1
|
Reed B, Yakovleva L, Shuman S, Ghose R. Characterization of DNA Binding by the Isolated N-Terminal Domain of Vaccinia Virus DNA Topoisomerase IB. Biochemistry 2017; 56:3307-3317. [PMID: 28570045 DOI: 10.1021/acs.biochem.7b00042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vaccinia TopIB (vTopIB), a 314-amino acid eukaryal-type IB topoisomerase, recognizes and transesterifies at the DNA sequence 5'-(T/C)CCTT↓, leading to the formation of a covalent DNA-(3'-phosphotyrosyl274)-enzyme intermediate in the supercoil relaxation reaction. The C-terminal segment of vTopIB (amino acids 81-314), which engages the DNA minor groove at the scissile phosphodiester, comprises an autonomous catalytic domain that retains cleavage specificity, albeit with a cleavage site affinity lower than that of the full-length enzyme. The N-terminal domain (amino acids 1-80) engages the major groove on the DNA face opposite the scissile phosphodiester. Whereas DNA contacts of the N-terminal domain have been implicated in the DNA site affinity of vTopIB, it was not known whether the N-terminal domain per se could bind DNA. Here, using isothermal titration calorimetry, we demonstrate the ability of the isolated N-terminal domain to bind a CCCTT-containing 24-mer duplex with an apparent affinity that is ∼2.2-fold higher than that for an otherwise identical duplex in which the pentapyrimidine sequence is changed to ACGTG. Analyses of the interactions of the isolated N-terminal domain with duplex DNA via solution nuclear magnetic resonance methods are consistent with its DNA contacts observed in DNA-bound crystal structures of full-length vTopIB. The chemical shift perturbations and changes in hydrodynamic properties triggered by CCCTT DNA versus non-CCCTT DNA suggest differences in DNA binding dynamics. The importance of key N-terminal domain contacts in the context of full-length vTopIB is underscored by assessing the effects of double-alanine mutations on DNA transesterification and its sensitivity to ionic strength.
Collapse
Affiliation(s)
- Benjamin Reed
- Department of Chemistry and Biochemistry, The City College of New York , New York, New York 10031, United States
| | - Lyudmila Yakovleva
- Molecular Biology Program, Sloan-Kettering Institute , New York, New York 10021, United States
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute , New York, New York 10021, United States
| | - Ranajeet Ghose
- Department of Chemistry and Biochemistry, The City College of New York , New York, New York 10031, United States
| |
Collapse
|
2
|
Rajan R, Osterman AK, Gast AT, Mondragón A. Biochemical characterization of the topoisomerase domain of Methanopyrus kandleri topoisomerase V. J Biol Chem 2014; 289:28898-909. [PMID: 25135643 DOI: 10.1074/jbc.m114.590711] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Topoisomerases are ubiquitous enzymes that modify the topological state of DNA inside the cell and are essential for several cellular processes. Topoisomerase V is the sole member of the type IC topoisomerase subtype. The topoisomerase domain has a unique fold among topoisomerases, and the putative active site residues show a distinct arrangement. The present study was aimed at identifying the roles of the putative active site residues in the DNA cleavage/religation process. Residues Arg-131, Arg-144, His-200, Glu-215, Lys-218, and Tyr-226 were mutated individually to a series of conservative and non-conservative amino acids, and the DNA relaxation activity at different pH values, times, and enzyme concentrations was compared with wild-type activity. The results suggest that Arg-144 is essential for protein stability because any substitution at this position was deleterious and that Arg-131 and His-200 are involved in transition state stabilization. Glu-215 reduces the DNA binding ability of topoisomerase V, especially in shorter fragments with fewer helix-hairpin-helix DNA binding motifs. Finally, Lys-218 appears to play a direct role in catalysis but not in charge stabilization of the protein-DNA intermediate complex. The results suggest that although catalytically important residues are oriented in different fashions in the active sites of type IB and type IC topoisomerases, similar amino acids play equivalent roles in both of these subtypes of enzymes, showing convergent evolution of the catalytic mechanism.
Collapse
Affiliation(s)
- Rakhi Rajan
- From the Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208
| | - Amy K Osterman
- From the Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208
| | - Alexandra T Gast
- From the Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208
| | - Alfonso Mondragón
- From the Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208
| |
Collapse
|
3
|
Yakovleva L, Shuman S. Chemical mutagenesis of vaccinia DNA topoisomerase lysine 167 provides insights to the catalysis of DNA transesterification. Biochemistry 2013; 52:984-91. [PMID: 23317114 DOI: 10.1021/bi301643h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Vaccinia DNA topoisomerase IB (TopIB) relaxes supercoils by forming and resealing a covalent DNA-(3'-phosphotyrosyl(274))-enzyme intermediate. Conserved active site side chains promote the attack of Tyr274 on the scissile phosphodiester via transition state stabilization and general acid catalysis. Two essential side chains, Lys167 and Arg130, act in concert to protonate and expel the 5'-O leaving group. Here we gained new insights to catalysis through chemical mutagenesis of Lys167. Changing Lys167 to cysteine crippled the DNA cleavage and religation transesterification steps (k(cl) = 4.3 × 10(-4) s(-1); k(rel) = 9 × 10(-4) s(-1)). The transesterification activities of the K167C enzyme were revived by in vitro alkylation with 2-bromoethylamine (k(cl) = 0.031 s(-1); k(rel) ≥ 0.4 s(-1)) and 3-bromopropylamine (k(cl) = 0.013 s(-1); k(rel) = 0.22 s(-1)), which convert the cysteines to γ-thialysine and γ-thiahomolysine, respectively. These chemically installed lysine analogues were more effective than a genetically programmed arginine 167 substitution characterized previously. The modest differences in the transesterification rates of the 2-bromoethylamine- and 3-bromopropylamine-treated enzymes highlight that TopIB is tolerant of a longer homolysine side chain for assembly of the active site and formation of the transition state.
Collapse
Affiliation(s)
- Lyudmila Yakovleva
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, United States
| | | |
Collapse
|
4
|
Bugreev DV, Nevinskiĭ GA. [The structure and mechanism of the action of type-IB DNA topoisomerases]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2010; 36:293-311. [PMID: 20644584 DOI: 10.1134/s1068162010030015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
DNA topoisomerases responsible for the superspiralization of genomic DNA participate in almost all vitally important cell processes, including replication, transcription, and recombination, and are essential for normal cell functioning. The present review summarizes published data for type-IB topoisomerases. The results concerning the thermodynamic, structural, and kinetic aspects of the functioning of topoisomerases and the peculiarities of the mechanisms of their action have been analyzed for the first time.
Collapse
|
5
|
Gibb B, Gupta K, Ghosh K, Sharp R, Chen J, Van Duyne GD. Requirements for catalysis in the Cre recombinase active site. Nucleic Acids Res 2010; 38:5817-32. [PMID: 20462863 PMCID: PMC2943603 DOI: 10.1093/nar/gkq384] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Members of the tyrosine recombinase (YR) family of site-specific recombinases catalyze DNA rearrangements using phosphoryl transfer chemistry that is identical to that used by the type IB topoisomerases (TopIBs). To better understand the requirements for YR catalysis and the relationship between the YRs and the TopIBs, we have analyzed the in vivo and in vitro recombination activities of all substitutions of the seven active site residues in Cre recombinase. We have also determined the structure of a vanadate transition state mimic for the Cre-loxP reaction that facilitates interpretation of mutant activities and allows for a comparison with similar structures from the related topoisomerases. We find that active site residues shared by the TopIBs are most sensitive to substitution. Only two, the tyrosine nucleophile and a conserved lysine residue that activates the 5'-hydroxyl leaving group, are strictly required to achieve >5% of wild-type activity. The two conserved arginine residues each tolerate one substitution that results in modest recombination activity and the remaining three active site positions can be substituted with several alternative amino acids while retaining a significant amount of activity. The results are discussed in the context of YR and TopIB structural models and data from related YR systems.
Collapse
Affiliation(s)
- Bryan Gibb
- Department of Biochemistry and Biophysics and Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
Topoisomerases are ubiquitous proteins found in all three domains of life. They change the topology of DNA via transient breaks on either one or two of the DNA strands to allow passage of another single or double DNA strand through the break. Topoisomerases are classified into two types: type I enzymes cleave one DNA strand and pass either one or two DNA strands through the break before resealing it, while type II molecules cleave both DNA strands in concert and pass another double strand through the break followed by religation of the double strand break. Here we review recent work on the structure of type I enzymes. These structural studies are providing atomic details that, together with the existing wealth of biochemical and biophysical data, are bringing our understanding of the mechanism of action of these enzymes to the atomic level.
