1
|
Mikolajczyk K, Kaczmarek R, Czerwinski M. How glycosylation affects glycosylation: the role of N-glycans in glycosyltransferase activity. Glycobiology 2020; 30:941-969. [PMID: 32363402 DOI: 10.1093/glycob/cwaa041] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/15/2022] Open
Abstract
N-glycosylation is one of the most important posttranslational modifications of proteins. It plays important roles in the biogenesis and functions of proteins by influencing their folding, intracellular localization, stability and solubility. N-glycans are synthesized by glycosyltransferases, a complex group of ubiquitous enzymes that occur in most kingdoms of life. A growing body of evidence shows that N-glycans may influence processing and functions of glycosyltransferases, including their secretion, stability and substrate/acceptor affinity. Changes in these properties may have a profound impact on glycosyltransferase activity. Indeed, some glycosyltransferases have to be glycosylated themselves for full activity. N-glycans and glycosyltransferases play roles in the pathogenesis of many diseases (including cancers), so studies on glycosyltransferases may contribute to the development of new therapy methods and novel glycoengineered enzymes with improved properties. In this review, we focus on the role of N-glycosylation in the activity of glycosyltransferases and attempt to summarize all available data about this phenomenon.
Collapse
Affiliation(s)
- Krzysztof Mikolajczyk
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| | - Radoslaw Kaczmarek
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| | - Marcin Czerwinski
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| |
Collapse
|
2
|
Korprasertthaworn P, Rowland A, Lewis BC, Mackenzie PI, Yoovathaworn K, Miners JO. Effects of amino acid substitutions at positions 33 and 37 on UDP-glucuronosyltransferase 1A9 (UGT1A9) activity and substrate selectivity. Biochem Pharmacol 2012; 84:1511-21. [DOI: 10.1016/j.bcp.2012.08.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 08/29/2012] [Accepted: 08/29/2012] [Indexed: 10/27/2022]
|
3
|
Ohtsuki S, Schaefer O, Kawakami H, Inoue T, Liehner S, Saito A, Ishiguro N, Kishimoto W, Ludwig-Schwellinger E, Ebner T, Terasaki T. Simultaneous absolute protein quantification of transporters, cytochromes P450, and UDP-glucuronosyltransferases as a novel approach for the characterization of individual human liver: comparison with mRNA levels and activities. Drug Metab Dispos 2011; 40:83-92. [PMID: 21994437 DOI: 10.1124/dmd.111.042259] [Citation(s) in RCA: 337] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The purpose of the present study was to determine the absolute protein expression levels of multiple drug-metabolizing enzymes and transporters in 17 human liver biopsies, and to compare them with the mRNA expression levels and functional activities to evaluate the suitability of the three measures as parameters of hepatic metabolism. Absolute protein expression levels of 13 cytochrome P450 (P450) enzymes, NADPH-P450 reductase (P450R) and 6 UDP-glucuronosyltransferase (UGT) enzymes in microsomal fraction, and 22 transporters in plasma membrane fraction were determined using liquid chromatography/tandem mass spectrometry. CYP2C9, CYP2E1, CYP3A4, CYP2A6, UGT1A6, UGT2B7, UGT2B15, and P450R were abundantly expressed (more than 50 pmol/mg protein) in human liver microsomes. The protein expression levels of CYP3A4, CYP2B6, and CYP2C8 were each highly correlated with the corresponding enzyme activity and mRNA expression levels, whereas for other P450s, the protein expression levels were better correlated with the enzyme activities than the mRNA expression levels were. Among transporters, the protein expression level of organic anion-transporting polypeptide 1B1 was relatively highly correlated with the mRNA expression level. However, other transporters showed almost no correlation. These findings indicate that protein expression levels determined by the present simultaneous quantification method are a useful parameter to assess differences of hepatic function between individuals.
