1
|
Mutalová S, Hodorová V, Brázdovič F, Cillingová A, Tomáška Ľ, Brejová B, Nosek J. Chromosome-level genome assembly of an auxotrophic strain of the pathogenic yeast Candida parapsilosis. Microbiol Resour Announc 2024; 13:e0034724. [PMID: 39083682 PMCID: PMC11385725 DOI: 10.1128/mra.00347-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/18/2024] [Indexed: 08/02/2024] Open
Abstract
We report the genome sequence of the pathogenic yeast Candida parapsilosis strain SR23 (CBS 7157) used in a number of experimental studies. The nuclear genome assembly consists of eight chromosome-sized contigs with a total size of 13.04 Mbp (N50 2.09 Mbp) and a G+C content of 38.7%.
Collapse
Affiliation(s)
- Sofia Mutalová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovak Republic
| | - Viktória Hodorová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovak Republic
| | - Filip Brázdovič
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovak Republic
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Cillingová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovak Republic
| | - Ľubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovak Republic
| | - Broňa Brejová
- Department of Computer Science, Faculty of Mathematics, Physics and Informatics, Comenius University Bratislava, Bratislava, Slovak Republic
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovak Republic
| |
Collapse
|
2
|
Tomáška Ľ, Cesare AJ, AlTurki TM, Griffith JD. Twenty years of t-loops: A case study for the importance of collaboration in molecular biology. DNA Repair (Amst) 2020; 94:102901. [PMID: 32620538 DOI: 10.1016/j.dnarep.2020.102901] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022]
Abstract
Collaborative studies open doors to breakthroughs otherwise unattainable by any one laboratory alone. Here we describe the initial collaboration between the Griffith and de Lange laboratories that led to thinking about the telomere as a DNA template for homologous recombination, the proposal of telomere looping, and the first electron micrographs of t-loops. This was followed by collaborations that revealed t-loops across eukaryotic phyla. The Griffith and Tomáška/Nosek collaboration revealed circular telomeric DNA (t-circles) derived from the linear mitochondrial chromosomes of nonconventional yeast, which spurred discovery of t-circles in ALT-positive human cells. Collaborative work between the Griffith and McEachern labs demonstrated t-loops and t-circles in a series of yeast species. The de Lange and Zhuang laboratories then applied super-resolution light microscopy to demonstrate a genetic role for TRF2 in loop formation. Recent work from the Griffith laboratory linked telomere transcription with t-loop formation, providing a new model of the t-loop junction. A recent collaboration between the Cesare and Gaus laboratories utilized super-resolution light microscopy to provide details about t-loops as protective elements, followed by the Boulton and Cesare laboratories showing how cell cycle regulation of TRF2 and RTEL enables t-loop opening and reformation to promote telomere replication. Twenty years after the discovery of t-loops, we reflect on the collective history of their research as a case study in collaborative molecular biology.
Collapse
Affiliation(s)
- Ľubomír Tomáška
- Department of Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, Ilkovicova 6, 84215, Bratislava, Slovakia
| | - Anthony J Cesare
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW, 2145, Australia
| | - Taghreed M AlTurki
- Lineberger Comprehensive Cancer Center and Departments of Microbiology and Immunology, and Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jack D Griffith
- Lineberger Comprehensive Cancer Center and Departments of Microbiology and Immunology, and Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
3
|
Tomáška Ľ, Nosek J. Co-evolution in the Jungle: From Leafcutter Ant Colonies to Chromosomal Ends. J Mol Evol 2020; 88:293-318. [PMID: 32157325 DOI: 10.1007/s00239-020-09935-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
Abstract
Biological entities are multicomponent systems where each part is directly or indirectly dependent on the others. In effect, a change in a single component might have a consequence on the functioning of its partners, thus affecting the fitness of the entire system. In this article, we provide a few examples of such complex biological systems, ranging from ant colonies to a population of amino acids within a single-polypeptide chain. Based on these examples, we discuss one of the central and still challenging questions in biology: how do such multicomponent consortia co-evolve? More specifically, we ask how telomeres, nucleo-protein complexes protecting the integrity of linear DNA chromosomes, originated from the ancestral organisms having circular genomes and thus not dealing with end-replication and end-protection problems. Using the examples of rapidly evolving topologies of mitochondrial genomes in eukaryotic microorganisms, we show what means of co-evolution were employed to accommodate various types of telomere-maintenance mechanisms in mitochondria. We also describe an unprecedented runaway evolution of telomeric repeats in nuclei of ascomycetous yeasts accompanied by co-evolution of telomere-associated proteins. We propose several scenarios derived from research on telomeres and supported by other studies from various fields of biology, while emphasizing that the relevant answers are still not in sight. It is this uncertainty and a lack of a detailed roadmap that makes the journey through the jungle of biological systems still exciting and worth undertaking.
Collapse
Affiliation(s)
- Ľubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia
| |
Collapse
|
4
|
Tomáška Ĺ, Nosek J, Sepšiová R, Červenák F, Juríková K, Procházková K, Neboháčová M, Willcox S, Griffith JD. Commentary: Single-stranded telomere-binding protein employs a dual rheostat for binding affinity and specificity that drives function. Front Genet 2019; 9:742. [PMID: 30697232 PMCID: PMC6341069 DOI: 10.3389/fgene.2018.00742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/22/2018] [Indexed: 12/14/2022] Open
Affiliation(s)
- Ĺubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Regina Sepšiová
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Filip Červenák
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Katarína Juríková
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Katarína Procházková
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Martina Neboháčová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Smaranda Willcox
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
| | - Jack D Griffith
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
5
|
Singh SP, Kukshal V, Galletto R. A stable tetramer is not the only oligomeric state that mitochondrial single-stranded DNA binding proteins can adopt. J Biol Chem 2019; 294:4137-4144. [PMID: 30617184 DOI: 10.1074/jbc.ra118.007048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/04/2019] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial single-stranded DNA (ssDNA)-binding proteins (mtSSBs) are required for mitochondrial DNA replication and stability and are generally assumed to form homotetramers, and this species is proposed to be the one active for ssDNA binding. However, we recently reported that the mtSSB from Saccharomyces cerevisiae (ScRim1) forms homotetramers at high protein concentrations, whereas at low protein concentrations, it dissociates into dimers that bind ssDNA with high affinity. In this work, using a combination of analytical ultracentrifugation techniques and DNA binding experiments with fluorescently labeled DNA oligonucleotides, we tested whether the ability of ScRim1 to form dimers is unique among mtSSBs. Although human mtSSBs and those from Schizosaccharomyces pombe, Xenopus laevis, and Xenopus tropicalis formed stable homotetramers, the mtSSBs from Candida albicans and Candida parapsilosis formed stable homodimers. Moreover, the mtSSBs from Candida nivariensis and Candida castellii formed tetramers at high protein concentrations, whereas at low protein concentrations, they formed dimers, as did ScRim1. Mutational studies revealed that the ability to form either stable tetramers or dimers depended on a complex interplay of more than one amino acid at the dimer-dimer interface and the C-terminal unstructured tail. In conclusion, our findings indicate that mtSSBs can adopt different oligomeric states, ranging from stable tetramers to stable dimers, and suggest that a dimer of mtSSB may be a physiologically relevant species that binds to ssDNA in some yeast species.
