamp in Xenopus oocytes. We found two groups of acid-sensitive DEG/ENaCs characterised by being either inhibited or activated by increasing proton concentrations. Three of these acid-sensitive C. elegans DEG/ENaCs were activated by acidic pH, making them functionally similar to the vertebrate ASICs. We also identified three new members of the acid-inhibited DEG/ENaC group, giving a total of seven additional acid-sensitive channels. We observed sensitivity to the anti-hypertensive drug amiloride as well as modulation by the trace element zinc. Acid-sensitive DEG/ENaCs were found to be expressed in both neurons and non-neuronal tissue, highlighting the likely functional diversity of these channels. Our findings provide a framework to exploit the C. elegans channels as models to study the function of these acid-sensing channels in vivo, as well as to study them as potential targets for anti-helminthic drugs. KEY POINTS: Acidosis plays many roles in healthy physiology, including synaptic transmission and gut function, but is also a key feature of inflammatory pain, ischaemia and many other conditions. Cells monitor acidosis of their surroundings via pH-sensing channels, including the acid-sensing ion channels (ASICs). These are members of the degenerin/epithelial sodium channel (DEG/ENaC) family, along with, as the name suggests, vertebrate ENaCs and degenerins of the roundworm Caenorhabditis elegans. By screening all 30 C. elegans DEG/ENaCs for pH dependence, we describe, for the first time, three acid-activated members, as well as three additional acid-inhibited channels. We surveyed both groups for sensitivity to amiloride and zinc; like their mammalian counterparts, their currents can be blocked, enhanced or unaffected by these modulators. Likewise, they exhibit diverse ion selectivity. Our findings underline the diversity of acid-sensitive DEG/ENaCs across species and provide a comparative resource for better understanding the molecular basis of their function.
Collapse
Affiliation(s)
- Eva Kaulich
- Neurobiology DivisionMRC Laboratory of Molecular BiologyCambridgeUK
| | | | - William R. Schafer
- Neurobiology DivisionMRC Laboratory of Molecular BiologyCambridgeUK
- Department of BiologyKU LeuvenLeuvenBelgium
| | - Denise S. Walker
- Neurobiology DivisionMRC Laboratory of Molecular BiologyCambridgeUK
| |
Collapse
|
10
|
Ovsepian SV, Waxman SG. Gene therapy for chronic pain: emerging opportunities in target-rich peripheral nociceptors. Nat Rev Neurosci 2023; 24:252-265. [PMID: 36658346 DOI: 10.1038/s41583-022-00673-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2022] [Indexed: 01/20/2023]
Abstract
With sweeping advances in precision delivery systems and manipulation of the genomes and transcriptomes of various cell types, medical biotechnology offers unprecedented selectivity for and control of a wide variety of biological processes, forging new opportunities for therapeutic interventions. This perspective summarizes state-of-the-art gene therapies enabled by recent innovations, with an emphasis on the expanding universe of molecular targets that govern the activity and function of primary sensory neurons and which might be exploited to effectively treat chronic pain.
Collapse
Affiliation(s)
- Saak V Ovsepian
- School of Science, Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, UK.
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
11
|
Animal toxins: As an alternative therapeutic target following ischemic stroke condition. Life Sci 2023; 317:121365. [PMID: 36640901 DOI: 10.1016/j.lfs.2022.121365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/29/2022] [Accepted: 12/31/2022] [Indexed: 01/13/2023]
Abstract
Globally, Ischemic stroke (IS) has become the second leading cause of mortality and chronic disability. The process of IS has triggered by the blockages of blood vessels to form clots in the brain which initiates multiple interactions with the key signaling pathways, counting excitotoxicity, acidosis, ionic imbalance, inflammation, oxidative stress, and neuronal dysfunction of cells, and ultimately cells going under apoptosis. Currently, FDA has approved only tissue plasminogen activator therapy, which is effective against IS with few limitations. However, the mechanism of excitotoxicity and acidosis has spurred the investigation of a potential candidate for IS therapy. Acid-sensing ion channels (ASICs) and Voltage-gated Ca2+ channels (VDCCs) get activated and disturb the brain's normal physiology. Animal toxins are novel inhibitors of ASICs and VDCCs channels and have provided neuroprotective insights into the pathophysiology of IS. This review will discuss the potential directions of translational ASICs and VDCCs inhibitors research for clinical therapies.
Collapse
|
12
|
Sun HW, Chu XP, Simon RP, Xiong ZG, Leng TD. Inhibition of Acid-Sensing Ion Channels by KB-R7943, a Reverse Na+/Ca2+ Exchanger Inhibitor. Biomolecules 2023; 13:biom13030507. [PMID: 36979442 PMCID: PMC10046550 DOI: 10.3390/biom13030507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
KB-R7943, an isothiourea derivative, is widely used as a pharmacological inhibitor of reverse sodium–calcium exchanger (NCX). It has been shown to have neuroprotective and analgesic effects in animal models; however, the detailed molecular mechanisms remain elusive. In the current study, we investigated whether KB-R7943 modulates acid-sensing ion channels (ASICs), a group of proton-gated cation channels implicated in the pathophysiology of various neurological disorders, using the whole-cell patch clamp techniques. Our data show that KB-R7943 irreversibly inhibits homomeric ASIC1a channels heterologously expressed in Chinese Hamster Ovary (CHO) cells in a use- and concentration-dependent manner. It also reversibly inhibits homomeric ASIC2a and ASIC3 channels in CHO cells. Both the transient and sustained current components of ASIC3 are inhibited. Furthermore, KB-R7943 inhibits ASICs in primary cultured peripheral and central neurons. It inhibits the ASIC-like currents in mouse dorsal root ganglion (DRG) neurons and the ASIC1a-like currents in mouse cortical neurons. The inhibition of the ASIC1a-like current is use-dependent and unrelated to its effect on NCX since neither of the other two well-characterized NCX inhibitors, including SEA0400 and SN-6, shows an effect on ASIC. Our data also suggest that the isothiourea group, which is lacking in other structurally related analogs that do not affect ASIC1a-like current, may serve as a critical functional group. In summary, we characterize KB-R7943 as a new ASIC inhibitor. It provides a novel pharmacological tool for the investigation of the functions of ASICs and could serve as a lead compound for developing small-molecule drugs for treating ASIC-related disorders.
Collapse
Affiliation(s)
- Hua-Wei Sun
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Xiang-Ping Chu
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Roger P. Simon
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Zhi-Gang Xiong
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Tian-Dong Leng
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
- Correspondence:
| |
Collapse
|
13
|
Garcia SM, Naik JS, Resta TC, Jernigan NL. Acid-sensing ion channel 1a activates IKCa/SKCa channels and contributes to endothelium-dependent dilation. J Gen Physiol 2023; 155:e202213173. [PMID: 36484717 PMCID: PMC9984545 DOI: 10.1085/jgp.202213173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/21/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Acid-sensing ion channel 1a (ASIC1a) belongs to a novel family of proton-gated cation channels that are permeable to both Na+ and Ca2+. ASIC1a is expressed in vascular smooth muscle and endothelial cells in a variety of vascular beds, yet little is known regarding the potential impact of ASIC1a to regulate local vascular reactivity. Our previous studies in rat mesenteric arteries suggest ASIC1a does not contribute to agonist-induced vasoconstriction but may mediate a vasodilatory response. The objective of the current study is to determine the role of ASIC1a in systemic vasodilatory responses by testing the hypothesis that the activation of endothelial ASIC1a mediates vasodilation of mesenteric resistance arteries through an endothelium-dependent hyperpolarization (EDH)-related pathway. The selective ASIC1a antagonist psalmotoxin 1 (PcTX1) largely attenuated the sustained vasodilatory response to acetylcholine (ACh) in isolated, pressurized mesenteric resistance arteries and ACh-mediated Ca2+ influx in freshly isolated mesenteric endothelial tubes. Similarly, basal tone was enhanced and ACh-induced vasodilation blunted in mesenteric arteries from Asic1a knockout mice. ASIC1a colocalizes with intermediate- and small-conductance Ca2+-activated K+ channels (IKCa and SKCa, respectively), and the IKCa/SKCa-sensitive component of the ACh-mediated vasodilation was blocked by ASIC1a inhibition. To determine the role of ASIC1a to activate IKCa/SKCa channels, we measured whole-cell K+ currents using the perforated-patch clamp technique in freshly isolated mesenteric endothelial cells. Inhibition of ASIC1a prevented ACh-induced activation of IKCa/SKCa channels. The ASIC1 agonist, α/β-MitTx, activated IKCa/SKCa channels and induced an IKCa/SKCa-dependent vasodilation. Together, the present study demonstrates that ASIC1a couples to IKCa/SKCa channels in mesenteric resistance arteries to mediate endothelium-dependent vasodilation.
Collapse
Affiliation(s)
- Selina M. Garcia
- Department of Cell Biology and Physiology University of New Mexico School of Medicine, Albuquerque, NM
| | - Jay S. Naik
- Department of Cell Biology and Physiology University of New Mexico School of Medicine, Albuquerque, NM
| | - Thomas C. Resta
- Department of Cell Biology and Physiology University of New Mexico School of Medicine, Albuquerque, NM
| | - Nikki L. Jernigan
- Department of Cell Biology and Physiology University of New Mexico School of Medicine, Albuquerque, NM
| |
Collapse
|
14
|
Fuller MJ, Gupta SC, Fan R, Taugher-Hebl RJ, Wang GZ, Andrys NRR, Bera AK, Radley JJ, Wemmie JA. Investigating role of ASIC2 in synaptic and behavioral responses to drugs of abuse. Front Mol Biosci 2023; 10:1118754. [PMID: 36793786 PMCID: PMC9923001 DOI: 10.3389/fmolb.2023.1118754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
Drugs of abuse produce rearrangements at glutamatergic synapses thought to contribute to drug-reinforced behaviors. Acid-Sensing Ion Channels (ASICs) have been suggested to oppose these effects, largely due to observations in mice lacking the ASIC1A subunit. However, the ASIC2A and ASIC2B subunits are known to interact with ASIC1A, and their potential roles in drugs of abuse have not yet been investigated. Therefore, we tested the effects of disrupting ASIC2 subunits in mice exposed to drugs of abuse. We found conditioned place preference (CPP) to both cocaine and morphine were increased in Asic2 -/- mice, which is similar to what was observed in Asic1a -/- mice. Because nucleus accumbens core (NAcc) is an important site of ASIC1A action, we examined expression of ASIC2 subunits there. By western blot ASIC2A was readily detected in wild-type mice, while ASIC2B was not, suggesting ASIC2A is the predominant subunit in nucleus accumbens core. An adeno-associated virus vector (AAV) was used to drive recombinant ASIC2A expression in nucleus accumbens core of Asic2 -/- mice, resulting in near normal protein levels. Moreover, recombinant ASIC2A integrated with endogenous ASIC1A subunits to form functional channels in medium spiny neurons (MSNs). However, unlike ASIC1A, region-restricted restoration of ASIC2A in nucleus accumbens core was not sufficient to affect cocaine or morphine conditioned place preference, suggesting effects of ASIC2 differ from those of ASIC1A. Supporting this contrast, we found that AMPA receptor subunit composition and the ratio of AMPA receptor-mediated current to NMDA receptor-mediated current (AMPAR/NMDAR) were normal in Asic2 -/- mice and responded to cocaine withdrawal similarly to wild-type animals. However, disruption of ASIC2 significantly altered dendritic spine morphology, and these effects differed from those reported previously in mice lacking ASIC1A. We conclude that ASIC2 plays an important role in drug-reinforced behavior, and that its mechanisms of action may differ from ASIC1A.
