1
|
Identification and Characterization of the Novel Subunit CcoM in the cbb3₃Cytochrome c Oxidase from Pseudomonas stutzeri ZoBell. mBio 2016; 7:e01921-15. [PMID: 26814183 PMCID: PMC4742706 DOI: 10.1128/mbio.01921-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cytochrome c oxidases (CcOs), members of the heme-copper containing oxidase (HCO) superfamily, are the terminal enzymes of aerobic respiratory chains. The cbb3-type cytochrome c oxidases (cbb3-CcO) form the C-family and have only the central catalytic subunit in common with the A- and B-family HCOs. In Pseudomonas stutzeri, two cbb3 operons are organized in a tandem repeat. The atomic structure of the first cbb3 isoform (Cbb3-1) was determined at 3.2 Å resolution in 2010 (S. Buschmann, E. Warkentin, H. Xie, J. D. Langer, U. Ermler, and H. Michel, Science 329:327–330, 2010, http://dx.doi.org/10.1126/science.1187303). Unexpectedly, the electron density map of Cbb3-1 revealed the presence of an additional transmembrane helix (TMH) which could not be assigned to any known protein. We now identified this TMH as the previously uncharacterized protein PstZoBell_05036, using a customized matrix-assisted laser desorption ionization (MALDI)–tandem mass spectrometry setup. The amino acid sequence matches the electron density of the unassigned TMH. Consequently, the protein was renamed CcoM. In order to identify the function of this new subunit in the cbb3 complex, we generated and analyzed a CcoM knockout strain. The results of the biochemical and biophysical characterization indicate that CcoM may be involved in CcO complex assembly or stabilization. In addition, we found that CcoM plays a role in anaerobic respiration, as the ΔCcoM strain displayed altered growth rates under anaerobic denitrifying conditions. The respiratory chain has recently moved into the focus for drug development against prokaryotic human pathogens, in particular, for multiresistant strains (P. Murima, J. D. McKinney, and K. Pethe, Chem Biol 21:1423–1432, 2014, http://dx.doi.org/10.1016/j.chembiol.2014.08.020). cbb3-CcO is an essential enzyme for many different pathogenic bacterial species, e.g., Helicobacter pylori, Vibrio cholerae, and Pseudomonas aeruginosa, and represents a promising drug target. In order to develop compounds targeting these proteins, a detailed understanding of the molecular architecture and function is required. Here we identified and characterized a novel subunit, CcoM, in the cbb3-CcO complex and thereby completed the crystal structure of the Cbb3 oxidase from Pseudomonas stutzeri, a bacterium closely related to the human pathogen Pseudomonas aeruginosa.
Collapse
|
2
|
Radzi Noor M, Soulimane T. Bioenergetics at extreme temperature: Thermus thermophilus ba(3)- and caa(3)-type cytochrome c oxidases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:638-49. [PMID: 22385645 DOI: 10.1016/j.bbabio.2011.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 08/11/2011] [Accepted: 08/12/2011] [Indexed: 10/28/2022]
Abstract
Seven years into the completion of the genome sequencing projects of the thermophilic bacterium Thermus thermophilus strains HB8 and HB27, many questions remain on its bioenergetic mechanisms. A key fact that is occasionally overlooked is that oxygen has a very limited solubility in water at high temperatures. The HB8 strain is a facultative anaerobe whereas its relative HB27 is strictly aerobic. This has been attributed to the absence of nitrate respiration genes from the HB27 genome that are carried on a mobilizable but highly-unstable plasmid. In T. thermophilus, the nitrate respiration complements the primary aerobic respiration. It is widely known that many organisms encode multiple biochemically-redundant components of the respiratory complexes. In this minireview, the presence of the two cytochrome c oxidases (CcO) in T. thermophilus, the ba(3)- and caa(3)-types, is outlined along with functional considerations. We argue for the distinct evolutionary histories of these two CcO including their respective genetic and molecular organizations, with the caa(3)-oxidase subunits having been initially 'fused'. Coupled with sequence analysis, the ba(3)-oxidase crystal structure has provided evolutionary and functional information; for example, its subunit I is more closely related to archaeal sequences than bacterial and the substrate-enzyme interaction is hydrophobic as the elevated growth temperature weakens the electrostatic interactions common in mesophiles. Discussion on the role of cofactors in intra- and intermolecular electron transfer and proton pumping mechanism is also included.
Collapse
Affiliation(s)
- Mohamed Radzi Noor
- Department of Chemical and Environmental Sciences, University of Limerick, Limerick, Ireland
| | | |
Collapse
|
3
|
Richter OMH, Ludwig B. Electron transfer and energy transduction in the terminal part of the respiratory chain - lessons from bacterial model systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:626-34. [PMID: 19268423 DOI: 10.1016/j.bbabio.2009.02.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2008] [Revised: 02/13/2009] [Accepted: 02/16/2009] [Indexed: 11/18/2022]
Abstract
This review focuses on the terminal part of the respiratory chain where, macroscopically speaking, electron transfer (ET) switches from the two-electron donor, ubiquinol, to the single-electron carrier, cytochrome c, to finally reduce the four-electron acceptor dioxygen. With 3-D structures of prominent representatives of such multi-subunit membrane complexes known for some time, this section of the ET chain still leaves a number of key questions unanswered. The two relevant enzymes, ubiquinol:cytochrome c oxidoreductase and cytochrome c oxidase, appear as rather diverse modules, differing largely in their design for substrate interaction, internal ET, and moreover, in their mechanisms of energy transduction. While the canonical mitochondrial complexes have been investigated for almost five decades, the corresponding bacterial enzymes have been established only recently as attractive model systems to address basic reactions in ET and energy transduction. Lacking the intricate coding background and mitochondrial assembly pathways, bacterial respiratory enzymes typically offer a much simpler subunit composition, while maintaining all fundamental functions established for their complex "relatives". Moreover, related issues ranging from primary steps in cofactor insertion to supramolecular architecture of ET complexes, can also be favourably addressed in prokaryotic systems to hone our views on prototypic structures and mechanisms common to all family members.