Collapse
Affiliation(s)
- Sumio Ohtsuki
- Division of Membrane Transport and Drug Targeting Laboratory, Department of Biochemical Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku Sendai 980-8578, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Kerdpin O, Mackenzie PI, Bowalgaha K, Finel M, Miners JO. Influence of N-terminal domain histidine and proline residues on the substrate selectivities of human UDP-glucuronosyltransferase 1A1, 1A6, 1A9, 2B7, and 2B10. Drug Metab Dispos 2009; 37:1948-55. [PMID: 19487247 DOI: 10.1124/dmd.109.028225] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An N-terminal domain histidine [corresponding to position 39 of UDP-glucuronosyltransferase (UGT) 1A1] is conserved in all UGT1A and UGT2B subfamily proteins except UGT1A4 (Pro-40) and UGT2B10 (Leu-34). Unlike most UGT1A and UGT2B xenobiotic-metabolizing enzymes, UGT1A4 and UGT2B10 lack the ability to glucuronidate 4-methylumbelliferone (4MU) and 1-naphthol (1NP), both planar phenols, and naproxen (a carboxylic acid). However, only UGT1A4 glucuronidates the tertiary amines lamotrigine (LTG) and trifluoperazine (TFP). In this study, we sought to elucidate the influence of specific N-terminal histidine and proline residues on UGT enzyme substrate selectivity. The conserved N-terminal domain histidine of UGT1A1, UGT1A6, UGT1A9, and UGT2B7 was mutated to proline and leucine 34 of UGT2B10 was substituted with histidine, and the capacity of the wild-type and mutant proteins to glucuronidate 4MU, 1NP, LTG, TFP, and naproxen was characterized. Whereas UGT1A1(H39P), UGT1A6(H38P), and UGT1A9(H37P) lacked the ability to metabolize 4MU, 1NP, and naproxen, all glucuronidated LTG. K(m) values for UGT1A1(H39P) and UGT1A9(H37P) were 774 and 3812 microM, respectively, compared with 1579 microM for UGT1A4. UGT1A1(H39P) also glucuronidated TFP with a V(max)/K(m) value comparable to that of UGT1A4. In contrast to the wild-type enzyme, UGT2B10(L34H) glucuronidated 4MU and 1NP with respective K(m) values of 260 and 118 microM. UGT2B7(H35P) lacked activity toward all substrates. The data confirm a pivotal role for an N-terminal domain proline in the glucuronidation of the tertiary amines LTG and TFP by UGT1A subfamily proteins, whereas glucuronidation reactions involving proton abstraction generally, although not invariably, require a histidine at the equivalent position in both UGT1A and UGT2B enzymes.
Collapse
Affiliation(s)
- Oranun Kerdpin
- Department of Clinical Pharmacology, Flinders University School of Medicine, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | | | | | | | | |
Collapse
|
5
|
Uchaipichat V, Galetin A, Houston JB, Mackenzie PI, Williams JA, Miners JO. Kinetic Modeling of the Interactions between 4-Methylumbelliferone, 1-Naphthol, and Zidovudine Glucuronidation by UDP-Glucuronosyltransferase 2B7 (UGT2B7) Provides Evidence for Multiple Substrate Binding and Effector Sites. Mol Pharmacol 2008; 74:1152-62. [DOI: 10.1124/mol.108.048645] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
6
|
Li D, Fournel-Gigleux S, Barré L, Mulliert G, Netter P, Magdalou J, Ouzzine M. Identification of aspartic acid and histidine residues mediating the reaction mechanism and the substrate specificity of the human UDP-glucuronosyltransferases 1A. J Biol Chem 2007; 282:36514-24. [PMID: 17956868 DOI: 10.1074/jbc.m703107200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human UDP-glucuronosyltransferase UGT1A6 is the primary phenol-metabolizing UDP-glucuronosyltransferase isoform. It catalyzes the nucleophilic attack of phenolic xenobiotics on UDP-glucuronic acid, leading to the formation of water-soluble glucuronides. The catalytic mechanism proposed for this reaction is an acid-base mechanism that involves an aspartic/glutamic acid and/or histidine residue. Here, we investigated the role of 14 highly conserved aspartic/glutamic acid residues over the entire sequence of human UGT1A6 by site-directed mutagenesis. We showed that except for aspartic residues Asp-150 and Asp-488, the substitution of carboxylic residues by alanine led to active mutants but with decreased enzyme activity and lower affinity for acceptor and/or donor substrate. Further analysis including mutation of the corresponding residue in other UGT1A isoforms suggests that Asp-150 plays a major catalytic role. In this report we also identified a single active site residue important for glucuronidation of phenols and carboxylic acid substrates by UGT1A enzyme family. Replacing Pro-40 of UGT1A4 by histidine expanded the glucuronidation activity of the enzyme to phenolic and carboxylic compounds, therefore, leading to UGT1A3-type isoform in terms of substrate specificity. Conversely, when His-40 residue of UGT1A3 was replaced with proline, the substrate specificity shifted toward that of UGT1A4 with loss of glucuronidation of phenolic substrates. Furthermore, mutation of His-39 residue of UGT1A1 (His-40 in UGT1A4) to proline led to loss of glucuronidation of phenols but not of estrogens. This study provides a step forward to better understand the glucuronidation mechanism and substrate recognition, which is invaluable for a better prediction of drug metabolism and toxicity in human.
