1
|
Barklis E, Stephen AG, Staubus AO, Barklis RL, Alfadhli A. Organization of Farnesylated, Carboxymethylated KRAS4B on Membranes. J Mol Biol 2019; 431:3706-3717. [PMID: 31330153 PMCID: PMC6733658 DOI: 10.1016/j.jmb.2019.07.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 11/24/2022]
Abstract
Mutations of the Ras proteins HRAS, KRAS4A, KRAS4B, and NRAS are associated with a high percentage of all human cancers. The proteins are composed of highly homologous N-terminal catalytic or globular domains, plus C-terminal hypervariable regions (HVRs). Post-translational modifications of all RAS HVRs helps target RAS proteins to cellular membrane locations where they perform their signaling functions. For the predominant KRAS4 isoform, KRAS4B, post-translational farnesylation and carboxymethylation, along with a patch of HVR basic residues help foster membrane binding. Recent investigations implicate membrane-bound RAS dimers, oligomers, and nanoclusters as landing pads for effector proteins that relay RAS signals. The details of these RAS signaling platforms have not been elucidated completely, in part due to the difficulties in preparing modified proteins. We have employed properly farnesylated and carboxymethylated KRAS4B in lipid monolayer incubations to examine how the proteins assemble on membranes. Our results reveal novel insights into to how KRAS4B may organize on membranes.
Collapse
Affiliation(s)
- Eric Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, 97239, OR, USA.
| | - Andrew G Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21072, USA
| | - August O Staubus
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, 97239, OR, USA
| | - Robin Lid Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, 97239, OR, USA
| | - Ayna Alfadhli
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, 97239, OR, USA
| |
Collapse
|
2
|
Gupta R, Polenova T. Magic angle spinning NMR spectroscopy guided atomistic characterization of structure and dynamics in HIV-1 protein assemblies. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2017.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Quinn CM, Polenova T. Structural biology of supramolecular assemblies by magic-angle spinning NMR spectroscopy. Q Rev Biophys 2017; 50:e1. [PMID: 28093096 PMCID: PMC5483179 DOI: 10.1017/s0033583516000159] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In recent years, exciting developments in instrument technology and experimental methodology have advanced the field of magic-angle spinning (MAS) nuclear magnetic resonance (NMR) to new heights. Contemporary MAS NMR yields atomic-level insights into structure and dynamics of an astounding range of biological systems, many of which cannot be studied by other methods. With the advent of fast MAS, proton detection, and novel pulse sequences, large supramolecular assemblies, such as cytoskeletal proteins and intact viruses, are now accessible for detailed analysis. In this review, we will discuss the current MAS NMR methodologies that enable characterization of complex biomolecular systems and will present examples of applications to several classes of assemblies comprising bacterial and mammalian cytoskeleton as well as human immunodeficiency virus 1 and bacteriophage viruses. The body of work reviewed herein is representative of the recent advancements in the field, with respect to the complexity of the systems studied, the quality of the data, and the significance to the biology.
