1
|
Jin M, Fan W, Lv S, Xue T, Cong L, Liu X, Cui L. LncRNA018392 promotes the proliferation of Liaoning cashmere goat skin fibroblasts by upregulating CSF1R through binding to SPI1. Mol Biol Rep 2024; 51:920. [PMID: 39158794 DOI: 10.1007/s11033-024-09851-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/02/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Liaoning cashmere goat is recognized as a valuable genetic resource breed, with restrictions on genetic outflow in China. Hair follicle development in the cashmere goat is influenced by melatonin and long non-coding RNAs (lncRNAs). However, the role of lncRNAs in facilitating melatonin-promoted cashmere growth remains poorly understood. Previous studies have identified a new lncRNA, lncRNA018392, which is involved in the melatonin-promoted proliferation of cashmere skin fibroblasts. METHOD Flow cytometry and CCK-8 assays confirmed that silencing lncRNA018392 negates the effects of melatonin on cell proliferation, and that proliferation was reduced when the gene CSF1R, located near lncRNA018392, was inhibited. Further investigation using a dual-luciferase reporter assay showed that lncRNA018392 could positively regulate the promoter of CSF1R. RESULTS Results from RNA-binding protein immunoprecipitation (RIP) and chromatin immunoprecipitation sequencing (ChIP-Seq) revealed that lncRNA018392 interacts with the transcription factor SPI1, with CSF1R being a downstream target gene regulated by SPI1. This interaction was confirmed by ChIP-PCR, which demonstrated SPI1's binding to CSF1R. CONCLUSIONS This study found that the melatonin-responsive lncRNA018392 accelerates the cell cycle and promotes cell proliferation by recruiting SPI1 to upregulate the expression of the neighboring gene CSF1R. These findings provide a theoretical foundation for elucidating the molecular mechanisms of cashmere growth and for the molecular breeding of cashmere goats.
Collapse
Affiliation(s)
- Mei Jin
- School of Life Sciences, Liaoning Key Laboratory of Biotechnology and Molecular Drug Development, Liaoning Normal University, Dalian, 116081, China.
| | - Weiyu Fan
- School of Life Sciences, Liaoning Key Laboratory of Biotechnology and Molecular Drug Development, Liaoning Normal University, Dalian, 116081, China
| | - Suhe Lv
- School of Life Sciences, Liaoning Key Laboratory of Biotechnology and Molecular Drug Development, Liaoning Normal University, Dalian, 116081, China
| | - Tianwei Xue
- School of Life Sciences, Liaoning Key Laboratory of Biotechnology and Molecular Drug Development, Liaoning Normal University, Dalian, 116081, China
| | - Linlin Cong
- School of Life Sciences, Liaoning Key Laboratory of Biotechnology and Molecular Drug Development, Liaoning Normal University, Dalian, 116081, China
| | - Xinyang Liu
- School of Life Sciences, Liaoning Key Laboratory of Biotechnology and Molecular Drug Development, Liaoning Normal University, Dalian, 116081, China
| | - Lixin Cui
- School of Life Sciences, Liaoning Key Laboratory of Biotechnology and Molecular Drug Development, Liaoning Normal University, Dalian, 116081, China
| |
Collapse
|
2
|
Millard SM, Heng O, Opperman KS, Sehgal A, Irvine KM, Kaur S, Sandrock CJ, Wu AC, Magor GW, Batoon L, Perkins AC, Noll JE, Zannettino ACW, Sester DP, Levesque JP, Hume DA, Raggatt LJ, Summers KM, Pettit AR. Fragmentation of tissue-resident macrophages during isolation confounds analysis of single-cell preparations from mouse hematopoietic tissues. Cell Rep 2021; 37:110058. [PMID: 34818538 DOI: 10.1016/j.celrep.2021.110058] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/21/2021] [Revised: 09/28/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022] Open
Abstract
Mouse hematopoietic tissues contain abundant tissue-resident macrophages that support immunity, hematopoiesis, and bone homeostasis. A systematic strategy to characterize macrophage subsets in mouse bone marrow (BM), spleen, and lymph node unexpectedly reveals that macrophage surface marker staining emanates from membrane-bound subcellular remnants associated with unrelated cells. Intact macrophages are not present within these cell preparations. The macrophage remnant binding profile reflects interactions between macrophages and other cell types in vivo. Depletion of CD169+ macrophages in vivo eliminates F4/80+ remnant attachment. Remnant-restricted macrophage-specific membrane markers, cytoplasmic fluorescent reporters, and mRNA are all detected in non-macrophage cells including isolated stem and progenitor cells. Analysis of RNA sequencing (RNA-seq) data, including publicly available datasets, indicates that macrophage fragmentation is a general phenomenon that confounds bulk and single-cell analysis of disaggregated hematopoietic tissues. Hematopoietic tissue macrophage fragmentation undermines the accuracy of macrophage ex vivo molecular profiling and creates opportunity for misattribution of macrophage-expressed genes to non-macrophage cells.
Collapse
Affiliation(s)
- Susan M Millard
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Ostyn Heng
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Khatora S Opperman
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia; South Australian Health and Medical Research Institute, PO Box 11060, Adelaide, SA 5001, Australia
| | - Anuj Sehgal
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Katharine M Irvine
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Simranpreet Kaur
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia; The University of Queensland, UQ Diamantina Institute, Brisbane, QLD 4102, Australia
| | - Cheyenne J Sandrock
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Andy C Wu
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia; TRI Flow Cytometry Suite, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Graham W Magor
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia; Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3004, Australia
| | - Lena Batoon
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Andrew C Perkins
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia; Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3004, Australia
| | - Jacqueline E Noll
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia; South Australian Health and Medical Research Institute, PO Box 11060, Adelaide, SA 5001, Australia
| | - Andrew C W Zannettino
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia; South Australian Health and Medical Research Institute, PO Box 11060, Adelaide, SA 5001, Australia; Central Adelaide Local Health Network, Adelaide, SA 5001, Australia
| | - David P Sester
- TRI Flow Cytometry Suite, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Jean-Pierre Levesque
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - David A Hume
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Liza J Raggatt
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Kim M Summers
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Allison R Pettit
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
3
|
Grabert K, Sehgal A, Irvine KM, Wollscheid-Lengeling E, Ozdemir DD, Stables J, Luke GA, Ryan MD, Adamson A, Humphreys NE, Sandrock CJ, Rojo R, Verkasalo VA, Mueller W, Hohenstein P, Pettit AR, Pridans C, Hume DA. A Transgenic Line That Reports CSF1R Protein Expression Provides a Definitive Marker for the Mouse Mononuclear Phagocyte System. THE JOURNAL OF IMMUNOLOGY 2020; 205:3154-3166. [DOI: 10.4049/jimmunol.2000835] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/20/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
|
4
|
Mechanisms governing the pioneering and redistribution capabilities of the non-classical pioneer PU.1. Nat Commun 2020; 11:402. [PMID: 31964861 PMCID: PMC6972792 DOI: 10.1038/s41467-019-13960-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/25/2019] [Accepted: 12/10/2019] [Indexed: 12/21/2022] Open
Abstract
Establishing gene regulatory networks during differentiation or reprogramming requires master or pioneer transcription factors (TFs) such as PU.1, a prototype master TF of hematopoietic lineage differentiation. To systematically determine molecular features that control its activity, here we analyze DNA-binding in vitro and genome-wide in vivo across different cell types with native or ectopic PU.1 expression. Although PU.1, in contrast to classical pioneer factors, is unable to access nucleosomal target sites in vitro, ectopic induction of PU.1 leads to the extensive remodeling of chromatin and redistribution of partner TFs. De novo chromatin access, stable binding, and redistribution of partner TFs both require PU.1's N-terminal acidic activation domain and its ability to recruit SWI/SNF remodeling complexes, suggesting that the latter may collect and distribute co-associated TFs in conjunction with the non-classical pioneer TF PU.1.
Collapse
|
5
|
Yashiro T, Nakano S, Nomura K, Uchida Y, Kasakura K, Nishiyama C. A transcription factor PU.1 is critical for Ccl22 gene expression in dendritic cells and macrophages. Sci Rep 2019; 9:1161. [PMID: 30718772 PMCID: PMC6361964 DOI: 10.1038/s41598-018-37894-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/29/2018] [Accepted: 12/07/2018] [Indexed: 11/16/2022] Open
Abstract
The chemokine CCL22 is predominantly produced by dendritic cells (DCs) and macrophages. CCL22 acts on CCR4-expressing cells including Th2 and Treg. Although a correlation between the CCL22-CCR4 axis and allergic diseases has been established, the mechanism of monocyte lineage-specific Ccl22 gene expression is largely unknown. In the current study, we investigated transcriptional regulation of the Ccl22 gene in DCs and macrophages. Using reporter assays, we identified the critical cis-enhancing elements at 21/−18 and −10/−4 in the Ccl22 promoter. Electrophoretic mobility shift assays proved that transcription factor PU.1 directly binds to the cis-elements. Knockdown of PU.1 markedly decreased Ccl22 expression in bone marrow-derived DCs (BMDCs) and BM macrophages (BMDMs). Chromatin immunoprecipitation assays revealed that PU.1 bound to the Ccl22 promoter in not only BMDCs and BMDMs, but also splenic DCs and peritoneal macrophages. LPS stimulation increased the amount of PU.1 recruited to the promoter, accompanied by upregulation of the Ccl22 mRNA level, which was diminished by Spi1 knockdown. We identified similar cis-elements on the human CCL22 promoter, which were bound with PU.1 in human monocytes. Taken together, these findings indicate that PU.1 transactivates the Ccl22 gene in DCs and macrophages by directly binding to the two elements in the promoter.