Collapse
Affiliation(s)
- Saurabh P Singh
- From the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Vandna Kukshal
- From the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Roberto Galletto
- From the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63110
| |
Collapse
|
6
|
Chen XJ, Clark-Walker GD. Unveiling the mystery of mitochondrial DNA replication in yeasts. Mitochondrion 2017; 38:17-22. [PMID: 28778567 DOI: 10.1016/j.mito.2017.07.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/12/2017] [Accepted: 07/28/2017] [Indexed: 11/27/2022]
Abstract
Conventional DNA replication is initiated from specific origins and requires the synthesis of RNA primers for both the leading and lagging strands. In contrast, the replication of yeast mitochondrial DNA is origin-independent. The replication of the leading strand is likely primed by recombinational structures and proceeded by a rolling circle mechanism. The coexistent linear and circular DNA conformers facilitate the recombination-based initiation. The replication of the lagging strand is poorly understood. Re-evaluation of published data suggests that the rolling circle may also provide structures for the synthesis of the lagging-strand by mechanisms such as template switching. Thus, the coupling of recombination with rolling circle replication and possibly, template switching, may have been selected as an economic replication mode to accommodate the reductive evolution of mitochondria. Such a replication mode spares the need for conventional replicative components, including those required for origin recognition/remodelling, RNA primer synthesis and lagging-strand processing.
Collapse
Affiliation(s)
- Xin Jie Chen
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA.
| | | |
Collapse
|
7
|
Červenák F, Juríková K, Sepšiová R, Neboháčová M, Nosek J, Tomáška L. Double-stranded telomeric DNA binding proteins: Diversity matters. Cell Cycle 2017; 16:1568-1577. [PMID: 28749196 DOI: 10.1080/15384101.2017.1356511] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Telomeric sequences constitute only a small fraction of the whole genome yet they are crucial for ensuring genomic stability. This function is in large part mediated by protein complexes recruited to telomeric sequences by specific telomere-binding proteins (TBPs). Although the principal tasks of nuclear telomeres are the same in all eukaryotes, TBPs in various taxa exhibit a surprising diversity indicating their distinct evolutionary origin. This diversity is especially pronounced in ascomycetous yeasts where they must have co-evolved with rapidly diversifying sequences of telomeric repeats. In this article we (i) provide a historical overview of the discoveries leading to the current list of TBPs binding to double-stranded (ds) regions of telomeres, (ii) describe examples of dsTBPs highlighting their diversity in even closely related species, and (iii) speculate about possible evolutionary trajectories leading to a long list of various dsTBPs fulfilling the same general role(s) in their own unique ways.
Collapse
Affiliation(s)
- Filip Červenák
- a Department of Genetics , Comenius University in Bratislava, Faculty of Natural Sciences , Bratislava , Slovakia
| | - Katarína Juríková
- a Department of Genetics , Comenius University in Bratislava, Faculty of Natural Sciences , Bratislava , Slovakia
| | - Regina Sepšiová
- a Department of Genetics , Comenius University in Bratislava, Faculty of Natural Sciences , Bratislava , Slovakia
| | - Martina Neboháčová
- b Department of Biochemistry , Comenius University in Bratislava, Faculty of Natural Sciences , Bratislava , Slovakia
| | - Jozef Nosek
- b Department of Biochemistry , Comenius University in Bratislava, Faculty of Natural Sciences , Bratislava , Slovakia
| | - L'ubomír Tomáška
- a Department of Genetics , Comenius University in Bratislava, Faculty of Natural Sciences , Bratislava , Slovakia
| |
Collapse
|
8
|
Abstract
Mitochondrial DNA (mtDNA) in cells is organized in nucleoids containing DNA and various proteins. This review discusses questions of organization and structural dynamics of nucleoids as well as their protein components. The structures of mt-nucleoid from different organisms are compared. The currently accepted model of nucleoid organization is described and questions needing answers for better understanding of the fine mechanisms of the mitochondrial genetic apparatus functioning are discussed.
Collapse
Affiliation(s)
- A A Kolesnikov
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia.
| |
Collapse
|
9
|
Rendeková J, Ward TA, Šimoničová L, Thomas PH, Nosek J, Tomáška Ľ, McHugh PJ, Chovanec M. Mgm101: A double-duty Rad52-like protein. Cell Cycle 2016; 15:3169-3176. [PMID: 27636878 PMCID: PMC5176325 DOI: 10.1080/15384101.2016.1231288] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mgm101 has well-characterized activity for the repair and replication of the mitochondrial genome. Recent work has demonstrated a further role for Mgm101 in nuclear DNA metabolism, contributing to an S-phase specific DNA interstrand cross-link repair pathway that acts redundantly with a pathway controlled by Pso2 exonuclease. Due to involvement of FANCM, FANCJ and FANCP homologues (Mph1, Chl1 and Slx4), this pathway has been described as a Fanconi anemia-like pathway. In this pathway, Mgm101 physically interacts with the DNA helicase Mph1 and the MutSα (Msh2/Msh6) heterodimer, but its precise role is yet to be elucidated. Data presented here suggests that Mgm101 functionally overlaps with Rad52, supporting previous suggestions that, based on protein structure and biochemical properties, Mgm101 and Rad52 belong to a family of proteins with similar function. In addition, our data shows that this overlap extends to the function of both proteins at telomeres, where Mgm101 is required for telomere elongation during chromosome replication in rad52 defective cells. We hypothesize that Mgm101 could, in Rad52-like manner, preferentially bind single-stranded DNAs (such as at stalled replication forks, broken chromosomes and natural chromosome ends), stabilize them and mediate single-strand annealing-like homologous recombination event to prevent them from converting into toxic structures.