Collapse
Affiliation(s)
- Margaret J. Fuller
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
- Department of Veterans Affairs Medical Center, Iowa City, IA, United States
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, United States
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, United States
| | - Subhash C. Gupta
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
- Department of Veterans Affairs Medical Center, Iowa City, IA, United States
| | - Rong Fan
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
- Department of Veterans Affairs Medical Center, Iowa City, IA, United States
| | - Rebecca J. Taugher-Hebl
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
- Department of Veterans Affairs Medical Center, Iowa City, IA, United States
| | - Grace Z. Wang
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
- Department of Veterans Affairs Medical Center, Iowa City, IA, United States
| | - Noah R. R. Andrys
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
- Department of Veterans Affairs Medical Center, Iowa City, IA, United States
| | - Amal K. Bera
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Jason J. Radley
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, United States
| | - John A. Wemmie
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
- Department of Veterans Affairs Medical Center, Iowa City, IA, United States
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, United States
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
- Department of Neurosurgery, University of Iowa, Iowa City, IA, United States
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
15
|
Yang J, Ding H, Shuai B, Zhang Y, Zhang Y. Mechanism and effects of STING-IFN-I pathway on nociception: A narrative review. Front Mol Neurosci 2023; 15:1081288. [PMID: 36683857 PMCID: PMC9846240 DOI: 10.3389/fnmol.2022.1081288] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
Since the discovery of STING in 2008, numerous studies have investigated its functions in immunity, inflammation, and cancer. STING activates downstream molecules including IFN-I, NLRP3, and NF-κB. The STING-IFN-I pathway plays a vital role in nociception. After receiving the upstream signal, STING is activated and induces the expression of IFN-I, and after paracrine and autocrine signaling, IFN-I binds to IFN receptors. Subsequently, the activity of ion channels is inhibited by TYK2, which induces an acute antinociceptive effect. JAK activates PIK3 and MAPK-MNK-eIF4E pathways, which sensitize nociceptors in the peripheral nervous system. In the mid-late stage, the STING-IFN-I pathway activates STAT, increases pro-inflammatory and anti-inflammatory cytokines, inhibits ER-phagy, and promotes microglial M1-polarization in the central nervous system, leading to central sensitization. Thus, the STING-IFN-I pathway may exert complex effects on nociception at various stages, and these effects require further comprehensive elucidation. Therefore, in this review, we systematically summarized the mechanisms of the STING-IFN-I pathway and discussed its function in nociception.
Collapse
Affiliation(s)
- Jinghan Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Ding
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Shuai
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zhang
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Yan Zhang,
| | - Yan Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Kaulich E, Grundy LJ, Schafer WR, Walker DS. The diverse functions of the DEG/ENaC family: linking genetic and physiological insights. J Physiol 2022; 601:1521-1542. [PMID: 36314992 PMCID: PMC10148893 DOI: 10.1113/jp283335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
The DEG/ENaC family of ion channels was defined based on the sequence similarity between degenerins (DEG) from the nematode Caenorhabditis elegans and subunits of the mammalian epithelial sodium channel (ENaC), and also includes a diverse array of non-voltage-gated cation channels from across animal phyla, including the mammalian acid-sensing ion channels (ASICs) and Drosophila pickpockets. ENaCs and ASICs have wide ranging medical importance; for example, ENaCs play an important role in respiratory and renal function, and ASICs in ischaemia and inflammatory pain, as well as being implicated in memory and learning. Electrophysiological approaches, both in vitro and in vivo, have played an essential role in establishing the physiological properties of this diverse family, identifying an array of modulators and implicating them in an extensive range of cellular functions, including mechanosensation, acid sensation and synaptic modulation. Likewise, genetic studies in both invertebrates and vertebrates have played an important role in linking our understanding of channel properties to function at the cellular and whole animal/behavioural level. Drawing together genetic and physiological evidence is essential to furthering our understanding of the precise cellular roles of DEG/ENaC channels, with the diversity among family members allowing comparative physiological studies to dissect the molecular basis of these diverse functions.
Collapse
Affiliation(s)
- Eva Kaulich
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - Laura J Grundy
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK.,Department of Biology, KU Leuven, Leuven, Belgium
| | - Denise S Walker
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
17
|
Verkest C, Salinas M, Diochot S, Deval E, Lingueglia E, Baron A. Mechanisms of Action of the Peptide Toxins Targeting Human and Rodent Acid-Sensing Ion Channels and Relevance to Their In Vivo Analgesic Effects. Toxins (Basel) 2022; 14:toxins14100709. [PMID: 36287977 PMCID: PMC9612379 DOI: 10.3390/toxins14100709] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/16/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are voltage-independent H+-gated cation channels largely expressed in the nervous system of rodents and humans. At least six isoforms (ASIC1a, 1b, 2a, 2b, 3 and 4) associate into homotrimers or heterotrimers to form functional channels with highly pH-dependent gating properties. This review provides an update on the pharmacological profiles of animal peptide toxins targeting ASICs, including PcTx1 from tarantula and related spider toxins, APETx2 and APETx-like peptides from sea anemone, and mambalgin from snake, as well as the dimeric protein snake toxin MitTx that have all been instrumental to understanding the structure and the pH-dependent gating of rodent and human cloned ASICs and to study the physiological and pathological roles of native ASICs in vitro and in vivo. ASICs are expressed all along the pain pathways and the pharmacological data clearly support a role for these channels in pain. ASIC-targeting peptide toxins interfere with ASIC gating by complex and pH-dependent mechanisms sometimes leading to opposite effects. However, these dual pH-dependent effects of ASIC-inhibiting toxins (PcTx1, mambalgin and APETx2) are fully compatible with, and even support, their analgesic effects in vivo, both in the central and the peripheral nervous system, as well as potential effects in humans.
Collapse
Affiliation(s)
- Clément Verkest
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Miguel Salinas
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
| | - Sylvie Diochot
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
| | - Emmanuel Deval
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
| | - Eric Lingueglia
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
| | - Anne Baron
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
- Correspondence:
| |
Collapse
|
18
|
Zhang L, Zheng L, Yang X, Yao S, Wang H, An J, Jin H, Wen G, Tuo B. Pathology and physiology of acid‑sensitive ion channels in the digestive system (Review). Int J Mol Med 2022; 50:94. [PMID: 35616162 PMCID: PMC9170189 DOI: 10.3892/ijmm.2022.5150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
As a major proton-gated cation channel, acid-sensitive ion channels (ASICs) can perceive large extracellular pH changes. ASICs play an important role in the occurrence and development of diseases of various organs and tissues including in the heart, brain, and gastrointestinal tract, as well as in tumor proliferation, invasion, and metastasis in acidosis and regulation of an acidic microenvironment. The permeability of ASICs to sodium and calcium ions is the basis of their physiological and pathological roles in the body. This review summarizes the physiological and pathological mechanisms of ASICs in digestive system diseases, which plays an important role in the early diagnosis, treatment, and prognosis of digestive system diseases related to ASIC expression.
Collapse
Affiliation(s)
- Li Zhang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Liming Zheng
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Xingyue Yang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Shun Yao
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Hui Wang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Jiaxing An
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Hai Jin
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Guorong Wen
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
19
|
Alasmari F, Sari DB, Alhaddad H, Al-Rejaie SS, Sari Y. Interactive role of acid sensing ion channels and glutamatergic system in opioid dependence. Neurosci Biobehav Rev 2022; 135:104581. [PMID: 35181397 DOI: 10.1016/j.neubiorev.2022.104581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/03/2022] [Accepted: 02/12/2022] [Indexed: 11/21/2022]
Abstract
Dysregulation in glutamatergic receptors and transporters has been found to mediate drugs of abuse, including morphine. Among glutamate receptors, ionotropic glutamate receptors (iGluRs) are altered with exposure to drugs of abuse. Acid-sensing ion channels (ASICs) are ligand (H+)-gated channels, which are expressed at the excitatory synaptic clefts and play a role in drug dependence. Overexpression of a specific ASIC subtype, ASIC1a, attenuated reinstatement of cocaine. ASICs are revealed to be involved in cocaine and morphine seeking behaviors, and these effects are mediated through modulation of glutamatergic receptors. In this review, we discussed the interactive role of ASICs and glutamate receptors, mainly iGluRs, in opioid dependence. ASICs are also expressed in astrocytes and are suggested to be involved on regulating glutamate uptake. However, little is known about the coupling between ASICs and the astroglial glutamate transporters. In addition, this review discussed the role of nitric oxide in the modulation of ASIC function and potentially opioid dependence. We also discussed the role of ASICs in the modulation of the function of both glutamatergic receptors in post-synaptic neurons and glutamatergic transporters in astrocytes in animals exposed to drugs of abuse.