Collapse
Affiliation(s)
- Caitlin M. Quinn
- University of Delaware, Department of Chemistry and Biochemistry, Newark, DE 19711; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA 15306
| | - Tatyana Polenova
- University of Delaware, Department of Chemistry and Biochemistry, Newark, DE 19711; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA 15306
| |
Collapse
|
4
|
Benjamin CJ, Wright KJ, Hyun SH, Krynski K, Yu G, Bajaj R, Guo F, Stauffacher CV, Jiang W, Thompson DH. Nonfouling NTA-PEG-Based TEM Grid Coatings for Selective Capture of Histidine-Tagged Protein Targets from Cell Lysates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:551-9. [PMID: 26726866 PMCID: PMC5310270 DOI: 10.1021/acs.langmuir.5b03445] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We report the preparation and performance of TEM grids bearing stabilized nonfouling lipid monolayer coatings. These films contain NTA capture ligands of controllable areal density at the distal end of a flexible poly(ethylene glycol) 2000 (PEG2000) spacer to avoid preferred orientation of surface-bound histidine-tagged (His-tag) protein targets. Langmuir-Schaefer deposition at 30 mN/m of mixed monolayers containing two novel synthetic lipids-1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[(5-amido-1-carboxypentyl)iminodiacetic acid]polyethylene glycolamide 2000) (NTA-PEG2000-DSPE) and 1,2-(tricosa-10',12'-diynoyl)-sn-glycero-3-phosphoethanolamine-N-(methoxypolyethylene glycolamide 350) (mPEG350-DTPE)-in 1:99 and 5:95 molar ratios prior to treatment with a 5 min, 254 nm light exposure was used for grid fabrication. These conditions were designed to limit nonspecific protein adsorption onto the stabilized lipid coating by favoring the formation of a mPEG350 brush layer below a flexible, mushroom conformation of NTA-PEG2000 at low surface density to enable specific immobilization and random orientation of the protein target on the EM grid. These grids were then used to capture His6-T7 bacteriophage and RplL from cell lysates, as well as purified His8-green fluorescent protein (GFP) and nanodisc solubilized maltose transporter, His6-MalFGK2. Our findings indicate that TEM grid supported, polymerized NTA lipid monolayers are capable of capturing His-tag protein targets in a manner that controls their areal densities, while efficiently blocking nonspecific adsorption and limiting film degradation, even upon prolonged detergent exposure.
Collapse
Affiliation(s)
- Christopher J Benjamin
- Department of Chemistry and ‡Department of Biological Sciences, Purdue University , West Lafayette, Indiana 47907, United States
| | - Kyle J Wright
- Department of Chemistry and ‡Department of Biological Sciences, Purdue University , West Lafayette, Indiana 47907, United States
| | - Seok-Hee Hyun
- Department of Chemistry and ‡Department of Biological Sciences, Purdue University , West Lafayette, Indiana 47907, United States
| | - Kyle Krynski
- Department of Chemistry and ‡Department of Biological Sciences, Purdue University , West Lafayette, Indiana 47907, United States
| | - Guimei Yu
- Department of Chemistry and ‡Department of Biological Sciences, Purdue University , West Lafayette, Indiana 47907, United States
| | - Ruchika Bajaj
- Department of Chemistry and ‡Department of Biological Sciences, Purdue University , West Lafayette, Indiana 47907, United States
| | - Fei Guo
- Department of Chemistry and ‡Department of Biological Sciences, Purdue University , West Lafayette, Indiana 47907, United States
| | - Cynthia V Stauffacher
- Department of Chemistry and ‡Department of Biological Sciences, Purdue University , West Lafayette, Indiana 47907, United States
| | - Wen Jiang
- Department of Chemistry and ‡Department of Biological Sciences, Purdue University , West Lafayette, Indiana 47907, United States
| | - David H Thompson
- Department of Chemistry and ‡Department of Biological Sciences, Purdue University , West Lafayette, Indiana 47907, United States
| |
Collapse
|
5
|
Quinn CM, Lu M, Suiter CL, Hou G, Zhang H, Polenova T. Magic angle spinning NMR of viruses. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 86-87:21-40. [PMID: 25919197 PMCID: PMC4413014 DOI: 10.1016/j.pnmrs.2015.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/27/2015] [Accepted: 02/08/2015] [Indexed: 05/02/2023]
Abstract
Viruses, relatively simple pathogens, are able to replicate in many living organisms and to adapt to various environments. Conventional atomic-resolution structural biology techniques, X-ray crystallography and solution NMR spectroscopy provided abundant information on the structures of individual proteins and nucleic acids comprising viruses; however, viral assemblies are not amenable to analysis by these techniques because of their large size, insolubility, and inherent lack of long-range order. In this article, we review the recent advances in magic angle spinning NMR spectroscopy that enabled atomic-resolution analysis of structure and dynamics of large viral systems and give examples of several exciting case studies.