Collapse
Affiliation(s)
- Oliver-Matthias H Richter
- Institute of Biochemistry, Molecular Genetics, Biozentrum Goethe University, Max-von-Laue-Str. 9, D 60438 Frankfurt, Germany
| | | |
Collapse
|
4
|
|
5
|
Stability of the cbb3-type cytochrome oxidase requires specific CcoQ-CcoP interactions. J Bacteriol 2008; 190:5576-86. [PMID: 18556791 DOI: 10.1128/jb.00534-08] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytochrome cbb(3)-type oxidases are members of the heme copper oxidase superfamily and are composed of four subunits. CcoN contains the heme b-Cu(B) binuclear center where oxygen is reduced, while CcoP and CcoO are membrane-bound c-type cytochromes thought to channel electrons from the donor cytochrome into the binuclear center. Like many other bacterial members of this superfamily, the cytochrome cbb(3)-type oxidase contains a fourth, non-cofactor-containing subunit, which is termed CcoQ. In the present study, we analyzed the role of CcoQ on the stability and activity of Rhodobacter capsulatus cbb(3)-type oxidase. Our data showed that CcoQ is a single-spanning membrane protein with a N(out)-C(in) topology. In the absence of CcoQ, cbb(3)-type oxidase activity is significantly reduced, irrespective of the growth conditions. Blue native polyacrylamide gel electrophoresis analyses revealed that the lack of CcoQ specifically impaired the stable recruitment of CcoP into the cbb(3)-type oxidase complex. This suggested a specific CcoQ-CcoP interaction, which was confirmed by chemical cross-linking. Collectively, our data demonstrated that in R. capsulatus CcoQ was required for optimal cbb(3)-type oxidase activity because it stabilized the interaction of CcoP with the CcoNO core complex, leading subsequently to the formation of the active 230-kDa cbb(3)-type oxidase complex.
Collapse
|
6
|
Belevich I, Verkhovsky MI. Molecular mechanism of proton translocation by cytochrome c oxidase. Antioxid Redox Signal 2008; 10:1-29. [PMID: 17949262 DOI: 10.1089/ars.2007.1705] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cytochrome c oxidase (CcO) is a terminal protein of the respiratory chain in eukaryotes and some bacteria. It catalyzes most of the biologic oxygen consumption on earth done by aerobic organisms. During the catalytic reaction, CcO reduces dioxygen to water and uses the energy released in this process to maintain the electrochemical proton gradient by functioning as a redox-linked proton pump. Even though the structures of several terminal oxidases are known, they are not sufficient in themselves to explain the molecular mechanism of proton pumping. Thus, additional extensive studies of CcO by varieties of biophysical and biochemical approaches are involved to shed light on the mechanism of proton translocation. In this review, we summarize the current level of knowledge about CcO, including the latest model developed to explain the CcO proton-pumping mechanism.
Collapse
Affiliation(s)
- Ilya Belevich
- Helsinki Bioenergetics Group, Program for Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
7
|
Morgner N, Kleinschroth T, Barth HD, Ludwig B, Brutschy B. A novel approach to analyze membrane proteins by laser mass spectrometry: from protein subunits to the integral complex. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:1429-38. [PMID: 17544294 DOI: 10.1016/j.jasms.2007.04.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 04/20/2007] [Accepted: 04/24/2007] [Indexed: 05/15/2023]
Abstract
A novel laser-based mass spectrometry method termed LILBID (laser-induced liquid bead ion desorption) is applied to analyze large integral membrane protein complexes and their subunits. In this method the ions are IR-laser desorbed from aqueous microdroplets containing the hydrophobic protein complexes solubilized by detergent. The method is highly sensitive, very efficient in sample handling, relatively tolerant to various buffers, and detects the ions in narrow, mainly low-charge state distributions. The crucial experimental parameter determining whether the integral complex or its subunits are observed is the laser intensity: At very low intensity level corresponding to an ultrasoft desorption, the intact complexes, together with few detergent molecules, are transferred into vacuum. Under these conditions the oligomerization state of the complex (i.e., its quaternary structure) may be analyzed. At higher laser intensity, complexes are thermolyzed into subunits, with any residual detergent being stripped off to yield the true mass of the polypeptides. The model complexes studied are derived from the respiratory chain of the soil bacterium Paracoccus denitrificans and include complexes III (cytochrome bc(1) complex) and IV (cytochrome c oxidase). These are well characterized multi-subunit membrane proteins, with the individual hydrophobic subunits being composed of up to 12 transmembrane helices.
Collapse
Affiliation(s)
- Nina Morgner
- Institute for Physical and Theoretical Chemistry, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
8
|
Richter OMH, Ludwig B. Cytochrome c oxidase--structure, function, and physiology of a redox-driven molecular machine. Rev Physiol Biochem Pharmacol 2003; 147:47-74. [PMID: 12783267 DOI: 10.1007/s10254-003-0006-0] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cytochome c oxidase is the terminal member of the electron transport chains of mitochondria and many bacteria. Providing an efficient mechanism for dioxygen reduction on the one hand, it also acts as a redox-linked proton pump, coupling the free energy of water formation to the generation of a transmembrane electrochemical gradient to eventually drive ATP synthesis. The overall complexity of the mitochondrial enzyme is also reflected by its subunit structure and assembly pathway, whereas the diversity of the bacterial enzymes has fostered the notion of a large family of heme-copper terminal oxidases. Moreover, the successful elucidation of 3-D structures for both the mitochondrial and several bacterial oxidases has greatly helped in designing mutagenesis approaches to study functional aspects in these enzymes.