Collapse
Affiliation(s)
- Jana Rendeková
- a Department of Genetics , Cancer Research Institute, Biomedical Research Center, Slovak Academy of Science , Bratislava , Slovak Republic
| | - Thomas A Ward
- b Department of Oncology , Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital , Oxford , UK
| | - Lucia Šimoničová
- c Department of Genetics , Faculty of Natural Sciences, Comenius University , Bratislava , Slovakia
| | - Peter H Thomas
- b Department of Oncology , Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital , Oxford , UK
| | - Jozef Nosek
- d Department of Biochemistry , Faculty of Natural Sciences, Comenius University , Bratislava , Slovakia
| | - Ľubomír Tomáška
- c Department of Genetics , Faculty of Natural Sciences, Comenius University , Bratislava , Slovakia
| | - Peter J McHugh
- b Department of Oncology , Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital , Oxford , UK
| | - Miroslav Chovanec
- a Department of Genetics , Cancer Research Institute, Biomedical Research Center, Slovak Academy of Science , Bratislava , Slovak Republic
| |
Collapse
|
10
|
Kayal E, Bentlage B, Collins AG. Insights into the transcriptional and translational mechanisms of linear organellar chromosomes in the box jellyfish Alatina alata (Cnidaria: Medusozoa: Cubozoa). RNA Biol 2016; 13:799-809. [PMID: 27267414 DOI: 10.1080/15476286.2016.1194161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND In most animals, the mitochondrial genome is characterized by its small size, organization into a single circular molecule, and a relative conservation of the number of encoded genes. In box jellyfish (Cubozoa, Cnidaria), the mitochondrial genome is organized into 8 linear mito-chromosomes harboring between one and 4 genes each, including 2 extra protein-coding genes: mt-polB and orf314. Such an organization challenges the traditional view of mitochondrial DNA (mtDNA) expression in animals. In this study, we investigate the pattern of mitochondrial gene expression in the box jellyfish Alatina alata, as well as several key nuclear-encoded molecular pathways involved in the processing of mitochondrial gene transcription. RESULTS Read coverage of DNA-seq data is relatively uniform for all 8 mito-chromosomes, suggesting that each mito-chromosome is present in equimolar proportion in the mitochondrion. Comparison of DNA and RNA-seq based assemblies indicates that mito-chromosomes are transcribed into individual transcripts in which the beginning and ending are highly conserved. Expression levels for mt-polB and orf314 are similar to those of other mitochondrial-encoded genes, which provides further evidence for them having functional roles in the mitochondrion. Survey of the transcriptome suggests recognition of the mitochondrial tRNA-Met by the cytoplasmic aminoacyl-tRNA synthetase counterpart and C-to-U editing of the cytoplasmic tRNA-Trp after import into the mitochondrion. Moreover, several mitochondrial ribosomal proteins appear to be lost. CONCLUSIONS This study represents the first survey of mitochondrial gene expression of the linear multi-chromosomal mtDNA in box jellyfish (Cubozoa). Future exploration of small RNAs and the proteome of the mitochondrion will test the hypotheses presented herein.
Collapse
Affiliation(s)
- Ehsan Kayal
- a Department of Invertebrate Zoology , National Museum of Natural History, Smithsonian Institution , Washington DC , USA
| | - Bastian Bentlage
- a Department of Invertebrate Zoology , National Museum of Natural History, Smithsonian Institution , Washington DC , USA
| | - Allen G Collins
- a Department of Invertebrate Zoology , National Museum of Natural History, Smithsonian Institution , Washington DC , USA.,b National Systematics Laboratory of NOAA's Fisheries Service, National Museum of Natural History , Washington , DC , USA
| |
Collapse
|
11
|
Pevala V, Truban D, Bauer JA, Košťan J, Kunová N, Bellová J, Brandstetter M, Marini V, Krejčí L, Tomáška Ľ, Nosek J, Kutejová E. The structure and DNA-binding properties of Mgm101 from a yeast with a linear mitochondrial genome. Nucleic Acids Res 2016; 44:2227-39. [PMID: 26743001 PMCID: PMC4797282 DOI: 10.1093/nar/gkv1529] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/22/2015] [Indexed: 11/14/2022] Open
Abstract
To study the mechanisms involved in the maintenance of a linear mitochondrial genome we investigated the biochemical properties of the recombination protein Mgm101 from Candida parapsilosis. We show that CpMgm101 complements defects associated with the Saccharomyces cerevisiae mgm101-1(ts) mutation and that it is present in both the nucleus and mitochondrial nucleoids of C. parapsilosis. Unlike its S. cerevisiae counterpart, CpMgm101 is associated with the entire nucleoid population and is able to bind to a broad range of DNA substrates in a non-sequence specific manner. CpMgm101 is also able to catalyze strand annealing and D-loop formation. CpMgm101 forms a roughly C-shaped trimer in solution according to SAXS. Electron microscopy of a complex of CpMgm101 with a model mitochondrial telomere revealed homogeneous, ring-shaped structures at the telomeric single-stranded overhangs. The DNA-binding properties of CpMgm101, together with its DNA recombination properties, suggest that it can play a number of possible roles in the replication of the mitochondrial genome and the maintenance of its telomeres.
Collapse
Affiliation(s)
- Vladimír Pevala
- Department of Biochemistry and Structural Biology, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia
| | - Dominika Truban
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina CH-1, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Jacob A Bauer
- Department of Biochemistry and Structural Biology, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia
| | - Július Košťan
- Department for Structural and Computational Biology, Max F. Perutz Laboratories, Dr. Bohr-Gasse 9 (VBC 5), 1030 Vienna, Austria
| | - Nina Kunová
- Department of Biochemistry and Structural Biology, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia
| | - Jana Bellová
- Department of Biochemistry and Structural Biology, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia
| | - Marlene Brandstetter
- Electron Microscopy Facility of the Campus Science Support Facilities GmbH, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Victoria Marini
- Department of Biology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic National Centre for Biomolecular Research, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Lumír Krejčí
- Department of Biology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic National Centre for Biomolecular Research, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Ľubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynská dolina B-1, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina CH-1, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Eva Kutejová
- Department of Biochemistry and Structural Biology, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia Institute of Microbiology of the CAS, v. v. i., 142 20 Prague, Czech Republic
| |
Collapse
|
12
|
Yeast mitochondrial HMG proteins: DNA-binding properties of the most evolutionarily divergent component of mitochondrial nucleoids. Biosci Rep 2015; 36:e00288. [PMID: 26647378 PMCID: PMC4725248 DOI: 10.1042/bsr20150275] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/01/2015] [Indexed: 02/07/2023] Open
Abstract
Comparative biochemical analysis of mtHMG proteins from distantly related yeast species revealed that they exhibit a preference for recombination/replication intermediates. We discuss how these biochemical characteristics relate to the role of mtHMG proteins in mtDNA compaction and evolution. Yeast mtDNA is compacted into nucleoprotein structures called mitochondrial nucleoids (mt-nucleoids). The principal mediators of nucleoid formation are mitochondrial high-mobility group (HMG)-box containing (mtHMG) proteins. Although these proteins are some of the fastest evolving components of mt-nucleoids, it is not known whether the divergence of mtHMG proteins on the level of their amino acid sequences is accompanied by diversification of their biochemical properties. In the present study we performed a comparative biochemical analysis of yeast mtHMG proteins from Saccharomyces cerevisiae (ScAbf2p), Yarrowia lipolytica (YlMhb1p) and Candida parapsilosis (CpGcf1p). We found that all three proteins exhibit relatively weak binding to intact dsDNA. In fact, ScAbf2p and YlMhb1p bind quantitatively to this substrate only at very high protein to DNA ratios and CpGcf1p shows only negligible binding to dsDNA. In contrast, the proteins exhibit much higher preference for recombination intermediates such as Holliday junctions (HJ) and replication forks (RF). Therefore, we hypothesize that the roles of the yeast mtHMG proteins in maintenance and compaction of mtDNA in vivo are in large part mediated by their binding to recombination/replication intermediates. We also speculate that the distinct biochemical properties of CpGcf1p may represent one of the prerequisites for frequent evolutionary tinkering with the form of the mitochondrial genome in the CTG-clade of hemiascomycetous yeast species.