Collapse
Affiliation(s)
- Nicole M Baker
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
| | | | | |
Collapse
|
7
|
Frøhlich RF, Juul S, Nielsen MB, Vinther M, Veigaard C, Hede MS, Andersen FF. Identification of a minimal functional linker in human topoisomerase I by domain swapping with Cre recombinase. Biochemistry 2008; 47:7127-36. [PMID: 18553933 DOI: 10.1021/bi800031k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cellular forms of type IB topoisomerases distinguish themselves from their viral counterparts and the tyrosine recombinases to which they are closely related by having rather extensive N-terminal and linker domains. The functions and necessity of these domains are not yet fully unraveled. In this study we replace 86 amino acids including the linker domain of the cellular type IB topoisomerase, human topoisomerase I, with four, six, or eight amino acids from the corresponding short loop region in Cre recombinase. In vitro characterization of the resulting chimeras, denoted Cropos, reveals that six amino acids from the Cre linker loop constitute the minimal length of a functional linker in human topoisomerase I.
Collapse
Affiliation(s)
- Rikke From Frøhlich
- Department of Molecular Biology and Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, Denmark
| | | | | | | | | | | | | |
Collapse
|
8
|
Yakovleva L, Chen S, Hecht SM, Shuman S. Chemical and traditional mutagenesis of vaccinia DNA topoisomerase provides insights to cleavage site recognition and transesterification chemistry. J Biol Chem 2008; 283:16093-103. [PMID: 18367446 DOI: 10.1074/jbc.m801595200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Vaccinia DNA topoisomerase IB (TopIB) relaxes supercoils by forming and resealing a covalent DNA-(3'-phosphotyrosyl)-enzyme intermediate. Here we gained new insights to the TopIB mechanism through "chemical mutagenesis." Meta-substituted analogs of Tyr(274) were introduced by in vitro translation in the presence of a chemically misacylated tRNA. We report that a meta-OH reduced the rate of DNA cleavage 130-fold without affecting the rate of religation. By contrast, meta-OCH(3) and NO(2) groups elicited only a 6-fold decrement in cleavage rate. We propose that the meta-OH uniquely suppresses deprotonation of the para-OH nucleophile during the cleavage step. Assembly of the vaccinia TopIB active site is triggered by protein contacts with a specific DNA sequence 5'-C(+5)C(+4)C(+3)T(+2)T(+1)p downward arrowN (where downward arrow denotes the cleavage site). A signature alpha-helix of the poxvirus TopIB ((132)GKMKYLKENETVG(144)) engages the target site in the major groove and thereby recruits catalytic residue Arg(130) to the active site. The effects of 11 missense mutations at Tyr(136) highlight the importance of van der Waals interactions with the 3'-G(+4)pG(+3)p dinucleotide of the nonscissile strand for DNA cleavage and supercoil relaxation. Asn(140) and Thr(142) donate hydrogen bonds to the pro-(S(p))-oxygen of the G(+3)pA(+2) phosphodiester of the nonscissile strand. Lys(133) and Lys(135) interact with purine nucleobases in the major groove. Whereas none of these side chains is essential per se, an N140A/T142A double mutation reduces the rate of supercoil relaxation and DNA cleavage by 120- and 30-fold, respectively, and a K133A/K135A double mutation slows relaxation and cleavage by 120- and 35-fold, respectively. These results underscore functional redundancy at the TopIB-DNA interface.
Collapse
Affiliation(s)
- Lyudmila Yakovleva
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | | | | | | |
Collapse
|
9
|
Whiteson KL, Chen Y, Chopra N, Raymond AC, Rice PA. Identification of a potential general acid/base in the reversible phosphoryl transfer reactions catalyzed by tyrosine recombinases: Flp H305. ACTA ACUST UNITED AC 2007; 14:121-9. [PMID: 17317566 PMCID: PMC1857323 DOI: 10.1016/j.chembiol.2007.01.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Accepted: 01/30/2007] [Indexed: 11/23/2022]
Abstract
Flp provides a unique opportunity to apply the tools of chemical biology to phosphoryl transfer reactions. Flp and other tyrosine recombinases catalyze site-specific DNA rearrangements via a phosphotyrosine intermediate. Unlike most related enzymes, Flp's nucleophilic tyrosine derives from a different protomer than the remainder of its active site. Because the tyrosine can be supplied exogenously, nonnatural synthetic analogs can be used. Here we examine the catalytic role of Flp's conserved H305. DNA cleavage was studied using a peptide containing either tyrosine (pKa congruent with 10) or 3-fluoro-tyrosine (pKa congruent with 8.4). Religation was studied using DNA substrates with 3'-phospho-cresol (pKa congruent with 10) or 3'-para-nitro-phenol (pKa congruent with 7.1). In both cases, the tyrosine analog with the lower pKa specifically restored the activity of an H305 mutant. These results provide experimental evidence that this conserved histidine functions as a general acid/base catalyst in tyrosine recombinases.
Collapse
Affiliation(s)
| | | | - Neeraj Chopra
- Biochemistry and Molecular Biology Department, University of Chicago, 929 E. 57 St. CIS W125, Current: Department of Pathology, The University of Chicago, N344, 5841 South Maryland Avenue, Chicago, Illinois 60637,
| | - Amy C. Raymond
- deCODE biostructures, 7869 NE Day Road West, Bainbridge Island, WA 98110, Current: Sloan-Kettering Institute 1275 York Ave., Box 73, New York, NY 10021,
| | - Phoebe A. Rice
- Biochemistry and Molecular Biology Department, The University of Chicago, 929 E. 57 St. CIS W125, Chicago, IL 60637, , phone: 773 834 1723, fax: 773 702 0439
| |
Collapse
|
10
|
Benarroch D, Claverie JM, Raoult D, Shuman S. Characterization of mimivirus DNA topoisomerase IB suggests horizontal gene transfer between eukaryal viruses and bacteria. J Virol 2007; 80:314-21. [PMID: 16352556 PMCID: PMC1317558 DOI: 10.1128/jvi.80.1.314-321.2006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mimivirus, a parasite of Acanthamoeba polyphaga, is the largest DNA virus known; it encodes dozens of proteins with imputed functions in nucleic acid transactions. Here we produced, purified, and characterized mimivirus DNA topoisomerase IB (TopIB), which we find to be a structural and functional homolog of poxvirus TopIB and the poxvirus-like topoisomerases discovered recently in bacteria. Arginine, histidine, and tyrosine side chains responsible for TopIB transesterification are conserved and essential in mimivirus TopIB. Moreover, mimivirus TopIB is capable of incising duplex DNA at the 5'-CCCTT cleavage site recognized by all poxvirus topoisomerases. Based on the available data, mimivirus TopIB appears functionally more akin to poxvirus TopIB than bacterial TopIB, despite its greater primary structure similarity to the bacterial TopIB group. We speculate that the ancestral bacterial/viral TopIB was disseminated by horizontal gene transfer within amoebae, which are permissive hosts for either intracellular growth or persistence of many present-day bacterial species that have a type IB topoisomerase.
Collapse
Affiliation(s)
- Delphine Benarroch
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA
| | | | | | | |
Collapse
|
11
|
Das BB, Bose Dasgupta S, Ganguly A, Mazumder S, Roy A, Majumder HK. Leishmania donovanibisubunit topoisomerase I gene fusion leads to an active enzyme with conserved type IB enzyme function. FEBS J 2006; 274:150-63. [PMID: 17222179 DOI: 10.1111/j.1742-4658.2006.05572.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
All eukaryotic topoisomerase I enzymes are monomeric enzymes, whereas the kinetoplastid family (Trypanosoma and Leishmania) possess an unusual bisubunit topoisomerase I. To determine what happens to the enzyme architecture and catalytic property if the two subunits are fused, and to explore the functional relationship between the two subunits, we describe here in vitro gene fusion of Leishmania bisubunit topoisomerase I into a single ORF encoding a new monomeric topoisomerase I (LdTOPIL-fus-S). It was found that LdTOPIL-fus-S is active. Gene fusion leads to a significant modulation of in vitro topoisomerase I activity compared to the wild-type heterodimeric enzyme (LdTOPILS). Interestingly, an N-terminal truncation mutant (1-210 amino acids) of the small subunit, when fused to the intact large subunit [LdTOPIL-fus-Delta(1-210)S], showed reduced topoisomerase I activity and camptothecin sensitivity in comparison to LdTOPIL-fus-S. Investigation of the reduction in enzyme activity indicated that the nonconserved 1-210 residues of LdTOPIS probably act as a 'pseudolinker' domain between the core and catalytic domain of the fused Leishmania enzyme, whereas mutational analysis of conserved His453 in the core DNA-binding domain (LdTOPIL) strongly suggested that its role is to stabilize the enzyme-DNA transition state through hydrogen bonding to one of the nonbridging oxygens. Taken together, our findings provide an insight into the details of the unusual structure of bisubunit topoisomerase I of Leishmania donovani.