Collapse
Affiliation(s)
- O-M H Richter
- Institute of Biochemistry, Biocenter, J.W. Goethe-Universität, Marie-Curie-Str. 9, 60439 Frankfurt, Germany.
| | | |
Collapse
|
9
|
Abstract
Corynebacterium glutamicum is an aerobic bacterium that requires oxygen as exogenous electron acceptor for respiration. Recent molecular and biochemical analyses together with information obtained from the genome sequence showed that C. glutamicum possesses a branched electron transport chain to oxygen with some remarkable features. Reducing equivalents obtained by the oxidation of various substrates are transferred to menaquinone via at least eight different dehydrogenases, i.e. NADH dehydrogenase, succinate dehydrogenase, malate:quinone oxidoreductase, pyruvate:quinone oxidoreductase, D-lactate dehydrogenase, L-lactate dehydrogenase, glycerol-3-phosphate dehydrogenase and L-proline dehydrogenase. All these enzymes contain a flavin cofactor and, except succinate dehydrogenase, are single subunit peripheral membrane proteins located inside the cell. From menaquinol, the electrons are passed either via the cytochrome bc(1) complex to the aa(3)-type cytochrome c oxidase with low oxygen affinity, or to the cytochrome bd-type menaquinol oxidase with high oxygen affinity. The former branch is exceptional, in that it does not involve a separate cytochrome c for electron transfer from cytochrome c(1) to the Cu(A) center in subunit II of cytochrome aa(3). Rather, cytochrome c(1) contains two covalently bound heme groups, one of which presumably takes over the function of a separate cytochrome c. The bc(1) complex and cytochrome aa(3) oxidase form a supercomplex in C. glutamicum. The phenotype of defined mutants revealed that the bc(1)-aa(3) branch, but not the bd branch, is of major importance for aerobic growth in minimal medium. Changes of the efficiency of oxidative phosphorylation caused by qualitative changes of the respiratory chain or by a defective F(1)F(0)-ATP synthase were found to have strong effects on metabolism and amino acid production. Therefore, the system of oxidative phosphorylation represents an attractive target for improving amino acid productivity of C. glutamicum by metabolic engineering.
Collapse
Affiliation(s)
- Michael Bott
- Institut für Biotechnologie 1, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| | | |
Collapse
|
10
|
Gilderson G, Salomonsson L, Aagaard A, Gray J, Brzezinski P, Hosler J. Subunit III of cytochrome c oxidase of Rhodobacter sphaeroides is required to maintain rapid proton uptake through the D pathway at physiologic pH. Biochemistry 2003; 42:7400-9. [PMID: 12809495 DOI: 10.1021/bi0341298] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The catalytic core of cytochrome c oxidase is composed of three subunits where subunits I and II contain all of the redox-active metal centers and subunit III is a seven transmembrane helix protein that binds to subunit I. The N-terminal region of subunit III is adjacent to D132 of subunit I, the initial proton acceptor of the D pathway that transfers protons from the protein surface to the buried active site approximately 30 A distant. The absence of subunit III only slightly alters the initial steady-state activity of the oxidase at pH 6.5, but activity declines sharply with increasing pH, yielding an apparent pK(a) of 7.2 for steady-state O(2) reduction. When subunit III is present, cytochrome oxidase is more active at higher pH, and the apparent pK(a) of steady-state O(2) reduction is 8.5. Single-turnover experiments show that proton uptake through the D pathway at pH 8 slows from >10000 s(-1) in the presence of subunit III to 350 s(-1) in its absence. At low pH (5.5) the D pathway of the oxidase lacking subunit III regains its capacity for rapid proton uptake. Analysis of the F --> O transition indicates that the apparent pK(a) of the D pathway in the absence of subunit III is 6.8, similar to that of steady-state O(2) reduction (7.2). The pK(a) of D132 itself may decline in the absence of subunit III since its carboxylate group will be more exposed to solvent water. Alternatively, part of a proton antenna for the D pathway may be lost upon removal of subunit III. It is proposed that one role of subunit III in the normal oxidase is to maintain rapid proton uptake through the D pathway at physiologic pH.
Collapse
Affiliation(s)
- Gwen Gilderson
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
11
|
Niebisch A, Bott M. Purification of a cytochrome bc-aa3 supercomplex with quinol oxidase activity from Corynebacterium glutamicum. Identification of a fourth subunity of cytochrome aa3 oxidase and mutational analysis of diheme cytochrome c1. J Biol Chem 2003; 278:4339-46. [PMID: 12446663 DOI: 10.1074/jbc.m210499200] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The aerobic respiratory chain of the Gram-positive Corynebacterium glutamicum involves a bc(1) complex with a diheme cytochrome c(1) and a cytochrome aa(3) oxidase but no additional c-type cytochromes. Here we show that the two enzymes form a supercomplex, because affinity chromatography of either strep-tagged cytochrome b (QcrB) or strep-tagged subunit I (CtaD) of cytochrome aa(3) always resulted in the copurification of the subunits of the bc(1) complex (QcrA, QcrB, QcrC) and the aa(3) complex (CtaD, CtaC, CtaE). The isolated bc(1)-aa(3) supercomplexes had quinol oxidase activity, indicating functional electron transfer between cytochrome c(1) and the Cu(A) center of cytochrome aa(3). Besides the known bc(1) and aa(3) subunits, few additional proteins were copurified, one of which (CtaF) was identified as a fourth subunit of cytochrome aa(3). If either of the two CXXCH motifs for covalent heme attachment in cytochrome c(1) was changed to SXXSH, the resulting mutants showed severe growth defects, had no detectable c-type cytochrome, and their cytochrome b level was strongly reduced. This indicates that the attachment of both heme groups to apo-cytochrome c(1) is not only required for the activity but also for the assembly and/or stability of the bc(1) complex.