Collapse
|
13
|
Abstract
Programmed translational bypassing is a process whereby ribosomes "ignore" a substantial interval of mRNA sequence. Although discovered 25 y ago, the only experimentally confirmed example of this puzzling phenomenon is expression of the bacteriophage T4 gene 60. Bypassing requires translational blockage at a "takeoff codon" immediately upstream of a stop codon followed by a hairpin, which causes peptidyl-tRNA dissociation and reassociation with a matching "landing triplet" 50 nt downstream, where translation resumes. Here, we report 81 translational bypassing elements (byps) in mitochondria of the yeast Magnusiomyces capitatus and demonstrate in three cases, by transcript analysis and proteomics, that byps are retained in mitochondrial mRNAs but not translated. Although mitochondrial byps resemble the bypass sequence in the T4 gene 60, they utilize unused codons instead of stops for translational blockage and have relaxed matching rules for takeoff/landing sites. We detected byp-like sequences also in mtDNAs of several Saccharomycetales, indicating that byps are mobile genetic elements. These byp-like sequences lack bypassing activity and are tolerated when inserted in-frame in variable protein regions. We hypothesize that byp-like elements have the potential to contribute to evolutionary diversification of proteins by adding new domains that allow exploration of new structures and functions.
Collapse
|
14
|
Fulcher N, Derboven E, Valuchova S, Riha K. If the cap fits, wear it: an overview of telomeric structures over evolution. Cell Mol Life Sci 2014; 71:847-65. [PMID: 24042202 PMCID: PMC11113737 DOI: 10.1007/s00018-013-1469-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/16/2013] [Accepted: 08/30/2013] [Indexed: 10/26/2022]
Abstract
Genome organization into linear chromosomes likely represents an important evolutionary innovation that has permitted the development of the sexual life cycle; this process has consequently advanced nuclear expansion and increased complexity of eukaryotic genomes. Chromosome linearity, however, poses a major challenge to the internal cellular machinery. The need to efficiently recognize and repair DNA double-strand breaks that occur as a consequence of DNA damage presents a constant threat to native chromosome ends known as telomeres. In this review, we present a comparative survey of various solutions to the end protection problem, maintaining an emphasis on DNA structure. This begins with telomeric structures derived from a subset of prokaryotes, mitochondria, and viruses, and will progress into the typical telomere structure exhibited by higher organisms containing TTAGG-like tandem sequences. We next examine non-canonical telomeres from Drosophila melanogaster, which comprise arrays of retrotransposons. Finally, we discuss telomeric structures in evolution and possible switches between canonical and non-canonical solutions to chromosome end protection.
Collapse
Affiliation(s)
- Nick Fulcher
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Elisa Derboven
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Sona Valuchova
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Karel Riha
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
- Central European Institute of Technology, Kamenice 753/5, Brno, Czech Republic
| |
Collapse
|
15
|
Janouskovec J, Sobotka R, Lai DH, Flegontov P, Koník P, Komenda J, Ali S, Prásil O, Pain A, Oborník M, Lukes J, Keeling PJ. Split photosystem protein, linear-mapping topology, and growth of structural complexity in the plastid genome of Chromera velia. Mol Biol Evol 2013; 30:2447-62. [PMID: 23974208 DOI: 10.1093/molbev/mst144] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The canonical photosynthetic plastid genomes consist of a single circular-mapping chromosome that encodes a highly conserved protein core, involved in photosynthesis and ATP generation. Here, we demonstrate that the plastid genome of the photosynthetic relative of apicomplexans, Chromera velia, departs from this view in several unique ways. Core photosynthesis proteins PsaA and AtpB have been broken into two fragments, which we show are independently transcribed, oligoU-tailed, translated, and assembled into functional photosystem I and ATP synthase complexes. Genome-wide transcription profiles support expression of many other highly modified proteins, including several that contain extensions amounting to hundreds of amino acids in length. Canonical gene clusters and operons have been fragmented and reshuffled into novel putative transcriptional units. Massive genomic coverage by paired-end reads, coupled with pulsed-field gel electrophoresis and polymerase chain reaction, consistently indicate that the C. velia plastid genome is linear-mapping, a unique state among all plastids. Abundant intragenomic duplication probably mediated by recombination can explain protein splits, extensions, and genome linearization and is perhaps the key driving force behind the many features that defy the conventional ways of plastid genome architecture and function.
Collapse
Affiliation(s)
- Jan Janouskovec
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Tomaska L, Nosek J, Kramara J, Griffith JD. Telomeric circles: universal players in telomere maintenance? Nat Struct Mol Biol 2009; 16:1010-5. [PMID: 19809492 PMCID: PMC4041010 DOI: 10.1038/nsmb.1660] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To maintain linear DNA genomes, organisms have evolved numerous means of solving problems associated with DNA ends (telomeres), including telomere-associated retrotransposons, palindromes, hairpins, covalently bound proteins and the addition of arrays of simple DNA repeats. Telomeric arrays can be maintained through various mechanisms such as telomerase activity or recombination. The recombination-dependent maintenance pathways may include telomeric loops (t-loops) and telomeric circles (t-circles). The potential involvement of t-circles in telomere maintenance was first proposed for linear mitochondrial genomes. The occurrence of t-circles in a wide range of organisms, spanning yeasts, plants and animals, suggests the involvement of t-circles in many phenomena including the alternative-lengthening of telomeres (ALT) pathway and telomere rapid deletion (TRD). In this Perspective, we summarize these findings and discuss how t-circles may be related to t-loops and how t-circles may have initiated the evolution of telomeres.
