1
|
Park D, Kim DY, Byun MR, Hwang H, Ko SH, Baek JH, Baek K. Undercarboxylated, but not Carboxylated, Osteocalcin suppresses TNF-α induced inflammatory signaling pathway in Myoblast. J Endocr Soc 2022; 6:bvac084. [PMID: 35702666 PMCID: PMC9188654 DOI: 10.1210/jendso/bvac084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Indexed: 11/19/2022] Open
Abstract
Undercarboxylated osteocalcin (ucOCN) has been considered to be an important endocrine factor, especially to regulate bone and energy metabolism. Even with the mounting evidence showing the consistent inverse correlation of ucOCN levels in chronic inflammatory diseases, however, the mechanism underlying the involvement of ucOCN in the muscular inflammation has not been fully understood. In the present study, we explored 1) the endocrine role of ucOCN in the regulation of inflammation in C2C12 myoblasts and primary myoblasts and the underlying intracellular signaling mechanisms, and 2) whether G protein–coupled receptor family C group 6 member A (GPRC6A) is the ucOCN-sensing receptor associated with the ucOCN-mediated anti-inflammatory signaling pathway in myoblasts. ucOCN suppressed the tumor necrosis factor-α (TNF-α)–induced expressions of major inflammatory cytokines, including interleukin-1β (IL-1β) and inhibited the TNF-α–stimulated activities of transcription factors, including NF-κB, in C2C12 and primary myoblasts. Both knockdown and knockout of GPRC6A, by using siRNA or a CRISPR/CAS9 system, respectively, did not reverse the effect of ucOCN on IL-1β expression in myoblasts. Interestingly, TNF-α–induced IL-1β expression was inhibited by knockdown or deletion of GPRC6A itself, regardless of the ucOCN treatment. ucOCN was rapidly internalized into the cytoplasmic region via caveolae-mediated endocytosis, suggesting the presence of new target proteins in the cell membrane and/or in the cytoplasm for interaction with ucOCN in myoblasts. Taken together, these findings indicate that ucOCN suppresses the TNF-α–induced inflammatory signaling pathway in myoblasts. GPRC6A is not a sensing receptor associated with the ucOCN-mediated anti-inflammatory signaling pathway in myoblasts.
Collapse
Affiliation(s)
- Danbi Park
- Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University , Gangwondo 25457, Republic of Korea
| | - Do-Yeon Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University , Daegu 41940, Republic of Korea
| | - Mi Ran Byun
- Department of Pharmacology, College of Pharmacy, Kyung Hee University , Seoul 02447, Republic of Korea
| | - Hyorin Hwang
- Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University , Gangwondo 25457, Republic of Korea
| | - Seong Hee Ko
- Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University , Gangwondo 25457, Republic of Korea
| | - Jeong-Hwa Baek
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University , Seoul 08826, Republic of Korea
| | - Kyunghwa Baek
- Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University , Gangwondo 25457, Republic of Korea
| |
Collapse
|
2
|
Tsai HW, Lin VY, Shupnik MA. Forskolin Stimulates Estrogen Receptor (ER) α Transcriptional Activity and Protects ER from Degradation by Distinct Mechanisms. Int J Endocrinol 2022; 2022:7690166. [PMID: 35586275 PMCID: PMC9110234 DOI: 10.1155/2022/7690166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/01/2022] [Accepted: 03/15/2022] [Indexed: 11/30/2022] Open
Abstract
Estradiol action is mediated by estrogen receptors (ERs), a and ß. Estradiol binding initiates ER-mediated transcription and ER degradation, the latter of which occurs via the ubiquitin-proteasome pathway. Inhibition of proteasome activity prevents estradiol-induced ERα degradation and transactivation. In ER-positive GH3 cells (a rat pituitary prolactinoma cell line), forskolin, acting via protein kinase A (PKA), stimulates ERα transcriptional activity without causing degradation, and proteasome inhibition does not block forskolin-stimulated transcription. Forskolin also protects liganded ERα from degradation. In the current study, we first examined ERα and ERβ transcriptional activity in ER-negative HT22 cells and found that forskolin stimulated ERα-, but not ERβ-dependent transcription, through the ligand-binding domain (LBD). We also identified four mutations (L396R, D431Y, Y542F, and K534E/M548V) on the ERα LBD that selectively obliterated the response to forskolin. In GH3 cells, transfected ERα mutants and ERβ were protected from degradation by forskolin. Ubiquitination of ERα and ERβ was increased by forskolin or estradiol. ERα ubiquitination was diminished by a mutated ubiquitin (K48R) that prevents elongation of polyubiquitin chains for targeting the proteasome. Increased ERα ubiquitination was not affected by the deletion of the A/B domain but significantly diminished in the F domain deletion mutant. Our results indicate distinct and novel mechanisms for forskolin stimulation of ERα transcriptional activity and protection from ligand-induced degradation. It also suggests a unique mechanism by which forskolin increases unliganded and liganded ERα and ERβ ubiquitination but uncouples them from proteasome-mediated degradation regardless of their transcriptional responses to forskolin.
Collapse
Affiliation(s)
- Houng-Wei Tsai
- Department of Biological Sciences, California State University, Long Beach, CA 90840, USA
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Vicky Y. Lin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Margaret A. Shupnik
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| |
Collapse
|
3
|
He S, Xue J, Cao P, Hou J, Cui Y, Chang J, Huang L, Han Y, Duan X, Tan K, Fan Y. JNK/Itch Axis Mediates the Lipopolysaccharide-Induced Ubiquitin-Proteasome-Dependent Degradation of Ferritin Light Chain in Murine Macrophage Cells. Inflammation 2021; 45:1089-1100. [PMID: 34837126 DOI: 10.1007/s10753-021-01603-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022]
Abstract
Ferritin, which is composed of a heavy chain and a light chain, plays a critical role in maintaining iron homeostasis by sequestering iron. The ferritin light chain (FTL) is responsible for the stability of the ferritin complex. We have previously shown that overexpression of FTL decreases the levels of the labile iron pool (LIP) and reactive oxygen species (ROS) in lipopolysaccharide (LPS)-treated murine macrophage cells. The protein level of FTL was downregulated by LPS within a short treatment period. However, the mechanism underlying the LPS-induced changes in the FTL levels is not known. In the present study, we report that LPS induces the ubiquitin-proteasome-dependent degradation of FTL and that the mechanism of LPS-induced FTL degradation involves the JNK/Itch axis. We found that LPS downregulates the protein and mRNA levels of FTL in a time-dependent manner. The proteasome inhibitor MG-132 significantly reverses the LPS-induced decrease in FTL. Furthermore, we observed that LPS treatment cannot cause ubiquitination of the lysine site (K105 and K144) mutant of FTL. Interestingly, LPS-mediated ubiquitin-dependent degradation of FTL is significantly inhibited by the JNK-specific inhibitor SP600125. Moreover, LPS could upregulate the protein level of E3 ubiquitin ligase Itch, a substrate of JNK kinases. Immunoprecipitation analyses revealed an increase in the association of FTL with Itch, a substrate of JNK kinases, in response to LPS stimulation. SP600125 decreased LPS-induced Itch upregulation. Taken together, these results suggest that LPS stimulation leads to the degradation of FTL through the ubiquitin-proteasome proteolytic pathway, and this FTL degradation is mediated by the JNK/Itch axis in murine macrophage cells.
Collapse
Affiliation(s)
- Shufen He
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei Province, Shijiazhuang, 050024, PR China
| | - Jianqi Xue
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei Province, Shijiazhuang, 050024, PR China
| | - Pengxiu Cao
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei Province, Shijiazhuang, 050024, PR China
| | - Jianyuan Hou
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei Province, Shijiazhuang, 050024, PR China
| | - Yan Cui
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei Province, Shijiazhuang, 050024, PR China
| | - Jing Chang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei Province, Shijiazhuang, 050024, PR China
| | - Liying Huang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei Province, Shijiazhuang, 050024, PR China
| | - Yu Han
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei Province, Shijiazhuang, 050024, PR China
| | - Xianglin Duan
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei Province, Shijiazhuang, 050024, PR China
| | - Ke Tan
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei Province, Shijiazhuang, 050024, PR China.
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China.
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China.
| | - Yumei Fan
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei Province, Shijiazhuang, 050024, PR China.
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China.
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China.
| |
Collapse
|
4
|
Ducker C, Shaw PE. Ubiquitin-Mediated Control of ETS Transcription Factors: Roles in Cancer and Development. Int J Mol Sci 2021; 22:5119. [PMID: 34066106 PMCID: PMC8151852 DOI: 10.3390/ijms22105119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022] Open
Abstract
Genome expansion, whole genome and gene duplication events during metazoan evolution produced an extensive family of ETS genes whose members express transcription factors with a conserved winged helix-turn-helix DNA-binding domain. Unravelling their biological roles has proved challenging with functional redundancy manifest in overlapping expression patterns, a common consensus DNA-binding motif and responsiveness to mitogen-activated protein kinase signalling. Key determinants of the cellular repertoire of ETS proteins are their stability and turnover, controlled largely by the actions of selective E3 ubiquitin ligases and deubiquitinases. Here we discuss the known relationships between ETS proteins and enzymes that determine their ubiquitin status, their integration with other developmental signal transduction pathways and how suppression of ETS protein ubiquitination contributes to the malignant cell phenotype in multiple cancers.
Collapse
Affiliation(s)
- Charles Ducker
- Queen’s Medical Centre, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Peter E. Shaw
- Queen’s Medical Centre, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
5
|
Nisar S, Hashem S, Macha MA, Yadav SK, Muralitharan S, Therachiyil L, Sageena G, Al-Naemi H, Haris M, Bhat AA. Exploring Dysregulated Signaling Pathways in Cancer. Curr Pharm Des 2020; 26:429-445. [PMID: 31939726 DOI: 10.2174/1381612826666200115095937] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/27/2019] [Indexed: 02/08/2023]
Abstract
Cancer cell biology takes advantage of identifying diverse cellular signaling pathways that are disrupted in cancer. Signaling pathways are an important means of communication from the exterior of cell to intracellular mediators, as well as intracellular interactions that govern diverse cellular processes. Oncogenic mutations or abnormal expression of signaling components disrupt the regulatory networks that govern cell function, thus enabling tumor cells to undergo dysregulated mitogenesis, to resist apoptosis, and to promote invasion to neighboring tissues. Unraveling of dysregulated signaling pathways may advance the understanding of tumor pathophysiology and lead to the improvement of targeted tumor therapy. In this review article, different signaling pathways and how their dysregulation contributes to the development of tumors have been discussed.