Collapse
Affiliation(s)
- Axel Niebisch
- Institut für Biotechnologie 1, Forschungszentrum Jülich GmbH, Germany
| | | |
Collapse
|
12
|
Oh JI, Kaplan S. Oxygen adaptation. The role of the CcoQ subunit of the cbb3 cytochrome c oxidase of Rhodobacter sphaeroides 2.4.1. J Biol Chem 2002; 277:16220-8. [PMID: 11864982 DOI: 10.1074/jbc.m200198200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cbb(3) cytochrome c oxidase of Rhodobacter sphaeroides consists of four nonidentical subunits. Three subunits (CcoN, CcoO, and CcoP) comprise the catalytic "core" complex required for the reduction of O(2) and the oxidation of a c-type cytochrome. On the other hand, the functional role of subunit IV (CcoQ) of the cbb(3) oxidase was not obvious, although we previously suggested that it is involved in the signal transduction pathway controlling photosynthesis gene expression (Oh, J. I., and Kaplan, S. (1999) Biochemistry 38, 2688-2696). Here we go on to demonstrate that subunit IV protects the core complex, in the presence of O(2), from proteolytic degradation by a serine metalloprotease. In the absence of CcoQ, we suggest that the presence of O(2) leads to the loss of heme from the core complex, which destabilizes the cbb(3) oxidase into a "degradable" form, perhaps by altering its conformation. Under aerobic conditions the absence of CcoQ appears to affect the CcoP subunit most severely. It was further demonstrated, using a series of COOH-terminal deletion derivatives of CcoQ, that the minimum length of CcoQ required for stabilization of the core complex under aerobic conditions is the amino-terminal approximately 48-50 amino acids.
Collapse
Affiliation(s)
- Jeong-Il Oh
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Medical School, Houston, Texas 77030, USA
| | | |
Collapse
|
13
|
Rodgers S, Moser C, Martinez-Julvez M, Sinning I. Deletion of the 6-kDa subunit affects the activity and yield of the bc1 complex from Rhodovulum sulfidophilum. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3753-61. [PMID: 10848994 DOI: 10.1046/j.1432-1327.2000.01411.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cytochrome bc1 complex from Rhodovulum sulfidophilum purifies as a four-subunit complex: the cytochrome b, cytochrome c1 and Rieske iron-sulphur proteins, which are encoded together in the fbc operon, as well as a 6-kDa protein. The gene encoding the 6-kDa protein, named fbcS, has been identified. It is located within the sox operon, which encodes the subunits of sarcosine oxidase. The encoded 6-kDa protein is very hydrophobic and is predicted to form a single transmembrane helix. It shows no sequence homology to any known protein. The gene has been knocked-out of the genome and a three-subunit complex can be purified. This deletion leads to a large reduction in the yield of the isolated complex and in its activity compared to wild-type. The high quinone content found in the wild-type complex is, however, maintained after removal of the 6-kDa protein. Surprisingly, a fourth subunit of approximately 6 kDa is again found to copurify with the Rhv. sulfidophilum bc1 complex when only the fbc operon is expressed heterologously in a near-relative, Rhodobacter capsulatus, which lacks this small subunit in its own bc1 complex.
Collapse
Affiliation(s)
- S Rodgers
- European Molecular Biology Laboratory, Structural Biology Programme, Heidelberg, Germany
| | | | | | | |
Collapse
|
14
|
Behr J, Michel H, Mäntele W, Hellwig P. Functional properties of the heme propionates in cytochrome c oxidase from Paracoccus denitrificans. Evidence from FTIR difference spectroscopy and site-directed mutagenesis. Biochemistry 2000; 39:1356-63. [PMID: 10684616 DOI: 10.1021/bi991504g] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
By specific (13)C labeling of the heme propionates, four bands in the reduced-minus-oxidized FTIR difference spectrum of cytochrome c oxidase from Paracoccus denitrificans have been assigned to the heme propionates [Behr, J., Hellwig, P., Mäntele, W., and Michel, H. (1998) Biochemistry 37, 7400-7406]. To attribute these signals to the individual propionates, we have constructed seven cytochrome coxidase variants using site-directed mutagenesis of subunit I. The mutant enzymes W87Y, W87F, W164F, H403A, Y406F, R473K, and R474K were characterized by measurement of enzymatic turnover, proton pumping activity, and Vis and FTIR spectroscopy. Whereas the mutant enzymes W164F and Y406F were found to be structurally altered, the other cytochrome c oxidase variants were suitable for band assignment in the infrared. Reduced-minus-oxidized FTIR difference spectra of the mutant enzymes were used to identify the ring D propionate of heme a as a likely proton acceptor upon reduction of cytochromic oxidase. The ring D propionate of heme a(3) might undergo conformational changes or, less likely, act as a proton donor.