Collapse
Affiliation(s)
- Lubomir Tomaska
- Department of Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, Bratislava, Slovakia.
| | | | | | | |
Collapse
|
17
|
Biology and genetics of the pathogenic yeast Candida parapsilosis. Curr Genet 2009; 55:497-509. [DOI: 10.1007/s00294-009-0268-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 07/22/2009] [Accepted: 07/23/2009] [Indexed: 10/20/2022]
|
18
|
Miyakawa I, Okamuro A, Kinsky S, Visacka K, Tomaska L, Nosek J. Mitochondrial nucleoids from the yeast Candida parapsilosis: expansion of the repertoire of proteins associated with mitochondrial DNA. MICROBIOLOGY-SGM 2009; 155:1558-1568. [PMID: 19383705 DOI: 10.1099/mic.0.027474-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Molecules of mitochondrial DNA (mtDNA) are packed into nucleic acid-protein complexes termed mitochondrial nucleoids (mt-nucleoids). In this study, we analysed mt-nucleoids of the yeast Candida parapsilosis, which harbours a linear form of the mitochondrial genome. To identify conserved as well as specific features of mt-nucleoids in this species, we employed two strategies for analysis of their components. First, we investigated the protein composition of mt-nucleoids isolated from C. parapsilosis mitochondria, determined N-terminal amino acid sequences of 14 proteins associated with the mt-nucleoids and identified corresponding genes. Next, we complemented the list of mt-nucleoid components with additional candidates identified in the complete genome sequence of C. parapsilosis as homologues of Saccharomyces cerevisiae mt-nucleoid proteins. Our approach revealed several known mt-nucleoid proteins as well as additional components that expand the repertoire of proteins associated with these cytological structures. In particular, we identified and purified the protein Gcf1, which is abundant in the mt-nucleoids and exhibits structural features in common with the mtDNA packaging protein Abf2 from S. cerevisiae. We demonstrate that Gcf1p co-localizes with mtDNA, has DNA-binding activity in vitro, and is able to stabilize mtDNA in the S. cerevisiae Deltaabf2 mutant, all of which points to a role in the maintenance of the C. parapsilosis mitochondrial genome. Importantly, in contrast to Abf2p, in silico analysis of Gcf1p predicted the presence of a coiled-coil domain and a single high-mobility group (HMG) box, suggesting that it represents a novel type of mitochondrial HMG protein.
Collapse
Affiliation(s)
- Isamu Miyakawa
- Department of Physics, Biology, and Informatics, Faculty of Science, Yamaguchi University, Yamaguchi 753-8512, Japan
| | - Akira Okamuro
- Department of Physics, Biology, and Informatics, Faculty of Science, Yamaguchi University, Yamaguchi 753-8512, Japan
| | - Slavomir Kinsky
- Departments of Biochemistry and Genetics, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia
| | - Katarina Visacka
- Departments of Biochemistry and Genetics, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia
| | - Lubomir Tomaska
- Departments of Biochemistry and Genetics, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia
| | - Jozef Nosek
- Departments of Biochemistry and Genetics, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia
| |
Collapse
|
19
|
Miyakawa I, Yawata K. Purification of an Abf2p-like protein from mitochondrial nucleoids of yeast Pichia jadinii and its role in the packaging of mitochondrial DNA. Antonie van Leeuwenhoek 2007; 91:197-207. [PMID: 17295092 DOI: 10.1007/s10482-006-9105-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Accepted: 07/13/2006] [Indexed: 11/29/2022]
Abstract
A 26-kDa protein with highly basic pI was purified from the mitochondrial (mt-) nucleoids of the yeast Pichia jadinii by a combination of acid extraction, hydroxyapatite chromatography and DNA-cellulose chromatography. The 26-kDa protein has the ability to introduce a supercoil into circular plasmid DNA in the presence of topoisomerase I and to package mtDNA into nucleoid-like aggregates. The mt-nucleoids isolated from P. jadinii cells were disassembled in the presence of 2 M NaCl and reassembled into nucleoid-like aggregates by the removal of the salts. During the course of the reassembly of the mt-nucleoids, three specific proteins of 20 kDa, 26 kDa and 56 kDa predominantly precipitated after the centrifugation of the reassembled mt-nucleoids. These results suggest that the 26-kDa protein of P. jadinii has a similar function in the packaging of mtDNA to Abf2p, a major mitochondrial DNA-binding protein in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Isamu Miyakawa
- Department of Physics, Biology, and Informatics, Faculty of Science, Yamaguchi University, Yamaguchi 753-8512, Japan.
| | | |
Collapse
|
20
|
Abstract
When a telomere becomes unprotected or if only one end of a chromosomal double-strand break succeeds in recombining with a template sequence, DNA can be repaired by a recombination-dependent DNA replication process termed break-induced replication (BIR). In budding yeasts, there are two BIR pathways, one dependent on the Rad51 recombinase protein and one Rad51 independent; these two repair processes lead to different types of survivors in cells lacking the telomerase enzyme that is required for normal telomere maintenance. Recombination at telomeres is triggered by either excessive telomere shortening or disruptions in the function of telomere-binding proteins. Telomere elongation by BIR appears to often occur through a "roll and spread" mechanism. In this process, a telomeric circle produced by recombination at a dysfunctional telomere acts as a template for a rolling circle BIR event to form an elongated telomere. Additional BIR events can then copy the elongated sequence to all other telomeres.
Collapse
|
21
|
Kosa P, Valach M, Tomaska L, Wolfe KH, Nosek J. Complete DNA sequences of the mitochondrial genomes of the pathogenic yeasts Candida orthopsilosis and Candida metapsilosis: insight into the evolution of linear DNA genomes from mitochondrial telomere mutants. Nucleic Acids Res 2006; 34:2472-81. [PMID: 16684995 PMCID: PMC1459067 DOI: 10.1093/nar/gkl327] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We determined complete mitochondrial DNA sequences of the two yeast species, Candida orthopsilosis and Candida metapsilosis, and compared them with the linear mitochondrial genome of their close relative, C.parapsilosis. Mitochondria of all the three species harbor compact genomes encoding the same set of genes arranged in the identical order. Differences in the length of these genomes result mainly from the presence/absence of introns. Multiple alterations were identified also in the sequences of the ribosomal and transfer RNAs, and proteins. However, the most striking feature of C.orthopsilosis and C.metapsilosis is the existence of strains differing in the molecular form of the mitochondrial genome (circular-mapping versus linear). Their analysis opens a unique window for understanding the role of mitochondrial telomeres in the stability and evolution of molecular architecture of the genome. Our results indicate that the circular-mapping mitochondrial genome derived from the linear form by intramolecular end-to-end fusions. Moreover, we suggest that the linear mitochondrial genome evolved from a circular-mapping form present in a common ancestor of the three species and, at the same time, the emergence of mitochondrial telomeres enabled the formation of linear monomeric DNA forms. In addition, comparison of isogenic C.metapsilosis strains differing in the form of the organellar genome suggests a possibility that, under some circumstances, the linearity and/or the presence of telomeres provide a competitive advantage over a circular-mapping mitochondrial genome.
Collapse
Affiliation(s)
- Peter Kosa
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University Mlynska dolina, CH-1 and B-1, 842 15, Bratislava, Slovak Republic
| | | | | | | | | |
Collapse
|
22
|
Nosek J, Tomaska L, Bolotin-Fukuhara M, Miyakawa I. Mitochondrial chromosome structure: an insight from analysis of complete yeast genomes. FEMS Yeast Res 2005. [DOI: 10.1111/j.1574-1364.2005.00016.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
23
|
Tomaska L, Makhov AM, Griffith JD, Nosek J. t-Loops in yeast mitochondria. Mitochondrion 2005; 1:455-9. [PMID: 16120298 DOI: 10.1016/s1567-7249(02)00009-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2002] [Revised: 03/06/2002] [Accepted: 03/07/2002] [Indexed: 11/21/2022]
Abstract
Mitochondria of several yeast species contain a linear DNA genome possessing specific terminal DNA structures dubbed mitochondrial telomeres. Several tandemly repeated units and a 5' single-stranded extension characterize mitochondrial telomeres in Candida parapsilosis, Pichia philodendra and Candida salmanticensis. Resemblance of this type of mitochondrial telomeres to typical nuclear telomeres suggests that they might form t-loop structures. Therefore we adopted a protocol for stabilization of potential t-loops in the mtDNA of C. parapsilosis and observed several loops at the ends of the mtDNA. A potential role of t-loops in protection of the ends of mtDNA and/or in mitochondrial telomere dynamics is discussed.