Collapse
Affiliation(s)
- Benu B Das
- Department of Molecular Parasitology, Indian Institute of Chemical Biology, Kolkata, India
| | | | | | | | | | | |
Collapse
|
12
|
Tian L, Shuman S. Vaccinia topoisomerase mutants illuminate roles for Phe59, Gly73, Gln69 and Phe215. Virology 2006; 359:466-76. [PMID: 17059840 DOI: 10.1016/j.virol.2006.08.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 08/23/2006] [Accepted: 08/29/2006] [Indexed: 11/22/2022]
Abstract
Vaccinia topoisomerase provides a model system for structure-function analysis of the type IB topoisomerase family. Here we performed an alanine scan of eight positions in the beta4 and beta5 strands of the N-terminal domain (Leu57, Ile58, Phe59, Val60, Gly61, Ser62, Gln69 and Gly73) and eight positions in the alpha8-alpha9 loop of the C-terminal catalytic domain (Ser241, Ile242, Ser243, Pro244, Leu245, Pro246, Ser247, and Pro248). Mutants F59A, G73A, and Q69A displayed rate defects in relaxing supercoiled DNA that were attributed to effects on DNA binding rather than transesterification chemistry. Replacing Gln69 conservatively with Asn, Glu or Lys failed to restore relaxation activity. Gln69 is located along a concave DNA-binding surface of the N-terminal domain and it makes direct contact with the +2A base of the 5'-CCCTT/3-GGGAA target site for DNA cleavage. Gly73 is located at the junction between the N-terminal domain and catalytic domain and it is likely to act as a swivel for the large domain movements that coordinate DNA ingress and closure of the topoisomerase clamp around the duplex. Previous alanine scanning had identified Phe215 in helix alpha7 of the catalytic domain as contributing to DNA relaxation activity. Here we find that F215L resembles F215A in its diminished relaxation activity and its sensitivity to inhibition by salt. The Phe215 side chain makes van der Waals contacts to Ile98, Met121 and Phe101, which we propose stabilize a three helix bundle and promote clamp closure.
Collapse
Affiliation(s)
- Ligeng Tian
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA
| | | |
Collapse
|
13
|
Hwang Y, Minkah N, Perry K, Van Duyne GD, Bushman FD. Regulation of catalysis by the smallpox virus topoisomerase. J Biol Chem 2006; 281:38052-60. [PMID: 17032643 DOI: 10.1074/jbc.m608858200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The poxvirus type IB topoisomerases catalyze relaxation of supercoiled DNA by cleaving and rejoining DNA strands via a pathway involving a covalent phosphotyrosine intermediate. Recently we determined structures of the smallpox virus topoisomerase bound to DNA in covalent and non-covalent DNA complexes using x-ray crystallography. Here we analyzed the effects of twenty-two amino acid substitutions on the topoisomerase activity in vitro in assays of DNA relaxation, single cycle cleavage, and equilibrium cleavage-religation. Alanine substitutions at 14 positions impaired topoisomerase function, marking a channel of functionally important contacts along the protein-DNA interface. Unexpectedly, alanine substitutions at two positions (D168A and E124A) accelerated the forward rate of cleavage. These findings and further analysis indicate that Asp(168) is a key regulator of the active site that maintains an optimal balance among the DNA cleavage, religation, and product release steps. Finally, we report that high level expression of the D168A topoisomerase in Escherichia coli, but not other alanine-substituted enzymes, prevented cell growth. These findings help elucidate the amino acid side chains involved in DNA binding and catalysis and provide guidance for designing topoisomerase poisons for use as smallpox antivirals.
Collapse
MESH Headings
- Amino Acid Substitution
- Base Sequence
- Catalysis
- Catalytic Domain/genetics
- DNA Topoisomerases, Type I/chemistry
- DNA Topoisomerases, Type I/genetics
- DNA Topoisomerases, Type I/metabolism
- DNA, Superhelical/chemistry
- DNA, Superhelical/genetics
- DNA, Superhelical/metabolism
- DNA, Viral/chemistry
- DNA, Viral/genetics
- DNA, Viral/metabolism
- Escherichia coli/genetics
- Kinetics
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Nucleic Acid Conformation
- Protein Conformation
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Variola virus/enzymology
- Variola virus/genetics
Collapse
Affiliation(s)
- Young Hwang
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
14
|
Perry K, Hwang Y, Bushman FD, Van Duyne GD. Structural basis for specificity in the poxvirus topoisomerase. Mol Cell 2006; 23:343-54. [PMID: 16885024 DOI: 10.1016/j.molcel.2006.06.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 05/02/2006] [Accepted: 06/12/2006] [Indexed: 12/21/2022]
Abstract
Although smallpox has been eradicated from the human population, it is presently feared as a possible agent of bioterrorism. The smallpox virus codes for its own topoisomerase enzyme that differs from its cellular counterpart by requiring a specific DNA sequence for activation of catalysis. Here we present crystal structures of the smallpox virus topoisomerase enzyme bound both covalently and noncovalently to a specific DNA sequence. These structures reveal the basis for site-specific DNA recognition, and they explain how catalysis is likely activated by formation of a specific enzyme-DNA interface. Unexpectedly, the poxvirus enzyme uses a major groove binding alpha helix that is not present in the human enzyme to recognize part of the core recognition sequence and activate the enzyme for catalysis. The topoisomerase-DNA complex structures also provide a three-dimensional framework that may facilitate the rational design of therapeutic agents to treat poxvirus infections.
Collapse
Affiliation(s)
- Kay Perry
- University of Pennsylvania School of Medicine, Department of Biochemistry and Biophysics and Howard Hughes Medical Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
15
|
Taneja B, Patel A, Slesarev A, Mondragón A. Structure of the N-terminal fragment of topoisomerase V reveals a new family of topoisomerases. EMBO J 2006; 25:398-408. [PMID: 16395333 PMCID: PMC1383508 DOI: 10.1038/sj.emboj.7600922] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Accepted: 11/23/2005] [Indexed: 11/08/2022] Open
Abstract
Topoisomerases are involved in controlling and maintaining the topology of DNA and are present in all kingdoms of life. Unlike all other types of topoisomerases, similar type IB enzymes have only been identified in bacteria and eukarya. The only putative type IB topoisomerase in archaea is represented by Methanopyrus kandleri topoisomerase V. Despite several common functional characteristics, topoisomerase V shows no sequence similarity to other members of the same type. The structure of the 61 kDa N-terminal fragment of topoisomerase V reveals no structural similarity to other topoisomerases. Furthermore, the structure of the active site region is different, suggesting no conservation in the cleavage and religation mechanism. Additionally, the active site is buried, indicating the need of a conformational change for activity. The presence of a topoisomerase in archaea with a unique structure suggests the evolution of a separate mechanism to alter DNA.
Collapse
Affiliation(s)
- Bhupesh Taneja
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL, USA
| | - Asmita Patel
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL, USA
| | | | - Alfonso Mondragón
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL, USA
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3500, USA. Tel.: +1 847 491 7726; Fax: +1 847 467 6489; E-mail:
| |
Collapse
|
16
|
Patel A, Shuman S, Mondragón A. Crystal structure of a bacterial type IB DNA topoisomerase reveals a preassembled active site in the absence of DNA. J Biol Chem 2005; 281:6030-7. [PMID: 16368685 DOI: 10.1074/jbc.m512332200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type IB DNA topoisomerases are found in all eukarya, two families of eukaryotic viruses (poxviruses and mimivirus), and many genera of bacteria. They alter DNA topology by cleaving and resealing one strand of duplex DNA via a covalent DNA-(3-phosphotyrosyl)-enzyme intermediate. Bacterial type IB enzymes were discovered recently and are described as poxvirus-like with respect to their small size, primary structures, and bipartite domain organization. Here we report the 1.75-A crystal structure of Deinococcus radiodurans topoisomerase IB (DraTopIB), a prototype of the bacterial clade. DraTopIB consists of an amino-terminal (N) beta-sheet domain (amino acids 1-90) and a predominantly alpha-helical carboxyl-terminal (C) domain (amino acids 91-346) that closely resemble the corresponding domains of vaccinia virus topoisomerase IB. The five amino acids of DraTopIB that comprise the catalytic pentad (Arg-137, Lys-174, Arg-239, Asn-280, and Tyr-289) are preassembled into the active site in the absence of DNA in a manner nearly identical to the pentad configuration in human topoisomerase I bound to DNA. This contrasts with the apoenzyme of vaccinia topoisomerase, in which three of the active site constituents are either displaced or disordered. The N and C domains of DraTopIB are splayed apart in an "open" conformation, in which the surface of the catalytic domain containing the active site is exposed for DNA binding. A comparison with the human topoisomerase I-DNA cocrystal structure suggests how viral and bacterial topoisomerase IB enzymes might bind DNA circumferentially via movement of the N domain into the major groove and clamping of a disordered loop of the C domain around the helix.