Collapse
Affiliation(s)
- Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA.
| | - Deen B Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Hasan Alhaddad
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Youssef Sari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
20
|
Dulai JS, Smith ESJ, Rahman T. Acid-sensing ion channel 3: An analgesic target. Channels (Austin) 2021; 15:94-127. [PMID: 33258401 PMCID: PMC7801124 DOI: 10.1080/19336950.2020.1852831] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Acid-sensing ion channel 3 (ASIC3) belongs to the epithelial sodium channel/degenerin (ENaC/DEG) superfamily. There are 7 different ASIC subunits encoded by 5 different genes. Most ASIC subunits form trimeric ion channels that upon activation by extracellular protons mediate a transient inward current inducing cellular excitability. ASIC subunits exhibit differential tissue expression and biophysical properties, and the ability of subunits to form homo- and heteromeric trimers further increases the complexity of currents measured and their pharmacological properties. ASIC3 is of particular interest, not only because it exhibits high expression in sensory neurones, but also because upon activation it does not fully inactivate: a transient current is followed by a sustained current that persists during a period of extracellular acidity, i.e. ASIC3 can encode prolonged acidosis as a nociceptive signal. Furthermore, certain mediators sensitize ASIC3 enabling smaller proton concentrations to activate it and other mediators can directly activate the channel at neutral pH. Moreover, there is a plethora of evidence using transgenic mouse models and pharmacology, which supports ASIC3 as being a potential target for development of analgesics. This review will focus on current understanding of ASIC3 function to provide an overview of how ASIC3 contributes to physiology and pathophysiology, examining the mechanisms by which it can be modulated, and highlighting gaps in current understanding and future research directions.
Collapse
Affiliation(s)
| | | | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| |
Collapse
|
21
|
Ren WJ, Illes P. Involvement of P2X7 receptors in chronic pain disorders. Purinergic Signal 2021; 18:83-92. [PMID: 34799827 PMCID: PMC8850523 DOI: 10.1007/s11302-021-09796-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic pain is caused by cellular damage with an obligatory inflammatory component. In response to noxious stimuli, high levels of ATP leave according to their concentration gradient, the intracellular space through discontinuities generated in the plasma membrane or diffusion through pannexin-1 hemichannels, and activate P2X7Rs localized at peripheral and central immune cells. Because of the involvement of P2X7Rs in immune functions and especially the initiation of macrophage/microglial and astrocytic secretion of cytokines, chemokines, prostaglandins, proteases, reactive oxygen, and nitrogen species as well as the excitotoxic glutamate/ATP, this receptor type has a key role in chronic pain processes. Microglia are equipped with a battery of pattern recognition receptors that detect pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharide (LPS) from bacterial infections or danger associated molecular patterns (DAMPs) such as ATP. The co-stimulation of these receptors leads to the activation of the NLRP3 inflammasome and interleukin-1β (IL-1β) release. In the present review, we invite you to a journey through inflammatory and neuropathic pain, primary headache, and regulation of morphine analgesic tolerance, in the pathophysiology of which P2X7Rs are centrally involved. P2X7R bearing microglia and astrocyte-like cells playing eminent roles in chronic pain will be also discussed.
Collapse
Affiliation(s)
- Wen-Jing Ren
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Peter Illes
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04109, Leipzig, Germany.
| |
Collapse
|
22
|
Alijevic O, Peng Z, Kellenberger S. Changes in H +, K +, and Ca 2+ Concentrations, as Observed in Seizures, Induce Action Potential Signaling in Cortical Neurons by a Mechanism That Depends Partially on Acid-Sensing Ion Channels. Front Cell Neurosci 2021; 15:732869. [PMID: 34720879 PMCID: PMC8553998 DOI: 10.3389/fncel.2021.732869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are activated by extracellular acidification. Because ASIC currents are transient, these channels appear to be ideal sensors for detecting the onset of rapid pH changes. ASICs are involved in neuronal death after ischemic stroke, and in the sensation of inflammatory pain. Ischemia and inflammation are associated with a slowly developing, long-lasting acidification. Recent studies indicate however that ASICs are unable to induce an electrical signaling activity under standard experimental conditions if pH changes are slow. In situations associated with slow and sustained pH drops such as high neuronal signaling activity and ischemia, the extracellular K+ concentration increases, and the Ca2+ concentration decreases. We hypothesized that the concomitant changes in H+, K+, and Ca2+ concentrations may allow a long-lasting ASIC-dependent induction of action potential (AP) signaling. We show that for acidification from pH7.4 to pH7.0 or 6.8 on cultured cortical neurons, the number of action potentials and the firing time increased strongly if the acidification was accompanied by a change to higher K+ and lower Ca2+ concentrations. Under these conditions, APs were also induced in neurons from ASIC1a-/- mice, in which a pH of ≤ 5.0 would be required to activate ASICs, indicating that ASIC activation was not required for the AP induction. Comparison between neurons of different ASIC genotypes indicated that the ASICs modulate the AP induction under such changed ionic conditions. Voltage-clamp measurements of the Na+ and K+ currents in cultured cortical neurons showed that the lowering of the pH inhibited Na+ and K+ currents. In contrast, the lowering of the Ca2+ together with the increase in the K+ concentration led to a hyperpolarizing shift of the activation voltage dependence of voltage-gated Na+ channels. We conclude that the ionic changes observed during high neuronal activity mediate a sustained AP induction caused by the potentiation of Na+ currents, a membrane depolarization due to the changed K+ reversal potential, the activation of ASICs, and possibly effects on other ion channels. Our study describes therefore conditions under which slow pH changes induce neuronal signaling by a mechanism involving ASICs.
Collapse
Affiliation(s)
- Omar Alijevic
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Zhong Peng
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Stephan Kellenberger
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
23
|
Pidoplichko VI, Aroniadou-Anderjaska V, Figueiredo TH, Wilbraham C, Braga MFM. Increased inhibitory activity in the basolateral amygdala and decreased anxiety during estrus: A potential role for ASIC1a channels. Brain Res 2021; 1770:147628. [PMID: 34454948 DOI: 10.1016/j.brainres.2021.147628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 11/29/2022]
Abstract
The amygdala is central to emotional behavior, and the excitability level of the basolateral nucleus of the amygdala (BLA) is associated with the level of anxiety. The excitability of neuronal networks is significantly controlled by GABAergic inhibition. Here, we investigated whether GABAergic inhibition in the BLA is altered during the rat estrous cycle. In rat amygdala slices, most principal BLA neurons display spontaneous IPSCs (sIPSCs) in the form of "bursts" of inhibitory currents, occurring rhythmically at a frequency of about 0.5 Hz. The percentage of BLA neurons displaying sIPSC bursts, along with the inhibitory charge transferred by sIPSCs and the frequency of sIPSC bursts, were significantly increased during the estrus phase; increased inhibition was accompanied by reduced anxiety in the open field, the light-dark box, and the acoustic startle response tests. sIPSC bursts were blocked by ibuprofen, an antagonist of acid-sensing-1a channels (ASIC1a), whose activity is known to increase by decreasing temperature. A transient reduction in the temperature of the slice medium, strengthened the sIPSCs bursts; this effect was blocked in the presence of ibuprofen. Further analysis of the sIPSC bursts during estrus showed significantly stronger rhythmic inhibitory activity in early estrus, when body temperature drops, compared with late estrus. To the extent that these results may relate to humans, it is suggested that "a calmer amygdala" due to increased inhibitory activity may underlie the positive affect in women around ovulation time. ASIC1a may contribute to increased inhibition, with their activity facilitated by the body-temperature drop preceding ovulation.
Collapse
Affiliation(s)
- Volodymyr I Pidoplichko
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Vassiliki Aroniadou-Anderjaska
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Taiza H Figueiredo
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Camilla Wilbraham
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Maria F M Braga
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| |
Collapse
|
24
|
Sheikh ZP, Wulf M, Friis S, Althaus M, Lynagh T, Pless SA. The M1 and pre-M1 segments contribute differently to ion selectivity in ASICs and ENaCs. J Gen Physiol 2021; 153:212604. [PMID: 34436511 PMCID: PMC8404453 DOI: 10.1085/jgp.202112899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/26/2021] [Indexed: 11/20/2022] Open
Abstract
The ability to discriminate between different ionic species, termed ion selectivity, is a key feature of ion channels and forms the basis for their physiological function. Members of the degenerin/epithelial sodium channel (DEG/ENaC) superfamily of trimeric ion channels are typically sodium selective, but to a surprisingly variable degree. While acid-sensing ion channels (ASICs) are weakly sodium selective (sodium:potassium ratio ∼10:1), ENaCs show a remarkably high preference for sodium over potassium (>500:1). This discrepancy may be expected to originate from differences in the pore-lining second transmembrane segment (M2). However, these show a relatively high degree of sequence conservation between ASICs and ENaCs, and previous functional and structural studies could not unequivocally establish that differences in M2 alone can account for the disparate degrees of ion selectivity. By contrast, surprisingly little is known about the contributions of the first transmembrane segment (M1) and the preceding pre-M1 region. In this study, we used conventional and noncanonical amino acid-based mutagenesis in combination with a variety of electrophysiological approaches to show that the pre-M1 and M1 regions of mASIC1a channels are major determinants of ion selectivity. Mutational investigations of the corresponding regions in hENaC show that these regions contribute less to ion selectivity, despite affecting ion conductance. In conclusion, our work suggests that the remarkably different degrees of sodium selectivity in ASICs and ENaCs are achieved through different mechanisms. These results further highlight how M1 and pre-M1 are likely to differentially affect pore structure in these related channels.
Collapse
Affiliation(s)
- Zeshan P Sheikh
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Matthias Wulf
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | - Mike Althaus
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Timothy Lynagh
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Stephan A Pless
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Native expression of ASIC1a and ASIC1b human homologues in the HEK 293 cell line allows pharmacological evaluation of analgesics targeting acid sensation in humans. Neuroreport 2021; 31:865-870. [PMID: 32453026 DOI: 10.1097/wnr.0000000000001465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Nociceptors arising from the dorsal root ganglia (DRG) express acid-sensing ion channel-1 (ASIC1) subtypes to mediate the perception of inflammatory and neuropathic pain, and as such, these receptors are attractive targets for the development of analgesics for these painful conditions. Nevertheless, given that the human and rodent DRG differ considerably in subtype proportions of ASIC1 and that the pharmacological properties of rodent ASIC1 subtypes and their human homologues are distinct, ASIC1 inhibitors that demonstrate analgesic properties in rodents may not necessarily be effective in preventing pain in humans. In this study, we show that human embryonic kidney (HEK) 293 cells, which are routinely used as a cellular vehicle for the heterologous expression and pharmacological characterization of receptors and ion channels, natively transcribe the human homologues of ASIC1a and ASIC1b at similar proportions to those found in the human DRG. Importantly, HEK 293 ASIC1 is sensitive to inhibition by amiloride, ethylisopropyl amiloride, and the snake toxin mambalgin-1, but insensitive to inhibition by the ASIC1a inhibitor psalmotoxin-1 when applied at a physiological conditioning pH. Given that the human DRG transcribes the same set of ASIC1 subtypes as HEK 293 cells, our data support the notion that mambalgin-1 may be effective against acid pain sensation in humans. Moreover, our data suggest that the HEK 293 cell line may be a suitable tool for pharmacological screening and characterization of heteromeric human ASIC1.