Collapse
Affiliation(s)
- Caitlin M Quinn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| | - Manman Lu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| | - Christopher L Suiter
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| | - Guangjin Hou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| | - Huilan Zhang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States.
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| |
Collapse
|
6
|
Abstract
Experimental evidence for in vivo capsid assembly suggests that capsid formation initiates from interactions between capsid (CA) proteins and lipids in the viral envelope. Various in vitro studies aiming to elucidate the detailed mechanisms of capsid self-assembly products have been carried out in conditions far removed from those, which would be encountered in a physiological environment. In this work we used lipid bilayers as a platform for studying the assembly of the CA protein with the rationale that the lipid-CA interactions play an important role in the nucleation of these structures. Observations using atomic force microscopy (AFM) have allowed a 'curling tadpole' mechanism to be suggested for the capsid self-assembly process. Stable dimeric CA proteins are able to move across the lipid bilayer to associate into trimers-of-dimers. These trimers form distinctly curved chains, which coil up to form larger features. As the feature grows additional trimers associate with the feature, giving a tadpole-like appearance. By comparing capsid assembly on mica, on single component lipid bilayers, and phase separated lipid bilayers, it was possible to determine the effect of lipid-protein interactions on capsid assembly.
Collapse
Affiliation(s)
- Penny Miles
- Chemical Engineering and Advanced Materials, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.
| | | |
Collapse
|
7
|
Zha Z, Cohn C, Dai Z, Qiu W, Zhang J, Wu X. Nanofibrous lipid membranes capable of functionally immobilizing antibodies and capturing specific cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2011; 23:3435-40. [PMID: 21721057 PMCID: PMC3175633 DOI: 10.1002/adma.201101516] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Indexed: 05/29/2023]
Affiliation(s)
- Zhengbao Zha
- Department of Aerospace and Mechanical Engineering, Biomedical Engineering IDP and Bio5 Institute, University of Arizona, Tucson, Arizona 85721, USA
| | - Celine Cohn
- Department of Aerospace and Mechanical Engineering, Biomedical Engineering IDP and Bio5 Institute, University of Arizona, Tucson, Arizona 85721, USA
| | - Zhifei Dai
- Nanomedicine and Biosensor Laboratory, School of Sciences, Harbin Institute of Technology, Harbin 150080, China
| | - Weiguo Qiu
- Department of Aerospace and Mechanical Engineering, Biomedical Engineering IDP and Bio5 Institute, University of Arizona, Tucson, Arizona 85721, USA
| | - Jinhong Zhang
- Department of Mining and Geological Engineering, University of Arizona, Tucson, Arizona 85721, USA
| | - Xiaoyi Wu
- Department of Aerospace and Mechanical Engineering, Biomedical Engineering IDP and Bio5 Institute, University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
8
|
Dezi M, Fribourg PF, Cicco AD, Jault JM, Chami M, Lévy D. Binding, reconstitution and 2D crystallization of membrane or soluble proteins onto functionalized lipid layer observed in situ by reflected light microscopy. J Struct Biol 2010; 174:307-14. [PMID: 21163357 DOI: 10.1016/j.jsb.2010.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 12/06/2010] [Accepted: 12/08/2010] [Indexed: 12/20/2022]
Abstract
Monolayer of functionalized lipid spread at the air/water interface is used for the structural analysis of soluble and membrane proteins by electron crystallography and single particle analysis. This powerful approach lacks of a method for the screening of the binding of proteins to the surface of the lipid layer. Here, we described an optical method based on the use of reflected light microscopy to image, without the use of any labeling, the lipid layer at the surface of buffers in the Teflon wells used for 2D crystallization. Images revealed that the lipid layer was made of a monolayer coexisting with liposomes or aggregates of lipids floating at the surface. Protein binding led to an increase of the contrast and the decrease of the fluidity of the lipid surface, as demonstrated with the binding of soluble Shiga toxin B subunit, of purple membrane and of solubilized His-BmrA, a bacterial ABC transporter. Moreover the reconstitution of membrane proteins bound to the lipidic surface upon detergent removal can be followed through the appearance of large recognizable domains at the surface. Proteins binding and reconstitution were further confirmed by electron microcopy. Overall, this method provides a quick evaluation of the monolayer trials, a significant reduction in screening by transmission electron microscopy and new insights in the proteins binding and 2D crystallogenesis at the lipid surface.