Collapse
Affiliation(s)
- Asmita Patel
- Department of Biochemistry, Molecular and Cell Biology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
| | | | | |
Collapse
|
17
|
Tian L, Claeboe CD, Hecht SM, Shuman S. Mechanistic Plasticity of DNA Topoisomerase IB: Phosphate Electrostatics Dictate the Need for a Catalytic Arginine. Structure 2005; 13:513-20. [PMID: 15837190 DOI: 10.1016/j.str.2005.02.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 12/16/2004] [Accepted: 12/17/2004] [Indexed: 11/24/2022]
Abstract
Four conserved amino acids of type IB topoisomerases (Arg130, Lys167, Arg223, and His265 in vaccinia topoisomerase) catalyze the attack by tyrosine on the scissile phosphodiester to form a DNA-(3'-phosphotyrosyl)-enzyme intermediate. The mechanism entails general acid catalysis (by Lys167 and Arg130) and transition-state stabilization (via contact of His265 with the pro-Sp oxygen). Here we query the function of Arg223, which accelerates transesterification by a factor of 10(5). The requirement for Arg223 is alleviated by a neutral Sp methylphosphonate (MeP) linkage at the cleavage site. Arg223 is not required for the 30,000-fold activation of the latent endonuclease activity of topoisomerase by the Sp MeP. The rate of autohydrolysis by the DNA-(3'-MeP)-topoisomerase intermediate approaches 10% of the rate of religation to a 5'-OH DNA strand. These findings underscore the importance of transition-state electrostatics in determining the composition of the active site and dictating the balance between strand transferase and hydrolase functions.
Collapse
Affiliation(s)
- Ligeng Tian
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | | | | | |
Collapse
|
18
|
Tian L, Claeboe CD, Hecht SM, Shuman S. Remote phosphate contacts trigger assembly of the active site of DNA topoisomerase IB. Structure 2004; 12:31-40. [PMID: 14725763 DOI: 10.1016/j.str.2003.11.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Vaccinia topoisomerase IB forms a covalent DNA-(3'-phosphotyrosyl)-enzyme intermediate at its target site 5'-CCCTTp downward arrow in duplex DNA. The contributions of backbone electrostatics and individual phosphate oxygens to the transesterification reaction were probed by introducing 22 single Rp and Sp methylphosphonate diastereomers at 11 positions flanking the cleavage site. Methyl groups at eight positions (four on the scissile strand and four on the nonscissile strand) inhibited the rate of single-turnover cleavage by factors of 50-50,000. Stereospecific interference was observed at several phosphates, thereby distinguishing simple electrostatic contributions from putative specific polar contacts to either the pro-Sp or pro-Rp oxygens. The functionally relevant phosphate oxygens are located on the minor groove face of the helix on which the scissile phosphodiester resides. Our findings, combined with available crystal structures of vaccinia and human topoisomerase IB, show how specific phosphate contacts remote from where chemistry occurs are critical for assembly of the active site.
Collapse
Affiliation(s)
- Ligeng Tian
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA
| | | | | | | |
Collapse
|
19
|
Letzelter C, Duguet M, Serre MC. Mutational analysis of the archaeal tyrosine recombinase SSV1 integrase suggests a mechanism of DNA cleavage in trans. J Biol Chem 2004; 279:28936-44. [PMID: 15123675 DOI: 10.1074/jbc.m403971200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The only tyrosine recombinase so far studied in archaea, the SSV1 integrase, harbors several changes in the canonical residues forming the catalytic pocket of this family of recombinases. This raised the possibility of a different mechanism for archaeal tyrosine recombinase. The residues of Int(SSV) tentatively involved in catalysis were modified by site-directed mutagenesis, and the properties of the corresponding mutants were studied. The results show that all of the targeted residues are important for activity, suggesting that the archaeal integrase uses a mechanism similar to that of bacterial or eukaryotic tyrosine recombinases. In addition, we show that Int(SSV) exhibits a type IB topoisomerase activity because it is able to relax both positive and negative supercoils. Interestingly, in vitro complementation experiments between the inactive integrase mutant Y314F and all other inactive mutants restore in all cases enzymatic activity. This suggests that, as for the yeast Flp recombinase, the active site is assembled by the interaction of the tyrosine from one monomer with the other residues from another monomer. The shared active site paradigm of the eukaryotic Flp protein may therefore be extended to the archaeal tyrosine recombinase Int(SSV).
Collapse
Affiliation(s)
- Claire Letzelter
- Laboratoire d'Enzymologie des Acides Nucléiques, Institut de Génétique et Microbiologie, Bātiment 400, Université Paris Sud, Orsay Cedex 91405, France
| | | | | |
Collapse
|
20
|
Chen Y, Rice PA. New insight into site-specific recombination from Flp recombinase-DNA structures. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2003; 32:135-59. [PMID: 12598365 DOI: 10.1146/annurev.biophys.32.110601.141732] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The lamba integrase, or tyrosine-based family of site-specific recombinases, plays an important role in a variety of biological processes by inserting, excising, and inverting DNA segments. Flp, encoded by the yeast 2-mum plasmid, is the best-characterized eukaryotic member of this family and is responsible for maintaining the copy number of this plasmid. Over the past several years, structural and biochemical studies have shed light on the details of a common catalytic scheme utilized by these enzymes with interesting variations under different biological contexts. The emergence of new Flp structures and solution data provides insights not only into its unique mechanism of active site assembly and activity regulation but also into the specific contributions of certain protein residues to catalysis.
Collapse
Affiliation(s)
- Yu Chen
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
21
|
Yakovleva L, Tian L, Sayer JM, Kalena GP, Kroth H, Jerina DM, Shuman S. Site-specific DNA transesterification by vaccinia topoisomerase: effects of benzo[alpha]pyrene-dA, 8-oxoguanine, 8-oxoadenine and 2-aminopurine modifications. J Biol Chem 2003; 278:42170-7. [PMID: 12909623 DOI: 10.1074/jbc.m308079200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Vaccinia DNA topoisomerase forms a covalent DNA-(3'-phosphotyrosyl)-enzyme intermediate at a specific target site 5'-C+5C+4C+3T+2T+1p downward arrow N-1 in duplex DNA. Here we study the effects of base modifications on the rate and extent of single-turnover DNA transesterification. Chiral trans opened C-10 R and S adducts of benzo[a]pyrene (BP) 7,8-diol 9,10-epoxide were introduced at single N6-deoxyadenosine (dA) positions within the 3'-G+5G+4G+3A+2A+1T-1A-2 sequence of the nonscissile DNA strand. The R and S BPdA adducts intercalate from the major groove on the 5' and 3' sides of the modified base, respectively, and perturb local base stacking. We found that R and S BPdA modifications at +1A reduced the transesterification rate by a factor of 700-1000 without affecting the yield of the covalent topoisomerase-DNA complex. BPdA modifications at +2A reduced the extent of transesterification and elicited rate decrements of 200- and 7000-fold for the S and R diastereomers, respectively. In contrast, BPdA adducts at the -2 position had no effect on the extent of the reaction and relatively little impact on the rate of cleavage. A more subtle probe of major groove contacts entailed substituting each of the purines of the nonscissile strand with its 8-oxo analog. The +3 oxoG modification slowed transesterification 35-fold, whereas other 8-oxo modifications were benign. 8-Oxo substitutions at the -1 position in the scissile strand slowed single-turnover cleavage by a factor of six but had an even greater slowing effect on religation, which resulted in an increase in the cleavage equilibrium constant. 2-Aminopurine at positions +3, +4, or +5 in the nonscissile strand had no effect on transesterification per se but had synergistic effects when combined with 8-oxoA at position -1 in the scissile strand. These findings illuminate the functional interface of vaccinia topoisomerase with the DNA major groove.
Collapse
Affiliation(s)
- Lyudmila Yakovleva
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Chen Y, Rice PA. The role of the conserved Trp330 in Flp-mediated recombination. Functional and structural analysis. J Biol Chem 2003; 278:24800-7. [PMID: 12716882 DOI: 10.1074/jbc.m300853200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The active site of Flp contains, in addition to a transdonated nucleophilic tyrosine, five other residues that are highly conserved within the lambda-integrase family of site-specific recombinases and the type IB topoisomerases. We have used site-directed mutagenesis and x-ray crystallography to investigate the roles of two such residues, Lys223 and Trp330. Our findings agree with studies on related enzymes showing the importance of Lys223 in catalysis but demonstrate that in Flp-mediated recombination the primary role of Trp330 is architectural rather than catalytic. Eliminating the hydrogen bonding potential of Trp330 by phenylalanine substitution results in surprisingly small changes in reaction rates, compared with dramatic decreases in the activities of W330A, W330H, and W330Q. The structure of a W330F mutant-DNA complex reveals an active site nearly identical to that of the wild type. The phenylalanine side chain preserves most of the van der Waals interactions Trp330 forms with the Tyr343-containing trans helix, which may be particularly important for the docking of this helix. Our studies of Trp330 provide the first detailed examination of this conserved residue in the lambda-integrase family, suggesting that the relative importance of active site residues may differ among Flp and related enzymes.