Collapse
|
26
|
Wu BM, Bargaineer J, Zhang L, Yang T, Xiong ZG, Leng TD. Upregulation of acid sensing ion channel 1a (ASIC1a) by hydrogen peroxide through the JNK pathway. Acta Pharmacol Sin 2021; 42:1248-1255. [PMID: 33184449 PMCID: PMC8285496 DOI: 10.1038/s41401-020-00559-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/18/2020] [Indexed: 02/02/2023]
Abstract
Oxidative stress is intimately tied to neurodegenerative diseases, including Parkinson's disease and amyotrophic lateral sclerosis, and acute injuries, such as ischemic stroke and traumatic brain injury. Acid sensing ion channel 1a (ASIC1a), a proton-gated ion channel, has been shown to be involved in the pathogenesis of these diseases. However, whether oxidative stress affects the expression of ASIC1a remains elusive. In the current study, we examined the effect of hydrogen peroxide (H2O2), a major reactive oxygen species (ROS), on ASIC1a protein expression and channel function in NS20Y cells and primary cultured mouse cortical neurons. We found that treatment of the cells with H2O2 (20 µM) for 6 h or longer increased ASIC1a protein expression and ASIC currents without causing significant cell injury. H2O2 incubation activated mitogen-activated protein kinases (MAPKs) pathways, including the extracellular signal-regulated kinase1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), and p38 pathways. We found that neither inhibition of the MEK/ERK pathway by U0126 nor inhibition of the p38 pathway by SB203580 affected H2O2-induced ASIC1a expression, whereas inhibition of the JNK pathway by SP600125 potently decreased ASIC1a expression and abolished the H2O2-mediated increase in ASIC1a expression and ASIC currents. Furthermore, we found that H2O2 pretreatment increased the sensitivity of ASIC currents to the ASIC1a inhibitor PcTx1, providing additional evidence that H2O2 increases the expression of functional ASIC1a channels. Together, our data demonstrate that H2O2 increases ASIC1a expression/activation through the JNK signaling pathway, which may provide insight into the pathogenesis of neurological disorders that involve both ROS and activation of ASIC1a.
Collapse
Affiliation(s)
- Bao-Ming Wu
- Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Jaree Bargaineer
- Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Ling Zhang
- Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Tao Yang
- Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Zhi-Gang Xiong
- Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, 30310, USA.
| | - Tian-Dong Leng
- Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, 30310, USA.
| |
Collapse
|
27
|
Gornati D, Ciccone R, Vinciguerra A, Ippati S, Pannaccione A, Petrozziello T, Pizzi E, Hassan A, Colombo E, Barbini S, Milani M, Caccavone C, Randazzo P, Muzio L, Annunziato L, Menegon A, Secondo A, Mastrangelo E, Pignataro G, Seneci P. Synthesis and Characterization of Novel Mono- and Bis-Guanyl Hydrazones as Potent and Selective ASIC1 Inhibitors Able to Reduce Brain Ischemic Insult. J Med Chem 2021; 64:8333-8353. [PMID: 34097384 DOI: 10.1021/acs.jmedchem.1c00305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Acid-sensitive ion channels (ASICs) are sodium channels partially permeable to Ca2+ ions, listed among putative targets in central nervous system (CNS) diseases in which a pH modification occurs. We targeted novel compounds able to modulate ASIC1 and to reduce the progression of ischemic brain injury. We rationally designed and synthesized several diminazene-inspired diaryl mono- and bis-guanyl hydrazones. A correlation between their predicted docking affinities for the acidic pocket (AcP site) in chicken ASIC1 and their inhibition of homo- and heteromeric hASIC1 channels in HEK-293 cells was found. Their activity on murine ASIC1a currents and their selectivity vs mASIC2a were assessed in engineered CHO-K1 cells, highlighting a limited isoform selectivity. Neuroprotective effects were confirmed in vitro, on primary rat cortical neurons exposed to oxygen-glucose deprivation followed by reoxygenation, and in vivo, in ischemic mice. Early lead 3b, showing a good selectivity for hASIC1 in human neurons, was neuroprotective against focal ischemia induced in mice.
Collapse
Affiliation(s)
- Davide Gornati
- Chemistry Department, University of Milan, Via Golgi 19, 20133 Milan, Italy
| | - Roselia Ciccone
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Via Pansini 5, I-80131 Naples, Italy
| | - Antonio Vinciguerra
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Via Pansini 5, I-80131 Naples, Italy
| | - Stefania Ippati
- Experimental Imaging Center, ALEMBIC-Advanced Light and Electron Microscopy BioImaging Center, San Raffaele Scientific Institute, Via Olgettina 60, I-20132 Milan, Italy
| | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Via Pansini 5, I-80131 Naples, Italy
| | - Tiziana Petrozziello
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Via Pansini 5, I-80131 Naples, Italy
| | - Erika Pizzi
- Experimental Imaging Center, ALEMBIC-Advanced Light and Electron Microscopy BioImaging Center, San Raffaele Scientific Institute, Via Olgettina 60, I-20132 Milan, Italy
| | - Amal Hassan
- National Research Council-Biophysics Institute (CNR-IBF), and Biosciences Department University of Milan, Via Celoria, 26, I-20133 Milan, Italy
| | - Eleonora Colombo
- Chemistry Department, University of Milan, Via Golgi 19, 20133 Milan, Italy
| | - Stefano Barbini
- Chemistry Department, University of Milan, Via Golgi 19, 20133 Milan, Italy
| | - Mario Milani
- National Research Council-Biophysics Institute (CNR-IBF), and Biosciences Department University of Milan, Via Celoria, 26, I-20133 Milan, Italy
| | - Cecilia Caccavone
- Experimental Imaging Center, ALEMBIC-Advanced Light and Electron Microscopy BioImaging Center, San Raffaele Scientific Institute, Via Olgettina 60, I-20132 Milan, Italy
| | | | - Luca Muzio
- INSPE-Institute of Experimental Neurology, San Raffaele Scientific Institute, Via Olgettina 60, I-20132 Milan, Italy
| | | | - Andrea Menegon
- Experimental Imaging Center, ALEMBIC-Advanced Light and Electron Microscopy BioImaging Center, San Raffaele Scientific Institute, Via Olgettina 60, I-20132 Milan, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Via Pansini 5, I-80131 Naples, Italy
| | - Eloise Mastrangelo
- National Research Council-Biophysics Institute (CNR-IBF), and Biosciences Department University of Milan, Via Celoria, 26, I-20133 Milan, Italy
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Via Pansini 5, I-80131 Naples, Italy
| | - Pierfausto Seneci
- Chemistry Department, University of Milan, Via Golgi 19, 20133 Milan, Italy
| |
Collapse
|
28
|
Klipp RC, Cullinan MM, Bankston JR. Insights into the molecular mechanisms underlying the inhibition of acid-sensing ion channel 3 gating by stomatin. J Gen Physiol 2021; 152:133684. [PMID: 32012213 PMCID: PMC7054857 DOI: 10.1085/jgp.201912471] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/07/2019] [Accepted: 12/17/2019] [Indexed: 12/19/2022] Open
Abstract
Stomatin (STOM) is a monotopic integral membrane protein found in all classes of life that has been shown to regulate members of the acid-sensing ion channel (ASIC) family. However, the mechanism by which STOM alters ASIC function is not known. Using chimeric channels, we combined patch-clamp electrophysiology and FRET to search for regions of ASIC3 critical for binding to and regulation by STOM. With this approach, we found that regulation requires two distinct sites on ASIC3: the distal C-terminus and the first transmembrane domain (TM1). The C-terminal site is critical for formation of the STOM–ASIC3 complex, while TM1 is required only for the regulatory effect. We then looked at the mechanism of STOM-dependent regulation of ASIC3 and found that STOM does not alter surface expression of ASIC3 or shift the pH dependence of channel activation. However, a point mutation (Q269G) that prevents channel desensitization also prevents STOM regulation, suggesting that STOM may alter ASIC3 currents by stabilizing the desensitized state of the channel. Based on these findings, we propose a model whereby STOM is anchored to the channel via a site on the distal C-terminus and stabilizes the desensitized state of the channel via an interaction with TM1.
Collapse
Affiliation(s)
| | - Megan M Cullinan
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO
| | - John R Bankston
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO
| |
Collapse
|
29
|
Kong L, Huang H, Luan S, Liu H, Ye M, Wu F. Inhibition of ASIC1a-Mediated ERS Improves the Activation of HSCs and Copper Transport Under Copper Load. Front Pharmacol 2021; 12:653272. [PMID: 34135753 PMCID: PMC8201774 DOI: 10.3389/fphar.2021.653272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/17/2021] [Indexed: 12/21/2022] Open
Abstract
Hepatolenticular degeneration (HLD) is an autosomal recessive genetic disease caused by the toxic accumulation of copper in the liver. Excessive copper will disrupt the redox balance in cells and tissues, causing ischemia, hypoxia, and inflammation. Acid-sensitive ion channel 1a is a cationic channel activated by extracellular acid and allowing Ca2+ and Na+ to flow into cells. Its expression appears in inflammation, arthritis, fibrotic tissue, and damaged environment, but its role in hepatolenticular degeneration has not been studied. This study established a Wistar rat model of high copper accumulation and used CuSO4 to induce the activation of HSC-T6 in an in vitro experiment. In vivo, Wistar rats were examined to determine the serum copper concentration, serum ALT and AST activities, and liver copper accumulation, and liver tissue HE staining and immunohistochemical analyses were conducted. The expression of ASIC1a, α-SMA, Collagen-Ι, GRP78, XBP1, ATP7B, and CCS were detected. Besides, immunofluorescence technology can detect the expression of the phosphorylated protein in vitro. It is suggested that ASIC1a is involved in the quality control of the endoplasmic reticulum, which degrades mutant ATP7B and increases the accumulation of copper. After blocking or silencing the expression of ASIC1a, ELISA can detect the level of inflammatory factors, the expression of endoplasmic reticulum stress-related factors, and ATP7B was improved in a higher copper environment reduction of copper deposition was observed in liver Timm’s staining. Collectively, we conclude that ASIC1a is involved in the HSC activation induced by copper accumulation and promotes the occurrence of hepatolenticular fibrosis.