Collapse
Affiliation(s)
- J Behr
- Max-Planck-Institut für Biophysik, Abteilung Molekulare Membranbiologie, Heinrich-Hoffmann-Strasse 7, D-60528 Frankfurt/M., Germany
| | | | | | | |
Collapse
|
15
|
Gassel M, Möllenkamp T, Puppe W, Altendorf K. The KdpF subunit is part of the K(+)-translocating Kdp complex of Escherichia coli and is responsible for stabilization of the complex in vitro. J Biol Chem 1999; 274:37901-7. [PMID: 10608856 DOI: 10.1074/jbc.274.53.37901] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The kdpABC operon codes for the high affinity K(+)-translocating Kdp complex (P-type ATPase) of Escherichia coli. Upon expression of this operon in minicells, a so far unrecognized small hydrophobic polypeptide, KdpF, could be identified on high resolution SDS-polyacrylamide gels in addition to the subunits KdpA, KdpB, and KdpC. Furthermore, it could be demonstrated that KdpF remains associated with the purified complex. As determined by mass spectrometry, this peptide is present in its formylated form and has a molecular mass of 3100 Da. KdpF is not essential for growth on low K(+) (0.1 mM) medium, as shown by deletion analysis of kdpF, but proved to be indispensable for a functional enzyme complex in vitro. In the absence of KdpF, the ATPase activity of the membrane-bound Kdp complex was almost indistinguishable from that of the wild type. In contrast, the purified detergent-solubilized enzyme complex showed a dramatic decrease in enzymatic activity. However, addition of purified KdpF to the KdpABC complex restored the activity up to wild type level. It is interesting to note that the addition of high amounts of E. coli lipids had a similar effect. Although KdpF is not essential for the function of the Kdp complex in vivo, it is part of the complex and functions as a stabilizing element in vitro. The corresponding operon should now be referred to as kdpFABC.
Collapse
Affiliation(s)
- M Gassel
- Universität Osnabrück, Fachbereich Biologie/Chemie, Abteilung Mikrobiologie, D-49069 Osnabrück, Germany
| | | | | | | |
Collapse
|
16
|
Appia-Ayme C, Guiliani N, Ratouchniak J, Bonnefoy V. Characterization of an operon encoding two c-type cytochromes, an aa(3)-type cytochrome oxidase, and rusticyanin in Thiobacillus ferrooxidans ATCC 33020. Appl Environ Microbiol 1999; 65:4781-7. [PMID: 10543786 PMCID: PMC91644 DOI: 10.1128/aem.65.11.4781-4787.1999] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite the importance of Thiobacillus ferrooxidans in bioremediation and bioleaching, little is known about the genes encoding electron transfer proteins implicated in its energetic metabolism. This paper reports the sequences of the four cox genes encoding the subunits of an aa(3)-type cytochrome c oxidase. These genes are in a locus containing four other genes: cyc2, which encodes a high-molecular-weight cytochrome c; cyc1, which encodes a c(4)-type cytochrome (c(552)); open reading frame 1, which encodes a putative periplasmic protein of unknown function; and rus, which encodes rusticyanin. The results of Northern and reverse transcription-PCR analyses indicated that these eight genes are cotranscribed. Two transcriptional start sites were identified for this operon. Upstream from each of the start sites was a sigma70-type promoter recognized in Escherichia coli. While transcription in sulfur-grown T. ferrooxidans cells was detected from the two promoters, transcription in ferrous-iron-grown T. ferrooxidans cells was detected only from the downstream promoter. The cotranscription of seven genes encoding redox proteins suggests that all these proteins are involved in the same electron transfer chain; a model taking into account the biochemistry and the genetic data is discussed.
Collapse
Affiliation(s)
- C Appia-Ayme
- Laboratoire de Chimie Bactérienne, Institut de Biologie Structurale et de Microbiologie, Centre National de la Recherche Scientifique, 13402 Marseille Cedex 20, France
| | | | | | | |
Collapse
|
17
|
Montoya G, te Kaat K, Rodgers S, Nitschke W, Sinning I. The cytochrome bc1 complex from Rhodovulum sulfidophilum is a dimer with six quinones per monomer and an additional 6-kDa component. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 259:709-18. [PMID: 10092855 DOI: 10.1046/j.1432-1327.1999.00094.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A highly active, large-scale preparation of cytochrome bc1 complex has been obtained from the photosynthetic purple bacterium Rhodovulum (Rhv.) sulfidophilum. It has been characterized using mass spectrometry, quinone and lipid analysis as well as inhibitor binding. About 35 mg of pure complex can be obtained from 1 g of membrane protein. EPR spectroscopy and optical titrations have been used to obtain the redox midpoint potentials of the cofactors. The Em-value of 310 mV for the Rieske protein is the most positive midpoint potential for this protein in a bc1 complex so far. The bc1 complex from Rhv. sulfidophilum is very stable and consists of three subunits and a 6-kDa polypeptide. The complex appears as a dimer in solution and contains six quinone molecules per monomer which are tightly bound. EPR spectroscopy shows that the Q(o) site is highly occupied. High detergent concentrations convert the complex into an inactive, monomeric form that has lost the Rieske protein as well as the quinones and the 6-kDa component.