Collapse
Affiliation(s)
- Yu Chen
- Department of Biochemistry and Molecular Biology, the University of Chicago, Illinois 60637, USA
| | | |
Collapse
|
23
|
Tian L, Claeboe CD, Hecht SM, Shuman S. Guarding the genome: electrostatic repulsion of water by DNA suppresses a potent nuclease activity of topoisomerase IB. Mol Cell 2003; 12:199-208. [PMID: 12887905 DOI: 10.1016/s1097-2765(03)00263-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Type IB topoisomerases cleave and rejoin DNA strands through a stable covalent DNA-(3'-phosphotyrosyl)-enzyme intermediate. The stability of the intermediate is a two-edged sword; it preserves genome integrity during supercoil relaxation, but it also reinforces the toxicity of drugs and lesions that interfere with the DNA rejoining step. Here, we identify a key determinant of the stability of the complex by showing that introduction of an Sp or Rp methylphosphonate linkage at the cleavage site transforms topoisomerase IB into a potent endonuclease. The nuclease reaction entails formation and surprisingly rapid hydrolysis of a covalent enzyme-DNA methylphosphonate intermediate. The approximately 30,000-fold acceleration in the rate of hydrolysis of a methylphosphonate versus phosphodiester suggests that repulsion of water by the DNA phosphate anion suppresses the latent nuclease function of topoisomerase IB. These findings expose an Achilles' heel of topoisomerases as guardians of the genome, and they have broad implications for understanding enzymatic phosphoryl transfer.
Collapse
Affiliation(s)
- Ligeng Tian
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA
| | | | | | | |
Collapse
|
24
|
Abstract
DNA topoisomerases solve the topological problems associated with DNA replication, transcription, recombination, and chromatin remodeling by introducing temporary single- or double-strand breaks in the DNA. In addition, these enzymes fine-tune the steady-state level of DNA supercoiling both to facilitate protein interactions with the DNA and to prevent excessive supercoiling that is deleterious. In recent years, the crystal structures of a number of topoisomerase fragments, representing nearly all the known classes of enzymes, have been solved. These structures provide remarkable insights into the mechanisms of these enzymes and complement previous conclusions based on biochemical analyses. Surprisingly, despite little or no sequence homology, both type IA and type IIA topoisomerases from prokaryotes and the type IIA enzymes from eukaryotes share structural folds that appear to reflect functional motifs within critical regions of the enzymes. The type IB enzymes are structurally distinct from all other known topoisomerases but are similar to a class of enzymes referred to as tyrosine recombinases. The structural themes common to all topoisomerases include hinged clamps that open and close to bind DNA, the presence of DNA binding cavities for temporary storage of DNA segments, and the coupling of protein conformational changes to DNA rotation or DNA movement. For the type II topoisomerases, the binding and hydrolysis of ATP further modulate conformational changes in the enzymes to effect changes in DNA topology.
Collapse
Affiliation(s)
- J J Champoux
- Department of Microbiology, School of Medicine, University of Washington, Seattle, Washington 98195-7242, USA.
| |
Collapse
|
25
|
Krogh BO, Shuman S. Proton relay mechanism of general acid catalysis by DNA topoisomerase IB. J Biol Chem 2002; 277:5711-4. [PMID: 11756402 DOI: 10.1074/jbc.c100681200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type IB topoisomerases cleave and rejoin DNA through a DNA-(3'-phosphotyrosyl)-enzyme intermediate. A constellation of conserved amino acids (Arg-130, Lys-167, Arg-223, and His-265 in vaccinia topoisomerase) catalyzes the attack of the tyrosine nucleophile (Tyr-274) at the scissile phosphodiester. Previous studies implicated Arg-223 and His-265 in transition state stabilization and Lys-167 in proton donation to the 5'-O of the leaving DNA strand. Here we find that Arg-130 also plays a major role in leaving group expulsion. The rate of DNA cleavage by vaccinia topoisomerase mutant R130K, which was slower than wild-type topoisomerase by a factor of 10(-4.3), was stimulated 2600-fold by a 5'-bridging phosphorothiolate at the cleavage site. The catalytic defect of the R130A mutant was also rescued by the 5'-S modification (190-fold stimulation), albeit to a lesser degree than R130K. We surmise that Arg-130 plays dual roles in transition state stabilization and general acid catalysis. Whereas the R130A mutation abolishes both functions, R130K permits the transition state stabilization function (via contact of lysine with the scissile phosphate) but not the proton transfer function. Our results show that the process of general acid catalysis is complex and suggest that Lys-167 and Arg-130 comprise a proton relay from the topoisomerase to the 5'-O of the leaving DNA strand.
Collapse
Affiliation(s)
- Berit Olsen Krogh
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | |
Collapse
|
26
|
Abstract
We report that diverse species of bacteria encode a type IB DNA topoisomerase that resembles vaccinia virus topoisomerase. Deinococcus radiodurans topoisomerase IB (DraTopIB), an exemplary member of this family, relaxes supercoiled DNA in the absence of a divalent cation or ATP. DraTopIB has a compact size (346 aa) and is a monomer in solution. Mutational analysis shows that the active site of DraTopIB is composed of the same constellation of catalytic side chains as the vaccinia enzyme. Sequence comparisons and limited proteolysis suggest that their folds are conserved. These findings imply an intimate evolutionary relationship between the poxvirus and bacterial type IB enzymes, and they engender a scheme for the evolution of topoisomerase IB and tyrosine recombinases from a common ancestral strand transferase in the bacterial domain. Remarkably, bacteria that possess topoisomerase IB appear to lack DNA topoisomerase III.
Collapse
Affiliation(s)
- Berit Olsen Krogh
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA
| | | |
Collapse
|
27
|
Krogh BO, Shuman S. Vaccinia topoisomerase mutants illuminate conformational changes during closure of the protein clamp and assembly of a functional active site. J Biol Chem 2001; 276:36091-9. [PMID: 11441004 DOI: 10.1074/jbc.m102609200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We present a mutational analysis of vaccinia topoisomerase that highlights the contributions of five residues in the catalytic domain (Phe-88 and Phe-101 in helix alpha1, Ser-204 in alpha5, and Lys-220 and Asn-228 in alpha6) to the DNA binding and transesterification steps. When augmented by structural information from exemplary type IB topoisomerases and tyrosine recombinases in different functional states, the results suggest how closure of the protein clamp around duplex DNA and assembly of a functional active site might be orchestrated by internal conformational changes in the catalytic domain. Lys-220 is a constituent of the active site, and a positive charge at this position is required for optimal DNA cleavage. Ser-204 and Asn-228 appear not to be directly involved in reaction chemistry at the scissile phosphodiester. We propose that (i) Asn-228 recruits the Tyr-274 nucleophile to the active site by forming a hydrogen bond to the main chain of the tyrosine-containing alpha8 helix and that (ii) contacts between Ser-204 and the DNA backbone upstream of the cleavage site trigger a separate conformational change required for active site assembly. Mutations of Phe-88 and Phe-101 affect DNA binding, most likely at the clamp closure step, which we posit to entail a distortion of helix alpha1.
Collapse
Affiliation(s)
- B O Krogh
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | |
Collapse
|
28
|
Krogh BO, Claeboe CD, Hecht SM, Shuman S. Effect of 2'-5' phosphodiesters on DNA transesterification by vaccinia topoisomerase. J Biol Chem 2001; 276:20907-12. [PMID: 11399773 DOI: 10.1074/jbc.m102312200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vaccinia topoisomerase forms a covalent DNA-(3'-phosphotyrosyl)-enzyme intermediate at a pentapyrimidine target site 5'-CCCTTp downward arrow in duplex DNA. By introducing single 2'-5' phosphodiesters in lieu of a standard 3'-5' phosphodiester linkage, we illuminate the contributions of phosphodiester connectivity to DNA transesterification. We find that the DNA cleavage reaction was slowed by more than six orders of magnitude when a 2'-5' linkage was present at the scissile phosphodiester (CCCTT(2')p downward arrow(5')A). Thus, vaccinia topoisomerase is unable to form a DNA-(2'-phosphotyrosyl)-enzyme intermediate. We hypothesize that the altered geometry of the 2'-5' phosphodiester limits the ability of the tyrosine nucleophile to attain a requisite, presumably apical orientation with respect to the 5'-OH leaving group. A 2'-5' phosphodiester located to the 3' side of the cleavage site (CCCTTp downward arrowN(2')p(5')N) reduced the rate of transesterification by a factor of 500. In contrast, 2'-5' phosphodiesters at four other sites in the scissile strand (TpCGCCCTpT downward arrowATpTpC) and five positions in the nonscissile strand (3'-GGGpApApTpApA) had no effect on transesterification rate. The DNAs containing 2'-5' phosphodiesters were protected from digestion by exonuclease III. We found that exonuclease III was consistently arrested at positions 1 and 2 nucleotides prior to the encounter of its active site with the modified 2'-5' phosphodiester and that the 2'-5' linkage itself was poorly hydrolyzed by exonuclease III.