Collapse
Affiliation(s)
- Lingjin Kong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Huiping Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Shaohua Luan
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Hui Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Manping Ye
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Fanrong Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| |
Collapse
|
30
|
Cheng S, Mao X, Lin X, Wehn A, Hu S, Mamrak U, Khalin I, Wostrack M, Ringel F, Plesnila N, Terpolilli NA. Acid-Ion Sensing Channel 1a Deletion Reduces Chronic Brain Damage and Neurological Deficits after Experimental Traumatic Brain Injury. J Neurotrauma 2021; 38:1572-1584. [PMID: 33779289 DOI: 10.1089/neu.2020.7568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) causes long-lasting neurodegeneration and cognitive impairments; however, the underlying mechanisms of these processes are not fully understood. Acid-sensing ion channels 1a (ASIC1a) are voltage-gated Na+- and Ca2+-channels shown to be involved in neuronal cell death; however, their role for chronic post-traumatic brain damage is largely unknown. To address this issue, we used ASIC1a-deficient mice and investigated their outcome up to 6 months after TBI. ASIC1a-deficient mice and their wild-type (WT) littermates were subjected to controlled cortical impact (CCI) or sham surgery. Brain water content was analyzed 24 h and behavioral outcome up to 6 months after CCI. Lesion volume was assessed longitudinally by magnetic resonance imaging and 6 months after injury by histology. Brain water content was significantly reduced in ASIC1a-/- animals compared to WT controls. Over time, ASIC1a-/- mice showed significantly reduced lesion volume and reduced hippocampal damage. This translated into improved cognitive function and reduced depression-like behavior. Microglial activation was significantly reduced in ASIC1a-/- mice. In conclusion, ASIC1a deficiency resulted in reduced edema formation acutely after TBI and less brain damage, functional impairments, and neuroinflammation up to 6 months after injury. Hence, ASIC1a seems to be involved in chronic neurodegeneration after TBI.
Collapse
Affiliation(s)
- Shiqi Cheng
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Xiang Mao
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Xiangjiang Lin
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Antonia Wehn
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Senbin Hu
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Uta Mamrak
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Igor Khalin
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Maria Wostrack
- Department of Neurosurgery, Technical University Munich, Munich, Germany
| | - Florian Ringel
- Department of Neurosurgery, University Medical Center Mainz, Mainz, Germany
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Nicole A Terpolilli
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Department of Neurosurgery, Munich University Hospital, Munich, Germany
| |
Collapse
|
31
|
Neuhof A, Tian Y, Reska A, Falkenburger BH, Gründer S. Large Acid-Evoked Currents, Mediated by ASIC1a, Accompany Differentiation in Human Dopaminergic Neurons. Front Cell Neurosci 2021; 15:668008. [PMID: 33986647 PMCID: PMC8110905 DOI: 10.3389/fncel.2021.668008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/06/2021] [Indexed: 12/21/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are proton-gated Na+ channels. They contribute to synaptic transmission, neuronal differentiation and neurodegeneration. ASICs have been mainly characterized in neurons from mice or rats and our knowledge of their properties in human neurons is scarce. Here, we functionally characterized ASICs in differentiating LUHMES cells, a human mesencephalic cell line with characteristics of dopaminergic neurons. We find that LUHMES cells express functional ASICs, predominantly homomeric ASIC1a. Expression starts early during differentiation with a striking surge in current amplitude at days 4-6 of differentiation, a time point where-based on published data-LUHMES cells start expressing synaptic markers. Peak ASIC expression therefore coincides with a critical period of LUHMES cell differentiation. It was associated with increased excitability, but not paralleled by an increase in ASIC1 mRNA or protein. In differentiating as well as in terminally differentiated LUHMES cells, ASIC activation by slight acidification elicited large currents, action potentials and a rise in cytosolic Ca2+. Applying the ASIC pore blocker diminazene during differentiation reduced the length of neurites, consistent with the hypothesis that ASICs play a critical role in LUHMES cell differentiation. In summary, our study establishes LUHMES cells as a valuable model to study the role of ASICs for neuronal differentiation and potentially also cell death in a human cell line.
Collapse
Affiliation(s)
- Andreas Neuhof
- Department of Neurology, Institute of Physiology, RWTH Aachen University, Aachen, Germany.,Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - Yuemin Tian
- Department of Neurology, Institute of Physiology, RWTH Aachen University, Aachen, Germany
| | - Anna Reska
- Department of Neurology, Institute of Physiology, RWTH Aachen University, Aachen, Germany
| | | | - Stefan Gründer
- Department of Neurology, Institute of Physiology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
32
|
Citric Acid in Drug Formulations Causes Pain by Potentiating Acid-Sensing Ion Channel 1. J Neurosci 2021; 41:4596-4606. [PMID: 33888605 PMCID: PMC8260239 DOI: 10.1523/jneurosci.2087-20.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/08/2020] [Accepted: 04/10/2021] [Indexed: 11/21/2022] Open
Abstract
Pain at the injection site is a common complaint of patients receiving therapeutic formulations containing citric acid. Despite the widely acknowledged role of acid-sensing ion channels (ASICs) in acid-related perception, the specific ASIC subtype mediating pain caused by subcutaneous acid injection and the mechanism by which citrate affects this process are less clear. Here, male mice subjected to intraplantar acid injection responded by executing a withdrawal reflex, and this response was abolished by ASIC1 but not ASIC2 knockout. Although intraplantar injection of neutral citrate solution did not produce this response, intraplantar injection of acidic citrate solution produced a withdrawal reflex greater than that produced by acidity alone. Consistent with the behavioral data, neutral citrate failed to produce an electrophysiological response in HEK293 cells, which express ASIC1, but acidic citrate produced a whole-cell inward current greater than that produced by acidity alone. Saturating the intracellular solution with citrate had no effect on the potentiating effect of extracellular citrate, suggesting that citrate acted extracellularly to potentiate ASIC1. Moreover, exposure to citrate immediately before acid stimulation failed to potentiate ASIC1 currents, which ruled out the involvement of a metabotropic receptor gated by a citrate metabolite. Finally, removal of calcium ions from the extracellular solution mimicked the potentiating effect of citrate and prevented citrate from further potentiating ASIC1. Our data demonstrate that ASIC1 is necessary for the nociceptive response caused by subcutaneous acid infusion and that neutral citrate, despite not inducing ASIC1 currents or nociceptive behavior on its own, potentiates acid nociception by removing the inhibitory effect of extracellular calcium ions on ASIC1. SIGNIFICANCE STATEMENT Citric acid is a common ingredient used in pharmaceutical formulations. Despite the widespread clinical use of these formulations, it remains unclear how citric acid causes pain when injected into patients. We identified ASIC1 as the key receptor used to detect injection-site pain caused by acid, and we showed that neutral citrate does not stimulate ASIC1; instead, citrate substantially potentiates ASIC1 activation when injected simultaneously with acid. In addition, we demonstrated that citrate potentiates ASIC1 by removing the inhibitory action of calcium on the extracellular side of the receptor. Given that injection-site pain is the primary complaint of patients receiving citrate-containing medical products, our data provide mechanistic insight into a common medical complaint and suggest a means of avoiding injection pain.
Collapse
|
33
|
Wei X, Wang L, Hua J, Jin XH, Ji F, Peng K, Zhou B, Yang J, Meng XW. Inhibiting BDNF/TrkB.T1 receptor improves resiniferatoxin-induced postherpetic neuralgia through decreasing ASIC3 signaling in dorsal root ganglia. J Neuroinflammation 2021; 18:96. [PMID: 33874962 PMCID: PMC8054387 DOI: 10.1186/s12974-021-02148-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/03/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Postherpetic neuralgia (PHN) is a devastating complication after varicella-zoster virus infection. Brain-derived neurotrophic factor (BDNF) has been shown to participate in the pathogenesis of PHN. A truncated isoform of the tropomyosin receptor kinase B (TrkB) receptor TrkB.T1, as a high-affinity receptor of BDNF, is upregulated in multiple nervous system injuries, and such upregulation is associated with pain. Acid-sensitive ion channel 3 (ASIC3) is involved in chronic neuropathic pain, but its relation with BDNF/TrkB.T1 in the peripheral nervous system (PNS) during PHN is unclear. This study aimed to investigate whether BDNF/TrkB.T1 contributes to PHN through regulating ASIC3 signaling in dorsal root ganglia (DRGs). METHODS Resiniferatoxin (RTX) was used to induce rat PHN models. Mechanical allodynia was assessed by measuring the paw withdrawal thresholds (PWTs). Thermal hyperalgesia was determined by detecting the paw withdrawal latencies (PWLs). We evaluated the effects of TrkB.T1-ASIC3 signaling inhibition on the behavior, neuronal excitability, and inflammatory response during RTX-induced PHN. ASIC3 short hairpin RNA (shRNA) transfection was used to investigate the effect of exogenous BDNF on inflammatory response in cultured PC-12 cells. RESULTS RTX injection induced mechanical allodynia and upregulated the protein expression of BDNF, TrkB.T1, ASIC3, TRAF6, nNOS, and c-Fos, as well as increased neuronal excitability in DRGs. Inhibition of ASIC3 reversed the abovementioned effects of RTX, except for BDNF and TrkB.T1 protein expression. In addition, inhibition of TrkB.T1 blocked RTX-induced mechanical allodynia, activation of ASIC3 signaling, and hyperexcitability of neurons. RTX-induced BDNF upregulation was found in both neurons and satellite glia cells in DRGs. Furthermore, exogenous BDNF activated ASIC3 signaling, increased NO level, and enhanced IL-6, IL-1β, and TNF-α levels in PC-12 cells, which was blocked by shRNA-ASIC3 transfection. CONCLUSION These findings demonstrate that inhibiting BDNF/TrkB.T1 reduced inflammation, decreased neuronal hyperexcitability, and improved mechanical allodynia through regulating the ASIC3 signaling pathway in DRGs, which may provide a novel therapeutic target for patients with PHN.