Collapse
Affiliation(s)
- Lubomir Tomaska
- Department of Genetics, Comenius University, Faculty of Natural Sciences, Mlynska dolina B-1, 842 15 Bratislava, Slovakia.
| | | | | | | |
Collapse
|
24
|
Nosek J, Rycovska A, Makhov AM, Griffith JD, Tomaska L. Amplification of telomeric arrays via rolling-circle mechanism. J Biol Chem 2005; 280:10840-5. [PMID: 15657051 DOI: 10.1074/jbc.m409295200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alternative (telomerase-independent) lengthening of telomeres mediated through homologous recombination is often accompanied by a generation of extrachromosomal telomeric circles (t-circles), whose role in direct promotion of recombinational telomere elongation has been recently demonstrated. Here we present evidence that t-circles in a natural telomerase-deficient system of mitochondria of the yeast Candida parapsilosis replicate independently of the linear chromosome via a rolling-circle mechanism. This is supported by an observation of (i) single-stranded DNA consisting of concatameric arrays of telomeric sequence, (ii) lasso-shaped molecules representing rolling-circle intermediates, and (iii) preferential incorporation of deoxyribonucleotides into telomeric fragments and t-circles. Analysis of naturally occurring variant t-circles revealed conserved motifs with potential function in driving the rolling-circle replication. These data indicate that extrachromosomal t-circles observed in a wide variety of organisms, including yeasts, plants, Xenopus laevis, and certain human cell lines, may represent independent replicons generating telomeric sequences and, thus, actively participating in telomere dynamics. Moreover, because of the promiscuous occurrence of t-circles across phyla, the results from yeast mitochondria have implications related to the primordial system of telomere maintenance, providing a paradigm for evolution of telomeres in nuclei of early eukaryotes.
Collapse
Affiliation(s)
- Jozef Nosek
- Department of Biochemistry, Mlynska dolina CH-1, Comenius University, 842 15 Bratislava, Slovakia
| | | | | | | | | |
Collapse
|
25
|
Nosek J, Tomáška Ľ, Kucejová B. The chromosome end replication: lessons from mitochondrial genetics. J Appl Biomed 2004. [DOI: 10.32725/jab.2004.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
26
|
Rycovska A, Valach M, Tomaska L, Bolotin-Fukuhara M, Nosek J. Linear versus circular mitochondrial genomes: intraspecies variability of mitochondrial genome architecture in Candida parapsilosis. MICROBIOLOGY-SGM 2004; 150:1571-1580. [PMID: 15133118 DOI: 10.1099/mic.0.26988-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The yeast species Candida parapsilosis, an opportunistic pathogen, exhibits genetic and genomic heterogeneity. To assess the polymorphism at the level of mitochondrial DNA (mtDNA), the organization of the mitochondrial genome in strains belonging to the three variant groups of this species was investigated. Although these analyses revealed a group-specific restriction fragment pattern of mtDNA, strains belonging to different groups appear to have similar genes in the same gene order. An extensive survey of C. parapsilosis isolates uncovered surprising alterations in the molecular architecture of their mitochondrial genome. A screening strategy for strains harbouring mtDNA with rearranged architecture showed that nearly all strains from groups I and III possess linear mtDNA molecules terminating with arrays of tandem repeat units, while most of the group II strains have a circular mitochondrial genome. In addition, it was found that linear genophores in mitochondria of strains from different groups differ in the sequence of the mitochondrial telomeric repeat unit. The occurrence of altered forms of mtDNA among C. parapsilosis strains opens up the unique possibility to address questions concerning the evolutionary origin and replication strategy of linear and circular genomes in mitochondria.
Collapse
Affiliation(s)
- Adriana Rycovska
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina CH-1, 842 15 Bratislava, Slovak Republic
| | - Matus Valach
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina CH-1, 842 15 Bratislava, Slovak Republic
| | - Lubomir Tomaska
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynská dolina CH-1, 842 15 Bratislava, Slovak Republic
| | | | - Jozef Nosek
- Institute of Genetics and Microbiology, University of Paris XI, 91 405 Orsay, France
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina CH-1, 842 15 Bratislava, Slovak Republic
| |
Collapse
|
27
|
Nosek J, Tomáska L. Mitochondrial genome diversity: evolution of the molecular architecture and replication strategy. Curr Genet 2003; 44:73-84. [PMID: 12898180 DOI: 10.1007/s00294-003-0426-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2003] [Revised: 06/25/2003] [Accepted: 06/26/2003] [Indexed: 11/28/2022]
Abstract
Mitochondrial genomes in organisms from diverse phylogenetic groups vary in both size and molecular form. Although the types of mitochondrial genome appear very dissimilar, several lines of evidence argue that they do not differ radically. This would imply that interconversion between different types of mitochondrial genome might have occurred via relatively simple mechanisms. We exemplify this scenario on patterns accompanying evolution of mitochondrial telomeres. We propose that mitochondrial telomeres are derived from mobile elements (transposons or plasmids) that invaded mitochondria, integrated into circular or polydisperse linear mitochondrial DNAs (mtDNAs) and subsequently enabled precise resolution of the linear genophore. Simply, the selfish elements generated a problem - how to maintain the ends of a linear DNA - and, at the same time, made themselves essential by providing its solution. This scenario implies that insertion or deletion of such resolution elements may represent relatively simple routes for interconversion between different forms of the mitochondrial genome.
Collapse
Affiliation(s)
- Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina CH-1, 842 15, Bratislava, Slovakia.
| | | |
Collapse
|
28
|
Kucejová B, Foury F. Search for protein partners of mitochondrial single-stranded DNA-binding protein Rim1p using a yeast two-hybrid system. Folia Microbiol (Praha) 2003; 48:183-8. [PMID: 12807077 DOI: 10.1007/bf02930953] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
RIM1 is a nuclear gene of the yeast Saccharomyces cerevisiae coding for a protein with single-stranded DNA-binding activity that is essential for mitochondrial genome maintenance. No protein partners of Rim1p have been described so far in yeast. To better understand the role of this protein in mitochondrial DNA replication and recombination, a search for protein interactors by the yeast two-hybrid system was performed. This approach led to the identification of several candidates, including a putative transcription factor, Azf1p, and Mph1p, a protein with an RNA helicase domain which is known to influence the mutation rate of nuclear and mitochondrial genomes.