Collapse
Affiliation(s)
- B O Krogh
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | | | | | |
Collapse
|
29
|
Abstract
Based on the crystal structure of human topoisomerase I, we hypothesized that hydrogen bonding between the side chain of the highly conserved His(632) and one of the nonbridging oxygens of the scissile phosphate contributes to catalysis by stabilizing the transition state. This hypothesis has been tested by examining the effects of changing His(632) to glutamine, asparagine, alanine, and tryptophan. The change to glutamine reduced both the relaxation activity and single-turnover cleavage activity by approximately 100-fold, whereas the same change at three other conserved histidines (positions 222, 367, and 406) had no significant effect on the relaxation activity. The properties of the mutant protein containing asparagine instead of histidine at position 632 were similar to those of the glutamine mutant, whereas mutations to alanine or tryptophan reduced the activity by approximately 4 orders of magnitude. The reduction in activity for the mutants was not due to alterations in substrate binding affinities or changes in the cleavage specificities of the proteins. The above results for the glutamine mutation in conjunction with the similar effects of pH on the wild type and the H632Q mutant enzyme rule out the possibility that His(632) acts as a general acid to protonate the leaving 5'-oxygen during the cleavage reaction. Taken together, these data strongly support the hypothesis that the only role for His(632) is to stabilize the pentavalent transition state through hydrogen bonding to one of the nonbridging oxygens.
Collapse
Affiliation(s)
- Z Yang
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington 98195-7242, USA
| | | |
Collapse
|
30
|
Abstract
Type IB topoisomerases and tyrosine recombinases are structurally homologous strand transferases that act through DNA-(3'-phosphotyrosyl)-enzyme intermediates. A constellation of conserved amino acids (Arg-130, Lys-167, Arg-223, and His-265 in vaccinia topoisomerase) catalyzes transesterification of tyrosine to the scissile phosphodiester. We used 5'-bridging phosphorothiolate-modified DNAs to implicate Lys-167 as a general acid catalyst. The lower pKa of the 5'-S leaving group versus 5'-O restored activity to the K167A mutant, whereas there was no positive thio effect for mutants R223A and H265A. The lysine is located atop a flexible hairpin loop, and it shifts into the minor groove upon DNA binding. Coupling of conformational changes in a general acid loop to covalent catalysis of phosphoryl transfer is one of several mechanistic features shared by the topoisomerase/recombinase and protein phosphatase superfamilies.
Collapse
Affiliation(s)
- B O Krogh
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | |
Collapse
|
31
|
Krogh BO, Cheng C, Burgin A, Shuman S. Melanoplus sanguinipes entomopoxvirus DNA topoisomerase: site-specific DNA transesterification and effects of 5'-bridging phosphorothiolates. Virology 1999; 264:441-51. [PMID: 10562506 DOI: 10.1006/viro.1999.0022] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Melanoplus sanguinipes entomopoxvirus (MsEPV) encodes a 328 amino acid polypeptide related to the type I topoisomerases of six other genera of vertebrate and insect poxviruses. The gene encoding MsEPV topoisomerase was expressed in bacteria, and the recombinant protein was purified by ion-exchange chromatography and glycerol gradient sedimentation. MsEPV topoisomerase, a monomeric protein, catalyzed the relaxation of supercoiled plasmid DNA at approximately 0.6 supercoils/s. Like other poxvirus topoisomerases, the MsEPV enzyme formed a covalent adduct with duplex DNA at the target sequence CCCTT downward arrow. The kinetic and equilibrium parameters of the DNA transesterification reaction of MsEPV topoisomerase were k(cl) = 0.3 s(-1) and K(cl) = 0.25. The introduction of a 5'-bridging phosphorothiolate at the scissile phosphate increased the cleavage equilibrium constant from 0.25 to >/=30. Similar phosphorothiolate effects were observed with vaccinia topoisomerase. Kinetic analysis of single-turnover cleavage and religation reactions established that the altered equilibrium was the result of a approximately 10(-4) decrement in the rate of topoisomerase-catalyzed attack of 5'-SH DNA on the DNA-(3'-phosphotyrosyl)-enzyme intermediate. 5'-bridging phosphorothiolates at the scissile phosphate and other positions within the CCCTT element had no significant effect on k(cl).
Collapse
Affiliation(s)
- B O Krogh
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York, 10021, USA
| | | | | | | |
Collapse
|
32
|
Abstract
BACKGROUND Heparin has many actions that may affect the malignant process, especially metastasis. METHODS The author conducted an extensive review of the available medical literature about heparin activity that may apply to important factors involved in the malignant process. RESULTS Thrombin is generated by tumors, and the resultant fibrin formation impedes natural killer cell activity. Microthrombi arrest tumor cells in capillaries. Heparin prevents the formation of thrombin and neutralizes its activity. Angiogenesis has an important role in metastasis; heparin minimizes angiogenesis via the inhibition of vascular endothelial growth factor, tissue factor, and platelet activating factor. It decreases tumor cell adhesion to vascular endothelium as it inhibits selectin and chemokine actions, and it also decreases the replication and activity of some oncogenic viruses. Matrix metalloproteinases, serine proteases, and heparanases have an important role in metastasis. Heparin decreases their activation and limits their effects. It competitively inhibits tumor cell attachment to heparan sulfate proteoglycans. It blocks the oncogenic action of ornithine decarboxylase and enhances the antineoplastic effect of transforming growth factor-beta. Heparin inhibits activator protein-1, which is the nuclear target of many oncogenic signal transduction pathways, and it potently inhibits casein kinase II, which has carcinogenic activity. Platelet-derived growth factor, which has oncogenic effects, is also inhibited by heparin, as are reverse transcriptase, telomerase, and topoisomerase prooncogenic actions. CONCLUSIONS These various heparin actions justify clinical investigation of its possible beneficial effect on malignant disease.
Collapse
Affiliation(s)
- H Engelberg
- California Arteriosclerosis Research Foundation, Beverly Hills 90210, USA
| |
Collapse
|
33
|
Shuman S. Vaccinia virus DNA topoisomerase: a model eukaryotic type IB enzyme. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1400:321-37. [PMID: 9748643 DOI: 10.1016/s0167-4781(98)00144-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vaccinia topoisomerase has proven to be an instructive model system for mechanistic studies of the type IB family of DNA topoisomerases. The catalytically relevant functional groups at the active site and the circumferential topoisomerase-DNA interface were correctly surmised by mutational and footprint analysis of vaccinia topoisomerase in advance of structure determinations by X-ray crystallography. It is now evident from multiple crystal structures that the catalytic domains of type IB topoisomerases and site specific recombinases derive from a common ancestral strand transferase capable of forming a DNA-(3'-phosphotyrosyl)-enzyme intermediate. A constellation of conserved amino acids catalyzes attack of the tyrosine nucleophile on the scissile phosphate. Domain dynamics and DNA-induced conformational changes within the catalytic domain are likely to play a role in triggering strand scission and coordinating the strand exchange or strand passage steps.
Collapse
Affiliation(s)
- S Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA
| |
Collapse
|
34
|
Champoux JJ. Domains of human topoisomerase I and associated functions. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1998; 60:111-32. [PMID: 9594573 DOI: 10.1016/s0079-6603(08)60891-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human topoisomerase I can be divided into four domains based on homology alignments, physical properties, sensitivity to limited proteolysis, and fragment complementation studies. Roughly the first 197 amino acids represent the N-terminal domain that appears to be devoid of secondary structure and is likely important for targeting the enzyme to its sites of action within the nucleus of the cell. The core domain encompasses residues approximately 198 to approximately 651, is involved in catalysis, and is important for the preferential binding of the enzyme to supercoiled DNA. The C-terminal domain extends from residue approximately 697 to the end of the protein at residue 765 and contains the catalytically important active site tyrosine at position 723. The core and C-terminal domains are connected by a poorly conserved, protease-sensitive linker domain (residues approximately 652 to approximately 696) that has been implicated in DNA binding and may influence how long the enzyme remains in the nicked stated. Mutations that confer resistance to the topoisomerase I poison camptothecin are located in the core and C-terminal domains and presumably identify residues important for drug binding.