Collapse
Affiliation(s)
- Takuya Yashiro
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Shiori Nakano
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Kurumi Nomura
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Yuna Uchida
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Kazumi Kasakura
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Chiharu Nishiyama
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan.
| |
Collapse
|
6
|
Waddell LA, Lefevre L, Bush SJ, Raper A, Young R, Lisowski ZM, McCulloch MEB, Muriuki C, Sauter KA, Clark EL, Irvine KM, Pridans C, Hope JC, Hume DA. ADGRE1 (EMR1, F4/80) Is a Rapidly-Evolving Gene Expressed in Mammalian Monocyte-Macrophages. Front Immunol 2018; 9:2246. [PMID: 30327653 PMCID: PMC6174849 DOI: 10.3389/fimmu.2018.02246] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/19/2018] [Accepted: 09/10/2018] [Indexed: 12/26/2022] Open
Abstract
The F4/80 antigen, encoded by the Adgre1 locus, has been widely-used as a monocyte-macrophage marker in mice, but its value as a macrophage marker in other species is unclear, and has even been questioned. ADGRE1 is a seven transmembrane G protein-coupled receptor with an extracellular domain containing repeated Epidermal Growth Factor (EGF)-like calcium binding domains. Using a new monoclonal antibody, we demonstrated that ADGRE1 is a myeloid differentiation marker in pigs, absent from progenitors in bone marrow, highly-expressed in mature granulocytes, monocytes, and tissue macrophages and induced by macrophage colony-stimulating factor (CSF1) treatment in vivo. Based upon these observations, we utilized RNA-Seq to assess the expression of ADGRE1 mRNA in bone marrow or monocyte-derived macrophages (MDM) and alveolar macrophages from 8 mammalian species including pig, human, rat, sheep, goat, cow, water buffalo, and horse. ADGRE1 mRNA was expressed by macrophages in each species, with inter-species variation both in expression level and response to lipopolysaccharide (LPS) stimulation. Analysis of the RNA-Seq data also revealed additional exons in several species compared to current Ensembl annotations. The ruminant species and horses appear to encode a complete duplication of the 7 EGF-like domains. In every species, Sashimi plots revealed evidence of exon skipping of the EGF-like domains, which are highly-variable between species and polymorphic in humans. Consistent with these expression patterns, key elements of the promoter and a putative enhancer are also conserved across all species. The rapid evolution of this molecule and related ADGRE family members suggests immune selection and a role in pathogen recognition.
Collapse
Affiliation(s)
- Lindsey A. Waddell
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Lucas Lefevre
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen J. Bush
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Anna Raper
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Rachel Young
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Zofia M. Lisowski
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Charity Muriuki
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Kristin A. Sauter
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Emily L. Clark
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Clare Pridans
- Centre for Inflammation Research at the University of Edinburgh, Edinburgh, United Kingdom
| | - Jayne C. Hope
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - David A. Hume
- Mater Research-University of Queensland, Woolloongabba, QLD, Australia
- Centre for Inflammation Research at the University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
7
|
The evolution of the macrophage-specific enhancer (Fms intronic regulatory element) within the CSF1R locus of vertebrates. Sci Rep 2017; 7:17115. [PMID: 29215000 PMCID: PMC5719456 DOI: 10.1038/s41598-017-15999-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/21/2017] [Accepted: 11/03/2017] [Indexed: 01/07/2023] Open
Abstract
The Csf1r locus encodes the receptor for macrophage colony-stimulating factor, which controls the proliferation, differentiation and survival of macrophages. The 300 bp Fms intronic regulatory element (FIRE), within the second intron of Csf1r, is necessary and sufficient to direct macrophage-specific transcription. We have analysed the conservation and divergence of the FIRE DNA sequence in vertebrates. FIRE is present in the same location in the Csf1r locus in reptile, avian and mammalian genomes. Nearest neighbor analysis based upon this element alone largely recapitulates phylogenies inferred from much larger genomic sequence datasets. One core element, containing binding sites for AP1 family and the macrophage-specific transcription factor, PU.1, is conserved from lizards to humans. Around this element, the FIRE sequence is conserved within clades with the most conserved elements containing motifs for known myeloid-expressed transcription factors. Conversely, there is little alignment between clades outside the AP1/PU.1 element. The analysis favours a hybrid between “enhanceosome” and “smorgasbord” models of enhancer function, in which elements cooperate to bind components of the available transcription factor milieu.
Collapse
|
8
|
Transcriptional mechanisms that control expression of the macrophage colony-stimulating factor receptor locus. Clin Sci (Lond) 2017; 131:2161-2182. [DOI: 10.1042/cs20170238] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/31/2017] [Revised: 05/22/2017] [Accepted: 06/11/2017] [Indexed: 12/17/2022]
Abstract
The proliferation, differentiation, and survival of cells of the macrophage lineage depends upon signals from the macrophage colony-stimulating factor (CSF) receptor (CSF1R). CSF1R is expressed by embryonic macrophages and induced early in adult hematopoiesis, upon commitment of multipotent progenitors to the myeloid lineage. Transcriptional activation of CSF1R requires interaction between members of the E26 transformation-specific family of transcription factors (Ets) (notably PU.1), C/EBP, RUNX, AP-1/ATF, interferon regulatory factor (IRF), STAT, KLF, REL, FUS/TLS (fused in sarcoma/ranslocated in liposarcoma) families, and conserved regulatory elements within the mouse and human CSF1R locus. One element, the Fms-intronic regulatory element (FIRE), within intron 2, is conserved functionally across all the amniotes. Lineage commitment in multipotent progenitors also requires down-regulation of specific transcription factors such as MYB, FLI1, basic leucine zipper transcriptional factor ATF-like (BATF3), GATA-1, and PAX5 that contribute to differentiation of alternative lineages and repress CSF1R transcription. Many of these transcription factors regulate each other, interact at the protein level, and are themselves downstream targets of CSF1R signaling. Control of CSF1R transcription involves feed–forward and feedback signaling in which CSF1R is both a target and a participant; and dysregulation of CSF1R expression and/or function is associated with numerous pathological conditions. In this review, we describe the regulatory network behind CSF1R expression during differentiation and development of cells of the mononuclear phagocyte system.
Collapse
|
9
|
Abstract
Monocytes and macrophages are professional phagocytes that occupy specific niches in every tissue of the body. Their survival, proliferation, and differentiation are controlled by signals from the macrophage colony-stimulating factor receptor (CSF-1R) and its two ligands, CSF-1 and interleukin-34. In this review, we address the developmental and transcriptional relationships between hematopoietic progenitor cells, blood monocytes, and tissue macrophages as well as the distinctions from dendritic cells. A huge repertoire of receptors allows monocytes, tissue-resident macrophages, or pathology-associated macrophages to adapt to specific microenvironments. These processes create a broad spectrum of macrophages with different functions and individual effector capacities. The production of large transcriptomic data sets in mouse, human, and other species provides new insights into the mechanisms that underlie macrophage functional plasticity.
Collapse
|
10
|
Zasłona Z, Scruggs AM, Peters-Golden M, Huang SK. Protein kinase A inhibition of macrophage maturation is accompanied by an increase in DNA methylation of the colony-stimulating factor 1 receptor gene. Immunology 2016; 149:225-37. [PMID: 27353657 DOI: 10.1111/imm.12641] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/22/2016] [Revised: 06/17/2016] [Accepted: 06/27/2016] [Indexed: 01/21/2023] Open
Abstract
Macrophage colony-stimulating factor 1 (CSF-1) plays a critical role in the differentiation of mononuclear phagocytes from bone marrow precursors, and maturing monocytes and macrophages exhibit increased expression of the CSF-1 receptor, CSF1R. The expression of CSF1R is tightly regulated by transcription factors and epigenetic mechanisms. We previously showed that prostaglandin E2 and subsequent activation of protein kinase A (PKA) inhibited CSF1R expression and macrophage maturation. Here, we examine the DNA methylation changes that occur at the Csf1r locus during macrophage maturation in the presence or absence of activated PKA. Murine bone marrow cells were matured to macrophages by incubating cells with CSF-1-containing conditioned medium for up to 6 days in the presence or absence of the PKA agonist 6-bnz-cAMP. DNA methylation of Csf1r promoter and enhancer regions was assayed by bisulphite pyrosequencing. DNA methylation of Csf1r decreased during normal macrophage maturation in concert with an increase in Csf1r mRNA expression. Treatment with the PKA agonist inhibited Csf1r mRNA and protein expression, and increased DNA methylation at the Csf1r promoter. This was associated with decreased binding of the transcription factor PU.1 to the Csf1r promoter. Treatment with the PKA agonist inhibited the responsiveness of macrophages to CSF-1. Levels of endogenous PKA activity decreased during normal macrophage maturation, suggesting that attenuation of this signalling pathway contributes to the increase in CSF1R expression during macrophage maturation. Together, these results demonstrate that macrophage maturation is accompanied by Csf1r hypomethylation, and illustrates for the first time the ability of PKA to increase Csf1r DNA methylation.
Collapse
Affiliation(s)
- Zbigniew Zasłona
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Anne M Scruggs
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Marc Peters-Golden
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Steven K Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
11
|
Al Sadoun H, Burgess M, Hentges KE, Mace KA. Enforced Expression of Hoxa3 Inhibits Classical and Promotes Alternative Activation of Macrophages In Vitro and In Vivo. THE JOURNAL OF IMMUNOLOGY 2016; 197:872-84. [PMID: 27342843 PMCID: PMC4947829 DOI: 10.4049/jimmunol.1501944] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 09/02/2015] [Accepted: 05/23/2016] [Indexed: 12/14/2022]
Abstract
The regulated differentiation of macrophages (mφs) and their subsequent activation into proinflammatory or prohealing subtypes is critical for efficient wound healing. Chronic wounds such as diabetic (db) ulcers are associated with dysregulation of macrophage function. Whereas non-db mφs polarize to an M2-like, prohealing phenotype during the late stages of healing, db-derived mφs continue to display an M1-like, proinflammatory, or a mixed M1-like/M2-like phenotype. We have previously shown that sustained expression of Hoxa3 reduces the excessive number of leukocytes within the db wound; however, the effect of Hoxa3 on mφ polarization was unknown. In this study, we show that Hoxa3 protein transduction of mφs in vitro enhances macrophage maturation, inhibits M1 polarization, and promotes M2 polarization, in part via regulation of Pu.1/Spi1 and Stat6. Sustained expression of Hoxa3 in vivo in db wounds reduces the number of Nos2(+) (M1-like) mφs, increases the number of Arg1(+) and VEGF(+) (M2-like) mφs, and accelerates healing in a DNA-binding independent manner. Our findings suggest a role for Hox protein activity in promoting M1-to-M2-like phenotypic switching via interactions with myeloid transcription factors and provide insight into mechanisms regulating this process in db wound healing.