Collapse
Affiliation(s)
- B Kucejová
- Department of Biochemistry, Faculty of Science, Comenius University, 842 15 Bratislava, Slovakia.
| | | |
Collapse
|
29
|
Nosek J, Adamíková L, Zemanová J, Tomáska L, Zufferey R, Mamoun CB. Genetic manipulation of the pathogenic yeast Candida parapsilosis. Curr Genet 2002; 42:27-35. [PMID: 12420143 DOI: 10.1007/s00294-002-0326-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2002] [Revised: 07/25/2002] [Accepted: 08/12/2002] [Indexed: 11/30/2022]
Abstract
Candida parapsilosis is an important human pathogen, responsible for severe cases of systemic candidiasis and one of the leading causes of mortality in neonates. In this report, we describe the first system for genetic manipulation of C. parapsilosis. We isolated and subsequently determined DNA sequences of genes encoding galactokinase ( CpGAL1) and orotidine-5'-phosphate decarboxylase ( CpURA3) from a genomic DNA library of C. parapsilosis by functional complementation of corresponding mutations in Saccharomyces cerevisiae. The predicted protein products, Gal1p and Ura3p, displayed a high degree of homology with corresponding sequences of C. albicans and S. cerevisiae, respectively. A collection of galactokinase-deficient ( gal1) strains of C. parapsilosis was prepared using direct selection of mutagenized cells on media containing 2-deoxy-galactose. Additionally, we constructed a plasmid vector carrying CpGAL1 as a selection marker and a genomic DNA fragment with an autonomously replicating sequence activity that transforms the C. parapsilosis gal1 mutant strain with high efficiency. This system for genetic transformation of C. parapsilosis may significantly advance the study of this human pathogen, greatly improving our understanding of its biology and virulence, with implications for drug development.
Collapse
Affiliation(s)
- Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina CH-1, 84215 Bratislava, Slovakia.
| | | | | | | | | | | |
Collapse
|
30
|
Nosek J, Tomáska L, Rycovská A, Fukuhara H. Mitochondrial telomeres as molecular markers for identification of the opportunistic yeast pathogen Candida parapsilosis. J Clin Microbiol 2002; 40:1283-9. [PMID: 11923346 PMCID: PMC140342 DOI: 10.1128/jcm.40.4.1283-1289.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies have demonstrated that a large number of organisms carry linear mitochondrial DNA molecules possessing specialized telomeric structures at their ends. Based on this specific structural feature of linear mitochondrial genomes, we have developed an approach for identification of the opportunistic yeast pathogen Candida parapsilosis. The strategy for identification of C. parapsilosis strains is based on PCR amplification of specific DNA sequences derived from the mitochondrial telomere region. This assay is complemented by immunodetection of a protein component of mitochondrial telomeres. The results demonstrate that mitochondrial telomeres represent specific molecular markers with potential applications in yeast diagnostics and taxonomy.
Collapse
Affiliation(s)
- Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, 84215 Bratislava, Slovakia.
| | | | | | | |
Collapse
|
31
|
Tomáska L, Nosek J, Kucejová B. Mitochondrial single-stranded DNA-binding proteins: in search for new functions. Biol Chem 2001; 382:179-86. [PMID: 11308016 DOI: 10.1515/bc.2001.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
During the evolution of the eukaryotic cell, genes encoding proteins involved in the metabolism of mitochondrial DNA (mtDNA) have been transferred from the endosymbiont into the host genome. Mitochondrial single-stranded DNA-binding (mtSSB) proteins serve as an excellent argument supporting this aspect of the endosymbiotic theory. The crystal structure of the human mtSSB, together with an abundance of biochemical and genetic data, revealed several exciting features of mtSSB proteins and enabled a detailed comparison with their prokaryotic counterparts. Moreover, identification of a novel member of the mtSSB family, mitochondrial telomere-binding protein of the yeast Candida parapsilosis, has raised interesting questions regarding mtDNA metabolism and evolution.
Collapse
Affiliation(s)
- L Tomáska
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | | | | |
Collapse
|
32
|
Tomaska L, Makhov AM, Nosek J, Kucejova B, Griffith JD. Electron microscopic analysis supports a dual role for the mitochondrial telomere-binding protein of Candida parapsilosis. J Mol Biol 2001; 305:61-9. [PMID: 11114247 DOI: 10.1006/jmbi.2000.4254] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Linear mitochondrial genomes exist in several yeast species which are closely related to yeast that harbor circular mitochondrial genomes. Several lines of evidence suggest that the conversion from one form to another occurred accidentally through a relatively simple mechanism. Previously, we (L.T. & J.N.) reported the identification of the first mitochondrial telomere-binding protein (mtTBP) that specifically binds a sequence derived from the extreme end of Candida parapsilosis linear mtDNA, and sequence analysis of the corresponding nuclear gene MTP1 revealed that mtTBP shares homology with several bacterial and mitochondrial single-stranded (ss) DNA-binding (SSB) proteins. In this study, the DNA-binding properties of mtTBP in vitro and in vivo were analyzed by electron microscopy (EM). When M13 ssDNA was used as a substrate, mtTBP exhibited similar DNA binding characteristics as human mitochondrial SSB: mtTBP formed protein globules along the DNA substrate, and the bound proteins were randomly distributed, indicating that the binding of mtTBP to M13 ssDNA is not highly cooperative. EM analysis demonstrated that mtTBP is able to recognize the 5' single-stranded telomeric overhangs in their natural context. Using isopycnic centrifugation of mitochondrial lysates of C. papsilosis we show that mtTBP is a structural part of mitochondrial nucleoids of C. parapsilosis and is predominantly bound to the mitochondrial telomeres. These data support a dual role of mtTBP in mitochondria of C. parapsilosis, serving both as a typical mitochondrial SSB and as a specific component of the mitochondrial telomeric chromatin.