Collapse
Affiliation(s)
- J J Champoux
- Department of Microbiology School of Medicine, University of Washington, Seattle 98195, USA
| |
Collapse
|
35
|
Abstract
Eukaryotic type IB topoisomerases catalyze the cleavage and rejoining of DNA strands through a DNA-(3'-phosphotyrosyl)-enzyme intermediate. The 314-amino acid vaccinia topoisomerase is the smallest member of this family and is distinguished from its cellular counterparts by its specificity for cleavage at the target sequence 5'-CCCTT downward arrow. Here we show that Topo-(81-314), a truncated derivative that lacks the N-terminal domain, performs the same repertoire of reactions as the full-sized topoisomerase: relaxation of supercoiled DNA, site-specific DNA transesterification, and DNA strand transfer. Elimination of the N-terminal domain slows the rate of single-turnover DNA cleavage by 10(-3.6), but has little effect on the rate of single-turnover DNA religation. DNA relaxation and strand cleavage by Topo-(81-314) are inhibited by salt and magnesium; these effects are indicative of reduced affinity in noncovalent DNA binding. We report that identical properties are displayed by a full-length mutant protein, Topo(Y70A/Y72A), which lacks two tyrosine side chains within the N-terminal domain that contact the DNA target site in the major groove. We speculate that Topo-(81-314) is fully competent for transesterification chemistry, but is compromised with respect to a rate-limiting precleavage conformational step that is contingent on DNA contacts made by Tyr-70 and Tyr-72.
Collapse
Affiliation(s)
- C Cheng
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | |
Collapse
|
36
|
Hwang Y, Wang B, Bushman FD. Molluscum contagiosum virus topoisomerase: purification, activities, and response to inhibitors. J Virol 1998; 72:3401-6. [PMID: 9525670 PMCID: PMC109833 DOI: 10.1128/jvi.72.4.3401-3406.1998] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/1997] [Accepted: 12/17/1997] [Indexed: 02/06/2023] Open
Abstract
Molluscum contagiosum virus (MCV), the only member of the Molluscipoxvirus genus, causes benign papules in healthy people but disfiguring lesions in immunocompromised patients. The sequence of MCV has been completed, revealing that MCV encodes a probable type I topoisomerase enzyme. All poxviruses sequenced to date also encode type I topoisomerases, and in the case of vaccinia virus the topoisomerase has been shown to be essential for replication. Thus, inhibitors of the MCV topoisomerase might be useful as antiviral agents. We have cloned the gene for MCV topoisomerase, overexpressed and purified the protein, and begun to characterize its activities in vitro. Like other eukaryotic type I topoisomerases, MCV topoisomerase can relax both positive and negative supercoils. An analysis of the cleavage of plasmid and oligonucleotide substrates indicates that cleavage by MCV topoisomerase is favored just 3' of the sequence 5' (T/C)CCTT 3', resulting in formation of a covalent bond to the 3' T residue, as with other poxvirus topoisomerases. We identified solution conditions favorable for activity and measured the rate of formation and decay of the covalent intermediate. MCV topoisomerase is sensitive to inhibition by coumermycin A1 (50% inhibitory concentration, 32 microM) but insensitive to five other previously reported topoisomerase inhibitors. This work provides the point of departure for studies of the mechanism of function of MCV topoisomerase and the development of medically useful inhibitors.
Collapse
Affiliation(s)
- Y Hwang
- The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | |
Collapse
|
37
|
Abstract
Introduction of a single ribonucleoside immediately 5' of the scissile phosphate of a duplex DNA substrate converts eukaryotic topoisomerase I into an endoribonuclease. Here, I demonstrate that the RNase reaction is reversible. Vaccinia topoisomerase can ligate 2', 3'-cyclic phosphate and 5'-hydroxyl termini annealed to a bridging template strand. Remarkably, the ligase activity of topoisomerase does not require the active site tyrosine, implying that strand joining can occur via direct attack of the 5' hydroxyl on the cyclic phosphate without a covalent intermediate. Ligation does require other catalytic side chains on the enzyme. These findings underscore how a common ancestral mechanism of phosphoryl and nucleotidyl transfer can be harnessed to perform seemingly diverse tasks through subtle changes at the active site.
Collapse
Affiliation(s)
- S Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| |
Collapse
|
38
|
Cheng C, Kussie P, Pavletich N, Shuman S. Conservation of structure and mechanism between eukaryotic topoisomerase I and site-specific recombinases. Cell 1998; 92:841-50. [PMID: 9529259 DOI: 10.1016/s0092-8674(00)81411-7] [Citation(s) in RCA: 211] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vaccinia DNA topoisomerase breaks and rejoins DNA strands through a DNA-(3'-phosphotyrosyl)-enzyme intermediate. A C-terminal catalytic domain, Topo(81-314), suffices for transesterification chemistry. The domain contains a constellation of five amino acids, conserved in all eukaryotic type IB topoisomerases, that catalyzes attack of the tyrosine nucleophile on the scissile phosphate. The structure of the catalytic domain, consisting of ten alpha helices and a three-strand beta sheet, resembles the catalytic domains of site-specific recombinases that act via a topoisomerase IB-like mechanism. The topoisomerase catalytic pentad is conserved in the tertiary structures of the recombinases despite scant sequence similarity overall. This implies that the catalytic domains of type IB topoisomerases and recombinases derive from a common ancestral strand transferase.
Collapse
Affiliation(s)
- C Cheng
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | | | | | |
Collapse
|
39
|
Chen SJ, Wang JC. Identification of active site residues in Escherichia coli DNA topoisomerase I. J Biol Chem 1998; 273:6050-6. [PMID: 9497321 DOI: 10.1074/jbc.273.11.6050] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alanine substitution mutagenesis of Escherichia coli DNA topoisomerase I, a member of the type IA subfamily of DNA topoisomerases, was carried out to identify amino acid side chains that are involved in transesterification between DNA and the active site tyrosine Tyr-319 of the enzyme. Twelve polar residues that are highly conserved among the type IA enzymes, Glu-9, His-33, Asp-111, Glu-115, Gln-309, Glu-313, Thr-318, Arg-321, Thr-322, Asp-323, His-365, and Thr-496, were selected for alanine substitution. Each of the mutant enzymes was overexpressed, purified, and characterized. Surprisingly, only substitution at Glu-9 and Arg-321 was found to reduce the DNA relaxation activity of the enzyme to an insignificant level. The R321A mutant enzyme, but not the E9A mutant enzyme, was found to retain a reduced level of DNA cleavage activity. Two additional mutant enzymes R321K and E9Q were also constructed and purified. Replacing Arg-321 by lysine has little effect on enzymatic activities; replacing Glu-9 by glutamine greatly reduces the supercoil removal activity but not the DNA cleavage and rejoining activities. From these results and the locations of the amino acids in the crystal structure of the enzyme, it appears that Glu-9 has a critical role in DNA breakage and rejoining, probably through its interaction with the 3' deoxyribosyl oxygen. The positively charged Arg-321 may also participate in these reactions by interacting with the scissile DNA phosphate as a monodentate. Because of the strict conservation of these residues, the findings for the E. coli enzyme are likely to apply to all type IA DNA topoisomerases.
Collapse
Affiliation(s)
- S J Chen
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
40
|
Abstract
Type I topoisomerases alter DNA topology by cleaving and rejoining one strand of duplex DNA through a covalent protein-DNA intermediate. Here we show that vaccinia topoisomerase, a eukaryotic type IB enzyme, catalyzes site-specific endoribonucleolytic cleavage of an RNA-containing strand. The RNase reaction occurs via transesterification at the scissile ribonucleotide to form a covalent RNA-3'-phosphoryl-enzyme intermediate, which is then attacked by the vicinal 2' OH of the ribose sugar to yield a free 2', 3' cyclic phosphate product. Introduction of a single ribonucleoside at the scissile phosphate of an otherwise all-DNA substrate suffices to convert the topoisomerase into an endonuclease. Human topoisomerase I also has endoribonuclease activity. These findings suggest potential roles for topoisomerases in RNA processing.
Collapse
Affiliation(s)
- J Sekiguchi
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | |
Collapse
|
41
|
Sekiguchi J, Shuman S. Mutational analysis of vaccinia virus topoisomerase identifies residues involved in DNA binding. Nucleic Acids Res 1997; 25:3649-56. [PMID: 9278486 PMCID: PMC146948 DOI: 10.1093/nar/25.18.3649] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Vaccinia DNA topoisomerase catalyzes the cleavage and re-joining of DNA strands through a DNA-(3'-phosphotyrosyl)-enzyme intermediate formed at a specific target sequence, 5'-(C/T)CCTT downward arrow. The 314 aa protein consists of three protease-resistant structural domains demarcated by protease-sensitive interdomain segments referred to as the bridge and the hinge. The bridge is defined by trypsin-accessible sites at Arg80, Lys83 and Arg84. Photocrosslinking and proteolytic footprinting experiments suggest that residues near the interdomain bridge interact with DNA. To assess the contributions of specific amino acids to DNA binding and transesterification chemistry, we introduced alanine substitutions at 16 positions within a 24 aa segment from residues 63 to 86(DSKGRRQYFYGKMHVQNRNAKRDR). Assays of the rates of DNA relaxation under conditions optimal for the wild-type topoisomerase revealed significant mutational effects at six positions; Arg67, Tyr70, Tyr72, Arg80, Arg84 and Asp85. The mutated proteins displayed normal or near-normal rates of single-turnover transesterification to DNA. The effects of amino acid substitutions on DNA binding were evinced by inhibition of covalent adduct formation in the presence of salt and magnesium. The mutant enzymes also displayed diminished affinity for a subset of cleavage sites in pUC19 DNA. Tyr70 and Tyr72 were subjected to further analysis by replacement with Phe, His, Gln and Arg. At both positions, the aromatic moiety was important for DNA binding.