Collapse
Affiliation(s)
- Sabah Nisar
- Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - Sheema Hashem
- Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - Muzafar A Macha
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, United States.,Department of Biotechnology, Central University of Kashmir, Ganderbal, Jammu and Kashmir, India
| | - Santosh K Yadav
- Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | | | - Lubna Therachiyil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Hamda Al-Naemi
- Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Mohammad Haris
- Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar.,Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Ajaz A Bhat
- Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| |
Collapse
|
6
|
Kao SH, Wu HT, Wu KJ. Ubiquitination by HUWE1 in tumorigenesis and beyond. J Biomed Sci 2018; 25:67. [PMID: 30176860 PMCID: PMC6122628 DOI: 10.1186/s12929-018-0470-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 08/28/2018] [Indexed: 01/19/2023] Open
Abstract
Ubiquitination modulates a large repertoire of cellular functions and thus, dysregulation of the ubiquitin system results in multiple human diseases, including cancer. Ubiquitination requires an E3 ligase, which is responsible for substrate recognition and conferring specificity to ubiquitination. HUWE1 is a multifaceted HECT domain-containing ubiquitin E3 ligase, which catalyzes both mono-ubiquitination and K6-, K48- and K63-linked poly-ubiquitination of its substrates. Many of the substrates of HUWE1 play a crucial role in maintaining the homeostasis of cellular development. Not surprisingly, dysregulation of HUWE1 is associated with tumorigenesis and metastasis. HUWE1 is frequently overexpressed in solid tumors, but can be downregulated in brain tumors, suggesting that HUWE1 may possess differing cell-specific functions depending on the downstream targets of HUWE1. This review introduces some important discoveries of the HUWE1 substrates, including those controlling proliferation and differentiation, apoptosis, DNA repair, and responses to stress. In addition, we review the signaling pathways HUWE1 participates in and obstacles to the identification of HUWE1 substrates. We also discuss up-to-date potential therapeutic designs using small molecules or ubiquitin variants (UbV) against the HUWE1 activity. These molecular advances provide a translational platform for future bench-to-bed studies. HUWE1 is a critical ubiquitination modulator during the tumor progression and may serve as a possible therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Shih-Han Kao
- Research Center for Tumor Medical Science, China Medical University, No. 91, Hseuh-Shih Rd, Taichung, 40402, Taiwan. .,Drug Development Center, China Medical University, Taichung, 40402, Taiwan.
| | - Han-Tsang Wu
- Department of Cell and Tissue Engineering, Changhua Christian Hospital, Changhua City, 500, Taiwan
| | - Kou-Juey Wu
- Research Center for Tumor Medical Science, China Medical University, No. 91, Hseuh-Shih Rd, Taichung, 40402, Taiwan. .,Drug Development Center, China Medical University, Taichung, 40402, Taiwan. .,Institute of New Drug Development, Taichung, 40402, Taiwan. .,Graduate Institutes of Biomedical Sciences, China Medical University, Taichung, 40402, Taiwan. .,Departmet of Medical Research, China Medical University Hospital, Taichung, 40402, Taiwan.
| |
Collapse
|
7
|
Raghunath A, Sundarraj K, Nagarajan R, Arfuso F, Bian J, Kumar AP, Sethi G, Perumal E. Antioxidant response elements: Discovery, classes, regulation and potential applications. Redox Biol 2018; 17:297-314. [PMID: 29775961 PMCID: PMC6007815 DOI: 10.1016/j.redox.2018.05.002] [Citation(s) in RCA: 335] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/25/2018] [Accepted: 05/05/2018] [Indexed: 12/20/2022] Open
Abstract
Exposure to antioxidants and xenobiotics triggers the expression of a myriad of genes encoding antioxidant proteins, detoxifying enzymes, and xenobiotic transporters to offer protection against oxidative stress. This articulated universal mechanism is regulated through the cis-acting elements in an array of Nrf2 target genes called antioxidant response elements (AREs), which play a critical role in redox homeostasis. Though the Keap1/Nrf2/ARE system involves many players, AREs hold the key in transcriptional regulation of cytoprotective genes. ARE-mediated reporter constructs have been widely used, including xenobiotics profiling and Nrf2 activator screening. The complexity of AREs is brought by the presence of other regulatory elements within the AREs. The diversity in the ARE sequences not only bring regulatory selectivity of diverse transcription factors, but also confer functional complexity in the Keap1/Nrf2/ARE pathway. The different transcription factors either homodimerize or heterodimerize to bind the AREs. Depending on the nature of partners, they may activate or suppress the transcription. Attention is required for deeper mechanistic understanding of ARE-mediated gene regulation. The computational methods of identification and analysis of AREs are still in their infancy. Investigations are required to know whether epigenetics mechanism plays a role in the regulation of genes mediated through AREs. The polymorphisms in the AREs leading to oxidative stress related diseases are warranted. A thorough understanding of AREs will pave the way for the development of therapeutic agents against cancer, neurodegenerative, cardiovascular, metabolic and other diseases with oxidative stress.
Collapse
Affiliation(s)
- Azhwar Raghunath
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641046, Tamilnadu, India
| | - Kiruthika Sundarraj
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641046, Tamilnadu, India
| | - Raju Nagarajan
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu, India
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6009, Australia
| | - Jinsong Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore, Singapore
| | - Alan P Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Medical Science Cluster, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, Australia.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore, Singapore.
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641046, Tamilnadu, India.
| |
Collapse
|
8
|
Sala MA, Chen C, Zhang Q, Do-Umehara HC, Wu W, Misharin AV, Waypa GB, Fang D, Budinger GRS, Liu S, Chandel NS, Schumacker PT, Sznajder JI, Liu J. JNK2 up-regulates hypoxia-inducible factors and contributes to hypoxia-induced erythropoiesis and pulmonary hypertension. J Biol Chem 2017; 293:271-284. [PMID: 29118187 DOI: 10.1074/jbc.ra117.000440] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/07/2017] [Indexed: 11/06/2022] Open
Abstract
The hypoxic response is a stress response triggered by low oxygen tension. Hypoxia-inducible factors (HIFs) play a prominent role in the pathobiology of hypoxia-associated conditions, including pulmonary hypertension (PH) and polycythemia. The c-Jun N-terminal protein kinase (JNK), a stress-activated protein kinase that consists of two ubiquitously expressed isoforms, JNK1 and JNK2, and a tissue-specific isoform, JNK3, has been shown to be activated by hypoxia. However, the physiological role of JNK1 and JNK2 in the hypoxic response remains elusive. Here, using genetic knockout cells and/or mice, we show that JNK2, but not JNK1, up-regulates the expression of HIF-1α and HIF-2α and contributes to hypoxia-induced PH and polycythemia. Knockout or silencing of JNK2, but not JNK1, prevented the accumulation of HIF-1α in hypoxia-treated cells. Loss of JNK2 resulted in a decrease in HIF-1α and HIF-2α mRNA levels under resting conditions and in response to hypoxia. Consequently, hypoxia-treated Jnk2-/- mice had reduced erythropoiesis and were less prone to polycythemia because of decreased expression of the HIF target gene erythropoietin (Epo). Jnk2-/- mice were also protected from hypoxia-induced PH, as indicated by lower right ventricular systolic pressure, a process that depends on HIF. Taken together, our results suggest that JNK2 is a positive regulator of HIFs and therefore may contribute to HIF-dependent pathologies.
Collapse
Affiliation(s)
- Marc A Sala
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611
| | - Cong Chen
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611
| | - Qiao Zhang
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hanh Chi Do-Umehara
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611
| | - Wenjiao Wu
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Alexander V Misharin
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611
| | - Gregory B Waypa
- Department of Pediatrics, Northwestern University, Chicago, Illinois 60611
| | - Deyu Fang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - G R Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611
| | - Shuwen Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Navdeep S Chandel
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611
| | - Paul T Schumacker
- Department of Pediatrics, Northwestern University, Chicago, Illinois 60611
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611
| | - Jing Liu
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611.
| |
Collapse
|
9
|
Abstract
JNKs (c-Jun N-terminal kinases) belong to mitogen-activated protein kinases' family and become activated by several growth factors, stress, radiation, and other extracellular signals. In turn, JNK activation results in phosphorylation of downstream molecules involved in many normal cellular processes. Nevertheless, recent data have linked JNK signaling with several pathological conditions, including neurodegenerative diseases, inflammation, and cancer. The role of JNK in cancer remains controversial. Initially, JNK was thought to play a rather oncosuppressive role by mediating apoptosis in response to stress stimuli, inflammatory, or oncogenic signals. However, a number of studies have implicated JNK in malignant transformation and tumor growth. The contradictory functions of JNK in cancer may be due to the diversity of JNK upstream and downstream signaling and are under intensive investigation. This review summarizes current literature focusing on the significance of JNK pathway in cancer development and progression, particularly addressing its role in oral cancer. Understanding the complexity of JNK signaling has the potential to elucidate important molecular aspects of oral cancer, possibly leading to development of novel and individualized therapeutic strategies.