Collapse
Affiliation(s)
- Manuela Dezi
- Institut Curie, Centre de Recherche, Paris F-75231, France
| | | | | | | | | | | |
Collapse
|
9
|
Grey J, Thompson D. Challenges and opportunities for new protein crystallization strategies in structure-based drug design. Expert Opin Drug Discov 2010; 5:1039-45. [PMID: 21116481 PMCID: PMC2992350 DOI: 10.1517/17460441.2010.515583] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Structure-based drug design (SBDD) has emerged as a valuable pharmaceutical lead discovery tool, showing potential for accelerating the discovery process,while reducing developmental costs and boosting potencies of the drug that is ultimately selected. SBDD is an iterative, rational, lead compound sculpting process that involves both the synthesis of new derivatives and the evaluation of their binding to the target structure either through computational docking or elucidation of the target structure as a complex with the lead compound. This method heavily relies on the production of high resolution(< 2 Å) 3D structures of the drug target, obtained through X-ray crystallographic analysis, in the presence or absence of the drug candidate.The lack of generalized methods for high quality crystal production is still a major bottleneck in the process of macromolecular crystallization. This review provides a brief introduction to SBDD and describes several macromolecular crystallization strategies, with an emphasis on advances and challenges facing researchers in the field today. Recent trends in the development of more universal macromolecular crystallization techniques, particularly nucleation-based techniques that are applicable to both soluble and integral membrane proteins, are also discussed.
Collapse
Affiliation(s)
- Jessica Grey
- Department of Chemistry, Purdue University, 560 Oval Dr. West Lafayette, IN 47907, USA
| | - David Thompson
- Department of Chemistry, Purdue University, 560 Oval Dr. West Lafayette, IN 47907, USA
| |
Collapse
|
10
|
Chae PS, Guzei IA, Gellman SH. Crystallographic characterization of N-oxide tripod amphiphiles. J Am Chem Soc 2010; 132:1953-9. [PMID: 20095541 PMCID: PMC3090072 DOI: 10.1021/ja9085148] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tripod amphiphiles are designed to promote the solubilization and stabilization of intrinsic membrane proteins in aqueous solution; facilitation of crystallization is a long-range goal. Membrane proteins are subjects of extensive interest because of their critical biological roles, but proteins of this type can be difficult to study because of their low solubility in water. The nonionic detergents that are typically used to achieve solubility can have the unintended effect of causing protein denaturation. Tripod amphiphiles differ from conventional detergents in that the lipophilic segment contains a branchpoint, and previous work has shown that this unusual amphiphilic architecture can be advantageous relative to traditional detergent structures. Here, we report the crystal structures of several tripod amphiphiles that contain an N-oxide hydrophilic group. The data suggest that tripods can adapt themselves to a nonpolar surface by altering the hydrophobic appendage that projects toward that surface and their overall orientation relative to that surface. Although it is not possible to draw firm conclusions regarding amphiphile association in solution from crystallographic data, trends observed among the packing patterns reported here suggest design strategies to be implemented in future studies.