Collapse
MESH Headings
- Bacteriophage M13/genetics
- Blotting, Western
- Candida/chemistry
- Candida/cytology
- Candida/genetics
- Centrifugation, Density Gradient
- Chromatin/genetics
- Chromatin/metabolism
- DNA, Fungal/genetics
- DNA, Fungal/metabolism
- DNA, Fungal/ultrastructure
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/metabolism
- DNA, Mitochondrial/ultrastructure
- DNA, Single-Stranded/genetics
- DNA, Single-Stranded/metabolism
- DNA, Single-Stranded/ultrastructure
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/isolation & purification
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/ultrastructure
- Fungal Proteins/chemistry
- Fungal Proteins/isolation & purification
- Fungal Proteins/metabolism
- Fungal Proteins/ultrastructure
- Humans
- Metrizamide
- Microscopy, Electron
- Protein Binding
- Protein Structure, Quaternary
- Recombinant Proteins/chemistry
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/metabolism
- Recombinant Proteins/ultrastructure
- Structure-Activity Relationship
- Substrate Specificity
- Telomere/genetics
- Telomere/metabolism
Collapse
Affiliation(s)
- L Tomaska
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
33
|
Tomaska L, Nosek J, Makhov AM, Pastorakova A, Griffith JD. Extragenomic double-stranded DNA circles in yeast with linear mitochondrial genomes: potential involvement in telomere maintenance. Nucleic Acids Res 2000; 28:4479-87. [PMID: 11071936 PMCID: PMC113878 DOI: 10.1093/nar/28.22.4479] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although the typical mitochondrial DNA (mtDNA) is portrayed as a circular molecule, a large number of organisms contain linear mitochondrial genomes classified by their telomere structure. The class of mitochondrial telomeres identified in three yeast species, Candida parapsilosis, Pichia philodendra and Candida salmanticensis, is characterized by inverted terminal repeats each consisting of several tandemly repeating units and a 5' single-stranded extension. The molecular mechanisms of the origin, replication and maintenance of this type of mitochondrial telomere remain unknown. While studying the replication of linear mtDNA of C.parapsilosis by 2-D gel electrophoresis distinct DNA fragments composed solely of mitochondrial telomeric sequences were detected and their properties were suggestive of a circular conformation. Electron microscopic analysis of these DNAs revealed the presence of highly supertwisted circular molecules which could be relaxed by DNase I. The minicircles fell into distinct categories based on length, corresponding to n x 0.75 kb (n = 1-7). Similar results were obtained with two other yeast species (P.philodendra and C. salmanticensis) which possess analogous telomeric structure.
Collapse
MESH Headings
- Candida/genetics
- DNA, Circular/genetics
- DNA, Circular/metabolism
- DNA, Circular/ultrastructure
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/metabolism
- DNA, Mitochondrial/ultrastructure
- Deoxyribonuclease EcoRI/metabolism
- Electrophoresis, Agar Gel
- Electrophoresis, Gel, Two-Dimensional
- Microscopy, Electron
- Pichia/genetics
- Telomere/genetics
Collapse
Affiliation(s)
- L Tomaska
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-27514, USA
| | | | | | | | | |
Collapse
|
34
|
Fulnecková J, Fajkus J. Inhibition of plant telomerase by telomere-binding proteins from nuclei of telomerase-negative tissues. FEBS Lett 2000; 467:305-10. [PMID: 10675559 DOI: 10.1016/s0014-5793(00)01178-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The activity of telomerase in plant cells is precisely regulated in response to changes in cell division rate. To explore this regulatory mechanism, the effect on telomerase activity of protein extracts from nuclei of telomerase-negative tissues was examined. An inhibition of telomerase activity was found which was species-non-specific. This inhibition was due to proteins which form salt-stable, sequence-specific complexes with the G-rich telomeric strand and reduce its accessibility, as shown by gel retardation and by terminal transferase (TdT) extension of G-rich telomeric and non-telomeric (substrate) primers. A 40 kDa polypeptide was detected by SDS-PAGE after cross-linking the complex formed by extracts from tobacco leaf nuclei. Such proteins may be involved in regulation of telomerase activity in plants.
Collapse
Affiliation(s)
- J Fulnecková
- Department of Analysis of Biologically Important Molecular Complexes, Masaryk University Brno, Královopolská 135, CZ-61265, Brno, Czech Republic
| | | |
Collapse
|
35
|
Nosek J, Tomáska L, Pagácová B, Fukuhara H. Mitochondrial telomere-binding protein from Candida parapsilosis suggests an evolutionary adaptation of a nonspecific single-stranded DNA-binding protein. J Biol Chem 1999; 274:8850-7. [PMID: 10085128 DOI: 10.1074/jbc.274.13.8850] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial genome in a number of organisms is represented by linear DNA molecules with defined terminal structures. The telomeres of linear mitochondrial DNA (mtDNA) of yeast Candida parapsilosis consist of tandem arrays of large repetitive units possessing single-stranded 5' extension of about 110 nucleotides. Recently we identified the first mitochondrial telomere-binding protein (mtTBP) that specifically binds a sequence derived from the extreme end of C. parapsilosis linear mtDNA and protects it from attack by various DNA-modifying enzymes (Tomáska, L'., Nosek, J., and Fukuhara, H. (1997) J. Biol. Chem. 272, 3049-3059). Here we report the isolation of MTP1, the gene encoding mtTBP of C. parapsilosis. Sequence analysis revealed that mtTBP shares homology with several bacterial and mitochondrial single-stranded DNA-binding proteins that nonspecifically bind to single-stranded DNA with high affinity. Recombinant mtTBP displays a preference for the telomeric 5' overhang of C. parapsilosis mtDNA. The heterologous expression of a mtTBP-GFP fusion protein resulted in its localization to the mitochondria but was unable to functionally substitute for the loss of the S. cerevisiae homologue Rimlp. Analysis of the MTP1 gene and its translation product mtTBP may provide an insight into the evolutionary origin of linear mitochondrial genomes and the role it plays in their replication and maintenance.
Collapse
Affiliation(s)
- J Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina, 842 15 Bratislava, Slovakia
| | | | | | | |
Collapse
|
36
|
Nosek J, Tomáska L, Fukuhara H, Suyama Y, Kovác L. Linear mitochondrial genomes: 30 years down the line. Trends Genet 1998; 14:184-8. [PMID: 9613202 DOI: 10.1016/s0168-9525(98)01443-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
At variance with the earlier belief that mitochondrial genomes are represented by circular DNA molecules, a large number of organisms have been found to carry linear mitochondrial DNA. Studies of linear mitochondrial genomes might provide a novel view on the evolutionary history of organelle genomes and contribute to delineating mechanisms of maintenance and functioning of telomeres. Because linear mitochondrial DNA is present in a number of human pathogens, its replication mechanisms might become a target for drugs that would not interfere with replication of human circular mitochondrial DNA.
Collapse
Affiliation(s)
- J Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | | | | | | | | |
Collapse
|
37
|
Tomáska L. Phosphorylation of mitochondrial telomere binding protein of Candida parapsilosis by camp-dependent protein kinase. Biochem Biophys Res Commun 1998; 242:457-60. [PMID: 9446817 DOI: 10.1006/bbrc.1997.7968] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Mitochondrial telomere-binding protein (mtTBP) of Candida parapsilosis binds with high affinity to 5' single-stranded overhang of the linear mitochondrial DNA of this yeast (Tomáska, L'., Nosek, J., and Fukuhara, H. (1997) J. Biol. Chem. 272, 3049-3056). Here it is reported that mtTBP is phosphorylated by catalytic subunit of cAMP-dependent protein kinase in vitro. Phosphorylated mtTBP has dramatically reduced ability to bind telomeric oligonucleotide in the gel-mobility retardation assay without affecting the oligomerization of mtTBP in vitro. MtTBP is one of the few mitochondrial proteins and the first mitochondrial single-strand DNA binding proteins that was demonstrated to serve as a substrate for cAMP-dependent protein kinase.
Collapse
Affiliation(s)
- L Tomáska
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| |
Collapse
|