Collapse
Affiliation(s)
- Ioannis Gkouveris
- 1 Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Nikolaos G Nikitakis
- 2 Department of Oral Pathology and Medicine, Dental School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
10
|
Parra E, Gutierréz L, Ferreira J. Activation of Tax protein by c-Jun-N-terminal kinase is not dependent on the presence or absence of the early growth response-1 gene product. Oncol Rep 2015; 35:1163-9. [PMID: 26573109 DOI: 10.3892/or.2015.4424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 08/18/2015] [Indexed: 11/06/2022] Open
Abstract
The Tax protein of human T cell leukemia virus type 1 plays a major role in the pathogenesis of adult T cell leukemia (ATL), an aggressive neoplasia of CD4+ T cells. In the present study, we investigated whether the EGR-1 pathway is involved in the regulation of Tax-induced JNK expression in human Jurkat T cells transfected to express the Tax protein in the presence or absence of PMA or ionomycin. Overexpression of EGR-1 in Jurkat cells transfected to express Tax, promoted the activation of several genes, with the most potent being those that contained AP-1 (Jun/c-Fos), whereas knockdown of endogenous EGR-1 by small interfering RNA (siRNA) somewhat reduced Tax-mediated JNK-1 transcription. Additionally, luciferase-based AP-1 and NF-κB reporter gene assays demonstrated that inhibition of EGR-1 expression by an siRNA did not affect the transcriptional activity of a consensus sequence of either AP-1 or NF-κB. On the other hand, the apoptosis assay, using all-trans retinoic acid (ATRA) as an inducer of apoptosis, confirmed that siRNA against EGR-1 failed to suppress ATRA-induced apoptosis in Jurkat and Jurkat-Tax cells, as noted by the low levels of both DEVDase activity and DNA fragmentation, indicating that the induction of apoptosis by ATRA was Egr-1-independent. Finally, our data showed that activation of Tax by JNK-1 was not dependent on the EGR-1 cascade of events, suggesting that EGR-1 is important but not a determinant for the activity for Tax-induced proliferation of Jurkat cells.
Collapse
Affiliation(s)
- Eduardo Parra
- Laboratory of Experimental Biomedicine, University of Tarapaca, Campus Esmeralda, Iquique, Chile
| | - Luís Gutierréz
- Faculty of Sciences, University Arturo Prat, Iquique, Chile
| | - Jorge Ferreira
- Programme of Molecular and Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Santiago, Chile
| |
Collapse
|
11
|
Zhang Q, Kuang H, Chen C, Yan J, Do-Umehara HC, Liu XY, Dada L, Ridge KM, Chandel NS, Liu J. The kinase Jnk2 promotes stress-induced mitophagy by targeting the small mitochondrial form of the tumor suppressor ARF for degradation. Nat Immunol 2015; 16:458-66. [PMID: 25799126 PMCID: PMC4451949 DOI: 10.1038/ni.3130] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/19/2015] [Indexed: 12/19/2022]
Abstract
Mitophagy is essential for cellular homeostasis but the regulatory mechanism is largely unknown. Here we report that the kinase Jnk2 is required for stress-induced mitophagy. Jnk2 promoted ubiquitination and proteasomal degradation of small mitochondrial form of ARF (smARF). Loss of Jnk2 led to accumulation of smARF, which in turn induced excessive autophagic activity, resulting in lysosomal degradation of the mitophagy adaptor p62 in the steady state. The depletion of p62 prevented Jnk2-deficient cells from mounting mitophagy upon stress. Jnk2-deficient mice displayed defective mitophagy, resulting in tissue damage under hypoxic stress, as well as hyperactivation of inflammasome and increased mortality in sepsis. Our finding defines a unique mechanism of maintaining immune homeostasis that protects the host from tissue damage and mortality.
Collapse
Affiliation(s)
- Qiao Zhang
- 1] Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA. [2] State Xinyuan Institute of Medicine and Biotechnology, College of Life Science, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hong Kuang
- 1] Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA. [2] State Xinyuan Institute of Medicine and Biotechnology, College of Life Science, Zhejiang Sci-Tech University, Hangzhou, China
| | - Cong Chen
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jie Yan
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, USA
| | - Hanh Chi Do-Umehara
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Xin-yuan Liu
- State Xinyuan Institute of Medicine and Biotechnology, College of Life Science, Zhejiang Sci-Tech University, Hangzhou, China
| | - Laura Dada
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Karen M Ridge
- 1] Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA. [2] Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| | - Navdeep S Chandel
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jing Liu
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
12
|
Jun-regulated genes promote interaction of diffuse large B-cell lymphoma with the microenvironment. Blood 2014; 125:981-91. [PMID: 25533033 DOI: 10.1182/blood-2014-04-568188] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is an aggressive disease with a high proliferation rate. However, the molecular and genetic features that drive the aggressive clinical behavior of DLBCL are not fully defined. Here, we have demonstrated that activated Jun signaling is a frequent event in DLBCL that promotes dissemination of malignant cells. Downregulation of Jun dramatically reduces lymphoma cell adhesion to extracellular matrix proteins, subcutaneous tumor size in nude mice, and invasive behavior, including bone marrow infiltration and interaction with bone marrow stromal cells. Furthermore, using a combination of RNA interference and gene expression profiling, we identified Jun target genes that are associated with disseminated lymphoma. Among them, ITGAV, FoxC1, and CX3CR1 are significantly enriched in patients with 2 or more extranodal sites. Our results point to activated Jun signaling as a major driver of the aggressive phenotype of DLBCL.
Collapse
|
13
|
Rodríguez M, Domingo E, Alonso S, Frade JG, Eiros J, Crespo MS, Fernández N. The unfolded protein response and the phosphorylations of activating transcription factor 2 in the trans-activation of il23a promoter produced by β-glucans. J Biol Chem 2014; 289:22942-22957. [PMID: 24982422 DOI: 10.1074/jbc.m113.522656] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Current views on the control of IL-23 production focus on the regulation of il23a, the gene encoding IL-23 p19, by NF-κB in combination with other transcription factors. C/EBP homologous protein (CHOP), X2-Box-binding protein 1 (XBP1), activator protein 1 (AP1), SMAD, CCAAT/enhancer-binding protein (C/EBPβ), and cAMP-response element-binding protein (CREB) have been involved in response to LPS, but no data are available regarding the mechanism triggered by the fungal mimic and β-glucan-containing stimulus zymosan, which produces IL-23 and to a low extent the related cytokine IL-12 p70. Zymosan induced the mobilization of CHOP from the nuclear fractions to phagocytic vesicles. Hypha-forming Candida also induced the nuclear disappearance of CHOP. Assay of transcription factor binding to the il23a promoter showed an increase of Thr(P)-71-Thr(P)-69-activating transcription factor 2 (ATF2) binding in response to zymosan. PKC and PKA/mitogen- and stress-activated kinase inhibitors down-regulated Thr(P)-71-ATF2 binding to the il23a promoter and il23a mRNA expression. Consistent with the current concept of complementary phosphorylations on N-terminal Thr-71 and Thr-69 of ATF2 by ERK and p38 MAPK, MEK, and p38 MAPK inhibitors blunted Thr(P)-69-ATF2 binding. Knockdown of atf2 mRNA with siRNA correlated with inhibition of il23a mRNA, but it did not affect the expression of il12/23b and il10 mRNA. These data indicate the following: (i) zymosan decreases nuclear proapoptotic CHOP, most likely by promoting its accumulation in phagocytic vesicles; (ii) zymosan-induced il23a mRNA expression is best explained through coordinated κB- and ATF2-dependent transcription; and (iii) il23a expression relies on complementary phosphorylation of ATF2 on Thr-69 and Thr-71 dependent on PKC and MAPK activities.
Collapse
Affiliation(s)
- Mario Rodríguez
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valladolid, 47005-Valladolid
| | - Esther Domingo
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, 47003-Valladolid
| | - Sara Alonso
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, 47003-Valladolid
| | - Javier García Frade
- Division of Hematology, Hospital Universitario Rio Hortega, 47012-Valladolid, and
| | - José Eiros
- Division of Microbiology, Hospital Universitario Rio Hortega, 47012-Valladolid, Spain
| | - Mariano Sánchez Crespo
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, 47003-Valladolid,.
| | - Nieves Fernández
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valladolid, 47005-Valladolid
| |
Collapse
|
14
|
Cunha DA, Gurzov EN, Naamane N, Ortis F, Cardozo AK, Bugliani M, Marchetti P, Eizirik DL, Cnop M. JunB protects β-cells from lipotoxicity via the XBP1-AKT pathway. Cell Death Differ 2014; 21:1313-24. [PMID: 24786832 DOI: 10.1038/cdd.2014.53] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 12/24/2022] Open
Abstract
Diets rich in saturated fats may contribute to the loss of pancreatic β-cells in type 2 diabetes. JunB, a member of the activating protein 1 (AP-1) transcription factor family, promotes β-cell survival and mediates part of the beneficial effects of GLP-1 agonists. In this study we interrogated the molecular mechanisms involved in JunB-mediated β-cell protection from lipotoxicity. The saturated fatty acid palmitate decreased JunB expression, and this loss may contribute to β-cell apoptosis, as overexpression of JunB protected cells from lipotoxicity. Array analysis of JunB-deficient β-cells identified a gene expression signature of a downregulated endoplasmic reticulum (ER) stress response and inhibited AKT signaling. JunB stimulates XBP1 expression via the transcription factor c/EBPδ during ER stress, and forced expression of XBP1s rescued the viability of JunB-deficient cells, constituting an important antiapoptotic mechanism. JunB silencing inhibited AKT activation and activated the proapoptotic Bcl-2 protein BAD via its dephosphorylation. BAD knockdown reversed lipotoxic β-cell death potentiated by JunB siRNA. Interestingly, XBP1s links JunB and AKT signaling as XBP1 knockdown also reduced AKT phosphorylation. GLP-1 agonists induced cAMP-dependent AKT phosphorylation leading to β-cell protection against palmitate-induced apoptosis. JunB and XBP1 knockdown or IRE1 inhibition decreased AKT activation by cAMP, leading to β-cell apoptosis. In conclusion, JunB modulates the β-cell ER stress response and AKT signaling via the induction of XBP1s. The activation of the JunB gene network and the crosstalk between the ER stress and AKT pathway constitute a crucial defense mechanism by which GLP-1 agonists protect against lipotoxic β-cell death. These findings elucidate novel β-cell-protective signal transduction in type 2 diabetes.