Collapse
Affiliation(s)
- Xiang Wei
- Department of Anesthesiology and Pain Management, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, China
| | - Lina Wang
- Department of Anesthesiology and Pain Management, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, China
| | - Jie Hua
- Department of Anesthesiology and Pain Management, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, China
| | - Xiao-Hong Jin
- Department of Anesthesiology and Pain Management, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, China
| | - Fuhai Ji
- Department of Anesthesiology and Pain Management, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, China
| | - Ke Peng
- Department of Anesthesiology and Pain Management, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, China
| | - Bin Zhou
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu, China.,Jiangsu Key Laboratory of Gastrointestinal tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jianping Yang
- Department of Anesthesiology and Pain Management, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, China.
| | - Xiao-Wen Meng
- Department of Anesthesiology and Pain Management, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, China.
| |
Collapse
|
34
|
Costa FV, Rosa LV, Quadros VA, de Abreu MS, Santos ARS, Sneddon LU, Kalueff AV, Rosemberg DB. The use of zebrafish as a non-traditional model organism in translational pain research: the knowns and the unknowns. Curr Neuropharmacol 2021; 20:476-493. [PMID: 33719974 DOI: 10.2174/1570159x19666210311104408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 11/22/2022] Open
Abstract
The ability of the nervous system to detect a wide range of noxious stimuli is crucial to avoid life-threatening injury and to trigger protective behavioral and physiological responses. Pain represents a complex phenomenon, including nociception associated with cognitive and emotional processing. Animal experimental models have been developed to understand the mechanisms involved in pain response, as well as to discover novel pharmacological and non-pharmacological anti-pain therapies. Due to the genetic tractability, similar physiology, low cost, and rich behavioral repertoire, the zebrafish (Danio rerio) has been considered a powerful aquatic model for modeling pain responses. Here, we summarize the molecular machinery of zebrafish to recognize painful stimuli, as well as emphasize how zebrafish-based pain models have been successfully used to understand specific molecular, physiological, and behavioral changes following different algogens and/or noxious stimuli (e.g., acetic acid, formalin, histamine, Complete Freund's Adjuvant, cinnamaldehyde, allyl isothiocyanate, and fin clipping). We also discuss recent advances in zebrafish-based studies and outline the potential advantages and limitations of the existing models to examine the mechanisms underlying pain responses from an evolutionary and translational perspective. Finally, we outline how zebrafish models can represent emergent tools to explore pain behaviors and pain-related mood disorders, as well as to facilitate analgesic therapy screening in translational pain research.
Collapse
Affiliation(s)
- Fabiano V Costa
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria RS. Brazil
| | - Luiz V Rosa
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria RS. Brazil
| | - Vanessa A Quadros
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria RS. Brazil
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS. Brazil
| | - Adair R S Santos
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Trindade, Florianópolis, SC. Brazil
| | - Lynne U Sneddon
- University of Gothenburg, Department of Biological & Environmental Sciences, Box 461, SE-405 30 Gothenburg. Sweden
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg. Russian Federation
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria RS. Brazil
| |
Collapse
|
35
|
DEG/ENaC Ion Channels in the Function of the Nervous System: From Worm to Man. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:165-192. [DOI: 10.1007/978-981-16-4254-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Abstract
Mouthfeel refers to the physical or textural sensations in the mouth caused by foods and beverages that are essential to the acceptability of many edible products. The sensory subqualities contributing to mouthfeel are often chemogenic in nature and include heat, burning, cooling, tingling, and numbing. These "chemesthetic" sensations are a result of the chemical activation of receptors that are associated with nerve fibers mediating pain and mechanotransduction. Each of these chemesthetic sensations in the oral cavity are transduced in the nervous system by a combination of different molecular channels/receptors expressed on trigeminal nerve fibers that innervate the mouth and tongue. The molecular profile of these channels and receptors involved in mouthfeel include many transient receptor potential channels, proton-sensitive ion channels, and potassium channels to name a few. During the last several years, studies using molecular and physiological approaches have significantly expanded and enhanced our understanding of the neurobiological basis for these chemesthetic sensations. The purpose of the current review is to integrate older and newer studies to present a comprehensive picture of the channels and receptors involved in mouthfeel. We highlight that there still continue to be important gaps in our overall knowledge on flavor integration and perception involving chemesthetic sensations, and these gaps will continue to drive future research direction and future investigation.
Collapse
Affiliation(s)
- Christopher T Simons
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA
| | - Amanda H Klein
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN, USA
| | - Earl Carstens
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, USA
| |
Collapse
|
37
|
Osmakov DI, Khasanov TA, Andreev YA, Lyukmanova EN, Kozlov SA. Animal, Herb, and Microbial Toxins for Structural and Pharmacological Study of Acid-Sensing Ion Channels. Front Pharmacol 2020; 11:991. [PMID: 32733241 PMCID: PMC7360831 DOI: 10.3389/fphar.2020.00991] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/19/2020] [Indexed: 12/22/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are of the most sensitive molecular sensors of extracellular pH change in mammals. Six isoforms of these channels are widely represented in membranes of neuronal and non-neuronal cells, where these molecules are involved in different important regulatory functions, such as synaptic plasticity, learning, memory, and nociception, as well as in various pathological states. Structural and functional studies of both wild-type and mutant ASICs are essential for human care and medicine for the efficient treatment of socially significant diseases and ensure a comfortable standard of life. Ligands of ASICs serve as indispensable tools for these studies. Such bioactive compounds can be synthesized artificially. However, to date, the search for such molecules has been most effective amongst natural sources, such as animal venoms or plants and microbial extracts. In this review, we provide a detailed and comprehensive structural and functional description of natural compounds acting on ASICs, as well as the latest information on structural aspects of their interaction with the channels. Many of the examples provided in the review demonstrate the undoubted fundamental and practical successes of using natural toxins. Without toxins, it would not be possible to obtain data on the mechanisms of ASICs' functioning, provide detailed study of their pharmacological properties, or assess the contribution of the channels to development of different pathologies. The selectivity to different isoforms and variety in the channel modulation mode allow for the appraisal of prospective candidates for the development of new drugs.
Collapse
Affiliation(s)
- Dmitry I Osmakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Timur A Khasanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Yaroslav A Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ekaterina N Lyukmanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Sergey A Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
| |
Collapse
|
38
|
Liu X, Liu C, Ye J, Zhang S, Wang K, Su R. Distribution of Acid Sensing Ion Channels in Axonal Growth Cones and Presynaptic Membrane of Cultured Hippocampal Neurons. Front Cell Neurosci 2020; 14:205. [PMID: 32733209 PMCID: PMC7358772 DOI: 10.3389/fncel.2020.00205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/10/2020] [Indexed: 12/24/2022] Open
Abstract
Although acid-sensing ion channels (ASICs) are widely expressed in the central nervous system, their distribution and roles in axonal growth cones remain unclear. In this study, we examined ASIC localization and function in the axonal growth cones of cultured immature hippocampal neurons. Our immunocytochemical data showed that native and overexpressed ASIC1a and ASIC2a are both localized in growth cones of cultured young hippocampal neurons. Calcium imaging and electrophysiological assay results were utilized to validate their function. The calcium imaging test results indicated that the ASICs (primarily ASIC1a) present in growth cones mediate calcium influx despite the addition of voltage-gated Ca2+ channels antagonists and the depletion of intracellular calcium stores. The electrophysiological tests results suggested that a rapid decrease in extracellular pH at the growth cones of voltage-clamped neurons elicits inward currents that were blocked by bath application of the ASIC antagonist amiloride, showing that the ASICs expressed at growth cones are functional. The subsequent immuno-colocalization test results demonstrated that ASIC1a and ASIC2a are both colocalized with Neurofilament-H and Bassoon in mature hippocampal neurons. This finding demonstrated that after reaching maturity, ASIC1a and ASIC2a are both distributed in axons and the presynaptic membrane. Our data reveal the distribution of functional ASICs in growth cones of immature hippocampal neurons and the presence of ASICs in the axons and presynaptic membrane of mature hippocampal neurons, indicating a possible role for ASICs in axonal guidance, synapse formation and neurotransmitter release.
Collapse
Affiliation(s)
- Xiaoyan Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Can Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jiamin Ye
- School of Pharmacy, North China University of Science and Technology, Tangshan, China
| | - Shuzhuo Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Kai Wang
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Ruibin Su
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
39
|
Li J, Kong L, Huang H, Luan S, Jin R, Wu F. ASIC1a inhibits cell pyroptosis induced by acid-induced activation of rat hepatic stellate cells. FEBS Open Bio 2020; 10:1044-1055. [PMID: 32237041 PMCID: PMC7262943 DOI: 10.1002/2211-5463.12850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/11/2020] [Accepted: 03/25/2020] [Indexed: 12/19/2022] Open
Abstract
The activation of hepatic stellate cells (HSCs) is associated with liver fibrosis, the pathological feature of most forms of chronic hepatic damage, and is accompanied by abnormal deposition of the extracellular matrix (ECM). During the pathological process, acid-sensing ion channel 1a (ASIC1a), which is responsible for Ca2+ transportation, is involved in the activation of HSCs. It has previously been identified that ASIC1a is related to pyroptosis in articular chondrocytes. However, it remains unclear whether ASIC1a restrains pyroptosis during liver fibrosis. Here, we determined that the levels of pyroptosis-associated speck-like protein, gasdermin D, caspase-1, nucleotide-binding oligomerization domain (NOD)-like receptor 3, and apoptosis-associated speck-like protein (ASC) decreased, while the level of α-smooth muscle actin and collagen-I increased upon introduction of ASIC1a into an acid-induced model. Inhibition or silencing of ASIC1a and the use of Ca2+ -free medium were able to promote the pyroptosis of activated HSCs, which reduced their deposition. In summary, our study indicates that ASIC1a inhibits pyroptosis of HSCs and that inhibition of ASIC1a may be able to promote pyroptosis to relieve liver fibrosis.
Collapse
Affiliation(s)
- Jun Li
- School of PharmacyAnhui Medical UniversityHefeiChina
| | - Lingjin Kong
- School of PharmacyAnhui Medical UniversityHefeiChina
| | - Huiping Huang
- School of PharmacyAnhui Medical UniversityHefeiChina
| | - Shaohua Luan
- School of PharmacyAnhui Medical UniversityHefeiChina
| | - Rui Jin
- School of PharmacyAnhui Medical UniversityHefeiChina
| | - Fanrong Wu
- School of PharmacyAnhui Medical UniversityHefeiChina
| |
Collapse
|
40
|
Rook ML, Musgaard M, MacLean DM. Coupling structure with function in acid-sensing ion channels: challenges in pursuit of proton sensors. J Physiol 2020; 599:417-430. [PMID: 32306405 DOI: 10.1113/jp278707] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/27/2020] [Indexed: 12/25/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are a class of trimeric cation-selective ion channels activated by changes in pH within the physiological range. They are widely expressed in the central and peripheral nervous systems where they participate in a range of physiological and pathophysiological situations such as learning and memory, pain sensation, fear and anxiety, substance abuse and cell death. ASICs are localized to cell bodies and dendrites, including the postsynaptic density, and within the last 5 years several examples of proton-evoked ASIC excitatory postsynaptic currents have emerged. Thus, ASICs have become bona fide neurotransmitter-gated ion channels, activated by the smallest neurotransmitter possible: protons. Here we review how protons are thought to drive the conformational changes associated with ASIC activation and desensitization. In particular, we weigh the evidence for and against the so-called 'acidic pocket' being a vital proton sensor and discuss the emerging role of the β11-12 linker as a desensitization switch or 'molecular clutch'. We also examine how proton-induced conformational changes pose unique challenges to classical molecular dynamics simulations, as well as some possible solutions. Given the emergence of new methodologies and structures, the coming years will probably see many advances in the study of acid-sensing ion channels.