Collapse
Affiliation(s)
- G Montoya
- European Molecular Biology Laboratory, Structural Biology Programme, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
18
|
Page MD, Sockett RE. 13 Molecular Genetic Methods in Paracoccus and Rhodobacter with Particular Reference to the Analysis of Respiration and Photosynthesis. METHODS IN MICROBIOLOGY 1999. [DOI: 10.1016/s0580-9517(08)70124-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Hellwig P, Ostermeier C, Michel H, Ludwig B, Mäntele W. Electrochemically induced FT-IR difference spectra of the two- and four-subunit cytochrome c oxidase from P. denitrificans reveal identical conformational changes upon redox transitions. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1409:107-12. [PMID: 9838069 DOI: 10.1016/s0005-2728(98)00151-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
In order to study the role of subunits III and IV of the cytochrome c oxidase from P. denitrificans for electron and proton transfer, electrochemically induced FT-IR difference spectra of the two- and of the four-subunit enzyme have been compared. These spectra reflect the alterations in the protein upon electron and proton transfer. Since the spectra are essentially identical, they clearly indicate that the additional subunits III and IV do not contribute to the FT-IR difference spectra of the four-subunit oxidase. Subunits III and IV are thus not involved in the reorganization of the polypeptide backbone and of single amino acids upon electron transfer and coupled proton transfer observed in the difference spectra in addition to heme contributions. The subtle differences between the FT-IR difference spectra that are attributed to the influence of protein-protein interactions between the subunits are discussed.
Collapse
Affiliation(s)
- P Hellwig
- Institut für Biophysik der Johann Wolfgang Goethe Universität, Theodor-Stern-Kai 7, Haus 74, 60590 Frankfurt/M., Germany
| | | | | | | | | |
Collapse
|
20
|
Baker SC, Ferguson SJ, Ludwig B, Page MD, Richter OM, van Spanning RJ. Molecular genetics of the genus Paracoccus: metabolically versatile bacteria with bioenergetic flexibility. Microbiol Mol Biol Rev 1998; 62:1046-78. [PMID: 9841665 PMCID: PMC98939 DOI: 10.1128/mmbr.62.4.1046-1078.1998] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Paracoccus denitrificans and its near relative Paracoccus versutus (formerly known as Thiobacilllus versutus) have been attracting increasing attention because the aerobic respiratory system of P. denitrificans has long been regarded as a model for that of the mitochondrion, with which there are many components (e.g., cytochrome aa3 oxidase) in common. Members of the genus exhibit a great range of metabolic flexibility, particularly with respect to processes involving respiration. Prominent examples of flexibility are the use in denitrification of nitrate, nitrite, nitrous oxide, and nitric oxide as alternative electron acceptors to oxygen and the ability to use C1 compounds (e.g., methanol and methylamine) as electron donors to the respiratory chains. The proteins required for these respiratory processes are not constitutive, and the underlying complex regulatory systems that regulate their expression are beginning to be unraveled. There has been uncertainty about whether transcription in a member of the alpha-3 Proteobacteria such as P. denitrificans involves a conventional sigma70-type RNA polymerase, especially since canonical -35 and -10 DNA binding sites have not been readily identified. In this review, we argue that many genes, in particular those encoding constitutive proteins, may be under the control of a sigma70 RNA polymerase very closely related to that of Rhodobacter capsulatus. While the main focus is on the structure and regulation of genes coding for products involved in respiratory processes in Paracoccus, the current state of knowledge of the components of such respiratory pathways, and their biogenesis, is also reviewed.
Collapse
Affiliation(s)
- S C Baker
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom.
| | | | | | | | | | | |
Collapse
|
21
|
Nicoletti F, Witt H, Ludwig B, Brunori M, Malatesta F. Paracoccus denitrificans cytochrome c oxidase: a kinetic study on the two- and four-subunit complexes. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1365:393-403. [PMID: 9757081 DOI: 10.1016/s0005-2728(98)00092-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cytochrome c oxidase from Paracoccus denitrificans has been purified in two different forms differing in polypeptide composition. An enzyme containing polypeptides I-IV is obtained when the purification procedure is performed in beta-d-dodecylmaltoside. If, however, Triton X-100 is used to purify the enzyme under otherwise identical conditions, an enzyme is obtained containing only subunits I-II. The two enzymes are undistinguishable by optical spectroscopy but show significant differences in the transient and steady-state time regimes, as studied by stopped-flow spectroscopy. The observed differences, however, are not due to removal of subunits III and IV, but rather to a specific effect of Triton X-100 which appears to affect cytochrome c binding. From these results it is not expected that subunits III and IV play any significant role in cytochrome c binding and, possibly, in the subsequent electron transfer processes. The results also suggest that both electrostatic and hydrophobic interactions may be important in the initial electron transfer process from cytochrome c.
Collapse
Affiliation(s)
- F Nicoletti
- Department of Biochemical Sciences and CNR Centre of Molecular Biology, University of Rome 'La Sapienza', Piazzale A. Moro, 5, 00185 Rome, Italy
| | | | | | | | | |
Collapse
|
22
|
Michel H, Behr J, Harrenga A, Kannt A. Cytochrome c oxidase: structure and spectroscopy. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 1998; 27:329-56. [PMID: 9646871 DOI: 10.1146/annurev.biophys.27.1.329] [Citation(s) in RCA: 341] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cytochrome c oxidase, the terminal enzyme of the respiratory chains of mitochondria and aerobic bacteria, catalyzes electron transfer from cytochrome c to molecular oxygen, reducing the latter to water. Electron transfer is coupled to proton translocation across the membrane, resulting in a proton and charge gradient that is then employed by the F0F1-ATPase to synthesize ATP. Over the last years, substantial progress has been made in our understanding of the structure and function of this enzyme. Spectroscopic techniques such as EPR, absorbance and resonance Raman spectroscopy, in combination with site-directed mutagenesis work, have been successfully applied to elucidate the nature of the cofactors and their ligands, to identify key residues involved in proton transfer, and to gain insight into the catalytic cycle and the structures of its intermediates. Recently, the crystal structures of a bacterial and a mitochondrial cytochrome c oxidase have been determined. In this review, we provide an overview of the crystal structures, summarize recent spectroscopic work, and combine structural and spectroscopic data in discussing mechanistic aspects of the enzyme. For the latter, we focus on the structure of the oxygen intermediates, proton-transfer pathways, and the much-debated issue of how electron transfer in the enzyme might be coupled to proton translocation.