Collapse
Affiliation(s)
- D A Cunha
- Laboratory of Experimental Medicine and ULB Center of Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - E N Gurzov
- Laboratory of Experimental Medicine and ULB Center of Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - N Naamane
- Laboratory of Experimental Medicine and ULB Center of Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - F Ortis
- Laboratory of Experimental Medicine and ULB Center of Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - A K Cardozo
- Laboratory of Experimental Medicine and ULB Center of Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - M Bugliani
- Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy
| | - P Marchetti
- Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy
| | - D L Eizirik
- Laboratory of Experimental Medicine and ULB Center of Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - M Cnop
- 1] Laboratory of Experimental Medicine and ULB Center of Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium [2] Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
15
|
Walczynski J, Lyons S, Jones N, Breitwieser W. Sensitisation of c-MYC-induced B-lymphoma cells to apoptosis by ATF2. Oncogene 2013; 33:1027-36. [DOI: 10.1038/onc.2013.28] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 12/08/2012] [Accepted: 12/30/2012] [Indexed: 12/17/2022]
|
16
|
PARRA EDUARDO, GUTIÉRREZ LUIS. Growth inhibition of Tax-activated human Jurkat leukemia T cells by all-trans retinoic acid requires JNK-1 inhibition. Oncol Rep 2012; 29:387-93. [DOI: 10.3892/or.2012.2108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 10/02/2012] [Indexed: 11/05/2022] Open
|
17
|
Dikshit B, Irshad K, Madan E, Aggarwal N, Sarkar C, Chandra PS, Gupta DK, Chattopadhyay P, Sinha S, Chosdol K. FAT1 acts as an upstream regulator of oncogenic and inflammatory pathways, via PDCD4, in glioma cells. Oncogene 2012; 32:3798-808. [DOI: 10.1038/onc.2012.393] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Abstract
Fbw7 is a member of F-box family proteins, which constitute one subunit of Skp1, Cul1, and F-box protein (SCF) ubiquitin ligase complex. SCF(Fbw7) targets a set of well-known oncoproteins, including c-Myc, cyclin E, Notch, c-Jun, and Mcl-1, for ubiquitylation and degradation. Fbw7 provides specificity of the ubiquitylation of these substrate proteins via recognition of a consensus phosphorylated degron. Through regulation of several important proteins, Fbw7 controls diverse cellular processes, including cell-cycle progression, cell proliferation, differentiation, DNA damage response, maintenance of genomic stability, and neural cell stemness. As reduced Fbw7 expression level and loss-of-function mutations are found in a wide range of human cancers, Fbw7 is generally considered as a tumor suppressor. However, the exact mechanisms underlying Fbw7-induced tumor suppression is unclear. This review focuses on regulation network, biological functions, and genetic alteration of Fbw7 in connection with its role in cancer development.
Collapse
Affiliation(s)
- Yabin Cheng
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, V6H 3Z6, Canada
| | | |
Collapse
|
19
|
Yang CH, Sheu JJ, Tsai TH, Chua S, Chang LT, Chang HW, Lee FY, Chen YL, Chung SY, Sun CK, Leu S, Yen CH, Yip HK. Effect of tacrolimus on myocardial infarction is associated with inflammation, ROS, MAP kinase and Akt pathways in mini-pigs. J Atheroscler Thromb 2012; 20:9-22. [PMID: 22972310 DOI: 10.5551/jat.14316] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM This study tested the hypothesis that tacrolimus therapy limited left ventricular (LV) infarct and remodeling by suppressing the inflammatory response, oxidative stress and regulating the mitogen-activated protein kinase (MAPK) and Akt signaling pathways in an acute myocardial infarction (AMI) mini-pig model by ligating the left anterior descending coronary artery (LAD). METHODS Twelve male mini-pigs were equally randomized into AMI treated by saline (3.0 mL) (AMI(S)), and AMI treated by tacrolimus (0.5 mg) (AMI(T)). Thirty minutes after the procedure, intra-LAD injections were performed just beyond the ligation. RESULTS Inflammatory biomarkers at transcription or protein levels [matrix metalloproteinase (MMP9), plasminogen activator inhitor-1, tumor necrotic factor (TNF-α), nuclear factor (NF)-κB] and the cellular level (CD40+ cells) were markedly higher in AMI(S) than in AMI(T) animals (all p<0.001). Fibrosis biomarkers at the protein level (α-smooth muscle actin, transforming growth factor-β) and Sirius-red staining were notably higher in AMI(S) than in AMI(T) animals (all p<0.03). Antioxidant biomarkers at protein or transcription levels (heme oxygenase-1, quinone oxidoreductase-1, glutathione reductase, glutathione peroxidase) were significantly higher in AMI(S) than in AMI(T) animals (all p<0.01). Protein expressions of ERK1, p38 MAPK and Akt were markedly increased in AMI(S) compared to AMI(T) animals (all p<0.001). Significantly aggravated LV infarction and remodeling were noted in AMI(S) compared to AMI(T) animals, whereas LV ejection fraction was markedly decreased in AMI(S) compared to AMI(T) animals (all p<0.001). CONCLUSIONS Intra-coronary administration of tacrolimus attenuated inflammation and MAPK signaling, limited infarct size, and preserved LV function.
Collapse
Affiliation(s)
- Cheng-Hsu Yang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
GSK3-SCF(FBXW7) targets JunB for degradation in G2 to preserve chromatid cohesion before anaphase. Oncogene 2012; 32:2189-99. [PMID: 22710716 DOI: 10.1038/onc.2012.235] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
JunB, an activator protein-1 (AP-1) transcription factor component, acts either as a tumor suppressor or as an oncogene depending on the cell context. In particular, JunB is strongly upregulated in anaplastic lymphoma kinase (ALK)-positive anaplastic large cell lymphoma (ALCL) where it enhances cell proliferation. Although its overexpression is linked to lymphomagenesis, the mechanisms whereby JunB promotes neoplastic growth are still largely obscure. Here, we show that JunB undergoes coordinated phosphorylation-dependent ubiquitylation during the G2 phase of the cell cycle. We characterized a critical consensus phospho-degron that controls JunB turnover and identified GSK3 and SCF(FBXW7) as, respectively, the kinase and the E3 ubiquitin ligase responsible for its degradation in G2. Pharmacological or genetic inactivation of the GSK3-FBXW7-JunB axis induced accumulation of JunB in G2/M and entailed transcriptional repression of the DNA helicase DDX11, leading to premature sister chromatid separation. This abnormal phenotype due to dysregulation of the GSK3β/JunB/DDX11 pathway is phenocopied in ALK-positive ALCL. Thus, our results reveal a novel mechanism by which mitosis progression and chromatid cohesion are regulated through GSK3/SCF(FBXW7)-mediated proteolysis of JunB, and suggest that JunB proteolysis in G2 is an essential step in maintaining genetic fidelity during mitosis.
Collapse
|
21
|
Lau E, Ronai ZA. ATF2 - at the crossroad of nuclear and cytosolic functions. J Cell Sci 2012; 125:2815-24. [PMID: 22685333 DOI: 10.1242/jcs.095000] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
An increasing number of transcription factors have been shown to elicit oncogenic and tumor suppressor activities, depending on the tissue and cell context. Activating transcription factor 2 (ATF2; also known as cAMP-dependent transcription factor ATF-2) has oncogenic activities in melanoma and tumor suppressor activities in non-malignant skin tumors and breast cancer. Recent work has shown that the opposing functions of ATF2 are associated with its subcellular localization. In the nucleus, ATF2 contributes to global transcription and the DNA damage response, in addition to specific transcriptional activities that are related to cell development, proliferation and death. ATF2 can also translocate to the cytosol, primarily following exposure to severe genotoxic stress, where it impairs mitochondrial membrane potential and promotes mitochondrial-based cell death. Notably, phosphorylation of ATF2 by the epsilon isoform of protein kinase C (PKCε) is the master switch that controls its subcellular localization and function. Here, we summarize our current understanding of the regulation and function of ATF2 in both subcellular compartments. This mechanism of control of a non-genetically modified transcription factor represents a novel paradigm for 'oncogene addiction'.
Collapse
Affiliation(s)
- Eric Lau
- Signal Transduction Program, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Rd, La Jolla, CA 92130, USA.
| | | |
Collapse
|
22
|
Abstract
MAPK (mitogen-activated protein kinase) pathways are among the most frequently deregulated signalling events in cancer. Among the critical targets of MAPK activities are members of the AP-1 (activator protein 1) transcription factor, a dimeric complex consisting of Jun, Fos, Maf and ATF (activating transcription factor) family DNA-binding proteins. Depending on the cellular context, the composition of the dimeric complexes determines the regulation of growth, survival or apoptosis. JNK (c-Jun N-terminal kinase), p38 and a number of Jun and Fos family proteins have been analysed for their involvement in oncogenic transformation and tumour formation. These data are also emerging for the ATF components of the AP-1 factor. The aim of the present review is to provide an overview of the functions of two ATF family proteins, ATF2 and ATF7, in mammalian development and their potential functions in tumour formation.
Collapse
|
23
|
Han X, Chesney RW. The role of taurine in renal disorders. Amino Acids 2012; 43:2249-63. [DOI: 10.1007/s00726-012-1314-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 04/24/2012] [Indexed: 01/10/2023]
|
24
|
Blonska M, Joo D, Zweidler-McKay PA, Zhao Q, Lin X. CARMA1 controls Th2 cell-specific cytokine expression through regulating JunB and GATA3 transcription factors. THE JOURNAL OF IMMUNOLOGY 2012; 188:3160-8. [PMID: 22371397 DOI: 10.4049/jimmunol.1102943] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The scaffold protein CARMA1 is required for the TCR-induced lymphocyte activation. In this study, we show that CARMA1 also plays an essential role in T cell differentiation. We have found that the adoptive transfer of bone marrow cells expressing constitutively active CARMA1 results in lung inflammation, eosinophilia, and elevated levels of IL-4, IL-5, and IL-10 in recipient mice. In contrast, CARMA1-deficient T cells are defective in TCR-induced expression of Th2 cytokines, suggesting that CARMA1 preferentially directs Th2 differentiation. The impaired cytokine production is due to reduced expression of JunB and GATA3 transcription factors. CARMA1 deficiency affects JunB stability resulting in its enhanced ubiquitination and degradation. In contrast, TCR-dependent induction of GATA3 is suppressed at the transcriptional level. We also found that supplementation with IL-4 partially restored GATA3 expression in CARMA1-deficient CD4(+) splenocytes and subsequently production of GATA3-dependent cytokines IL-5 and IL-13. Therefore, our work provides the mechanism by which CARMA1 regulates Th2 cell differentiation.