Collapse
Affiliation(s)
- Matthew L Rook
- Graduate Program in Cellular and Molecular Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA
| | - Maria Musgaard
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 75 Laurier Ave E, Ottawa, ON, K1N 6N5, Canada
| | - David M MacLean
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA
| |
Collapse
|
41
|
Papalampropoulou-Tsiridou M, Labrecque S, Godin AG, De Koninck Y, Wang F. Differential Expression of Acid - Sensing Ion Channels in Mouse Primary Afferents in Naïve and Injured Conditions. Front Cell Neurosci 2020; 14:103. [PMID: 32508593 PMCID: PMC7248332 DOI: 10.3389/fncel.2020.00103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/03/2020] [Indexed: 12/15/2022] Open
Abstract
Injury and inflammation cause tissue acidosis, which is a common feature of various painful conditions. Acid-Sensing Ion channels (ASICs) are amongst the main excitatory channels activated by extracellular protons and expressed in the nervous system. Six transcripts of ASIC subunits including ASIC1a, ASIC1b, ASIC2a, ASIC2b, ASIC3, and ASIC4 are encoded by four genes (Asic1–4) and have been identified in rodents. Most ASIC subunits are present at substantial levels in primary sensory neurons of dorsal root ganglia (DRG) except for ASIC4. However, their expression pattern in DRG neurons remains largely unclear, mainly due to the lack of antibodies with appropriate specificity. In this study, we examined in detail the expression pattern of ASIC1-3 subunits, including splice variants, in different populations of DRG neurons in adult mice using an in situ hybridization technique (RNAscope) with high sensitivity and specificity. We found that in naïve condition, all five subunits examined were expressed in the majority of myelinated, NF200-immunoreactive, DRG neurons (NF200+). However, ASIC subunits showed a very different expression pattern among non-myelinated DRG neuronal subpopulations: ASIC1 and ASIC3 were only expressed in CGRP-immunoreactive neurons (CGRP+), ASIC2a was mostly expressed in the majority of IB4-binding neurons (IB4+), while ASIC2b was expressed in almost all non-myelinated DRG neurons. We also found that at least half of sensory neurons expressed multiple types of ASIC subunits, indicating prevalence of heteromeric channels. In mice with peripheral nerve injury, the expression level of ASIC1a and ASIC1b in L4 DRG and ASIC3 in L5 DRG were altered in CGRP+ neurons, but not in IB4+ neurons. Furthermore, the pattern of change varied among DRGs depending on their segmental level, which pointed to differential regulatory mechanisms between afferent types and anatomical location. The distinct expression pattern of ASIC transcripts in naïve condition, and the differential regulation of ASIC subunits after peripheral nerve injury, suggest that ASIC subunits are involved in separate sensory modalities.
Collapse
Affiliation(s)
- Melina Papalampropoulou-Tsiridou
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec, QC, Canada.,Graduate Program in Neuroscience, Université Laval, Québec, QC, Canada
| | - Simon Labrecque
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec, QC, Canada
| | - Antoine G Godin
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec, QC, Canada.,Graduate Program in Neuroscience, Université Laval, Québec, QC, Canada.,Department of Psychiatry and Neuroscience, Université Laval, Québec, QC, Canada
| | - Yves De Koninck
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec, QC, Canada.,Graduate Program in Neuroscience, Université Laval, Québec, QC, Canada.,Department of Psychiatry and Neuroscience, Université Laval, Québec, QC, Canada
| | - Feng Wang
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec, QC, Canada
| |
Collapse
|
42
|
Bignucolo O, Vullo S, Ambrosio N, Gautschi I, Kellenberger S. Structural and Functional Analysis of Gly212 Mutants Reveals the Importance of Intersubunit Interactions in ASIC1a Channel Function. Front Mol Biosci 2020; 7:58. [PMID: 32411719 PMCID: PMC7198790 DOI: 10.3389/fmolb.2020.00058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/23/2020] [Indexed: 12/27/2022] Open
Abstract
Acid-sensing ion channels (ASICs) act as pH sensors in neurons. ASICs contribute to pain sensation, learning, fear behavior and to neuronal death after ischemic stroke. Extracellular acidification induces a transient activation and subsequent desensitization of these Na+-selective channels. ASICs are trimeric channels made of identical or homologous subunits. We have previously shown that mutation of the highly conserved Gly212 residue of human ASIC1a to Asp affects the channel function. Gly212 is located in the proximity of a predicted Cl– binding site at a subunit interface. Here, we have measured the function of a series of Gly212 mutants. We show that substitution of Gly212 affects the ASIC1a pH dependence and current decay kinetics. Intriguingly, the mutations to the acidic residues Asp and Glu have opposing effects on the pH dependence and the current decay kinetics. Analysis of molecular dynamics simulation trajectories started with the coordinates of the closed conformation indicates that the immediate environment of residue 212 in G212E, which shifts the pH dependence to more alkaline values, adopts a conformation closer to the open state. The G212D and G212E mutants have a different pattern of intersubunit salt bridges, that, in the case of G212E, leads to an approaching of neighboring subunits. Based on the comparison of crystal structures, the conformational changes in this zone appear to be smaller during the open-desensitized transition. Nevertheless, MD simulations highlight differences between mutants, suggesting that the changed function upon substitution of residue 212 is due to differences in intra- and intersubunit interactions in its proximity.
Collapse
Affiliation(s)
- Olivier Bignucolo
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sabrina Vullo
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Ambrosio
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Ivan Gautschi
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Stephan Kellenberger
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
43
|
López-Romero AE, Hernández-Araiza I, Torres-Quiroz F, Tovar-Y-Romo LB, Islas LD, Rosenbaum T. TRP ion channels: Proteins with conformational flexibility. Channels (Austin) 2020; 13:207-226. [PMID: 31184289 PMCID: PMC6602575 DOI: 10.1080/19336950.2019.1626793] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Ion channels display conformational changes in response to binding of their agonists and antagonists. The study of the relationships between the structure and the function of these proteins has witnessed considerable advances in the last two decades using a combination of techniques, which include electrophysiology, optical approaches (i.e. patch clamp fluorometry, incorporation of non-canonic amino acids, etc.), molecular biology (mutations in different regions of ion channels to determine their role in function) and those that have permitted the resolution of their structures in detail (X-ray crystallography and cryo-electron microscopy). The possibility of making correlations among structural components and functional traits in ion channels has allowed for more refined conclusions on how these proteins work at the molecular level. With the cloning and description of the family of Transient Receptor Potential (TRP) channels, our understanding of several sensory-related processes has also greatly moved forward. The response of these proteins to several agonists, their regulation by signaling pathways as well as by protein-protein and lipid-protein interactions and, in some cases, their biophysical characteristics have been studied thoroughly and, recently, with the resolution of their structures, the field has experienced a new boom. This review article focuses on the conformational changes in the pores, concentrating on some members of the TRP family of ion channels (TRPV and TRPA subfamilies) that result in changes in their single-channel conductances, a phenomenon that may lead to fine-tuning the electrical response to a given agonist in a cell.
Collapse
Affiliation(s)
- Ana Elena López-Romero
- a Departamento de Neurociencia Cognitiva, División Neurociencias , Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , Mexico , Mexico
| | - Ileana Hernández-Araiza
- a Departamento de Neurociencia Cognitiva, División Neurociencias , Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , Mexico , Mexico
| | - Francisco Torres-Quiroz
- b Departamento de Bioquímica y Biología Estructural, División Investigación Básica , Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , Mexico City , Mexico
| | - Luis B Tovar-Y-Romo
- c Departamento de Neuropatología Molecular, División Neurociencias , Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , Mexico City , Mexico
| | - León D Islas
- d Departamento de Fisiología, Facultad de Medicina , Universidad Nacional Autónoma de México , Mexico City , Mexico
| | - Tamara Rosenbaum
- a Departamento de Neurociencia Cognitiva, División Neurociencias , Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , Mexico , Mexico
| |
Collapse
|
44
|
Fitz J, Mammana A. Spectroscopic study of the pH dependent interaction of an achiral molecular photo-switch with poly-Glutamic acid. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
45
|
Carattino MD, Montalbetti N. Acid-sensing ion channels in sensory signaling. Am J Physiol Renal Physiol 2020; 318:F531-F543. [PMID: 31984789 DOI: 10.1152/ajprenal.00546.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Acid-sensing ion channels (ASICs) are cation-permeable channels that in the periphery are primarily expressed in sensory neurons that innervate tissues and organs. Soon after the cloning of the ASIC subunits, almost 20 yr ago, investigators began to use genetically modified mice to assess the role of these channels in physiological processes. These studies provide critical insights about the participation of ASICs in sensory processes, including mechanotransduction, chemoreception, and nociception. Here, we provide an extensive assessment of these findings and discuss the current gaps in knowledge with regard to the functions of ASICs in the peripheral nervous system.