Collapse
Affiliation(s)
- H Michel
- Max-Planck-Institut für Biophysik, Frankfurt/Main, Germany.
| | | | | | | |
Collapse
|
23
|
Zufferey R, Arslan E, Thöny-Meyer L, Hennecke H. How replacements of the 12 conserved histidines of subunit I affect assembly, cofactor binding, and enzymatic activity of the Bradyrhizobium japonicum cbb3-type oxidase. J Biol Chem 1998; 273:6452-9. [PMID: 9497378 DOI: 10.1074/jbc.273.11.6452] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alignments of the amino acid sequences of subunit I (FixN or CcoN) of the cbb3-type oxidases show 12 conserved histidines. Six of them are diagnostic of heme-copper oxidases and are thought to bind the following cofactors: the low spin heme B and the binuclear high spin heme B-CuB center. The other six are FixN(CcoN)-specific and their function is unknown. To analyze the contribution of these 12 invariant histidines of FixN in cofactor binding and function of the Bradyrhizobium japonicum cbb3-type oxidase, they were substituted by valine or alanine by site-directed mutagenesis. The H131A mutant enzyme had already been reported previously to be defective in oxidase assembly and function (Zufferey, R., Th¿ny-Meyer, L., and Hennecke, H. (1996) FEBS Lett. 394, 349-352). Four of the remaining histidines were not essential for activity or assembly (positions 226, 246, 333, and 457); by contrast, histidines 331, 410, and 418 were required both for activity and stability of the enzyme. The last group of mutant enzymes, H420A, H280A, H330A, and H316V, were assembled but not functional. To purify the latter mutant proteins and the wild-type enzyme, a six-histidine tag was added to the C terminus of subunit I. The His6-tagged cbb3-oxidase complexes were purified 20-fold by a three-step purification protocol. With the exception of the H420A mutant oxidase, the mutant enzymes H280A, H316V, and H331A contained normal amounts of copper and heme B, and they displayed similar visible light spectroscopic characteristics like the wild-type His6-tagged enzyme. The His6-tagged H420A mutant oxidase differed from the His6-tagged wild-type protein by showing altered visible light spectroscopic characteristics. No stable mutant oxidase lacking copper or heme B was obtained. This strongly suggests that copper and heme B incorporations in subunit I are prerequisites for assembly of the enzyme.
Collapse
Affiliation(s)
- R Zufferey
- Mikrobiologisches Institut, Eidgen¿ssische Technische Hochschule, Schmelzbergstrasse 7, CH-8092 Zurich, Switzerland
| | | | | | | |
Collapse
|
24
|
Pfitzner U, Odenwald A, Ostermann T, Weingard L, Ludwig B, Richter OM. Cytochrome c oxidase (heme aa3) from Paracoccus denitrificans: analysis of mutations in putative proton channels of subunit I. J Bioenerg Biomembr 1998; 30:89-97. [PMID: 9623810 DOI: 10.1023/a:1020515713103] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
One of the challenging features of energy-transducing terminal oxidases, like the aa3 cytochrome c oxidase of Paracoccus denitrificans, is the translocation of protons across the cytoplasmic membrane, which is coupled to the transfer of electrons to oxygen. As a prerequisite for a more advanced examination of the enzymatic properties, several amino acid residues, selected on the basis of recent three-dimensional structure determinations, were exchanged in subunit I of the Paracoccus enzyme by site-directed mutagenesis. The properties of the mutated oxidases were analyzed by different methods to elucidate whether they are involved in the coupled and coordinated transfer of protons via two different pathways either to the site of oxygen reduction or through the enzyme from the cytoplasm to the periplasmic side.
Collapse
Affiliation(s)
- U Pfitzner
- Molecular Genetics, Institute of Biochemistry, Biozentrum, Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Denitrification is a distinct means of energy conservation, making use of N oxides as terminal electron acceptors for cellular bioenergetics under anaerobic, microaerophilic, and occasionally aerobic conditions. The process is an essential branch of the global N cycle, reversing dinitrogen fixation, and is associated with chemolithotrophic, phototrophic, diazotrophic, or organotrophic metabolism but generally not with obligately anaerobic life. Discovered more than a century ago and believed to be exclusively a bacterial trait, denitrification has now been found in halophilic and hyperthermophilic archaea and in the mitochondria of fungi, raising evolutionarily intriguing vistas. Important advances in the biochemical characterization of denitrification and the underlying genetics have been achieved with Pseudomonas stutzeri, Pseudomonas aeruginosa, Paracoccus denitrificans, Ralstonia eutropha, and Rhodobacter sphaeroides. Pseudomonads represent one of the largest assemblies of the denitrifying bacteria within a single genus, favoring their use as model organisms. Around 50 genes are required within a single bacterium to encode the core structures of the denitrification apparatus. Much of the denitrification process of gram-negative bacteria has been found confined to the periplasm, whereas the topology and enzymology of the gram-positive bacteria are less well established. The activation and enzymatic transformation of N oxides is based on the redox chemistry of Fe, Cu, and Mo. Biochemical breakthroughs have included the X-ray structures of the two types of respiratory nitrite reductases and the isolation of the novel enzymes nitric oxide reductase and nitrous oxide reductase, as well as their structural characterization by indirect spectroscopic means. This revealed unexpected relationships among denitrification enzymes and respiratory oxygen reductases. Denitrification is intimately related to fundamental cellular processes that include primary and secondary transport, protein translocation, cytochrome c biogenesis, anaerobic gene regulation, metalloprotein assembly, and the biosynthesis of the cofactors molybdopterin and heme D1. An important class of regulators for the anaerobic expression of the denitrification apparatus are transcription factors of the greater FNR family. Nitrate and nitric oxide, in addition to being respiratory substrates, have been identified as signaling molecules for the induction of distinct N oxide-metabolizing enzymes.