Collapse
Affiliation(s)
- Hadeel Al Sadoun
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Matthew Burgess
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Kathryn E Hentges
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Kimberly A Mace
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
12
|
Robert C, Kapetanovic R, Beraldi D, Watson M, Archibald AL, Hume DA. Identification and annotation of conserved promoters and macrophage-expressed genes in the pig genome. BMC Genomics 2015; 16:970. [PMID: 26582032 PMCID: PMC4652390 DOI: 10.1186/s12864-015-2111-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/05/2015] [Accepted: 10/19/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The FANTOM5 consortium used Cap Analysis of Gene Expression (CAGE) tag sequencing to produce a comprehensive atlas of promoters and enhancers within the human and mouse genomes. We reasoned that the mapping of these regulatory elements to the pig genome could provide useful annotation and evidence to support assignment of orthology. RESULTS For human transcription start sites (TSS) associated with annotated human-mouse orthologs, 17% mapped to the pig genome but not to the mouse, 10% mapped only to the mouse, and 55% mapped to both pig and mouse. Around 17% did not map to either species. The mapping percentages were lower where there was not clear orthology relationship, but in every case, mapping to pig was greater than to mouse, and the degree of homology was also greater. Combined mapping of mouse and human CAGE-defined promoters identified at least one putative conserved TSS for >16,000 protein-coding genes. About 54% of the predicted locations of regulatory elements in the pig genome were supported by CAGE and/or RNA-Seq analysis from pig macrophages. CONCLUSIONS Comparative mapping of promoters and enhancers from humans and mice can provide useful preliminary annotation of other animal genomes. The data also confirm extensive gain and loss of regulatory elements between species, and the likelihood that pigs provide a better model than mice for human gene regulation and function.
Collapse
Affiliation(s)
- Christelle Robert
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, EH25 9RG, Edinburgh, UK.
| | - Ronan Kapetanovic
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Dario Beraldi
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Center, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Mick Watson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, EH25 9RG, Edinburgh, UK.
- Edinburgh Genomics, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK.
| | - Alan L Archibald
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, EH25 9RG, Edinburgh, UK.
| | - David A Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, EH25 9RG, Edinburgh, UK.
| |
Collapse
|
13
|
Abstract
Biosensor-surface plasmon resonance (SPR) technology has emerged as a powerful label-free approach for the study of nucleic acid interactions in real time. The method provides simultaneous equilibrium and kinetic characterization for biomolecular interactions with low sample requirements and without the need for external probes. A detailed and practical guide for protein-DNA interaction analyses using biosensor-SPR methods is presented. Details of SPR technology and basic fundamentals are described with recommendations on the preparation of the SPR instrument, sensor chips and samples, experimental design, quantitative and qualitative data analyses and presentation. A specific example of the interaction of a transcription factor with DNA is provided with results evaluated by both kinetic and steady-state SPR methods.
Collapse
|
14
|
Wang S, Linde MH, Munde M, Carvalho VD, Wilson WD, Poon GMK. Mechanistic heterogeneity in site recognition by the structurally homologous DNA-binding domains of the ETS family transcription factors Ets-1 and PU.1. J Biol Chem 2014; 289:21605-16. [PMID: 24952944 DOI: 10.1074/jbc.m114.575340] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022] Open
Abstract
ETS family transcription factors regulate diverse genes through binding at cognate DNA sites that overlap substantially in sequence. The DNA-binding domains of ETS proteins (ETS domains) are highly conserved structurally yet share limited amino acid homology. To define the mechanistic implications of sequence diversity within the ETS family, we characterized the thermodynamics and kinetics of DNA site recognition by the ETS domains of Ets-1 and PU.1, which represent the extremes in amino acid divergence among ETS proteins. Even though the two ETS domains bind their optimal sites with similar affinities under physiologic conditions, their nature of site recognition differs strikingly in terms of the role of hydration and counter ion release. The data suggest two distinct mechanisms wherein Ets-1 follows a "dry" mechanism that rapidly parses sites through electrostatic interactions and direct protein-DNA contacts, whereas PU.1 utilizes hydration to interrogate sequence-specific sites and form a long-lived complex relative to the Ets-1 counterpart. The kinetic persistence of the high affinity PU.1 · DNA complex may be relevant to an emerging role of PU.1, but not Ets-1, as a pioneer transcription factor in vivo. In addition, PU.1 activity is critical to the development and function of macrophages and lymphocytes, which present osmotically variable environments, and hydration-dependent specificity may represent an important regulatory mechanism in vivo, a hypothesis that finds support in gene expression profiles of primary murine macrophages.
Collapse
Affiliation(s)
- Shuo Wang
- From the Department of Chemistry, Georgia State University, Atlanta, Georgia 30303 and
| | - Miles H Linde
- the Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington 99210-1495
| | - Manoj Munde
- From the Department of Chemistry, Georgia State University, Atlanta, Georgia 30303 and
| | - Victor D Carvalho
- the Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington 99210-1495
| | - W David Wilson
- From the Department of Chemistry, Georgia State University, Atlanta, Georgia 30303 and
| | - Gregory M K Poon
- the Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington 99210-1495
| |
Collapse
|
15
|
Pham TH, Minderjahn J, Schmidl C, Hoffmeister H, Schmidhofer S, Chen W, Längst G, Benner C, Rehli M. Mechanisms of in vivo binding site selection of the hematopoietic master transcription factor PU.1. Nucleic Acids Res 2013; 41:6391-402. [PMID: 23658224 PMCID: PMC3711439 DOI: 10.1093/nar/gkt355] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/25/2013] [Revised: 04/03/2013] [Accepted: 04/15/2013] [Indexed: 11/16/2022] Open
Abstract
The transcription factor PU.1 is crucial for the development of many hematopoietic lineages and its binding patterns significantly change during differentiation processes. However, the 'rules' for binding or not-binding of potential binding sites are only partially understood. To unveil basic characteristics of PU.1 binding site selection in different cell types, we studied the binding properties of PU.1 during human macrophage differentiation. Using in vivo and in vitro binding assays, as well as computational prediction, we show that PU.1 selects its binding sites primarily based on sequence affinity, which results in the frequent autonomous binding of high affinity sites in DNase I inaccessible regions (25-45% of all occupied sites). Increasing PU.1 concentrations and the availability of cooperative transcription factor interactions during lineage differentiation both decrease affinity thresholds for in vivo binding and fine-tune cell type-specific PU.1 binding, which seems to be largely independent of DNA methylation. Occupied sites were predominantly detected in active chromatin domains, which are characterized by higher densities of PU.1 recognition sites and neighboring motifs for cooperative transcription factors. Our study supports a model of PU.1 binding control that involves motif-binding affinity, PU.1 concentration, cooperativeness with neighboring transcription factor sites and chromatin domain accessibility, which likely applies to all PU.1 expressing cells.
Collapse
Affiliation(s)
- Thu-Hang Pham
- Department of Internal Medicine III, University Hospital Regensburg, F.-J.-Strauss Allee 11, D-93042 Regensburg, Germany, Department of Biochemistry III, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, D-13092 Berlin, Germany, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093-0651, USA and Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Julia Minderjahn
- Department of Internal Medicine III, University Hospital Regensburg, F.-J.-Strauss Allee 11, D-93042 Regensburg, Germany, Department of Biochemistry III, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, D-13092 Berlin, Germany, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093-0651, USA and Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Christian Schmidl
- Department of Internal Medicine III, University Hospital Regensburg, F.-J.-Strauss Allee 11, D-93042 Regensburg, Germany, Department of Biochemistry III, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, D-13092 Berlin, Germany, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093-0651, USA and Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Helen Hoffmeister
- Department of Internal Medicine III, University Hospital Regensburg, F.-J.-Strauss Allee 11, D-93042 Regensburg, Germany, Department of Biochemistry III, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, D-13092 Berlin, Germany, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093-0651, USA and Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Sandra Schmidhofer
- Department of Internal Medicine III, University Hospital Regensburg, F.-J.-Strauss Allee 11, D-93042 Regensburg, Germany, Department of Biochemistry III, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, D-13092 Berlin, Germany, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093-0651, USA and Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Wei Chen
- Department of Internal Medicine III, University Hospital Regensburg, F.-J.-Strauss Allee 11, D-93042 Regensburg, Germany, Department of Biochemistry III, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, D-13092 Berlin, Germany, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093-0651, USA and Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Gernot Längst
- Department of Internal Medicine III, University Hospital Regensburg, F.-J.-Strauss Allee 11, D-93042 Regensburg, Germany, Department of Biochemistry III, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, D-13092 Berlin, Germany, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093-0651, USA and Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Christopher Benner
- Department of Internal Medicine III, University Hospital Regensburg, F.-J.-Strauss Allee 11, D-93042 Regensburg, Germany, Department of Biochemistry III, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, D-13092 Berlin, Germany, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093-0651, USA and Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Michael Rehli
- Department of Internal Medicine III, University Hospital Regensburg, F.-J.-Strauss Allee 11, D-93042 Regensburg, Germany, Department of Biochemistry III, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, D-13092 Berlin, Germany, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093-0651, USA and Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
16
|
Dave RK, Dinger ME, Andrew M, Askarian-Amiri M, Hume DA, Kellie S. Regulated expression of PTPRJ/CD148 and an antisense long noncoding RNA in macrophages by proinflammatory stimuli. PLoS One 2013; 8:e68306. [PMID: 23840844 PMCID: PMC3695918 DOI: 10.1371/journal.pone.0068306] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/25/2013] [Accepted: 05/28/2013] [Indexed: 12/28/2022] Open
Abstract
PTPRJ/CD148 is a tyrosine phosphatase that has tumour suppressor-like activity. Quantitative PCR of various cells and tissues revealed that it is preferentially expressed in macrophage-enriched tissues. Within lymphoid tissues immunohistochemistry revealed that PTPRJ/CD148 co-localised with F4/80, indicating that macrophages most strongly express the protein. Macrophages express the highest basal level of ptprj, and this is elevated further by treatment with LPS and other Toll-like receptor ligands. In contrast, CSF-1 treatment reduced basal and stimulated Ptprj expression in human and mouse cells, and interferon also repressed Ptprj expression. We identified a 1006 nucleotide long noncoding RNA species, Ptprj-as1 that is transcribed antisense to Ptprj. Ptprj-as1 was highly expressed in macrophage-enriched tissue and was transiently induced by Toll-like receptor ligands with a similar time course to Ptprj. Finally, putative transcription factor binding sites in the promoter region of Ptprj were identified.