Collapse
Affiliation(s)
- Marcelo D Carattino
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nicolas Montalbetti
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
46
|
Chang CT, Fong SW, Lee CH, Chuang YC, Lin SH, Chen CC. Involvement of Acid-Sensing Ion Channel 1b in the Development of Acid-Induced Chronic Muscle Pain. Front Neurosci 2019; 13:1247. [PMID: 31824248 PMCID: PMC6882745 DOI: 10.3389/fnins.2019.01247] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/05/2019] [Indexed: 12/26/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are important acid sensors involved in neural modulation in the central nervous system and pain-associated tissue acidosis in the peripheral system. Among ASIC subtypes, ASIC1b is the most selectively expressed in peripheral sensory neurons. However, the role of ASIC1b is still elusive in terms of its functions and expression profile. In this study, we probed the role of ASIC1b in acid-induced muscle pain in Asic1b-knockout (Asic1b–/–) and Asic1b-Cre transgenic (Asic1bCre) mice. We tested the effect of ASIC1b knockout in a mouse model of fibromyalgia induced by dual intramuscular acid injections. In this model, a unilateral acid injection to the gastrocnemius muscle induced transient bilateral hyperalgesia in wild-type (Asic1b+/+) but not Asic1b–/– mice; a second acid injection, spaced 1 or 5 days apart, to the same muscle induced chronic hyperalgesia lasting for 4 weeks in Asic1b+/+ mice, but the duration of hyperalgesia was significantly shortened in Asic1b–/– mice. Mambalgin-1, an ASIC1b-containing channel inhibitor that was mixed with acid saline at the first injection, dose-dependently blocked the acid-induced transient and chronic hyperalgesia in Asic1b+/+ mice. In contrast, psalmotoxin 1 (PcTx1), an ASIC1a-selective antagonist, had no effect on acid-induced transient or chronic hyperalgesia. We used whole-cell patch clamp recording to study the properties of acid-induced currents in ASIC1b-expressing dorsal root ganglia (DRG) neurons from Asic1bCre-TdTomato reporter mice. Medium- to large-sized ASIC1b-expressing DRG neurons mainly exhibited an amiloride-sensitive ASIC-like biphasic current (IASIC) in response to acid stimulation, whereas small- to medium-sized ASIC1b-expressing DRG neurons predominantly exhibited an amiloride-insensitive sustained current. Specifically, mambalgin-1 selectively inhibited the IASIC in most ASIC1b-expressing DRG neurons. However, PcTx1 or APETx2 (an ASIC3-selective antagonist) had only a mild inhibitory effect on IASIC in about half of the ASIC1b-expressing DRG neurons. In situ hybridization revealed that ASIC1b-positive DRG neurons co-expressed highly with ASIC1a and ASIC2a mRNA and partially with ASIC3 and ASIC2b. Thus, ASIC1b might form a wide variety of heteromeric channels. ASIC1b-containing heteromeric channels might be promising targets for the therapeutic treatment of acid-induced chronic muscle pain.
Collapse
Affiliation(s)
- Chu-Ting Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Sitt Wai Fong
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Academia Sinica, Taipei, Taiwan
| | - Cheng-Han Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Chia Chuang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shing-Hong Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Neurobiology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Chih-Cheng Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
47
|
Pattison LA, Callejo G, St John Smith E. Evolution of acid nociception: ion channels and receptors for detecting acid. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190291. [PMID: 31544616 PMCID: PMC6790391 DOI: 10.1098/rstb.2019.0291] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2019] [Indexed: 12/13/2022] Open
Abstract
Nociceptors, i.e. sensory neurons tuned to detect noxious stimuli, are found in numerous phyla of the Animalia kingdom and are often polymodal, responding to a variety of stimuli, e.g. heat, cold, pressure and chemicals, such as acid. Owing to the ability of protons to have a profound effect on ionic homeostasis and damage macromolecular structures, it is no wonder that the ability to detect acid is conserved across many species. To detect changes in pH, nociceptors are equipped with an assortment of different acid sensors, some of which can detect mild changes in pH, such as the acid-sensing ion channels, proton-sensing G protein-coupled receptors and several two-pore potassium channels, whereas others, such as the transient receptor potential vanilloid 1 ion channel, require larger shifts in pH. This review will discuss the evolution of acid sensation and the different mechanisms by which nociceptors can detect acid. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.
Collapse
Affiliation(s)
| | | | - Ewan St John Smith
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| |
Collapse
|
48
|
Hernández C, Konno K, Salceda E, Vega R, Zaharenko AJ, Soto E. Sa12b Peptide from Solitary Wasp Inhibits ASIC Currents in Rat Dorsal Root Ganglion Neurons. Toxins (Basel) 2019; 11:toxins11100585. [PMID: 31658776 PMCID: PMC6832649 DOI: 10.3390/toxins11100585] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/23/2019] [Accepted: 10/04/2019] [Indexed: 12/15/2022] Open
Abstract
In this work, we evaluate the effect of two peptides Sa12b (EDVDHVFLRF) and Sh5b (DVDHVFLRF-NH2) on Acid-Sensing Ion Channels (ASIC). These peptides were purified from the venom of solitary wasps Sphex argentatus argentatus and Isodontia harmandi, respectively. Voltage clamp recordings of ASIC currents were performed in whole cell configuration in primary culture of dorsal root ganglion (DRG) neurons from (P7-P10) CII Long-Evans rats. The peptides were applied by preincubation for 25 s (20 s in pH 7.4 solution and 5 s in pH 6.1 solution) or by co-application (5 s in pH 6.1 solution). Sa12b inhibits ASIC current with an IC50 of 81 nM, in a concentration-dependent manner when preincubation application was used. While Sh5b did not show consistent results having both excitatory and inhibitory effects on the maximum ASIC currents, its complex effect suggests that it presents a selective action on some ASIC subunits. Despite the similarity in their sequences, the action of these peptides differs significantly. Sa12b is the first discovered wasp peptide with a significant ASIC inhibitory effect.
Collapse
Affiliation(s)
- Carmen Hernández
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico.
| | - Katsuhiro Konno
- Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan.
| | - Emilio Salceda
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico.
| | - Rosario Vega
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico.
| | | | - Enrique Soto
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico.
| |
Collapse
|
49
|
Cakir Z, Yildirim C, Buran I, Önalan EE, Bal R. Acid-sensing ion channels (ASICs) influence excitability of stellate neurons in the mouse cochlear nucleus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:769-781. [PMID: 31451914 DOI: 10.1007/s00359-019-01365-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/08/2019] [Accepted: 08/13/2019] [Indexed: 02/06/2023]
Abstract
Acid-sensing ion channels (ASICs) are voltage-independent and proton-gated channels. In this study, we aimed to test the hypothesis whether ASICs might be involved in modifying the excitability of stellate cells in the cochlear nucleus (CN). We determined gene expressions of ASIC1, ASIC2 and ASIC3 in the CN of BALB/mice. ASIC currents in stellate cells were characterized by using whole-cell patch-clamp technique. In the voltage-clamp experiments, inward currents were recorded upon application of 2-[N-Morpholino ethanesulfonic acid]-normal artificial cerebrospinal fluid (MES-aCSF), whose pH 50 was 5.84. Amiloride inhibited the acid-induced currents in a dose-dependent manner. Inhibition of the ASIC currents by extracellular Ca2+ and Pb2+ (10 μM) was significant evidence for the existence of homomeric ASIC1a subunits. ASIC currents were increased by 20% upon extracellular application of Zn2+ (300 μM) (p < 0.05, n = 13). In current-clamp experiments, application of MES-aCSF resulted in the depolarization of stellate cells. The results show that the ASIC currents in stellate cells of the cochlear nucleus are carried largely by the ASIC1a and ASIC2a channels. ASIC channels affect the excitability of the stellate cells and therefore they appear to have a role in the processing of auditory information.
Collapse
Affiliation(s)
- Ziya Cakir
- Department of Physiology, Faculty of Medicine, Tokat Gaziosmanpasa University, 60250, Tokat, Turkey
| | - Caner Yildirim
- Department of Physiology, Faculty of Medicine, Kafkas University, 36100, Kars, Turkey
| | - Ilay Buran
- Department of Medical Biology, Faculty of Medicine, Firat University, 23100, Elazig, Turkey
| | - Ebru Etem Önalan
- Department of Medical Biology, Faculty of Medicine, Firat University, 23100, Elazig, Turkey
| | - Ramazan Bal
- Department of Physiology, Faculty of Medicine, Gaziantep University, 27310, Gaziantep, Turkey.
| |
Collapse
|
50
|
Detweiler ND, Herbert LM, Garcia SM, Yan S, Vigil KG, Sheak JR, Resta TC, Walker BR, Jernigan NL. Loss of acid-sensing ion channel 2 enhances pulmonary vascular resistance and hypoxic pulmonary hypertension. J Appl Physiol (1985) 2019; 127:393-407. [PMID: 31169471 PMCID: PMC6732443 DOI: 10.1152/japplphysiol.00894.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 05/03/2019] [Accepted: 05/29/2019] [Indexed: 11/22/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are voltage-insensitive cation channels that contribute to cellular excitability. We previously reported that ASIC1 in pulmonary artery smooth muscle cells (PASMC) contribute to pulmonary vasoreactivity and vascular remodeling during the development of chronic hypoxia (CH)-induced pulmonary hypertension. However, the roles of ASIC2 and ASIC3 in regulation of pulmonary vasoreactivity and the development of CH-induced pulmonary hypertension are unknown. We tested the hypothesis that ASIC2 and ASIC3 contribute to increased pulmonary vasoreactivity and development of CH-induced pulmonary hypertension using ASIC2- and ASIC3-knockout (-/-) mice. In contrast to this hypothesis, we found that ASIC2-/- mice exhibit enhanced CH-induced pulmonary hypertension compared with WT and ASIC3-/- mice. This response was not associated with a change in ventilatory sensitivity or systemic cardiovascular function but was instead associated with direct changes in pulmonary vascular reactivity and pulmonary arterial morphology in ASIC2-/- mice. This increase in reactivity correlated with enhanced pulmonary arterial basal tone, elevated basal PASMC [Ca2+] and store-operated calcium entry (SOCE) in PASMC from ASIC2-/- mice. This increase in PASMC [Ca2+] and vasoreactivity was dependent on ASIC1-mediated Ca2+ influx but was not contingent upon an increase in ASIC1 mRNA or protein expression in PASMC from ASIC2-/- mice. Together, the results from this study demonstrate an important role for ASIC2 to regulate pulmonary vascular reactivity and for ASIC2 to modulate the development of CH-induced pulmonary hypertension. These data further suggest that loss of ASIC2 enhances the contribution of ASIC1 to overall pulmonary vascular reactivity.NEW & NOTEWORTHY This study demonstrates that loss of ASIC2 leads to increased baseline pulmonary vascular resistance, enhanced responses to a variety of vasoconstrictor stimuli, and greater development of hypoxic pulmonary hypertension. Furthermore, these results suggest that loss of ASIC2 enhances the contribution of ASIC1 to pulmonary vascular reactivity.
Collapse
Affiliation(s)
- Neil D Detweiler
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center Albuquerque, New Mexico
| | - Lindsay M Herbert
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center Albuquerque, New Mexico
| | - Selina M Garcia
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center Albuquerque, New Mexico
| | - Simin Yan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center Albuquerque, New Mexico
| | - Kenneth G Vigil
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center Albuquerque, New Mexico
| | - Joshua R Sheak
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center Albuquerque, New Mexico
| | - Thomas C Resta
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center Albuquerque, New Mexico
| | - Benjimen R Walker
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center Albuquerque, New Mexico
| | - Nikki L Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center Albuquerque, New Mexico
| |
Collapse
|