Collapse
Affiliation(s)
- Dong Li
- UMR 7561, Faculté de Médecine and UMR 7036, Faculté des Sciences, CNRS-Université Henri Poincaré Nancy 1, 54505 Vandoeuvre-lès-Nancy, France
| | | | | | | | | | | | | |
Collapse
|
7
|
Kubota T, Lewis BC, Elliot DJ, Mackenzie PI, Miners JO. Critical Roles of Residues 36 and 40 in the Phenol and Tertiary Amine Aglycone Substrate Selectivities of UDP-Glucuronosyltransferases 1A3 and 1A4. Mol Pharmacol 2007; 72:1054-62. [PMID: 17636046 DOI: 10.1124/mol.107.037952] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Despite high sequence identity, UGT1A3 and UGT1A4 differ in terms of substrate selectivity. UGT1A3 glucuronidates the planar phenols 1-naphthol (1-NP) and 4-methylumbelliferone (4-MU), whereas UGT1A4 converts the tertiary amines lamotrigine (LTG) and trifluoperazine (TFP) to quaternary ammonium glucuronides. Residues 45 to 154 (which incorporate 21 of the 35 amino acid differences) and 45 to 535 were exchanged between UGT1A3 and UGT1A4 to generate UGT1A3-4((45-535)), UGT1A3-4((45-154))-3, UGT1A4-3((45-535)), and UGT1A4-3((45-154))-4 hybrid proteins. Although differences in kinetic parameters were observed between the parent enzymes and chimeras, UGT1A4-3((45-535)) and UGT1A4-3((45-154))-4 [but not UGT1A3-4((45-535)) and UGT1A3-4((45-154))-3] retained the capacity to glucuronidate LTG and TFP. Likewise, UGT1A3-4((45-535)) and UGT1A3-4((45-154))-3 retained the capacity to glucuronidate 1-NP and 4-MU, but UGT1A4-3((45-535)) and UGT1A4-3((45-154))-4 exhibited low or absent activity. Within the first 44 residues, UGT1A3 and UGT1A4 differ in sequence at positions 36 and 40. "Reciprocal" mutagenesis was performed to generate the UGT1A3(I36T), UGT1A3(H40P), UGT1A4(T36I), and UGT1A4 (P40H) mutants. The T36I and P40H mutations in UGT1A4 reduced in vitro clearances for LTG and TFP glucuronidation by >90%. Conversely, the I36T and H40P mutations in UGT1A3 reduced the in vitro clearances for 1-NP and 4-MU glucuronidation by >90%. Introduction of the single H40P mutation in UGT1A3 conferred LTG and TFP glucuronidation, whereas the single T36I mutation in UGT1A4 conferred 1-NP and 4-MU glucuronidation. Thus, residues 36 and 40 of UGT1A3 and UGT1A4 are pivotal for the respective selectivities of these enzymes toward planar phenols and tertiary amines, although other regions of the proteins influence binding affinity and/or turnover.
Collapse
Affiliation(s)
- Takahiro Kubota
- Department of Clinical Pharmacology, Flinders Medical Centre, Bedford Park, SA 5042, Australia.