Collapse
Affiliation(s)
- Richa K. Dave
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Australia
- The University of Queensland, Cooperative Research Centre for Chronic Inflammatory Diseases (CRC-CID), Brisbane, Australia
- The University of Queensland, Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, Australia
| | - Marcel E. Dinger
- The University of Queensland Diamantina Institute, Brisbane, Australia
- Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Megan Andrew
- The University of Queensland, Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, Australia
| | - Marjan Askarian-Amiri
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Australia
| | - David A. Hume
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Australia
- The University of Queensland, Cooperative Research Centre for Chronic Inflammatory Diseases (CRC-CID), Brisbane, Australia
- The Roslin Institute, University of Edinburgh, Roslin, Scotland, United Kingdom
| | - Stuart Kellie
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Australia
- The University of Queensland, Cooperative Research Centre for Chronic Inflammatory Diseases (CRC-CID), Brisbane, Australia
- The University of Queensland, Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, Australia
| |
Collapse
|
17
|
Sauter KA, Bouhlel MA, O’Neal J, Sester DP, Tagoh H, Ingram RM, Pridans C, Bonifer C, Hume DA. The function of the conserved regulatory element within the second intron of the mammalian Csf1r locus. PLoS One 2013; 8:e54935. [PMID: 23383005 PMCID: PMC3561417 DOI: 10.1371/journal.pone.0054935] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/26/2012] [Accepted: 12/18/2012] [Indexed: 01/09/2023] Open
Abstract
The gene encoding the receptor for macrophage colony-stimulating factor (CSF-1R) is expressed exclusively in cells of the myeloid lineages as well as trophoblasts. A conserved element in the second intron, Fms-Intronic Regulatory Element (FIRE), is essential for macrophage-specific transcription of the gene. However, the molecular details of how FIRE activity is regulated and how it impacts the Csf1r promoter have not been characterised. Here we show that agents that down-modulate Csf1r mRNA transcription regulated promoter activity altered the occupancy of key FIRE cis-acting elements including RUNX1, AP1, and Sp1 binding sites. We demonstrate that FIRE acts as an anti-sense promoter in macrophages and reversal of FIRE orientation within its native context greatly reduced enhancer activity in macrophages. Mutation of transcription initiation sites within FIRE also reduced transcription. These results demonstrate that FIRE is an orientation-specific transcribed enhancer element.
Collapse
Affiliation(s)
- Kristin A. Sauter
- Developmental Biology, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, United Kingdom
| | - M. Amine Bouhlel
- Section of Experimental Haematology, Leeds Institute of Molecular Medicine, University of Leeds, St James’s University Hospital, Leeds, United Kingdom
| | - Julie O’Neal
- Developmental Biology, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, United Kingdom
| | - David P. Sester
- Developmental Biology, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, United Kingdom
| | - Hiromi Tagoh
- Section of Experimental Haematology, Leeds Institute of Molecular Medicine, University of Leeds, St James’s University Hospital, Leeds, United Kingdom
| | - Richard M. Ingram
- Section of Experimental Haematology, Leeds Institute of Molecular Medicine, University of Leeds, St James’s University Hospital, Leeds, United Kingdom
| | - Clare Pridans
- Developmental Biology, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, United Kingdom
| | - Constanze Bonifer
- Section of Experimental Haematology, Leeds Institute of Molecular Medicine, University of Leeds, St James’s University Hospital, Leeds, United Kingdom
- School of Cancer Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - David A. Hume
- Developmental Biology, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Hume DA. Plenary perspective: the complexity of constitutive and inducible gene expression in mononuclear phagocytes. J Leukoc Biol 2012; 92:433-44. [PMID: 22773680 DOI: 10.1189/jlb.0312166] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/23/2022] Open
Abstract
Monocytes and macrophages differentiate from progenitor cells under the influence of colony-stimulating factors. Genome-scale data have enabled the identification of the set of genes that distinguishes macrophages from other cell types and the ways in which thousands of genes are regulated in response to pathogen challenge. Although there has been a focus on a small subset of lineage-enriched transcription factors, such as PU.1, more than one-half of the transcription factors in the genome can be expressed in macrophage lineage cells under some state of activation, and they interact in a complex network. The network architecture is conserved across species, but many of the target genes evolve rapidly and differ between mouse and human. The data and publication deluge related to macrophage biology require the development of new analytical tools and ways of presenting information in an accessible form.
Collapse
Affiliation(s)
- David A Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Scotland, United Kingdom.
| |
Collapse
|
19
|
5-azacitidine in aggressive myelodysplastic syndromes regulates chromatin structure at PU.1 gene and cell differentiation capacity. Leukemia 2012; 26:1804-11. [PMID: 22343522 DOI: 10.1038/leu.2012.47] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022]
Abstract
Epigenetic 5-azacitidine (AZA) therapy of high-risk myelodysplastic syndromes (MDS) and acute myelogenous leukemia (AML) represents a promising, albeit not fully understood, approach. Hematopoietic transcription factor PU.1 is dynamically regulated by upstream regulatory element (URE), whose deletion causes downregulation of PU.1 leading to AML in mouse. In this study a significant group of the high-risk MDS patients, as well as MDS cell lines, displayed downregulation of PU.1 expression within CD34+ cells, which was associated with DNA methylation of the URE. AZA treatment in vitro significantly demethylated URE, leading to upregulation of PU.1 followed by derepression of its transcriptional targets and onset of myeloid differentiation. Addition of colony-stimulating factors (CSFs; granulocyte-CSF, granulocyte-macrophage-CSF and macrophage-CSF) modulated AZA-mediated effects on reprogramming of histone modifications at the URE and cell differentiation outcome. Our data collectively support the importance of modifying the URE chromatin structure as a regulatory mechanism of AZA-mediated activation of PU.1 and induction of the myeloid program in MDS.
Collapse
|
20
|
Recent development of the mononuclear phagocyte system: in memory of Metchnikoff and Ehrlich on the 100th Anniversary of the 1908 Nobel Prize in Physiology or Medicine. Biol Cell 2012; 101:709-21. [DOI: 10.1042/bc20080227] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/08/2023]
|
21
|
Saleem SJ, Conrad DH. Hematopoietic cytokine-induced transcriptional regulation and Notch signaling as modulators of MDSC expansion. Int Immunopharmacol 2011; 11:808-15. [PMID: 21426948 DOI: 10.1016/j.intimp.2011.03.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/18/2011] [Revised: 03/07/2011] [Accepted: 03/08/2011] [Indexed: 12/14/2022]
Abstract
Hematopoietic stem cells (HSCs) differentiate into mature lineage restricted blood cells under the influence of a complex network of hematopoietic cytokines, cytokine-mediated transcriptional regulators, and manifold intercellular signaling pathways. The classical model of hematopoiesis proposes that progenitor cells undergo a dichotomous branching into myelo-erythroid and lymphoid lineages. Nonetheless, erythroid and lymphoid restricted progenitors retain their myeloid potential, supporting the existence of an alternative 'myeloid-based' mechanism of hematopoiesis. In this case, abnormal pathology is capable of dysregulating hematopoiesis in favor of myelopoiesis. The accumulation of immature CD11b+Gr-1+ myeloid-derived suppressor cells (MDSCs) has been shown to correlate with the presence of several hematopoietic cytokines, transcription factors and signaling pathways, lending support to this hypothesis. Although the negative role of MDSCs in cancer development is firmly established, it is now understood that MDSCs can exert a paradoxical, positive effect on transplantation, autoimmunity, and sepsis. Our conflicted understanding of MDSC function and the complexity of hematopoietic cytokine signaling underscores the need to elucidate molecular pathways of MDSC expansion for the development of novel MDSC-based therapeutics.
Collapse
Affiliation(s)
- Sheinei J Saleem
- Department of Microbiology and Immunology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | | |
Collapse
|
22
|
The role of PU.1 and GATA-1 transcription factors during normal and leukemogenic hematopoiesis. Leukemia 2010; 24:1249-57. [DOI: 10.1038/leu.2010.104] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/05/2023]
|
23
|
Hume DA, Summers KM, Raza S, Baillie JK, Freeman TC. Functional clustering and lineage markers: insights into cellular differentiation and gene function from large-scale microarray studies of purified primary cell populations. Genomics 2010; 95:328-38. [PMID: 20211243 DOI: 10.1016/j.ygeno.2010.03.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/04/2009] [Revised: 03/01/2010] [Accepted: 03/02/2010] [Indexed: 12/24/2022]
Abstract
Very large microarray datasets showing gene expression across multiple tissues and cell populations provide a window on the transcriptional networks that underpin the differences in functional activity between biological systems. Clusters of co-expressed genes provide lineage markers, candidate regulators of cell function and, by applying the principle of guilt by association, candidate functions for genes of currently unknown function. We have analysed a dataset comprising pure cell populations from hemopoietic and non-hemopoietic cell types (http://biogps.gnf.org). Using a novel network visualisation and clustering approach, we demonstrate that it is possible to identify very tight expression signatures associated specifically with embryonic stem cells, mesenchymal cells and hematopoietic lineages. Selected examples validate the prediction that gene function can be inferred by co-expression. One expression cluster was enriched in phagocytes, which, alongside endosome-lysosome constituents, contains genes that may make up a 'pathway' for phagocyte differentiation. Promoters of these genes are enriched for binding sites for the ETS/PU.1 and MITF families. Another cluster was associated with the production of a specific extracellular matrix, with high levels of gene expression shared by cells of mesenchymal origin (fibroblasts, adipocytes, osteoblasts and myoblasts). We discuss the limitations placed upon such data by the presence of alternative promoters with distinct tissue specificity within many protein-coding genes.
Collapse
Affiliation(s)
- David A Hume
- The Roslin Institute, Roslin Biocentre, Roslin, Midlothian, UK.
| | | | | | | | | |
Collapse
|
24
|
Ovchinnikov DA, DeBats CEE, Sester DP, Sweet MJ, Hume DA. A conserved distal segment of the mouse CSF-1 receptor promoter is required for maximal expression of a reporter gene in macrophages and osteoclasts of transgenic mice. J Leukoc Biol 2010; 87:815-22. [DOI: 10.1189/jlb.0809557] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/21/2023] Open
|
25
|
Tissières P, Araud T, Ochoda A, Drifte G, Dunn-Siegrist I, Pugin J. Cooperation between PU.1 and CAAT/enhancer-binding protein beta is necessary to induce the expression of the MD-2 gene. J Biol Chem 2009; 284:26261-72. [PMID: 19632992 DOI: 10.1074/jbc.m109.042580] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022] Open
Abstract
Myeloid differentiation factor 2 (MD-2) binds Gram-negative bacterial lipopolysaccharide with high affinity and is essential for Toll-like receptor 4-dependent signal transduction. MD-2 has recently been recognized as a type II acute phase protein. Plasma concentrations of the soluble form of MD-2 increase markedly during the course of severe infections. Its production is regulated in hepatocytes and myeloid cells by interleukin-6 (IL-6) but not IL-1beta. In the present work we show that two transcription factors (TF), PU.1 and CAAT/enhancer-binding protein beta (C/EBPbeta), participate in the activation of the human MD-2 gene in hepatocytic cells after stimulation with IL-6. PU.1 TF and proximal PU.1 binding sites in the MD-2 promoter were shown to be critical for the basal activity of the promoter as well as for IL-6-induced soluble MD-2 production. Deletions of proximal portions of the MD-2 promoter containing PU.1 and/or NF-IL-6 consensus binding sites as well as site-directed mutagenesis of these binding sites abrogated IL-6-dependent MD-2 gene activation. We show that the cooperation between C/EBPbeta and PU.1 is critical for the transcriptional activation of the MD-2 gene by IL-6. PU.1 was essentially known as a TF involved in the differentiation of myeloid precursor cells and the expression of surface receptors of the innate immunity. Herein, we show that it also participates in the regulation of an acute phase protein, MD-2, in nonmyeloid cells cooperatively with C/EBPbeta, a classical IL-6-inducible TF.