Collapse
Affiliation(s)
- Marzenna Blonska
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
25
|
Hsu CC, Hu CD. Critical role of N-terminal end-localized nuclear export signal in regulation of activating transcription factor 2 (ATF2) subcellular localization and transcriptional activity. J Biol Chem 2012; 287:8621-32. [PMID: 22275354 DOI: 10.1074/jbc.m111.294272] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activating transcription factor 2 (ATF2) belongs to the basic leucine zipper family of transcription factors. ATF2 regulates target gene expression by binding to the cyclic AMP-response element as a homodimer or a heterodimer with c-Jun. Cytoplasmic localization of ATF2 was observed in melanoma, brain tissue from patients with Alzheimer disease, prostate cancer specimens, and ionizing radiation-treated prostate cancer cells, suggesting that alteration of ATF2 subcellular localization may be involved in the pathogenesis of these diseases. We previously demonstrated that ATF2 is a nucleocytoplasmic shuttling protein, and it contains two nuclear localization signals in the basic region and one nuclear export signal (NES) in the leucine zipper domain (named LZ-NES). In the present study, we demonstrate that a hydrophobic stretch in the N terminus, (1)MKFKLHV(7), also functions as an NES (termed N-NES) in a chromosome region maintenance 1 (CRM1)-dependent manner. Mutation of both N-NES and LZ-NES results in a predominant nuclear localization, whereas mutation of each individual NES only partially increases the nuclear localization. These results suggest that cytoplasmic localization of ATF2 requires function of at least one of the NESs. Further, mutation of N-NES enhances the transcriptional activity of ATF2, suggesting that the novel NES negatively regulates the transcriptional potential of ATF2. Thus, ATF2 subcellular localization is probably modulated by multiple mechanisms, and further understanding of the regulation of ATF2 subcellular localization under various pathological conditions will provide insight into the pathophysiological role of ATF2 in human diseases.
Collapse
Affiliation(s)
- Chih-Chao Hsu
- Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
26
|
Mémin E, Genzale M, Crow M, Molina CA. Evidence that phosphorylation by the mitotic kinase Cdk1 promotes ICER monoubiquitination and nuclear delocalization. Exp Cell Res 2011; 317:2490-502. [DOI: 10.1016/j.yexcr.2011.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 06/30/2011] [Accepted: 07/01/2011] [Indexed: 10/18/2022]
|
27
|
Calcium signaling is involved in cadmium-induced neuronal apoptosis via induction of reactive oxygen species and activation of MAPK/mTOR network. PLoS One 2011; 6:e19052. [PMID: 21544200 PMCID: PMC3081326 DOI: 10.1371/journal.pone.0019052] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 03/23/2011] [Indexed: 11/19/2022] Open
Abstract
Cadmium (Cd), a toxic environmental contaminant, induces oxidative stress, leading to neurodegenerative disorders. Recently we have demonstrated that Cd induces neuronal apoptosis in part by activation of the mitogen-activated protein kineses (MAPK) and mammalian target of rapamycin (mTOR) pathways. However, the underlying mechanism remains elusive. Here we show that Cd elevated intracellular calcium ion ([Ca²+](i)) level in PC12, SH-SY5Y cells and primary murine neurons. BAPTA/AM, an intracellular Ca²+ chelator, abolished Cd-induced [Ca²+](i) elevation, and blocked Cd activation of MAKPs including extracellular signal-regulated kinase 1/2 (Erk1/2), c-Jun N-terminal kinase (JNK) and p38, and mTOR-mediated signaling pathways, as well as cell death. Pretreatment with the extracellular Ca²+ chelator EGTA also prevented Cd-induced [Ca²+](i) elevation, MAPK/mTOR activation, as well as cell death, suggesting that Cd-induced extracellular Ca²+ influx plays a critical role in contributing to neuronal apoptosis. In addition, calmodulin (CaM) antagonist trifluoperazine (TFP) or silencing CaM attenuated the effects of Cd on MAPK/mTOR activation and cell death. Furthermore, Cd-induced [Ca²+](i) elevation or CaM activation resulted in induction of reactive oxygen species (ROS). Pretreatment with BAPTA/AM, EGTA or TFP attenuated Cd-induced ROS and cleavage of caspase-3 in the neuronal cells. Our findings indicate that Cd elevates [Ca²+](i), which induces ROS and activates MAPK and mTOR pathways, leading to neuronal apoptosis. The results suggest that regulation of Cd-disrupted [Ca²+](i) homeostasis may be a new strategy for prevention of Cd-induced neurodegenerative diseases.
Collapse
|
28
|
Besnard A, Galan-Rodriguez B, Vanhoutte P, Caboche J. Elk-1 a transcription factor with multiple facets in the brain. Front Neurosci 2011; 5:35. [PMID: 21441990 PMCID: PMC3060702 DOI: 10.3389/fnins.2011.00035] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 03/04/2011] [Indexed: 12/30/2022] Open
Abstract
The ternary complex factor (TCF) Elk-1 is a transcription factor that regulates immediate early gene (IEG) expression via the serum response element (SRE) DNA consensus site. Elk-1 is associated with a dimer of serum response factor (SRF) at the SRE site, and its phosphorylation occurs at specific residues in response to mitogen-activated protein kinases (MAPKs), including c-Jun-N terminal kinase (JNK), p38/MAPK, and extracellular-signal regulated kinase (ERK). This phosphorylation event is critical for triggering SRE-dependent transcription. Although MAPKs are fundamental actors for the instatement and maintenance of memory, and much investigation of their downstream signaling partners have been conducted, no data yet clearly implicate Elk-1 in these processes. This is partly due to the complexity of Elk-1 sub-cellular localization, and hence functions, within neurons. Elk-1 is present in its resting state in the cytoplasm, where it colocalizes with mitochondrial proteins or microtubules. In this particular sub-cellular compartment, overexpression of Elk-1 is toxic for neuronal cells. When phosphorylated by the MAPK/ERK, Elk-1 translocates to the nucleus where it is implicated in regulating chromatin remodeling, SRE-dependent transcription, and neuronal differentiation. Another post-translational modification is the conjugation to SUMO (Small Ubiquitin-like MOdifier), which relocalizes Elk-1 in the cytoplasm. Thus, Elk-1 plays a dual role in neuronal functions: pro-apoptotic within the cytoplasm, and pro-differentiation within the nucleus. To address the role of Elk-1 in the brain, one must be aware of its multiple facets, and design molecular tools that will shut down Elk-1 expression, trafficking, or activation, in specific neuronal compartments. We summarize in this review the known molecular functions of Elk-1, its regulation in neuronal cells, and present evidence of its possible implication in model systems of synaptic plasticity, learning, but also in neurodegenerative diseases.
Collapse
Affiliation(s)
- Antoine Besnard
- Laboratoire de Physiopathologie des Maladies du Système Nerveux Central, UMR CNRS-7224 CNRS et UMRS-INSERM 952, Université Pierre et Marie Curie-Paris 6 Paris, France
| | | | | | | |
Collapse
|
29
|
Ribas VT, Arruda-Carvalho M, Linden R, Chiarini LB. Early c-Jun N-terminal kinase-dependent phosphorylation of activating transcription factor-2 is associated with degeneration of retinal ganglion cells. Neuroscience 2011; 180:64-74. [PMID: 21300140 DOI: 10.1016/j.neuroscience.2011.01.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 01/24/2011] [Accepted: 01/26/2011] [Indexed: 12/12/2022]
Abstract
Neuron death due to deprivation of target-derived neurotrophic factors depends on protein synthesis regulated by transcription factor activity. We investigated the content and phosphorylation of activating transcription factor 2 (ATF-2) in axon-damaged retinal ganglion cells of neonatal rats. In the retina of neonatal rats, the ATF-2 protein is predominantly located in the nucleus of the ganglion cells. A gradual loss of the immunoreactivity for ATF-2 occurred after explantation. ATF-2 is phosphorylated early after explantation, with a peak within 3 hours, preceding the peak of cell death that occurs at 18 hours. Both the phosphorylation of ATF-2 and ganglion cell death were blocked by treatment with an inhibitor of c-Jun N-terminal kinase (JNK), whereas an inhibitor of p38 reduced only slightly the rate of ganglion cell death with no effect upon phosphorylation of ATF-2. Inhibitors of phosphatidyl inositol 3 kinase (PI-3K), protein kinase C (PKC) or extracellular regulated kinase (ERK) had no effect. Finally, the inhibitor of JNK blocked the upregulation of both c-Jun and Hrk in the GCL after retinal explantation. The data show that phosphorylation of ATF-2 by JNK is associated with retinal ganglion cell death after axon damage.