| | | | | | | | | |
Collapse
|
8
|
Lewis BC, Mackenzie PI, Elliot DJ, Burchell B, Bhasker CR, Miners JO. Amino terminal domains of human UDP-glucuronosyltransferases (UGT) 2B7 and 2B15 associated with substrate selectivity and autoactivation. Biochem Pharmacol 2007; 73:1463-73. [PMID: 17223084 DOI: 10.1016/j.bcp.2006.12.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 12/18/2006] [Accepted: 12/18/2006] [Indexed: 11/28/2022]
Abstract
Despite the important role of UDP-glucuronosyltransferases (UGT) in the metabolism of drugs, environmental chemicals and endogenous compounds, the structural features of these enzymes responsible for substrate binding and selectivity remain poorly understood. Since UGT2B7 and UGT2B15 exhibit distinct, but overlapping, substrate selectivities, UGT2B7-UGT2B15 chimeras were constructed here to identify substrate binding domains. A UGT2B7-15-7 chimera that incorporated amino acids 61-194 of UGT2B15 glucuronidated the UGT2B15 substrates testosterone and phenolphthalein, but not the UGT2B7 substrates zidovudine and 11alpha-hydroxyprogesterone. Derived apparent K(m) values for testosterone and phenolphthalein glucuronidation by UGT2B7-15((61-194))-7 were similar in magnitude to those determined for UGT2B15. Moreover, glucuronidation of the non-selective substrate 4-methylumbelliferone (4MU) by UGT2B7-15((61-194))-7 and UGT2B15 followed Michaelis-Menten and weak substrate inhibition kinetics, respectively, whereas 4MU glucuronidation by UGT2B7 exhibited sigmoidal kinetics characteristic of autoactivation. Six UGT2B7-15-7 chimeras that incorporated smaller domains of UGT2B15 were subsequently generated. Of these, UGT2B7-15((61-157))-7, UGT2B7-15((91-157))-7 and UGT2B7-15((61-91))-7 glucuronidated 4MU, but activity towards the other substrates investigated here was not detected. Like UGT2B7, the UGT2B7-15((61-157))-7, UGT2B7-15((91-157))-7 and UGT2B7-15((61-91))-7 chimeras exhibited sigmoidal 4MU glucuronidation kinetics. The sigmoidal 4MU kinetic data were well modelled using both the Hill equation and the expression for a two-site model that assumes the simultaneous binding of two substrate molecules at equivalent sites. It may be concluded that residues 61-194 of UGT2B15 are responsible for substrate binding and for conferring the unique substrate selectivity of UGT2B15, while residues 158-194 of UGT2B7 appear to facilitate the binding of multiple 4MU molecules within the active site.
Collapse
Affiliation(s)
- Benjamin C Lewis
- Department of Clinical Pharmacology, Flinders University and Flinders Medical Centre, Adelaide, Australia
| | | | | | | | | | | |
Collapse
|
9
|
Barre L, Fournel-Gigleux S, Finel M, Netter P, Magdalou J, Ouzzine M. Substrate specificity of the human UDP-glucuronosyltransferase UGT2B4 and UGT2B7. Identification of a critical aromatic amino acid residue at position 33. FEBS J 2007; 274:1256-64. [PMID: 17263731 DOI: 10.1111/j.1742-4658.2007.05670.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The human UDP-glucuronosyltransferase (UGT) isoforms UGT2B4 and UGT2B7 play a major role in the detoxification of bile acids, steroids and phenols. These two isoforms present distinct but overlapping substrate specificity, sharing common substrates such as the bile acid hyodeoxycholic acid (HDCA) and catechol-estrogens. Here, we show that in UGT2B4, substitution of phenylalanine 33 by leucine suppressed the activity towards HDCA, and impaired the glucuronidation of several substrates, including 4-hydroxyestrone and 17-epiestriol. On the other hand, the substrate specificity of the mutant UGT2B4F33Y, in which phenylalanine was replaced by tyrosine, as found at position 33 of UGT2B7, was similar to wild-type UGT2B4. In the case of UGT2B7, replacement of tyrosine 33 by leucine strongly reduced the activity towards all the tested substrates, with the exception of 17-epiestriol. In contrast, mutation of tyrosine 33 by phenylalanine exhibited similar or even somewhat higher activities than wild-type UGT2B7. Hence, the results strongly indicated that the presence of an aromatic residue at position 33 is important for the activity and substrate specificity of both UGT2B4 and UGT2B7.