Collapse
Affiliation(s)
- Pierre Tissières
- Intensive Care, University Hospitals of Geneva, Geneva 14, Switzerland
| | | | | | | | | | | |
Collapse
|
26
|
Weigelt K, Lichtinger M, Rehli M, Langmann T. Transcriptomic profiling identifies a PU.1 regulatory network in macrophages. Biochem Biophys Res Commun 2009; 380:308-12. [PMID: 19167354 DOI: 10.1016/j.bbrc.2009.01.067] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/08/2009] [Accepted: 01/12/2009] [Indexed: 11/30/2022]
Abstract
PU.1 is a key transcription factor for hematopoiesis and macrophage differentiation. Using chromatin immunoprecipitation we have previously identified several PU.1 target genes in macrophages and microglia. With the aim to complement these studies, we performed a transcriptomic analysis of PU.1(-/-) progenitors after restoration of PU.1 activity. PUER cells committed to macrophage differentiation were analyzed with novel Affymetrix exon 1.0 ST arrays and Affymetrix 430 2.0 genome arrays for crosswise validation. We combined these genome-wide expression data with a publicly-available microarray dataset of PU.1-knockdown hematopoietic stem cells for an integrated analysis. Bibliographic gene connections, binding site prediction and ChIP-Chip data were used to define a multi-level PU.1 regulatory network in macrophages. Moreover, an alternative transcript of the novel PU.1 target gene Ptpro was identified by exon arrays and PU.1 binding to an intronic promoter was demonstrated. In conclusion, we present a PU.1 transcriptional network with novel validated PU.1 target genes.
Collapse
Affiliation(s)
- Karin Weigelt
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg, Germany
| | | | | | | |
Collapse
|
27
|
David-Fung ES, Butler R, Buzi G, Yui MA, Diamond RA, Anderson MK, Rowen L, Rothenberg EV. Transcription factor expression dynamics of early T-lymphocyte specification and commitment. Dev Biol 2008; 325:444-67. [PMID: 19013443 DOI: 10.1016/j.ydbio.2008.10.021] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/16/2008] [Accepted: 10/17/2008] [Indexed: 12/15/2022]
Abstract
Mammalian T lymphocytes are a prototype for development from adult pluripotent stem cells. While T-cell specification is driven by Notch signaling, T-lineage commitment is only finalized after prolonged Notch activation. However, no T-lineage specific regulatory factor has been reported that mediates commitment. We used a gene-discovery approach to identify additional candidate T-lineage transcription factors and characterized expression of >100 regulatory genes in early T-cell precursors using realtime RT-PCR. These regulatory genes were also monitored in multilineage precursors as they entered T-cell or non-T-cell pathways in vitro; in non-T cells ex vivo; and in later T-cell developmental stages after lineage commitment. At least three major expression patterns were observed. Transcription factors in the largest group are expressed at relatively stable levels throughout T-lineage specification as a legacy from prethymic precursors, with some continuing while others are downregulated after commitment. Another group is highly expressed in the earliest stages only, and is downregulated before or during commitment. Genes in a third group undergo upregulation at one of three distinct transitions, suggesting a positive regulatory cascade. However, the transcription factors induced during commitment are not T-lineage specific. Different members of the same transcription factor family can follow opposite trajectories during specification and commitment, while factors co-expressed early can be expressed in divergent patterns in later T-cell development. Some factors reveal new regulatory distinctions between alphabeta and gammadelta T-lineage differentiation. These results show that T-cell identity has an essentially complex regulatory basis and provide a detailed framework for regulatory network modeling of T-cell specification.
Collapse
|
28
|
Abstract
Cells of the mononuclear phagocyte system (MPS) are found in large numbers in every organ of the body, where they contribute to innate and acquired immunity and homeostasis. This review considers the locations of MPS cells, surface markers that distinguish subsets of monocytes and macrophages, the pathways of MPS differentiation, and the growth factors and transcription factors that guide them. Although the number of MPS sub-populations that can be defined is infinite, the features that unite the MPS remain compelling. Those features clearly include antigen-presenting dendritic cells within the MPS and argue against any basis for separating them from macrophages.
Collapse
|
29
|
Hume DA, Sasmono T, Himes SR, Sharma SM, Bronisz A, Constantin M, Ostrowski MC, Ross IL. The Ewing Sarcoma Protein (EWS) Binds Directly to the Proximal Elements of the Macrophage-Specific Promoter of the CSF-1 Receptor (csf1r) Gene. THE JOURNAL OF IMMUNOLOGY 2008; 180:6733-42. [DOI: 10.4049/jimmunol.180.10.6733] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/19/2022]
|
30
|
Crotti TN, Sharma SM, Fleming JD, Flannery MR, Ostrowski MC, Goldring SR, McHugh KP. PU.1 and NFATc1 mediate osteoclastic induction of the mouse beta3 integrin promoter. J Cell Physiol 2008; 215:636-44. [PMID: 18288635 DOI: 10.1002/jcp.21344] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/09/2022]
Abstract
Expression of the alpha(v)beta(3) integrin is required for normal osteoclast function. We previously showed that an evolutionary conserved NFATc1 binding site is required for RANKL induction and NFATc1 transactivation of the human beta(3) promoter. The mechanism conferring specificity for RANKL induction and NFATc1 transduction of the beta(3) gene in osteoclast differentiation is unclear since NFATc1 is expressed and activated in numerous cell types that do not express the beta(3) gene. PU.1 is an ETS family transcription factor in myeloid cells associated with expression of various osteoclast genes. The present study investigates the role of NFATc1 in concert with PU.1 in osteoclast-specific transcription of the mouse beta(3) integrin gene. The mouse beta(3) promoter was transactivated by NFATc1 in RAW264.7 cells and deletion or mutation of either of the conserved NFAT and PU.1 binding sites abrogated transactivation. NFATc1 transactivation of the mouse beta(3) promoter was specifically dependent on co-transfected PU.1 in HEK293 cells, to the exclusion of other ETS family members. Direct binding of NFATc1 and PU.1 to their cognate sequences was demonstrated by EMSA and NFATc1 and PU.1 occupy their cognate sites in RANKL-treated mouse marrow precursors in chromatin immuno-precipitation (ChIP) assays. TAT-mediated transduction with dominant-negative NFATc1 dose-dependently blocked endogenous expression of the mouse beta(3) integrin and the formation of TRAP positive multinucleated cells in RANKL-treated mouse macrophages. These data provide evidence that NFATc1, in concert with PU.1, are involved in regulation of beta(3) integrin expression during osteoclast differentiation and suggest that PU.1 confers specificity to the NFATc1 response to macrophage lineage cells.
Collapse
Affiliation(s)
- Tania N Crotti
- The New England Baptist Bone and Joint Institute, Department of Rheumatology, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The study of the mammalian immune system offers many advantages to systems biologists. The cellular components of the mammalian immune system are experimentally tractable; they can be isolated or differentiated from in vivo and ex vivo sources and have an essential role in health and disease. For these reasons, the major effectors cells of the innate immune system, macrophages, have been a particular focus in international genome and transcriptome consortia. Genome-scale analysis of the transcriptome, and transcription initiation has enabled the construction of predictive models of transcription control in macrophages that identify the points of control (the major nodes of networks) and the ways in which they interact.
Collapse
Affiliation(s)
- Timothy Ravasi
- Scripps NeuroAIDS Preclinical Studies Centre and Department of Bioengineering, Jacobs School of Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
32
|
Lichtinger M, Ingram R, Hornef M, Bonifer C, Rehli M. Transcription Factor PU.1 Controls Transcription Start Site Positioning and Alternative TLR4 Promoter Usage. J Biol Chem 2007; 282:26874-26883. [PMID: 17623651 DOI: 10.1074/jbc.m703856200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/24/2023] Open
Abstract
Human and mouse show markedly different sensitivities toward bacterial endotoxins, and recent evidence suggests that a species-specific regulation of the lipopolysaccharide receptor Toll-like receptor 4 (Tlr4) may contribute to this phenomenon. To gain further insight into mechanisms of Tlr4 regulation, we conducted a detailed in vivo and in vitro study of the murine Tlr4 gene, including analysis of transcription start site location, transcription factor occupancy, and activities of its proximal regulatory sequences. Our analyses identified a PU.1-dependent myeloid promoter, which is conserved between humans and mouse. We also identified an additional, distal promoter, located approximately 200 bp upstream of the myeloid-specific promoter, which is a functional target of E-box binding factors. In contrast to humans, where non-myeloid cells utilize both promoters, the distal Tlr4 promoter initiates all Tlr4 transcripts in murine non-myeloid cells, indicating that species-specific differences in TLR4 mRNA regulation may primarily exist in non-myeloid cell types. Interestingly, PU.1 null murine myeloid progenitor cells predominantly use the distal promoter, and the conditional induction of PU.1 expression in these cells leads to the rapid switch of transcription initiation to the proximal myeloid promoter. This indicates a direct role for PU.1 in determining the transcriptional start site and in recruiting the basal transcription machinery to myeloid promoters.