Collapse
Affiliation(s)
- W G Zumft
- Lehrstuhl für Mikrobiologie, Universität Fridericiana, Karlsruhe, Germany
| |
Collapse
|
26
|
Abstract
Biogenesis of respiratory cytochromes is defined as consisting of the posttranslational processes that are necessary to assemble apoprotein, heme, and sometimes additional cofactors into mature enzyme complexes with electron transfer functions. Different biochemical reactions take place during maturation: (i) targeting of the apoprotein to or through the cytoplasmic membrane to its subcellular destination; (ii) proteolytic processing of precursor forms; (iii) assembly of subunits in the membrane and oligomerization; (iv) translocation and/or modification of heme and covalent or noncovalent binding to the protein moiety; (v) transport, processing, and incorporation of other cofactors; and (vi) folding and stabilization of the protein. These steps are discussed for the maturation of different oxidoreductase complexes, and they are arranged in a linear pathway to best account for experimental findings from studies concerning cytochrome biogenesis. The example of the best-studied case, i.e., maturation of cytochrome c, appears to consist of a pathway that requires at least nine specific genes and more general cellular functions such as protein secretion or the control of the redox state in the periplasm. Covalent attachment of heme appears to be enzyme catalyzed and takes place in the periplasm after translocation of the precursor through the membrane. The genetic characterization and the putative biochemical functions of cytochrome c-specific maturation proteins suggest that they may be organized in a membrane-bound maturase complex. Formation of the multisubunit cytochrome bc, complex and several terminal oxidases of the bo3, bd, aa3, and cbb3 types is discussed in detail, and models for linear maturation pathways are proposed wherever possible.
Collapse
Affiliation(s)
- L Thöny-Meyer
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH Zentrum, Zürich, Switzerland.
| |
Collapse
|
27
|
Zickermann I, Tautu OS, Link TA, Korn M, Ludwig B, Richter OM. Expression studies on the ba3 quinol oxidase from Paracoccus denitrificans. A bb3 variant is enzymatically inactive. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 246:618-24. [PMID: 9219517 DOI: 10.1111/j.1432-1033.1997.00618.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Expression of the quinol oxidase from Paracoccus denitrificans has been examined using a polyclonal antibody directed against subunit II and a promoter probe vector carrying the promoter region of the qox operon. Under aerobic conditions nitrate and nitrite act as specific inducers of the expression. To obtain an enzymatically competent quinol oxidase complex, an intact ctaB gene is required, which constitutes part of the cta operon coding for the aa3 cytochrome c oxidase of P. denitrificans. Deletion of ctaB leads to a change in heme composition of the quinol oxidase with heme b replacing the high-spin heme a of the binuclear center, causing loss of electron transport activity.
Collapse
Affiliation(s)
- I Zickermann
- Institut für Biochemie, Biozentrum, J. W. Goethe Universität Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Witt H, Wittershagen A, Bill E, Kolbesen BO, Ludwig B. Asp-193 and Glu-218 of subunit II are involved in the Mn2+-binding of Paracoccus denitrificans cytochrome c oxidase. FEBS Lett 1997; 409:128-30. [PMID: 9202131 DOI: 10.1016/s0014-5793(97)00485-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cytochrome c oxidase contains a binding site for a non-redox-active metal at the interface of subunits I and II, usually a magnesium ion. In Paracoccus denitrificans oxidase, typically 20% may be replaced by manganese, using standard growth media. Site-directed mutants were constructed in subunit II (D193N and E218Q), and the isolated enzymes analyzed by total-reflection X-ray fluorescence spectrometry and EPR. Both mutants show a strong reduction of the manganese stoichiometry and a diminished electron transfer activity, demonstrating that D193 and E218 are involved in the binding of a manganese/magnesium ion in this site.
Collapse
Affiliation(s)
- H Witt
- Institute of Biochemistry/Molecular Genetics, University of Frankfurt, Biozentrum, Germany
| | | | | | | | | |
Collapse
|
29
|
Saxena K, Richter OM, Ludwig B, Benz R. Molecular cloning and functional characterization of the Paracoccus denitrificans porin. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 245:300-6. [PMID: 9151957 DOI: 10.1111/j.1432-1033.1997.00300.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bacterial porins facilitate the passive uptake of small solutes across the outer membrane of the cell. The channel properties and the primary structure of the porin from Paracoccus denitrificans were investigated. As judged from single-channel conductance experiments, this porin forms trimeric pores that show no ion selectivity in potassium chloride solution, which indicates that the charges within or near the channel are balanced. Based on peptide fragment sequence, the gene porG, which codes for this general pore protein, was cloned and analyzed. Its primary translation product contains a 20-residue signal sequence, followed by the 295 amino acids of the mature protein with a molecular mass of 31.9 kDa. Sequence alignments with porins from Rhodopseudomonas blastica and Rhodobacter capsulatus and secondary structure predictions suggest a typical rigid barrel structure consisting of 16 antiparallel beta-strands.
Collapse
Affiliation(s)
- K Saxena
- Molekulare Genetik, Institut für Biochemie, Biozentrum der Universität Frankfurt, Germany
| | | | | | | |
Collapse
|