Collapse
Affiliation(s)
- Lydia Barre
- UMR 7561 CNRS, Université Henri Poincaré-Nancy I, Faculté de Médecine, F-54505 Vandoeuvre-lès-Nancy, France
| | | | | | | | | | | |
Collapse
|
10
|
Operaña TN, Tukey RH. Oligomerization of the UDP-glucuronosyltransferase 1A proteins: homo- and heterodimerization analysis by fluorescence resonance energy transfer and co-immunoprecipitation. J Biol Chem 2006; 282:4821-4829. [PMID: 17179145 DOI: 10.1074/jbc.m609417200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UDP-glucuronosyltransferases (UGTs) are membrane-bound proteins localized to the endoplasmic reticulum and catalyze the formation of beta-d-glucopyranosiduronic acids (glucuronides) using UDP-glucuronic acid and acceptor substrates such as drugs, steroids, bile acids, xenobiotics, and dietary nutrients. Recent biochemical evidence indicates that the UGT proteins may oligomerize in the membrane, but conclusive evidence is still lacking. In the present study, we have used fluorescence resonance energy transfer (FRET) to study UGT1A oligomerization in live cells. This technique demonstrated that UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A7, UGT1A8, UGT1A9, and UGT1A10 self-oligomerize (homodimerize). Heterodimer interactions were also explored, and it was determined that UGT1A1 was capable of binding with UGT1A3, UGT1A4, UGT1A6, UGT1A7, UGT1A8, UGT1A9, and UGT1A10. In addition to the in vivo FRET analysis, UGT1A protein-protein interactions were demonstrated through co-immunoprecipitation experiments. Co-expression of hemagglutinin-tagged and cyan fluorescent protein-tagged UGT1A proteins, followed by immunoprecipitation with anti-hemagglutinin beads, illustrated the potential of each UGT1A protein to homodimerize. Co-immunoprecipitation results also confirmed that UGT1A1 was capable of forming heterodimer complexes with all of the UGT1A proteins, corroborating the FRET results in live cells. These preliminary studies suggest that the UGT1A family of proteins form oligomerized complexes in the membrane, a property that may influence function and substrate selectivity.
Collapse
Affiliation(s)
- Theresa N Operaña
- Departments of Chemistry & Biochemistry and Pharmacology, Laboratory of Environmental Toxicology, University of California, San Diego, La Jolla, California 92093
| | - Robert H Tukey
- Departments of Chemistry & Biochemistry and Pharmacology, Laboratory of Environmental Toxicology, University of California, San Diego, La Jolla, California 92093.
| |
Collapse
|
11
|
Uesawa Y, Staines AG, O'Sullivan A, Mohri K, Burchell B. IDENTIFICATION OF THE RABBIT LIVER UDP-GLUCURONOSYLTRANSFERASE CATALYZING THE GLUCURONIDATION OF 4-ETHOXYPHENYLUREA (DULCIN). Drug Metab Dispos 2004; 32:1476-81. [PMID: 15448114 DOI: 10.1124/dmd.104.001206] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dulcin (DL), 4-ethoxyphenylurea, a synthetic chemical about 200 times as sweet as sucrose, has been proposed for use as an artificial sweetener. DL is excreted as a urinary ureido-N-glucuronide after oral administration to rabbits. The phenylurea N-glucuronide is the only ureido conjugate with glucuronic acid known at present; therefore, DL is interesting as a probe to search for new functions of UDP-glucuronosyltransferases (UGTs). Seven UGT isoforms (UGT1A3, UGT1A4, UGT1A6, UGT1A7, UGT2B13, UGT2B14, and UGT2B16) have been identified from rabbit liver, but these UGTs have not been investigated using DL as a substrate. In this work, the identities of UGT isoforms catalyzing the formation of DL glucuronide were investigated using rabbit liver microsomes (RabLM) and cloned/expressed as rabbit UGT isoforms. DL-N-glucuronide (DNG) production was determined quantitatively in RabLM and homogenates of COS-7 cells expressing each UGT isoform by using electrospray liquid chromatography-tandem mass spectrometry. Analysis of DNG formation using RabLM, by Eadie-Hofstee plot, gave a Vmax of 0.911 nmol/min/mg protein and the Km of 1.66 mM. DNG formation was catalyzed only by cloned expressed rabbit UGT1A7 and UGT2B16 (Vmax of 3.98 and 1.16 pmol/min/mg protein and a Km of 1.23 and 1.69 mM, respectively). Substrate inhibition of UGT1A7 by octylgallate confirmed the significant contribution of UGT1A7 to the formation of DNG. Octylgallate was further shown to competitively inhibit DNG production by RabLM (Ki = 0.149 mM). These results demonstrate that UGT1A7 is the major isoform catalyzing the N-glucuronidation of DL in RabLM.