Collapse
Affiliation(s)
- Monika Lichtinger
- Department of Hematology and Oncology, University of Regensburg Medical School, 93042 Regensburg, Germany
| | - Richard Ingram
- Section of Experimental Haematology, University of Leeds, St James's University Hospital, Leeds LS9 7TF, United Kingdom
| | - Mathias Hornef
- Department for Medical Microbiology and Hygiene, University Clinic of Freiburg, 79104 Freiburg, Germany
| | - Constanze Bonifer
- Section of Experimental Haematology, University of Leeds, St James's University Hospital, Leeds LS9 7TF, United Kingdom
| | - Michael Rehli
- Department of Hematology and Oncology, University of Regensburg Medical School, 93042 Regensburg, Germany.
| |
Collapse
|
33
|
Pham TH, Langmann S, Schwarzfischer L, El Chartouni C, Lichtinger M, Klug M, Krause SW, Rehli M. CCAAT enhancer-binding protein beta regulates constitutive gene expression during late stages of monocyte to macrophage differentiation. J Biol Chem 2007; 282:21924-33. [PMID: 17540774 DOI: 10.1074/jbc.m611618200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
Human monocyte to macrophage differentiation is accompanied by pronounced phenotypical changes and generally proceeds in the absence of proliferation. The molecular events governing this process are poorly understood. Here, we studied the regulation of the macrophage-specific chitotriosidase (CHIT1) gene promoter to gain insights into the mechanisms of transcriptional control during the differentiation of human blood monocytes into macrophages. We used transient transfections to define a cell type-specific minimal promoter that was mainly dependent on a proximal C/EBP motif that bound multiple C/EBP factors in gel shift assays. In depth analysis of occupied promoter elements using in vivo footprinting and chromatin immunoprecipitation analyses demonstrated the differentiation-associated recruitment of C/EBPbeta and PU.1 at the proximal promoter in parallel with CHIT1 mRNA induction. Notably, the induction of C/EBPbeta promoter binding strongly correlated with increased nuclear levels of Thr-235-phosphorylated C/EBPbeta protein during the differentiation process, whereas C/EBPbeta mRNA and total protein expression remained relatively stable. Our data suggest an important constitutive gene regulatory function for C/EBPbeta in differentiated macrophages but not in human blood monocytes.
Collapse
Affiliation(s)
- Thu-Hang Pham
- Department of Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Schroder K, Lichtinger M, Irvine KM, Brion K, Trieu A, Ross IL, Ravasi T, Stacey KJ, Rehli M, Hume DA, Sweet MJ. PU.1 and ICSBP control constitutive and IFN-gamma-regulated Tlr9 gene expression in mouse macrophages. J Leukoc Biol 2007; 81:1577-90. [PMID: 17360957 DOI: 10.1189/jlb.0107036] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/08/2023] Open
Abstract
Macrophages are activated by unmethylated CpG-containing DNA (CpG DNA) via TLR9. IFN-gamma and LPS can synergize with CpG DNA to enhance proinflammatory responses in murine macrophages. Here, we show that LPS and IFN-gamma up-regulated Tlr9 mRNA in murine bone marrow-derived macrophages (BMM). The ability of LPS and IFN-gamma to induce Tlr9 mRNA expression in BMM was dependent on the presence of the growth factor, CSF-1, which is constitutively present in vivo. However, there were clear differences in mechanisms of Tlr9 mRNA induction. LPS stimulation rapidly removed the CSF-1 receptor (CSF-1R) from the cell surface, thereby blocking CSF-1-mediated transcriptional repression and indirectly inducing Tlr9 mRNA expression. By contrast, IFN-gamma activated the Tlr9 promoter directly and only marginally affected cell surface CSF-1R expression. An approximately 100-bp proximal promoter of the murine Tlr9 gene was sufficient to confer basal and IFN-gamma-inducible expression in RAW264.7 cells. A composite IFN regulatory factor (IRF)/PU.1 site upon the major transcription start site was identified. Mutation of the binding sites for PU.1 or IRF impaired basal promoter activity, but only the IRF-binding site was required for IFN-gamma induction. The mRNA expression of the IRF family member IFN consensus-binding protein [(ICSBP)/IRF8] was coregulated with Tlr9 in macrophages, and constitutive and IFN-gamma-inducible Tlr9 mRNA expression was reduced in ICSBP-deficient BMM. This study therefore characterizes the regulation of mouse Tlr9 expression and defines a molecular mechanism by which IFN-gamma amplifies mouse macrophage responses to CpG DNA.
Collapse
Affiliation(s)
- Kate Schroder
- Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, St. Lucia, Brisbane 4072, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wittwer J, Marti-Jaun J, Hersberger M. Functional polymorphism in ALOX15 results in increased allele-specific transcription in macrophages through binding of the transcription factor SPI1. Hum Mutat 2006; 27:78-87. [PMID: 16320347 DOI: 10.1002/humu.20273] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/11/2022]
Abstract
The reticulocyte-type 15-lipoxygenase-1 (ALOX15) has antiinflammatory and inflammatory effects, and is implicated in the development of asthma, arthritis, and atherosclerosis. We screened the human ALOX15 gene for variations because genetic variability in ALOX15 may influence these diseases. We detected 11 variations, including five polymorphisms located in the ALOX15 promoter region. One of these polymorphisms, a C-to-T substitution at position c.-292, created a novel transcription factor binding site for SPI1. Transcription assays revealed that promoter variants with c.-292 T transcribe twice as efficiently as all the other promoter variants containing c.-292C. This was true in macrophages that constitutively express SPI1, but not in a lung epithelial cell line that does not express SPI1. Mutation of the core-binding site for SPI1 abolished the higher transcriptional activity, and electrophoretic mobility shift assays showed that SPI1 selectively binds to the mutant c.-292 T [corrected] promoter. These results were corroborated in primary human macrophages, in which macrophages from heterozygous c.-292CT carriers expressed three times more ALOX15 mRNA than macrophages from homozygous c.-292CC carriers. We conclude that the c.-292 T allele in the ALOX15 promoter generates a novel binding site for the transcription factor SPI1 that results in higher transcription of the gene in macrophages. This may lead to an increase in ALOX15-mediated lipid metabolites, which play a role in inflammation.
Collapse
Affiliation(s)
- Jonas Wittwer
- Institute of Clinical Chemistry, Center for Integrative Human Physiology, University Hospital Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
36
|
Krysinska H, Hoogenkamp M, Ingram R, Wilson N, Tagoh H, Laslo P, Singh H, Bonifer C. A two-step, PU.1-dependent mechanism for developmentally regulated chromatin remodeling and transcription of the c-fms gene. Mol Cell Biol 2006; 27:878-87. [PMID: 17116688 PMCID: PMC1800675 DOI: 10.1128/mcb.01915-06] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/14/2023] Open
Abstract
Hematopoietic stem cells and multipotent progenitors exhibit low-level transcription and partial chromatin reorganization of myeloid cell-specific genes including the c-fms (csf1R) locus. Expression of the c-fms gene is dependent on the Ets family transcription factor PU.1 and is upregulated during myeloid differentiation, enabling committed macrophage precursors to respond to colony-stimulating factor 1. To analyze molecular mechanisms underlying the transcriptional priming and developmental upregulation of the c-fms gene, we have utilized myeloid progenitors lacking the transcription factor PU.1. PU.1 can bind to sites in both the c-fms promoter and the c-fms intronic regulatory element (FIRE enhancer). Unlike wild-type progenitors, the PU.1(-/-) cells are unable to express c-fms or initiate macrophage differentiation. When PU.1 was reexpressed in mutant progenitors, the chromatin structure of the c-fms promoter was rapidly reorganized. In contrast, assembly of transcription factors at FIRE, acquisition of active histone marks, and high levels of c-fms transcription occurred with significantly slower kinetics. We demonstrate that the reason for this differential activation was that PU.1 was required to promote induction and binding of a secondary transcription factor, Egr-2, which is important for FIRE enhancer activity. These data suggest that the c-fms promoter is maintained in a primed state by PU.1 in progenitor cells and that at FIRE PU.1 functions with another transcription factor to direct full activation of the c-fms locus in differentiated myeloid cells. The two-step mechanism of developmental gene activation that we describe here may be utilized to regulate gene activity in a variety of developmental pathways.
Collapse
Affiliation(s)
- Hanna Krysinska
- University of Leeds, Leeds Institute of Molecular Medicine, St. James's University Hospital, Wellcome Trust Brenner Building, Leeds LS9 7TF, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Himes SR, Sester DP, Ravasi T, Cronau SL, Sasmono T, Hume DA. The JNK are important for development and survival of macrophages. THE JOURNAL OF IMMUNOLOGY 2006; 176:2219-28. [PMID: 16455978 DOI: 10.4049/jimmunol.176.4.2219] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/19/2022]
Abstract
We report in this study that activation of the JNK by the growth factor, CSF-1 is critical for macrophage development, proliferation, and survival. Inhibition of JNK with two distinct classes of inhibitors, the pharmacological agent SP600125, or the peptide D-JNKI1 resulted in cell cycle inhibition with an arrest at the G(2)/M transition and subsequent apoptosis. JNK inhibition resulted in decreased expression of CSF-1R (c-fms) and Bcl-x(L) mRNA in mature macrophages and repressed CSF-1-dependent differentiation of bone marrow cells to macrophages. Macrophage sensitivity to JNK inhibitors may be linked to phosphorylation of the PU.1 transcription factor. Inhibition of JNK disrupted PU.1 binding to an element in the c-fms gene promoter and decreased promoter activity. Promoter activity could be restored by overexpression of PU.1. A comparison of expression profiles of macrophages with 22 other tissue types showed that genes that signal JNK activation downstream of tyrosine kinase receptors, such as focal adhesion kinase, Nck-interacting kinase, and Rac1 and scaffold proteins are highly expressed in macrophages relative to other tissues. This pattern of expression may underlie the novel role of JNK in macrophages.
Collapse
Affiliation(s)
- S Roy Himes
- Cooperative Research Centre for Chronic Inflammatory Disease, Institute for Molecular Biosciences, University of Queensland, Brisbane, Australia
| | | | | | | | | | | |
Collapse
|
38
|
Tagoh H, Ingram R, Wilson N, Salvagiotto G, Warren AJ, Clarke D, Busslinger M, Bonifer C. The mechanism of repression of the myeloid-specific c-fms gene by Pax5 during B lineage restriction. EMBO J 2006; 25:1070-80. [PMID: 16482219 PMCID: PMC1409732 DOI: 10.1038/sj.emboj.7600997] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/20/2005] [Accepted: 01/19/2006] [Indexed: 11/09/2022] Open
Abstract
The transcription factor Pax5 (BSAP) is required for the expression of a B-cell-specific genetic program and for B-cell differentiation, and also to suppress genes of alternative lineages. The molecular mechanism by which repression of myeloid genes occurs during early B-lineage restriction is unknown and in this study we addressed this question. One of the genes repressed by Pax5 in B cells is the colony-stimulating factor receptor 1 gene (csf1r or c-fms). We examined the changes in chromatin caused by Pax5 activity, and we show that Pax5 is directly recruited to c-fms resulting in the rapid loss of RNA polymerase II binding, followed by loss of transcription factor binding and DNaseI hypersensitivity at all cis-regulatory elements. We also show that Pax5 targets the basal transcription machinery of c-fms by interacting with a binding site within the major transcription start sites. Our results support a model by which Pax5 does not lead to major alterations in chromatin modification, but inhibits transcription by interfering with the action of myeloid transcription factors.