Collapse
Affiliation(s)
- V T Ribas
- Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, Brasil
| | | | | | | |
Collapse
|
30
|
Vartanian R, Masri J, Martin J, Cloninger C, Holmes B, Artinian N, Funk A, Ruegg T, Gera J. AP-1 regulates cyclin D1 and c-MYC transcription in an AKT-dependent manner in response to mTOR inhibition: role of AIP4/Itch-mediated JUNB degradation. Mol Cancer Res 2011; 9:115-30. [PMID: 21135252 PMCID: PMC3105464 DOI: 10.1158/1541-7786.mcr-10-0105] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
One mechanism by which AKT kinase-dependent hypersensitivity to mammalian target of rapamycin (mTOR) inhibitors is controlled is by the differential expression of cyclin D1 and c-MYC. Regulation of posttranscriptional processes has been demonstrated to be crucial in governing expression of these determinants in response to rapamycin. Our previous data suggested that cyclin D1 and c-MYC expression might additionally be coordinately regulated in an AKT-dependent manner at the level of transcription. Under conditions of relatively quiescent AKT activity, treatment of cells with rapamycin resulted in upregulation of cyclin D1 and c-MYC nascent transcription, whereas in cells containing active AKT, exposure repressed transcription. Promoter analysis identified AKT-dependent rapamycin responsive elements containing AP-1 transactivation sites. Phosphorylated c-JUN binding to these promoters correlated with activation of transcription whereas JUNB occupancy was associated with promoter repression. Forced overexpression of JunB or a conditionally active JunB-ER allele repressed cyclin D1 and c-MYC promoter activity in quiescent AKT-containing cells following rapamycin exposure. AIP4/Itch-dependent JUNB protein degradation was found to be markedly reduced in active AKT-containing cells compared with cells harboring quiescent AKT. Moreover, silencing AIP4/Itch expression or inhibiting JNK mediated AIP4 activity abrogated the rapamycin-induced effects on cyclin D1 and c-MYC promoter activities. Our findings support a role for the AKT-dependent regulation of AIP4/Itch activity in mediating the differential cyclin D1 and c-MYC transcriptional responses to rapamycin.
Collapse
Affiliation(s)
- Raffi Vartanian
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California
- Department of Medicine, David Geffen School of Medicine at UCLA, University of California-Los Angeles, California
| | - Janine Masri
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California
| | - Jheralyn Martin
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California
| | - Cheri Cloninger
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California
| | - Brent Holmes
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California
| | - Nicholas Artinian
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California
| | - Alex Funk
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California
| | - Teresa Ruegg
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California
| | - Joseph Gera
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California
- Department of Medicine, David Geffen School of Medicine at UCLA, University of California-Los Angeles, California
- Jonnson Comprehensive Cancer Center, University of California-Los Angeles, California
- Molecular Biology Institute, University of California-Los Angeles, California
| |
Collapse
|
31
|
Song JY, Han HS, Sabapathy K, Lee BM, Yu E, Choi J. Expression of a homeostatic regulator, Wip1 (wild-type p53-induced phosphatase), is temporally induced by c-Jun and p53 in response to UV irradiation. J Biol Chem 2010; 285:9067-76. [PMID: 20093361 DOI: 10.1074/jbc.m109.070003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Wild-type p53-induced phosphatase (Wip1) is induced by p53 in response to stress, which results in the dephosphorylation of proteins (i.e. p38 MAPK, p53, and uracil DNA glycosylase) involved in DNA repair and cell cycle checkpoint pathways. p38 MAPK-p53 signaling is a unique way to induce Wip1 in response to stress. Here, we show that c-Jun directly binds to and activates the Wip1 promoter in response to UV irradiation. The binding of p53 to the promoter occurs earlier than that of c-Jun. In experiments, mutation of the p53 response element (p53RE) or c-Jun consensus sites reduced promoter activity in both non-stressed and stressed A549 cells. Overexpression of p53 significantly decreased Wip1 expression in HCT116 p53(+/+) cells but increased it in HCT116 p53(-/-) cells. Adenovirus-mediated p53 overexpression greatly decreased JNK activity. Up-regulation of Wip1 via the p38 MAPK-p53 and JNK-c-Jun pathways is specific, as demonstrated by our findings that p38 MAPK and JNK inhibitors affected the expression of the Wip1 protein, whereas an ERK inhibitor did not. c-Jun activation occurred much more quickly, and to a greater extent, in A549-E6 cells than in A549 cells, with delayed but fully induced Wip1 expression. These data indicate that Wip1 is activated via both the JNK-c-Jun and p38 MAPK-p53 signaling pathways and that temporal induction of Wip1 depends largely on the balance between c-Jun and p53, which compete for JNK binding. Moreover, our results suggest that JNK-c-Jun-mediated Wip1 induction could serve as a major signaling pathway in human tumors in response to frequent p53 mutation.
Collapse
Affiliation(s)
- Ji-young Song
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Pungnap-2 dong, Songpa-gu, Seoul 138-736, Korea
| | | | | | | | | | | |
Collapse
|
32
|
Abdelli S, Puyal J, Bielmann C, Buchillier V, Abderrahmani A, Clarke PGH, Beckmann JS, Bonny C. JNK3 is abundant in insulin-secreting cells and protects against cytokine-induced apoptosis. Diabetologia 2009; 52:1871-80. [PMID: 19609503 DOI: 10.1007/s00125-009-1431-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Accepted: 05/11/2009] [Indexed: 11/25/2022]
Abstract
AIMS/HYPOTHESIS In insulin-secreting cells, activation of the c-Jun NH(2)-terminal kinase (JNK) pathway triggers apoptosis. Whereas JNK1 and JNK2 are ubiquitously produced, JNK3 has been described exclusively in neurons. This report aims to characterise the expression and role in apoptosis of the three JNK isoforms in insulin-secreting cells exposed to cytokines. METHODS Sections of human and mouse pancreases were used for immunohistochemistry studies with isoform-specific anti-JNK antibodies. Human, pig, mouse and rat pancreatic islets were isolated by enzymatic digestion and RNA or protein extracts were prepared. RNA and protein levels were determined by quantitative RT-PCR and western blotting respectively, using JNK-isoform-specific primers and isoform-specific antibodies; activities of the three JNK isoforms were determined by kinase assays following quantitative immunoprecipitation/depletion of JNK3. JNK silencing was performed with small interfering RNAs and apoptotic rates were determined in INS-1E cells by scoring cells displaying pycnotic nuclei. RESULTS JNK3 and JNK2 mRNAs are the predominant isoforms expressed in human pancreatic islets. JNK3 is nuclear while JNK2 is also cytoplasmic. In INS-1E cells, JNK3 knockdown increases c-Jun levels and caspase-3 cleavage and sensitises cells to cytokine-induced apoptosis; in contrast, JNK1 or JNK2 knockdown is protective. CONCLUSIONS/INTERPRETATION In insulin-secreting cells, JNK3 plays an active role in preserving pancreatic beta cell mass from cytokine attacks. The specific localisation of JNK3 in the nucleus, its recruitment by cytokines, and its effects on key transcription factors such as c-Jun, indicate that JNK3 is certainly an important player in the transcriptional control of genes expressed in insulin-secreting cells.
Collapse
Affiliation(s)
- S Abdelli
- Service of Medical Genetics, CHUV Hospital, Chemin des Falaises 1, 1011, Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Bogner C, Peschel C, Decker T. Targeting the proteasome in mantle cell lymphoma: A promising therapeutic approach. Leuk Lymphoma 2009; 47:195-205. [PMID: 16321849 DOI: 10.1080/10428190500144490] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mantle cell lymphoma (MCL) is a distinctive non-Hodgkin's lymphoma sub-type, characterized by over-expression of cyclin D1 as a consequence of chromosomal translocation t(11;14)(q13;q32). MCL remains an incurable disease, combining the unfavorable clinical features of aggressive and indolent lymphomas. The blastic variant of MCL, which is often associated with additional cytogenetic alterations, has an even worse prognosis and new treatment options are clearly needed. The 26S proteasome is a large multi-catalytic multi-protein complex, present in all eukaryotic cells. It is responsible for the degradation of a variety of short-lived proteins and exhibits a key position in cellular processes including apoptosis and cell cycle progression. Targeting the ubiquitin - proteasome pathway has only recently been identified as a promising new therapeutic option for cancer patients. Interestingly, an increased activity of the proteasome pathway has been described in MCL cells and the inhibition of the proteasome seems to be a promising therapeutic approach for this incurable disease.
Collapse
Affiliation(s)
- Christian Bogner
- IIIrd Department of Medicine, Technical University of Munich, Munich, Germany
| | | | | |
Collapse
|
34
|
Inhibition of c-Jun N-terminal kinase enhances temozolomide-induced cytotoxicity in human glioma cells. J Neurooncol 2009; 95:307-316. [DOI: 10.1007/s11060-009-9929-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 05/24/2009] [Indexed: 01/03/2023]
|
35
|
Trophoblast stem cell maintenance by fibroblast growth factor 4 requires MEKK4 activation of Jun N-terminal kinase. Mol Cell Biol 2009; 29:2748-61. [PMID: 19289495 DOI: 10.1128/mcb.01391-08] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Trophoblast differentiation during placentation involves an epithelial-mesenchymal transition (EMT) with loss of E-cadherin and gain of trophoblast invasiveness. Mice harboring a point mutation that renders inactive the mitogen-activated protein kinase kinase kinase MEKK4 exhibit dysregulated placental development with increased trophoblast invasion. Isolated MEKK4 kinase-inactive trophoblast stem (TS) cells cultured under undifferentiating, self-renewing conditions in the presence of fibroblast growth factor 4 (FGF4) display increased expression of Slug, Twist, and matrix metalloproteinase 2 (MMP2), loss of E-cadherin, and hyperinvasion of extracellular matrix, each a hallmark of EMT. MEKK4 kinase-inactive TS cells show a preferential differentiation to Tpbp alpha- and Gcm1-positive trophoblasts, which are indicative of spongiotrophoblast and syncytiotrophoblast differentiation, respectively. FGF4-stimulated Jun N-terminal kinase (JNK) and p38 activity is markedly reduced in MEKK4 kinase-inactive TS cells. Chemical inhibition of JNK in wild-type TS cells induced a similar EMT response as loss of MEKK4 kinase activity, including inhibition of E-cadherin expression and increased expression of Slug, MMP2, Tpbp alpha, and Gcm1. Chromatin immunoprecipitation analyses revealed changes in AP-1 composition with increased Fra-2 and decreased Fra-1 and JunB binding to the regulatory regions of Gcm1 and MMP2 genes in MEKK4 kinase-inactive TS cells. Our results define MEKK4 as a signaling hub for FGF4 activation of JNK that is required for maintenance of TS cells in an undifferentiated state.