Collapse
Affiliation(s)
- Yoshihiro Uesawa
- Clinical Pharmaceutics Laboratory, Department of Pharmaceutics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.
| | | | | | | | | |
Collapse
|
12
|
Ouzzine M, Antonio L, Burchell B, Netter P, Fournel-Gigleux S, Magdalou J. Importance of histidine residues for the function of the human liver UDP-glucuronosyltransferase UGT1A6: evidence for the catalytic role of histidine 370. Mol Pharmacol 2000; 58:1609-15. [PMID: 11093802 DOI: 10.1124/mol.58.6.1609] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The human UDP-glucuronosyltransferase isoform UGT1A6 catalyzes the nucleophilic attack of phenolic xenobiotics on glucuronic acid, leading to the formation of water-soluble glucuronides. Based on the irreversible inhibition of the enzyme activity by the histidyl-selective reagent diethyl pyrocarbonate (DEPC), histidine was suggested to play a key role in the glucuronidation reaction. Therefore, the role of four strictly conserved histidine residues (His38, His361, His370, and His485) in the glucuronidation of 4-methylumbelliferone, as reporter substrate, was examined using site-directed mutagenesis. For this purpose, stable heterologous expression of wild-type and mutant UGT1A6 was achieved in the yeast Pichia pastoris. Replacement of histidine residues by alanine or glutamine led to fully inactive H38A, H38Q, and H485A mutants. Substitution of His361 by alanine affected the interaction of the enzyme with the cosubstrate, as indicated by a 4-fold increase in the K(m) value toward UDP-glucuronic acid. Interestingly, H370A mutant presented a severely impaired catalytic efficiency (with a V(max) value approximately 5% that of the wild-type), whereas conservative substitution of His370 by glutamine (H370Q) led to a significant restoration of activity. Whereas H361A was inactivated by DEPC as the wild-type enzyme, this chemical reagent only produced a minor effect on either H370Q or H370A mutant, providing evidence that His370 is probably the reactive histidine residue targeted by DEPC. The dramatic changes in catalytic efficiency on substitution of His370 by alanine and the ability of glutamine to function in place of histidine along with a weak sensitivity of these mutants to DEPC strongly suggest that His370 plays a catalytic role in the glucuronidation reaction.
Collapse
Affiliation(s)
- M Ouzzine
- Unité Mixte de Recherche 7561 Centre National de la Recherche Scientifique-Université Henri Poincaré Nancy 1, Vandouvre-lès-Nancy, France
| | | | | | | | | | | |
Collapse
|
13
|
Tukey RH, Strassburg CP. Human UDP-glucuronosyltransferases: metabolism, expression, and disease. Annu Rev Pharmacol Toxicol 2000; 40:581-616. [PMID: 10836148 DOI: 10.1146/annurev.pharmtox.40.1.581] [Citation(s) in RCA: 1101] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In vertebrates, the glucuronidation of small lipophilic agents is catalyzed by the endoplasmic reticulum UDP-glucuronosyltransferases (UGTs). This metabolic pathway leads to the formation of water-soluble metabolites originating from normal dietary processes, cellular catabolism, or exposure to drugs and xenobiotics. This classic detoxification process, which led to the discovery nearly 50 years ago of the cosubstrate UDP-glucuronic acid (19), is now known to be carried out by 15 human UGTs. Characterization of the individual gene products using cDNA expression experiments has led to the identification of over 350 individual compounds that serve as substrates for this superfamily of proteins. This data, coupled with the introduction of sophisticated RNA detection techniques designed to elucidate patterns of gene expression of the UGT superfamily in human liver and extrahepatic tissues of the gastrointestinal tract, has aided in understanding the contribution of glucuronidation toward epithelial first-pass metabolism. In addition, characterization of the UGT1A locus and genetic studies directed at understanding the role of bilirubin glucuronidation and the biochemical basis of the clinical symptoms found in unconjugated hyperbilirubinemia have uncovered the structural gene polymorphisms associated with Crigler-Najjar's and Gilbert's syndrome. The role of the UGTs in metabolism and different disease states in humans is the topic of this review.
Collapse
Affiliation(s)
- R H Tukey
- Department of Chemistry & Biochemistry, Cancer Center, University of California, San Diego, La Jolla 92093, USA.