Collapse
Affiliation(s)
- Hiromi Tagoh
- Division of Experimental Haematology, LIMM, University of Leeds, St James's University Hospital, Leeds, UK
| | - Richard Ingram
- Division of Experimental Haematology, LIMM, University of Leeds, St James's University Hospital, Leeds, UK
| | - Nicola Wilson
- Division of Experimental Haematology, LIMM, University of Leeds, St James's University Hospital, Leeds, UK
| | - Giorgia Salvagiotto
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Alan J Warren
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Deborah Clarke
- Division of Experimental Haematology, LIMM, University of Leeds, St James's University Hospital, Leeds, UK
| | - Meinrad Busslinger
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Constanze Bonifer
- Division of Experimental Haematology, LIMM, University of Leeds, St James's University Hospital, Leeds, UK
- Leeds Institute of Molecular Medicine, The JIF Building, St James University Hospital, University of Leeds, Leeds LS9 7TF, UK. Tel.: +44 113 343 8525; Fax: +44 113 343 8702; E-mail:
| |
Collapse
|
39
|
Tagoh H, Schebesta A, Lefevre P, Wilson N, Hume D, Busslinger M, Bonifer C. Epigenetic silencing of the c-fms locus during B-lymphopoiesis occurs in discrete steps and is reversible. EMBO J 2004; 23:4275-85. [PMID: 15483629 PMCID: PMC524389 DOI: 10.1038/sj.emboj.7600421] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/08/2004] [Accepted: 08/30/2004] [Indexed: 01/07/2023] Open
Abstract
The murine c-fms (Csf1r) gene encodes the macrophage colony-stimulating factor receptor, which is essential for macrophage development. It is expressed at a low level in haematopoietic stem cells and is switched off in all non-macrophage cell types. To examine the role of chromatin structure in this process we studied epigenetic silencing of c-fms during B-lymphopoiesis. c-fms chromatin in stem cells and multipotent progenitors is in the active conformation and bound by transcription factors. A similar result was obtained with specified common myeloid and lymphoid progenitor cells. In developing B cells, c-fms chromatin is silenced in distinct steps, whereby first the binding of transcription factors and RNA expression is lost, followed by a loss of nuclease accessibility. Interestingly, regions of de novo DNA methylation in B cells overlap with an intronic antisense transcription unit that is differently regulated during lymphopoiesis. However, even at mature B cell stages, c-fms chromatin is still in a poised conformation and c-fms expression can be re-activated by conditional deletion of the transcription factor Pax5.
Collapse
Affiliation(s)
- Hiromi Tagoh
- Molecular Medicine Unit, St James's University Hospital, University of Leeds, Leeds, UK
| | - Alexandra Schebesta
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Pascal Lefevre
- Molecular Medicine Unit, St James's University Hospital, University of Leeds, Leeds, UK
| | - Nicola Wilson
- Molecular Medicine Unit, St James's University Hospital, University of Leeds, Leeds, UK
| | - David Hume
- Institute for Molecular Bioscience, University of Queensland, Queensland, Australia
| | - Meinrad Busslinger
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Constanze Bonifer
- Molecular Medicine Unit, St James's University Hospital, University of Leeds, Leeds, UK
- Molecular Medicine Unit, St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK. Tel.: +44 113 206 5676; Fax: +44 113 244 4475; E-mail:
| |
Collapse
|
40
|
Hines R, Sorensen BR, Shea MA, Maury W. PU.1 binding to ets motifs within the equine infectious anemia virus long terminal repeat (LTR) enhancer: regulation of LTR activity and virus replication in macrophages. J Virol 2004; 78:3407-18. [PMID: 15016863 PMCID: PMC371083 DOI: 10.1128/jvi.78.7.3407-3418.2004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/09/2003] [Accepted: 11/21/2003] [Indexed: 11/20/2022] Open
Abstract
Binding of the transcription factor PU.1 to its DNA binding motif regulates the expression of a number of B-cell- and myeloid-specific genes. The long terminal repeat (LTR) of macrophage-tropic strains of equine infectious anemia virus (EIAV) contains three PU.1 binding sites, namely an invariant promoter-proximal site as well as two upstream sites. We have previously shown that these sites are important for EIAV LTR activity in primary macrophages (W. Maury, J. Virol. 68:6270-6279, 1994). Since the sequences present in these three binding motifs are not identical, we sought to determine the role of these three sites in EIAV LTR activity. While DNase I footprinting studies indicated that all three sites within the enhancer were bound by recombinant PU.1, reporter gene assays demonstrated that the middle motif was most important for basal levels of LTR activity in macrophages and that the 5' motif had little impact. The impact of the 3' site became evident in Tat transactivation studies, in which the loss of the site reduced Tat-transactivated expression 40-fold. In contrast, elimination of the 5' site had no effect on Tat-mediated activity. Binding studies were performed to determine whether differences in PU.1 binding affinity for the three sites correlated with the relative impact of each site on LTR transcription. While small differences were observed in the binding affinities of the three sites, with the promoter-proximal site having the strongest binding affinity, these differences could not account for the dramatic differences observed in the transcriptional effects. Instead, the promoter-proximal position of the 3' motif appeared to be critical for its transcriptional impact and suggested that the PU.1 sites may serve different roles depending upon the location of the sites within the enhancer. Infectivity studies demonstrated that an LTR containing an enhancer composed of the three PU.1 sites was not sufficient to drive viral replication in macrophages. These findings indicate that while the promoter-proximal PU.1 site is the most critical site for EIAV LTR activity in the presence of Tat, other elements within the enhancer are needed for EIAV replication in macrophages.
Collapse
Affiliation(s)
- Robert Hines
- Division of Basic Biomedical Science, University of South Dakota, Vermillion, South Dakota 57069, USA
| | | | | | | |
Collapse
|
41
|
Follows GA, Tagoh H, Lefevre P, Morgan GJ, Bonifer C. Differential transcription factor occupancy but evolutionarily conserved chromatin features at the human and mouse M-CSF (CSF-1) receptor loci. Nucleic Acids Res 2004; 31:5805-16. [PMID: 14530429 PMCID: PMC219482 DOI: 10.1093/nar/gkg804] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/14/2022] Open
Abstract
The c-FMS gene encodes the macrophage colony-stimulating factor receptor (M-CSFR or CSF1-R), which is a tyrosine kinase growth factor receptor essential for macrophage development. We have previously characterized the chromatin features of the mouse gene; however, very little is known about chromatin structure and function of the human c-FMS locus. Here we present a side-by-side comparison of the chromatin structure, histone modification, transcription factor occupancy and cofactor recruitment of the human and the mouse c-FMS loci. We show that, similar to the mouse gene, the human c-FMS gene possesses a promoter and an intronic enhancer element (c-fms intronic regulatory element or FIRE). Both elements are evolutionarily conserved and specifically active in macrophages. However, we demonstrate by in vivo footprinting that both murine and human c-FMS cis-regulatory elements are recognised by an overlapping, but non-identical, set of transcription factors. Despite these differences, chromatin immunoprecipitation experiments show highly similar patterns of histone H3 modification and a similar distribution of chromatin modifying and remodelling activities at individual cis-regulatory elements and across the c-FMS locus. Our experiments support the hypothesis that the same regulatory principles operate at both genes via conserved cores of transcription factor binding sites.
Collapse
Affiliation(s)
- George A Follows
- Molecular Medicine Unit, University of Leeds, St James's University Hospital, Leeds LS9 7TF, UK
| | | | | | | | | |
Collapse
|
42
|
Heinz S, Haehnel V, Karaghiosoff M, Schwarzfischer L, Müller M, Krause SW, Rehli M. Species-specific regulation of Toll-like receptor 3 genes in men and mice. J Biol Chem 2003; 278:21502-9. [PMID: 12672806 DOI: 10.1074/jbc.m301476200] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022] Open
Abstract
Toll-like receptor 3 (TLR3) belongs to a family of evolutionary conserved innate immune recognition molecules and recognizes double-stranded RNA, a molecular pattern associated with viral infections. Earlier studies suggested a differential expression pattern in men and mice; the molecular basis for this observation, however, was unknown. Here we demonstrate that species-specific differences in tissue expression and responses to lipopolysaccaride (LPS) coincide with the presence of different, evolutionary non-conserved promoter sequences in both species. Despite the overall unrelatedness of TLR3 promoter sequences, mRNA expression of both TLR3 orthologues was induced by interferons, particularly by interferon (IFN)-beta. The basal and IFN-beta-induced activation of promoters from both species largely depended on similar interferon regulatory factor (IRF) elements, which constitutively bound IRF-2 and recruited IRF-1 after stimulation. In murine macrophages, IFN-beta-induced TLR3 up-regulation required IFNAR1, STAT1, and in part IRF-1, but not the Janus kinase (Jak) family member Tyk2. We also show that LPS specifically up-regulates TLR3 expression in murine cells through the induction of autocrine/paracrine IFN-beta. In humans, however, IFN-beta-induced up-regulation of TLR3 was blocked by pretreatment with LPS, despite the efficient induction of IRF-1. Our findings reveal a mechanistic basis for the observed differences as well as similarities in TLR3 expression in men and mice. The IFN-beta-TLR3 link further suggests a role of TLR3 in innate and adaptive immune responses to viral infections. It will be interesting and important to clarify whether the observed differences in the transcriptional regulation of TLR3 influence innate immune responses in a species-specific manner.
Collapse
Affiliation(s)
- Sven Heinz
- Department of Hematology and Oncology, University of Regensburg, 93042 Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
43
|
Sasmono RT, Oceandy D, Pollard JW, Tong W, Pavli P, Wainwright BJ, Ostrowski MC, Himes SR, Hume DA. A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood 2003; 101:1155-63. [PMID: 12393599 DOI: 10.1182/blood-2002-02-0569] [Citation(s) in RCA: 515] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022] Open
Abstract
The c-fms gene encodes the receptor for macrophage colony-stimulating factor (CSF-1). The gene is expressed selectively in the macrophage and trophoblast cell lineages. Previous studies have indicated that sequences in intron 2 control transcript elongation in tissue-specific and regulated expression of c-fms. In humans, an alternative promoter was implicated in expression of the gene in trophoblasts. We show that in mice, c-fms transcripts in trophoblasts initiate from multiple points within the 2-kilobase (kb) region flanking the first coding exon. A reporter gene construct containing 3.5 kb of 5' flanking sequence and the downstream intron 2 directed expression of enhanced green fluorescent protein (EGFP) to both trophoblasts and macrophages. EGFP was detected in trophoblasts from the earliest stage of implantation examined at embryonic day 7.5. During embryonic development, EGFP highlighted the large numbers of c-fms-positive macrophages, including those that originate from the yolk sac. In adult mice, EGFP location was consistent with known F4/80-positive macrophage populations, including Langerhans cells of the skin, and permitted convenient sorting of isolated tissue macrophages from disaggregated tissue. Expression of EGFP in transgenic mice was dependent on intron 2 as no lines with detectable EGFP expression were obtained where either all of intron 2 or a conserved enhancer element FIRE (the Fms intronic regulatory element) was removed. We have therefore defined the elements required to generate myeloid- and trophoblast-specific transgenes as well as a model system for the study of mononuclear phagocyte development and function.