Collapse
|
36
|
Abstract
Activation of transcription factor nuclear factor-kappaB (NF-kappaB) and Jun N-terminal kinase (JNK) play the pivotal roles in regulation of lymphocyte activation and proliferation. Deregulation of these signaling pathways leads to inappropriate immune response and contributes to the development of leukemia/lymphoma. The scaffold protein CARMA1 [caspase-recruitment domain (CARD) membrane-associated guanylate kinase (MAGUK) protein 1] has a central role in regulation of NF-kappaB and the JNK2/c-Jun complex in both B and T lymphocytes. During last several years, tremendous work has been done to reveal the mechanism by which CARMA1 and its signaling partners, B cell CLL-lymphoma 10 and mucosa-associated lymphoid tissue 1, are activated and mediate NF-kappaB and JNK activation. In this review, we summarize our findings in revealing the roles of CARMA1 in the NF-kappaB and JNK signaling pathways in the context of recent advances in this field.
Collapse
Affiliation(s)
- Marzenna Blonska
- Department of Molecular and Cellular Oncology, University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
37
|
Wang SA, Chuang JY, Yeh SH, Wang YT, Liu YW, Chang WC, Hung JJ. Heat shock protein 90 is important for Sp1 stability during mitosis. J Mol Biol 2009; 387:1106-19. [PMID: 19245816 DOI: 10.1016/j.jmb.2009.02.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 01/08/2009] [Accepted: 02/13/2009] [Indexed: 10/21/2022]
Abstract
Our previous study has revealed that heat shock protein (Hsp) 90 can interact with Sp1 to regulate the transcriptional activity of 12(S)-lipoxygenase. Herein, we further found that the interaction between Hsp90 and Sp1 occurred during mitosis. By geldanamycin (GA) treatment and knockdown of Hsp90, we found that this interaction during mitosis was involved in the maintenance of Sp1 stability, and that the phospho-c-Jun N-terminal kinase (JNK)-1 level also decreased. As the JNK-1 was knocked down by the shRNA of JNK-1, Sp1 was degraded through a ubiquitin-dependent proteasome pathway. In addition, for mutation of the JNK-1 phosphorylated residues of Sp1, namely, Sp1(T278/739A) and Sp1(T278/739D), the effect of GA on Sp1 stability was reversed. Finally, based on the involvement of Hsp90 in Sp1 stability, the transcriptional activities of p21(WAF1/CIP1) and 12(S)-lipoxygenase under GA treatment were observed to have decreased. Taken together, Hsp90 is important for maintaining Sp1 stability during mitosis by the JNK-1-mediated phosphorylation of Sp1 to enable division into daughter cells and to regulate the expression of related genes in the interphase.
Collapse
Affiliation(s)
- Shao-An Wang
- Institute of Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng-Kung University, Tainan 701, Taiwan
| | | | | | | | | | | | | |
Collapse
|
38
|
Wesseling S, Koeners MP, Kantouh F, Joles JA, Braam B. Consequences of perinatal treatment with L-arginine and antioxidants for the renal transcriptome in spontaneously hypertensive rats. Pflugers Arch 2009; 458:513-24. [PMID: 19189121 PMCID: PMC2691531 DOI: 10.1007/s00424-009-0639-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 01/05/2009] [Accepted: 01/13/2009] [Indexed: 12/23/2022]
Abstract
Treating spontaneously hypertensive rats (SHR) with L-arginine, taurine, and vitamins C and E (ATCE) during nephrogenesis (2 weeks before to 4 weeks after birth) persistently lowers blood pressure. Hypothetically, differential gene expression in kidney of SHR vs. normotensive Wistar-Kyoto rats (WKY) is partially corrected by maternal ATCE in SHR. Differential gene expression in 2-days, 2-weeks, and 48-week-old rats was studied using oligonucleotide chips. Transcription factor binding sites (TFBS) of differentially expressed genes were analyzed in silico. Differential gene expression varied between SHR+ATCE and SHR, suggesting both direct and indirect effects; but, few genes were modulated toward WKY level and there was little overlap between ages. TFBS analysis suggests less Elk-1-driven gene transcription in both WKY and SHR+ATCE vs. SHR at 2 days and 2 weeks. Concluding, in SHR, persistent antihypertensive effects of maternal ATCE are not primarily due to persistent corrective transcription. Less Elk-1-driven transcription at 2 days and 2 weeks may be involved.
Collapse
Affiliation(s)
- Sebastiaan Wesseling
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
39
|
Abstract
JunB is a member of the AP-1 (activator protein-1) family of dimeric transcription factors. It exerts a dual action on the cell cycle. It is best known as a cell proliferation inhibitor, a senescence inducer and a tumour suppressor. As for the molecular mechanisms involved, they largely involve both positive actions on genes such as the p16INK4alpha cyclin-dependent kinase inhibitor and negative effects on genes such as cyclin D1 during the G1-phase of the cell cycle. However, JunB is also endowed with a cell-division-promoting activity, in particular via stimulation of cyclin A2 gene expression during S-phase. Strikingly, its role in G2 and M has received little attention so far despite its possible role in the preparation of mitosis. This review addresses the known and possible mechanisms whereby JunB is implicated in the control of the different phases of the cell cycle.
Collapse
|
40
|
Boutros T, Chevet E, Metrakos P. Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: roles in cell growth, death, and cancer. Pharmacol Rev 2008; 60:261-310. [PMID: 18922965 DOI: 10.1124/pr.107.00106] [Citation(s) in RCA: 450] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mitogen-activated protein kinase dual-specificity phosphatase-1 (also called MKP-1, DUSP1, ERP, CL100, HVH1, PTPN10, and 3CH134) is a member of the threonine-tyrosine dual-specificity phosphatases, one of more than 100 protein tyrosine phosphatases. It was first identified approximately 20 years ago, and since that time extensive investigations into both mkp-1 mRNA and protein regulation and function in different cells, tissues, and organs have been conducted. However, no general review on the topic of MKP-1 exists. As the subject matter pertaining to MKP-1 encompasses many branches of the biomedical field, we focus on the role of this protein in cancer development and progression, highlighting the potential role of the mitogen-activated protein kinase (MAPK) family. Section II of this article elucidates the MAPK family cross-talk. Section III reviews the structure of the mkp-1 encoding gene, and the known mechanisms regulating the expression and activity of the protein. Section IV is an overview of the MAPK-specific dual-specificity phosphatases and their role in cancer. In sections V and VI, mkp-1 mRNA and protein are examined in relation to cancer biology, therapeutics, and clinical studies, including a discussion of the potential role of the MAPK family. We conclude by proposing an integrated scheme for MKP-1 and MAPK in cancer.
Collapse
Affiliation(s)
- Tarek Boutros
- Department of Surgery, Royal Victoria Hospital, McGill University, 687 Pine Ave. W., Montreal, QC H3A1A1, Canada.
| | | | | |
Collapse
|
41
|
Hernandez JM, Floyd DH, Weilbaecher KN, Green PL, Boris-Lawrie K. Multiple facets of junD gene expression are atypical among AP-1 family members. Oncogene 2008; 27:4757-67. [PMID: 18427548 PMCID: PMC2726657 DOI: 10.1038/onc.2008.120] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 02/25/2008] [Accepted: 03/18/2008] [Indexed: 12/12/2022]
Abstract
JunD is a versatile AP-1 transcription factor that can activate or repress a diverse collection of target genes. Precise control of junD expression and JunD protein-protein interactions modulate tumor angiogenesis, cellular differentiation, proliferation and apoptosis. Molecular and clinical knowledge of two decades has revealed that precise JunD activity is elaborated by interrelated layers of constitutive transcriptional control, complex post-transcriptional regulation and a collection of post-translational modifications and protein-protein interactions. The stakes are high, as inappropriate JunD activity contributes to neoplastic, metabolic and viral diseases. This article deconvolutes multiple layers of control that safeguard junD gene expression and functional activity. The activity of JunD in transcriptional activation and repression is integrated into a regulatory network by which JunD exerts a pivotal role in cellular growth control. Our discussion of the JunD regulatory network integrates important open issues and posits new therapeutic targets for the neoplastic, metabolic and viral diseases associated with JunD/AP-1 expression.
Collapse
Affiliation(s)
- JM Hernandez
- Department of Veterinary Biosciences and Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA
| | - DH Floyd
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - KN Weilbaecher
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - PL Green
- Department of Veterinary Biosciences and Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA
- Department of Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - K Boris-Lawrie
- Department of Veterinary Biosciences and Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA
- Department of Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
42
|
Tan Y, Sangfelt O, Spruck C. The Fbxw7/hCdc4 tumor suppressor in human cancer. Cancer Lett 2008; 271:1-12. [PMID: 18541364 DOI: 10.1016/j.canlet.2008.04.036] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 04/23/2008] [Accepted: 04/23/2008] [Indexed: 12/11/2022]
Abstract
Fbxw7/hCdc4 is a member of the F-box family of proteins, which function as interchangeable substrate recognition components of the SCF ubiquitin ligases. SCF(Fbxw7/hCdc4) targets several important oncoproteins including c-Myc, c-Jun, cyclin E1, and Notch, for ubiquitin-dependent proteolysis. Recent studies have shown that FBXW7/hCDC4 is mutated in a variety of human tumor types, suggesting that it is a general tumor suppressor in human cancer. Alteration of Fbxw7/hCdc4 function is linked to defects in differentiation, cellular proliferation, and genetic instability. In this review, we summarize what is known about Fbxw7/hCdc4-mediated degradation in the regulation of cellular proliferation and discuss how alteration of its function contributes to human tumorigenesis.