| | | |
Collapse
|
14
|
Dubois SG, Beaulieu M, Lévesque E, Hum DW, Bélanger A. Alteration of human UDP-glucuronosyltransferase UGT2B17 regio-specificity by a single amino acid substitution. J Mol Biol 1999; 289:29-39. [PMID: 10339403 DOI: 10.1006/jmbi.1999.2735] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The glucuronidation of steroid hormones is catalyzed by a family of UDP-glucuronosyltransferase (UGT) enzymes. Previously, two cDNA clones, UGT2B15 and UGT2B17, which encode UGT enzymes capable of glucuronidating C19steroids, were isolated and characterized. These proteins are 95% identical in primary structure; however, UGT2B17 is capable of conjugating C19steroid molecules at both the 3alpha and 17beta-OH positions, whereas UGT2B15 is only active at the 17beta-OH position. To identify the amino acid residue(s) which may account for this difference in substrate specificity, a comprehensive study on the role of 15 residues which differ between UGT2B15 and UGT2B17 was performed by site-directed mutagenesis. The stable expression of UGT2B17 mutant proteins into HK293 cells demonstrated that the mutation of isoleucine 125, valine 181 and valine 455 to the residues found in UGT2B15 did not alter enzyme activity nor substrate specificity. Furthermore, mutation of the variant residues in UGT2B15 (serine 124, asparagine 125, phenylalanine 165) to the amino acid residues found in UGT2B17 did not alter enzyme activity nor substrate specificity. However, mutation of the serine residue at position 121 of UGT2B17 to a tyrosine, as found in UGT2B15, abolished the ability of UGT2B17 to conjugate androsterone at the 3alpha position, but still retained activity for dihydrotestosterone and 5alpha-androstane-3alpha, 17beta-diol, which have an OH-group at the 17beta position. Interestingly, mutation of tyrosine 121 in UGT2B15 to a serine abolished activity for C19steroids. It is suggested that the serine residue at position 121 in UGT2B17 is required for activity towards the 3alpha and not for the 17beta position of C19steroids, whereas the tyrosine 121 in UGT2B15 is necessary for UGT activity. Despite the high homology between UGT2B15 and UGT2B17, it is apparent that different amino acid residues in the two proteins are required to confer conjugation of C19steroid molecules.
Collapse
Affiliation(s)
- S G Dubois
- Medical Research Council Group in Molecular Endocrinology, CHUL Research Center, Laval University, Québec, G1V 4G2, Canada
| | | | | | | | | |
Collapse
|
15
|
Strassburg CP, Manns MP, Tukey RH. Expression of the UDP-glucuronosyltransferase 1A locus in human colon. Identification and characterization of the novel extrahepatic UGT1A8. J Biol Chem 1998; 273:8719-26. [PMID: 9535849 DOI: 10.1074/jbc.273.15.8719] [Citation(s) in RCA: 217] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
UDP-glucuronosyltransferases (UGT) catalyze the conjugation of lipophilic exobiotic and endobiotic compounds, which leads to the excretion of hydrophilic glucuronides via bile or urine. By a mechanism of exon sharing, the transcripts of individual first exon cassettes located at the 5' end of the human UGT1A locus are spliced to exons 2-5, leading to the expression of at least nine individual UGT genes. Recently, the tissue-specific expression of the UGT1A locus has been demonstrated in extrahepatic tissue, leading to the identification of UGT1A7 and UGT1A10 mRNA (Strassburg, C. P., Oldhafer, K., Manns, M. P., and Tukey, R. H. (1997) Mol. Pharmacol. 52, 212). However, UGT1A expression has not been defined in human colon, which is a metabolically active, external surface organ and a common route of drug administration. UGT1A expression was analyzed in 5 colonic, 16 hepatic, 4 biliary, and 13 gastric human tissue specimens by quantitative duplex reverse transcription-polymerase chain reaction and Western blot analysis, demonstrating lower UGT1A mRNA in the extrahepatic tissues. The precise analysis of unique UGT1A transcripts by exon 1-specific duplex reverse transcription-polymerase chain reaction revealed the expression of UGT1A1, UGT1A3, UGT1A4, UGT1A6, and UGT1A9 in the colon, which are also present in human liver. In addition, the expression of extrahepatic UGT1A10 and UGT1A8 was demonstrated. UGT1A8 was found to be closely related to gastric UGT1A7 with a 93.8% identity of first exon sequences. Expressed UGT1A7 and UGT1A10 protein showed unique catalytic activity profiles, while UGT1A8 was not active with the substrates tested. The ability of UGT1A10 to glucuronidate estrone represents only the second example of a human estrone UGT. The highly related human UGT1A7-1A10 cluster is expressed in a tissue-specific fashion and underlines the role and diversity of physiological glucuronidation at the distal end of the digestive tract.