Collapse
Affiliation(s)
- R Tedjo Sasmono
- Institute for Molecular Bioscience and ARC Special Research Centre for Functional and Applied Genomics, University of Queensland, Brisbane, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hume DA, Ross IL, Himes SR, Sasmono RT, Wells CA, Ravasi T. The mononuclear phagocyte system revisited. J Leukoc Biol 2002. [DOI: 10.1189/jlb.72.4.621] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- David A. Hume
- Institute for Molecular Bioscience, University of Queensland, Australia
| | - Ian L. Ross
- Institute for Molecular Bioscience, University of Queensland, Australia
| | - S. Roy Himes
- Institute for Molecular Bioscience, University of Queensland, Australia
| | - R. Tedjo Sasmono
- Institute for Molecular Bioscience, University of Queensland, Australia
| | | | - Timothy Ravasi
- Institute for Molecular Bioscience, University of Queensland, Australia
| |
Collapse
|
45
|
Abstract
Cells of the mononuclear phagocyte lineage include macrophages, microglia, osteoclasts, and myeloid dendritic cells. These cell types are all derived from blood monocytes, which are the product of hematopoietic stem cell differentiation. In this review we use specific examples of macrophage-expressed genes to illustrate potential regulatory strategies for directing macrophage-specific gene expression. The examples we have chosen-the human c-fes gene, the murine spi-1 (PU.1) gene, the human RANTES promoter, and the human CD68 gene-illustrate different aspects of constitutive and inducible gene expression in macrophages. One important challenge for future work in this field will be to identify the molecular events that dictate lineage decisions during the differentiation of mononuclear phagocytes from hematopoietic progenitor cells. Another important goal will be to understand how groups of macrophage genes are coordinately expressed in response to physiological, immunological, and inflammatory stimuli. A better understanding of macrophage gene expression may find application in gene therapy, genetic vaccination, and the development of new antiinflammatory drugs.
Collapse
Affiliation(s)
- David R Greaves
- Sir William Dunn School of Pathology, University of Oxford, United Kingdom.
| | | |
Collapse
|
46
|
Tagoh H, Himes R, Clarke D, Leenen PJM, Riggs AD, Hume D, Bonifer C. Transcription factor complex formation and chromatin fine structure alterations at the murine c-fms (CSF-1 receptor) locus during maturation of myeloid precursor cells. Genes Dev 2002; 16:1721-37. [PMID: 12101129 PMCID: PMC186377 DOI: 10.1101/gad.222002] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/24/2022]
Abstract
Expression of the gene for the macrophage colony stimulating factor receptor (CSF-1R), c-fms, has been viewed as a hallmark of the commitment of multipotent precursor cells to macrophages. Lineage-restricted expression of the gene is controlled by conserved elements in the proximal promoter and within the first intron. To investigate the developmental regulation of c-fms at the level of chromatin structure, we developed an in vitro system to examine the maturation of multipotent myeloid precursor cells into mature macrophages. The dynamics of chromatin fine structure alterations and transcription factor occupancy at the c-fms promoter and intronic enhancer was examined by in vivo DMS and UV-footprinting. We show that the c-fms gene is already transcribed at low levels in early myeloid precursors on which no CSF-1R surface expression can be detected. At this stage of myelopoiesis, the formation of transcription factor complexes on the promoter was complete. By contrast, occupancy of the enhancer was acutely regulated during macrophage differentiation. Our data show that cell-intrinsic differentiation decisions at the c-fms locus precede the appearance of c-fms on the cell surface. They also suggest that complex lineage-specific enhancers such as the c-fms intronic enhancer regulate local chromatin structure through the coordinated assembly and disassembly of distinct transcription factor complexes.
Collapse
Affiliation(s)
- Hiromi Tagoh
- Molecular Medicine Unit, University of Leeds, St. James's University Hospital, Leeds LS9 7TF, UK
| | | | | | | | | | | | | |
Collapse
|
47
|
Rudge TL, Johnson LF. Synergistic activation of the TATA-less mouse thymidylate synthase promoter by the Ets transcription factor GABP and Sp1. Exp Cell Res 2002; 274:45-55. [PMID: 11855856 DOI: 10.1006/excr.2001.5451] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
The mouse thymidylate synthase (TS) promoter lacks a TATA box and an initiator element and directs transcriptional initiation at multiple sites over a 90-nucleotide region. The minimum sequence required for wild-type promoter activity has been mapped to a 30-nucleotide essential promoter region that partially overlaps the 5' end of the transcriptional initiation window. The essential promoter region contains two potential binding sites for members of the Ets family of transcription factors as well as a binding site for Sp1. Promoter mutation analyses revealed that all three of these sites are important for promoter activity. Transient cotransfection assays showed that GABP, a heterodimeric Ets factor, is able to stimulate expression of reporter genes driven by the wild-type mouse TS promoter whereas several other Ets factors have no effect. Electrophoretic mobility shift assays revealed that recombinant GABP binds to both Ets elements in the essential promoter region. Stimulation of promoter activity by GABP is diminished when either Ets element is inactivated and is prevented when both Ets elements are inactivated. Transient cotransfection assays revealed that Sp1 and GABP stimulate TS promoter activity in a highly synergistic manner.
Collapse
Affiliation(s)
- Thomas L Rudge
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
48
|
Li J, Rehli M, Timblin B, Tan F, Krause SW, Skidgel RA. Structure of the human carboxypeptidase M gene. Identification of a proximal GC-rich promoter and a unique distal promoter that consists of repetitive elements. Gene 2002; 284:189-202. [PMID: 11891060 DOI: 10.1016/s0378-1119(01)00898-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/19/2023]
Abstract
The human carboxypeptidase M (CPM) gene was found to encompass about 112.6 kb of genomic sequence, containing 11 exons of which eight (exons 2-9) are common to all transcripts and contain the entire coding region. We have cloned several alternative variants of CPM transcripts that result from differential promoter usage and alternative splicing. Although CPM belongs to the same metallocarboxypeptidase subfamily as CPE, their intron/exon structures differ significantly. Multiple transcription start sites were found in the CPM gene that cluster in two regions separated by about 30 kb and are flanked by two unique functional promoters. One ('proximal') is immediately upstream of the coding region and contains GC-rich sequences and a typical TATA box whereas the other ('distal') consists almost entirely of repetitive elements. Luciferase reporter assays with constructs of the promoter regions showed they were both quite active in several cell lines. However, the proximal promoter was much stronger than the distal one in two of the human cell lines tested (HepG2 and HEK293) whereas both promoters were highly and equally active in the human monocytic cell line THP-1, which has high constitutive expression of CPM.
Collapse
Affiliation(s)
- Jingqiu Li
- Department of Pharmacology, University of Illinois College of Medicine, 835 S. Wolcott, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
49
|
Luchin A, Suchting S, Merson T, Rosol TJ, Hume DA, Cassady AI, Ostrowski MC. Genetic and physical interactions between Microphthalmia transcription factor and PU.1 are necessary for osteoclast gene expression and differentiation. J Biol Chem 2001; 276:36703-10. [PMID: 11481336 DOI: 10.1074/jbc.m106418200] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
The microphthalmia transcription factor (MITF), a basic-helix-loop-helix zipper factor, regulates distinct target genes in several cell types. We hypothesized that interaction with the Ets family factor PU.1, whose expression is limited to hematopoietic cells, might be necessary for activation of target genes like tartrate-resistant acid phosphatase (TRAP) in osteoclasts. Several lines of evidence were consistent with this model. The combination of MITF and PU.1 synergistically activated the TRAP promoter in transient assays. This activation was dependent on intact binding sites for both factors in the TRAP promoter. MITF and PU.1 physically interacted when coexpressed in COS cells or in vitro when purified recombinant proteins were studied. The minimal regions of MITF and PU.1 required for the interaction were the basic-helix-loop-helix zipper domain and the Ets DNA binding domain, respectively. Significantly, mice heterozygous for both the mutant mi allele and a PU.1 null allele developed osteopetrosis early in life which resolved with age. The size and number of osteoclasts were not altered in the double heterozygous mutant mice, indicating that the defect lies in mature osteoclast function. Taken in total, the results afford an example of how lineage-specific gene regulation can be achieved by the combinatorial action of two broadly expressed transcription factors.
Collapse
Affiliation(s)
- A Luchin
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Hernández-Torres J, Yunta M, Lazo PA. Differential cooperation between regulatory sequences required for human CD53 gene expression. J Biol Chem 2001; 276:35405-13. [PMID: 11443129 DOI: 10.1074/jbc.m104723200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/21/2022] Open
Abstract
CD53 is a tetraspanin protein mostly expressed in to the lymphoid-myeloid lineage. We have characterized the human CD53 gene regulatory region. Within the proximal 2 kilobases, and with opposite transcriptional orientation, is located the promoter-enhancer of a second gene, which does not affect CD53. Twenty-four copies of a CA dinucleotide repeat separate these two gene promoters. The proximal enhanceosome of the human CD53 gene is comprised between residues -266 and +84, and can be subdivided into four major subregions, two of them within exon 1. Mutational analysis identified several cooperating sequences. An Sp1 and an ets-1 site, at positions -115 and +62, respectively, are essential for transcriptional competence in all cell lines. Five other regulatory sequences have a dual role, activator or down-regulator, depending on the cell line. At the end of the non-coding exon 1, +64 to +83, there is a second ets-1 regulatory element, which is required for high level of transcription, in cooperation with the Sp1 site, in K562 and Molt-4, but not in Namalwa cells, where it functions as a repressor. This Sp1 site also cooperates with another ets-1/PU.1 site at -172. Different cell types use different regulatory sequences in the enhanceosome for the expression of the same gene.
Collapse
Affiliation(s)
- J Hernández-Torres
- Centro de Investigación del Cáncer, Instituto de Biologia Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Cientificas, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain
| | | | | |
Collapse
|