Collapse
Affiliation(s)
- J Sekiguchi
- Molecular Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
42
|
Wittschieben J, Shuman S. Mechanism of DNA transesterification by vaccinia topoisomerase: catalytic contributions of essential residues Arg-130, Gly-132, Tyr-136 and Lys-167. Nucleic Acids Res 1997; 25:3001-8. [PMID: 9224599 PMCID: PMC146853 DOI: 10.1093/nar/25.15.3001] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Vaccinia topoisomerase, a eukaryotic type IB enzyme, catalyzes relaxation of supercoiled DNA by cleaving and rejoining DNA strands through a DNA- (3'-phosphotyrosyl)-enzyme intermediate. We have performed a kinetic analysis of mutational effects at four essential amino acids: Arg-130, Gly-132, Tyr-136 and Lys-167. Arg-130, Gly-132 and Lys-167 are conserved in all members of the type IB topoisomerase family. Tyr-136 is conserved in all poxvirus topoisomerases. We show that Arg-130 and Lys-167 are required for transesterification chemistry. Arg-130 enhances the rates of both cleavage and religation by 10(5). Lys-167 enhances the cleavage and religation reactions by 10(3) and 10(4), respectively. An instructive distinction between these two essential residues is that Arg-130 cannot be replaced by lysine, whereas substituting Lys-167 by arginine resulted in partial restoration of function relative to the alanine mutant. We propose that both basic residues interact directly with the scissile phosphate at the topoisomerase active site. Mutations at positions Gly-132 and Tyr-136 reduced the rate of strand cleavage by more than two orders of magnitude, but elicited only mild effects on religation rate. Gly-132 and Tyr-136 are suggested to facilitate a pre-cleavage activation step. The results of comprehensive mutagenesis of the vaccinia topoisomerase illuminate mechanistic and structural similarities to site-specific recombinases.
Collapse
Affiliation(s)
- J Wittschieben
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA
| | | |
Collapse
|
43
|
Sekiguchi J, Cheng C, Shuman S. Kinetic analysis of DNA and RNA strand transfer reactions catalyzed by vaccinia topoisomerase. J Biol Chem 1997; 272:15721-8. [PMID: 9188465 DOI: 10.1074/jbc.272.25.15721] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Vaccinia topoisomerase binds duplex DNA and forms a covalent DNA-(3'-phosphotyrosyl) protein adduct at the sequence 5'-CCCTT downward arrow. The enzyme reacts readily with a 36-mer CCCTT strand (DNA-p-RNA) composed of DNA 5' and RNA 3' of the scissile bond. However, a 36-mer composed of RNA 5' and DNA 3' of the scissile phosphate (RNA-p-DNA) is a poor substrate for covalent adduct formation. Vaccinia topoisomerase efficiently transfers covalently held CCCTT-containing DNA to 5'-OH-terminated RNA acceptors; the topoisomerase can therefore be used to tag the 5' end of RNA in vitro. Religation of the covalently bound CCCTT-containing DNA strand to a 5'-OH-terminated DNA acceptor is efficient and rapid (krel > 0.5 s-1), provided that the acceptor DNA is capable of base pairing to the noncleaved DNA strand of the topoisomerase-DNA donor complex. The rate of strand transfer to DNA is not detectably affected by base mismatches at the 5' nucleotide of the acceptor strand. Nucleotide deletions and insertions at the 5' end of the acceptor slow the rate of religation; the observed hierarchy of reaction rates is as follows: +1 insertion > -1 deletion > +2 insertion >> -2 deletion. These findings underscore the importance of a properly positioned 5'-OH terminus in transesterification reaction chemistry, but they also raise the possibility that topoisomerase may generate mutations by sealing DNA molecules with mispaired or unpaired ends.
Collapse
Affiliation(s)
- J Sekiguchi
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | | | |
Collapse
|
44
|
Petersen BO, Shuman S. DNA strand transfer reactions catalyzed by vaccinia topoisomerase: hydrolysis and glycerololysis of the covalent protein-DNA intermediate. Nucleic Acids Res 1997; 25:2091-7. [PMID: 9153307 PMCID: PMC146705 DOI: 10.1093/nar/25.11.2091] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Vaccinia topoisomerase forms a covalent protein-DNA intermediate at sites containing the sequence 5'-CCCTT. The T nucleotide is linked via a 3'-phosphodiester bond to Tyr-274 of the enzyme. Here, we report that the enzyme catalyzes hydrolysis of the covalent intermediate, resulting in formation of a 3'-phosphate-terminated DNA cleavage product. The hydrolysis reaction is pH-dependent (optimum pH = 9.5) and is slower, by a factor of 10(-5), than the rate of topoisomerase-catalyzed strand transfer to a 5'-OH terminated DNA acceptor strand. Mutants of vaccinia topoisomerase containing serine or threonine in lieu of the active site Tyr-274 form no detectable covalent intermediate and catalyze no detectable DNA hydrolysis. This suggests that hydrolysis occurs subsequent to formation of the covalent protein-DNA adduct and not via direct attack by water on DNA. Vaccinia topoisomerase also catalyzes glycerololysis of the covalent intermediate. The rate of glycerololysis is proportional to glycerol concentration and is optimal at pH 9.5.
Collapse
Affiliation(s)
- B O Petersen
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA
| | | |
Collapse
|
45
|
Petersen BO, Hall RL, Moyer RW, Shuman S. Characterization of a DNA topoisomerase encoded by Amsacta moore entomopoxvirus. Virology 1997; 230:197-206. [PMID: 9143275 DOI: 10.1006/viro.1997.8495] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have identified an Amsacta moorei entomopoxvirus (AmEPV) gene encoding a DNA topoisomerase. The 333-amino acid AmEPV topoisomerase displays instructive sequence similarities to the previously identified topoisomerases encoded by five genera of vertebrate poxviruses. One hundred nine amino acids are identical or conserved among the six proteins. The gene encoding AmEPV topoisomerase was expressed in bacteria and the recombinant enzyme was partially purified. AmEPV topoisomerase is a monomeric enzyme that catalyzes the relaxation of supercoiled DNA. Like the vaccinia, Shope fibroma virus, and Orf virus enzymes, the AmEPV topoisomerase forms a covalent adduct with duplex DNA at the target sequence CCCTT decreases. The kinetic and equilibrium parameters of the DNA cleavage reaction of AmEPV topoisomerase (Kobs = 0.08 sec-1; Kcl = 0.22) are similar to those of the vaccinia virus enzyme.
Collapse
Affiliation(s)
- B O Petersen
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | | | | | |
Collapse
|
46
|
Cheng C, Wang LK, Sekiguchi J, Shuman S. Mutational analysis of 39 residues of vaccinia DNA topoisomerase identifies Lys-220, Arg-223, and Asn-228 as important for covalent catalysis. J Biol Chem 1997; 272:8263-9. [PMID: 9079646 DOI: 10.1074/jbc.272.13.8263] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Vaccinia DNA topoisomerase, a 314-amino acid type I enzyme, catalyzes the cleavage and rejoining of DNA strands through a DNA-(3'-phosphotyrosyl)-enzyme intermediate. To identify amino acids that participate in the transesterification reaction, we introduced alanine substitutions at 39 positions within a conserved 57amino acid segment upstream of the active-site tyrosine. Purified wild type and mutant proteins were compared with respect to their activities in relaxing supercoiled DNA. The majority of mutant proteins displayed wild type topoisomerase activity. Mutant enzymes that relaxed DNA at reduced rates were subjected to kinetic analysis of the strand cleavage and religation steps under single-turnover and equilibrium conditions. For the wild type topoisomerase, the observed single-turnover cleavage rate constant (kcl) was 0.29 s-1 and the cleavage-religation equilibrium constant (Kcl) was 0.22. The most dramatic mutational effects were seen with R223A; removal of the basic side chain reduced the rates of cleavage and religation by factors of 10(-4.3) and 10(-5.0), respectively, and shifted the cleavage-religation equilibrium in favor of the covalently bound state (Kcl = 1). Introduction of lysine at position 223 restored the rate of cleavage to 1/10 that of the wild type enzyme. We conclude that a basic residue is essential for covalent catalysis and suggest that Arg-223 is a constituent of the active site. Modest mutational effects were observed at two other positions (Lys-220 and Asn-228), at which alanine substitutions slowed the rates of strand cleavage by 1 order of magnitude and shifted the equilibrium toward the noncovalently bound state. Arg-223 and Lys-220 are conserved in all members of the eukaryotic type I topoisomerase family; Asn-228 is conserved among the poxvirus enzymes.
Collapse
Affiliation(s)
- C Cheng
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | | | | | |
Collapse
|