Collapse
Affiliation(s)
- C P Strassburg
- Department of Pharmacology, UCSD Cancer Center, University of California, San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
16
|
Beaulieu M, Lévesque E, Barbier O, Turgeon D, Bélanger G, Hum DW, Bélanger A. Isolation and characterization of a simian UDP-glucuronosyltransferase UGT2B18 active on 3-hydroxyandrogens. J Mol Biol 1998; 275:785-94. [PMID: 9480769 DOI: 10.1006/jmbi.1997.1486] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A monkey cDNA, UGT2B18, encoding a UDP-glucuronosyltransferase (UGT) active on 3-hydroxyandrogens, has been isolated and characterized. Previous results suggested that the monkey represents the most appropriate animal model for studying the physiologic relevance of steroid UGTs. UGT2B18 was isolated from a cynomolgus monkey prostate cDNA library using human UGT2B7, UGT2B10 and UGT2B15 cDNA as probes. The cDNA is 1748 bp in length and contains an open reading frame of 1587 bp encoding a protein of 529 residues. The UGT2B18 cDNA clone was transfected into HK293 cells and a stable cell line expressing UGT2B18 protein was established. Western blot analysis of the UGT2B18-HK293 cell line using a human UGT2B17 polyclonal antibody (EL-93) revealed high expression of a 53 kDa UGT2B protein. The transferase activity of UGT2B18 was tested with over 60 compounds and was demonstrated to be principally active on C19 steroids having an hydroxyl group at position 3alpha of the steroid molecule. UGT2B18 was also active on planar phenols and bile acids. Kinetic analysis revealed that UGT2B18 glucuronidates 3-hydroxyandrogens with high velocity and affinity. Using cell homogenates, Km values of 5.1, 7.8 and 23 microM for androsterone (ADT), etiocholanolone and androstane-3alpha, 17beta diol (3alpha-diol) were obtained, respectively. Specific RT-PCR analysis demonstrated the expression of UGT2B18 transcripts in several tissues including liver, prostate, kidney, testis, adrenal, bile duct, bladder, colon, small intestine, cerebellum and pancreas suggesting a contribution of this isoenzyme to the high plasma levels of glucuronidated ADT and 3alpha-diol found in the cynomolgus monkey.
Collapse
Affiliation(s)
- M Beaulieu
- Medical Research Council Group in Molecular Endocrinology, CHUL Research Center, Laval University, Quebec, G1V 4G2, Canada
| | | | | | | | | | | | | |
Collapse
|
17
|
Bélanger G, Beaulieu M, Lévesque E, Hum DW, Bélanger A. Expression and characterization of a novel UDP-glucuronosyltransferase, UGT2B9, from cynomolgus monkey. DNA Cell Biol 1997; 16:1195-205. [PMID: 9364930 DOI: 10.1089/dna.1997.16.1195] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Uridine diphosphate glucuronosyltransferases (UGTs) are important phase II detoxification enzymes. Despite the expression of UGT proteins in many species, previous results have suggested that simians represent the most appropriate animal model to study the glucuronidation of steroids in extrahepatic steroid target tissues. Northern blot analysis using a pool of human UGT2B cDNA probes demonstrated the expression of homologous UGT2B transcripts in several tissues including the liver, kidney, adrenal, breast, testis, and prostate of the cynomolgus monkey (Macacafascicularis). Western blot analyses using a polyclonal antibody raised against human UGT2B17 protein also demonstrated expression of homologous UGT2B proteins in monkey tissues. cDNA libraries were constructed from monkey liver and prostate mRNA and a novel UGT2B cDNA, UGT2B9, was isolated from both libraries. The UGT2B cDNA from the prostate library is 2,648 bp in length and contains an open reading frame of 1,587 bp encoding a protein of 529 residues. In vitro transcription/translation of the cDNA clone produced a protein of 52 kD. The UGT2B9 cDNA clone was transfected into HK293 cells and a stable cell line expressing UGT2B9 protein was established. The activity of UGT2B9 was tested with over 60 compounds and was demonstrated to be active on C18, C19, and C21 steroids, bile acids, and several xenobiotics including eugenol, 1-naphthol, and p-nitrophenol. Kinetic analysis revealed that UGT2B9 glucuronidates steroids with high affinity and efficiency with Km values of 0.2, 3.2, 0.2, and 1.8 microM for dihydrotestosterone, testosterone, androsterone, and 1,3,5,10-estratrien-3,4-diol-17-one, respectively. It is apparent that this simian UGT2B enzyme is specific for more different classes of steroids than any other UGT enzyme characterized to date, and may be related to the high plasma levels of glucuronidated C19 steroids found in the cynomolgus monkey.
Collapse
Affiliation(s)
- G Bélanger
- Medical Research Council Group in Molecular Endocrinology, CHUL Research Center and Laval University, Québec, Canada
| | | | | | | | | |
Collapse
|