Collapse
Affiliation(s)
- YingMeei Tan
- Department of Tumor Cell Biology, Sidney Kimmel Cancer Center, San Diego, CA 92121, USA
| | | | | |
Collapse
|
43
|
JunB breakdown in mid-/late G2 is required for down-regulation of cyclin A2 levels and proper mitosis. Mol Cell Biol 2008; 28:4173-87. [PMID: 18391017 DOI: 10.1128/mcb.01620-07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
JunB, a member of the AP-1 family of dimeric transcription factors, is best known as a cell proliferation inhibitor, a senescence inducer, and a tumor suppressor, although it also has been attributed a cell division-promoting activity. Its effects on the cell cycle have been studied mostly in G1 and S phases, whereas its role in G2 and M phases still is elusive. Using cell synchronization experiments, we show that JunB levels, which are high in S phase, drop during mid- to late G2 phase due to accelerated phosphorylation-dependent degradation by the proteasome. The forced expression of an ectopic JunB protein in late G2 phase indicates that JunB decay is necessary for the subsequent reduction of cyclin A2 levels in prometaphase, the latter event being essential for proper mitosis. Consistently, abnormal JunB expression in late G2 phase entails a variety of mitotic defects. As these aberrations may cause genetic instability, our findings contrast with the acknowledged tumor suppressor activity of JunB and reveal a mechanism by which the deregulation of JunB might contribute to tumorigenesis.
Collapse
|
44
|
Welcker M, Clurman BE. FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat Rev Cancer 2008; 8:83-93. [PMID: 18094723 DOI: 10.1038/nrc2290] [Citation(s) in RCA: 867] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
FBW7 (F-box and WD repeat domain-containing 7) is the substrate recognition component of an evolutionary conserved SCF (complex of SKP1, CUL1 and F-box protein)-type ubiquitin ligase. SCF(FBW7) degrades several proto-oncogenes that function in cellular growth and division pathways, including MYC, cyclin E, Notch and JUN. FBW7 is also a tumour suppressor, the regulatory network of which is perturbed in many human malignancies. Numerous cancer-associated mutations in FBW7 and its substrates have been identified, and loss of FBW7 function causes chromosomal instability and tumorigenesis. This Review focuses on structural and functional aspects of FBW7 and its role in the development of cancer.
Collapse
Affiliation(s)
- Markus Welcker
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, Washington 98109, USA.
| | | |
Collapse
|
45
|
Chuang JY, Wang YT, Yeh SH, Liu YW, Chang WC, Hung JJ. Phosphorylation by c-Jun NH2-terminal kinase 1 regulates the stability of transcription factor Sp1 during mitosis. Mol Biol Cell 2008; 19:1139-51. [PMID: 18199680 DOI: 10.1091/mbc.e07-09-0881] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The transcription factor Sp1 is ubiquitously expressed in different cells and thereby regulates the expression of genes involved in many cellular processes. This study reveals that Sp1 was phosphorylated during the mitotic stage in three epithelial tumor cell lines and one glioma cell line. By using different kinase inhibitors, we found that during mitosis in HeLa cells, the c-Jun NH(2)-terminal kinase (JNK) 1 was activated that was then required for the phosphorylation of Sp1. In addition, blockade of the Sp1 phosphorylation via inhibition JNK1 activity in mitosis resulted in the ubiquitination and degradation of Sp1. JNK1 phosphorylated Sp1 at Thr278/739. The Sp1 mutated at Thr278/739 was unstable during mitosis, possessing less transcriptional activity for the 12(S)-lipoxygenase expression and exhibiting a decreased cell growth rate compared with wild-type Sp1 in HeLa cells. In N-methyl-N-nitrosourea-induced mammary tumors, JNK1 activation provided a potential relevance with the accumulation of Sp1. Together, our results indicate that JNK1 activation is necessary to phosphorylate Sp1 and to shield Sp1 from the ubiquitin-dependent degradation pathway during mitosis in tumor cell lines.
Collapse
Affiliation(s)
- Jian-Ying Chuang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng-Kung University, Tainan 701, Taiwan
| | | | | | | | | | | |
Collapse
|
46
|
Bhoumik A, Lopez-Bergami P, Ronai Z. ATF2 on the double - activating transcription factor and DNA damage response protein. PIGMENT CELL RESEARCH 2007; 20:498-506. [PMID: 17935492 PMCID: PMC2997391 DOI: 10.1111/j.1600-0749.2007.00414.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Signal transduction pathways play a key role in the regulation of key cellular processes, including survival and death. Growing evidence points to changes in signaling pathway that occur during skin tumor development and progression. Such changes impact the activity of downstream substrates, including transcription factors. The activating transcription factor 2 (ATF2) has been implicated in malignant and non-malignant skin tumor developments. ATF2 mediates both transcription and DNA damage control, through its phosphorylation by JNK/p38 or ATM/ATR respectively. Here, we summarize our present understanding of ATF2 regulation, function and contribution to malignant and non-malignant skin tumor development.
Collapse
Affiliation(s)
- Anindita Bhoumik
- Signal Transduction Program, Burnham Institute for Medical Research, La Jolla, CA, USA
| | | | | |
Collapse
|
47
|
Yao K, Cho YY, Bergen HR, Madden BJ, Choi BY, Ma WY, Bode AM, Dong Z. Nuclear factor of activated T3 is a negative regulator of Ras-JNK1/2-AP-1 induced cell transformation. Cancer Res 2007; 67:8725-35. [PMID: 17875713 DOI: 10.1158/0008-5472.can-06-4788] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The c-jun-NH(2)-kinases (JNK) play a critical role in tumor promoter-induced cell transformation and apoptosis. Here, we showed that the nuclear factor of activated T3 (NFAT3) is phosphorylated by JNK1 or JNK2 at Ser(213) and Ser(217), which are located in the conserved SP motif. The transactivation domain of NFAT3 is found between amino acids (aa) 113 and 260 and includes the phosphorylation targets of JNK1 and JNK2. NFAT3 transactivation activity was suppressed in JNK1(-/-) or JNK2(-/-) mouse embryonic fibroblast (MEF) cells compared with wild-type MEF cells. Moreover, a 3xNFAT-luc reporter gene assay indicated that NFAT3 transcriptional activity was increased in a dose-dependent manner by JNK1 or JNK2. Double mutations at Ser(213) and Ser(217) suppressed NFAT3 transactivation activity; and SP600125, a JNK inhibitor, suppressed NFAT3-induced 3xNFAT-luciferase activity. Knockdown of JNK1 or JNK2 suppressed foci formation in NIH3T3 cells. Importantly, ectopic expression of NFAT3 inhibited AP-1 activity and suppressed foci formation. Furthermore, knockdown of NFAT3 enhanced Ras-JNK1 or JNK2-induced foci formation in NIH3T3 cells. Taken together, these results provided direct evidence for the anti-oncogenic potential of the NFAT3 transcription factor.
Collapse
Affiliation(s)
- Ke Yao
- Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
COP1D, an alternatively spliced constitutive photomorphogenic-1 (COP1) product, stabilizes UV stress-induced c-Jun through inhibition of full-length COP1. Oncogene 2007; 27:2401-11. [PMID: 17968316 DOI: 10.1038/sj.onc.1210892] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
COP1 is an evolutionarily conserved RING-finger ubiquitin ligase acting within a Cullin-RING ligase (CRL) complex that promotes polyubiquitination of c-Jun and p53. Stability of the above substrates is affected by post-translational changes priming the proteins for polyubiquitination and proteasome-dependent degradation. However, degradation of both substrates is controlled indirectly by signaling pathways affecting the E3 ligases involved in their polyubiquitination. Here, we report the identification of COP1D, a ubiquitously expressed splice variant of COP1 lacking a portion of a coiled-coil region involved in intermolecular associations. While being unable to associate with other components of the CRL complex, COP1D exerts a dominant-negative function over the full-length protein, due to its ability to heterodimerize with COP1 and sequester it from the enzymatically active complex. Ectopic expression of COP1D antagonizes the function of COP1, while its selective downregulation by RNA interference promotes more efficient degradation of c-Jun and p53 by the full-length protein. The COP1/COP1D mRNA ratio is modulated by UV stress and a decreased COP1/COP1D ratio correlates with elevated c-Jun, but not p53 protein levels in invasive ductal breast cancer. Thus, dynamic changes of the COP1/COP1D ratio provide an additional level of regulation of the half-life of the substrates of this E3 ligase under homeostatic or pathological conditions.
Collapse
|
49
|
Whitmarsh AJ. Regulation of gene transcription by mitogen-activated protein kinase signaling pathways. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1773:1285-98. [PMID: 17196680 DOI: 10.1016/j.bbamcr.2006.11.011] [Citation(s) in RCA: 204] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 11/14/2006] [Accepted: 11/15/2006] [Indexed: 11/22/2022]
Abstract
Mitogen-activated protein kinase (MAPK) signaling pathways are key mediators of eukaryotic transcriptional responses to extracellular signals. These pathways control gene expression in a number of ways including the phosphorylation and regulation of transcription factors, co-regulatory proteins and chromatin proteins. MAPK pathways therefore target multiple components of transcriptional complexes at gene promoters and can regulate DNA binding, protein stability, cellular localization, transactivation or repression, and nucleosome structure. Recent work has uncovered further complexities in the mechanisms by which MAPKs control gene expression including their roles as integral components of transcription factor complexes and their interplay with other post-translational modification pathways. In this review I discuss these advances with particular focus on how MAPK signals are integrated by transcription factor complexes to provide specific transcriptional responses and how this relates to cellular function.
Collapse
Affiliation(s)
- Alan J Whitmarsh
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
50
|
Abstract
The JNK proteins are activated by multiple and diverse stimuli, leading to varied and seemingly contradictory cellular responses. In particular, JNKs have been reported to have a role in the induction of apoptosis, but have also been implicated in enhancing cell survival and proliferation. Thus the JNK proteins seem to represent an archetype of contrariety of intracellular signaling. The opposing roles of JNKs have been attributed to the observation that JNKs activate different substrates based on specific stimulus, cell type or temporal aspects. Because of their analogous expression in apparently almost every tissue, JNK1 and JNK2 have most often been considered to have overlapping or redundant functions. In spite of this assessment, research evidence suggests that the functions of JNKs should be addressed in a manner that differentiates between their precise contributions. Specifically in this review, we examine evidence regarding whether the JNKs proteins might play distinctive roles in cellular processes associated with carcinogenesis.
Collapse
Affiliation(s)
- Ann M Bode
- Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | | |
Collapse
|