Collapse
Affiliation(s)
- Pil Seok Chae
- Department of Chemistry, University of Wisconsin, Madison, WI 53706
| | - Ilia A. Guzei
- Department of Chemistry, University of Wisconsin, Madison, WI 53706
| | | |
Collapse
|
11
|
Han Y, Ahn J, Concel J, Byeon IJL, Gronenborn AM, Yang J, Polenova T. Solid-state NMR studies of HIV-1 capsid protein assemblies. J Am Chem Soc 2010; 132:1976-87. [PMID: 20092249 PMCID: PMC2829833 DOI: 10.1021/ja908687k] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In mature HIV-1 virions, the 26.6 kDa CA protein is assembled into a characteristic cone-shaped core (capsid) that encloses the RNA viral genome. The assembled capsid structure is best described by a fullerene cone model that is made up from a hexameric lattice containing a variable number of CA pentamers, thus allowing for closure of tubular or conical structures. In this paper, we present a solid-state NMR analysis of the wild-type HIV-1 CA protein, prepared as conical and spherical assemblies that are stable and are not affected by magic angle spinning of the samples at frequencies between 10 and 25 kHz. Multidimensional homo- and heteronuclear correlation spectra of CA assemblies of uniformly (13)C,(15)N-labeled CA exhibit narrow lines, indicative of the conformational homogeneity of the protein in these assemblies. For the conical assemblies, partial residue-specific resonance assignments were obtained. Analysis of the NMR spectra recorded for the conical and spherical assemblies indicates that the CA protein structure is not significantly different in the different morphologies. The present results demonstrate that the assemblies of CA protein are amenable to detailed structural analysis by solid-state NMR spectroscopy.
Collapse
Affiliation(s)
- Yun Han
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Jinwoo Ahn
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Jason Concel
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - In-Ja L. Byeon
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Angela M. Gronenborn
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Jun Yang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Tatyana Polenova
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| |
Collapse
|
12
|
Challenges and Approaches for Assay Development of Membrane and Membrane-Associated Proteins in Drug Discovery. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010. [DOI: 10.1016/s1877-1173(10)91007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
13
|
Alfadhli A, Barklis RL, Barklis E. HIV-1 matrix organizes as a hexamer of trimers on membranes containing phosphatidylinositol-(4,5)-bisphosphate. Virology 2009; 387:466-72. [PMID: 19327811 PMCID: PMC2680355 DOI: 10.1016/j.virol.2009.02.048] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 02/11/2009] [Accepted: 02/23/2009] [Indexed: 12/31/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) matrix (MA) protein represents the N-terminal domain of the HIV-1 precursor Gag (PrGag) protein and carries an N-terminal myristate (Myr) group. HIV-1 MA fosters PrGag membrane binding, as well as assembly of envelope (Env) proteins into virus particles, and recent studies have shown that HIV-1 MA preferentially directs virus assembly at plasma membrane sites enriched in cholesterol and phosphatidylinositol-(4,5)-bisphosphate (PI[4,5]P(2)). To characterize the membrane binding of MA and PrGag proteins, we have examined how Myr-MA proteins, and proteins composed of Myr-MA and its neighbor Gag capsid (CA) protein associate on membranes containing cholesterol and PI[4,5]P(2). Our results indicate that Myr-MA assembles as a hexamer of trimers on such membranes, and imply that MA trimers interconnect CA hexamer rings in immature virus particles. Our observations suggest a model for the organization of PrGag proteins, and for MA-Env protein interactions.
Collapse
Affiliation(s)
- Ayna Alfadhli
- Vollum Institute and Department of Microbiology, Oregon Health & Science University, 3181, SW Sam Jackson Park Road, Portland, Oregon 97201-3098
| | - Robin Lid Barklis
- Vollum Institute and Department of Microbiology, Oregon Health & Science University, 3181, SW Sam Jackson Park Road, Portland, Oregon 97201-3098
| | - Eric Barklis
- Vollum Institute and Department of Microbiology, Oregon Health & Science University, 3181, SW Sam Jackson Park Road, Portland, Oregon 97201-3098
| |
Collapse
|
14
|
Barklis E, Alfadhli A, McQuaw C, Yalamuri S, Still A, Barklis RL, Kukull B, López CS. Characterization of the in vitro HIV-1 capsid assembly pathway. J Mol Biol 2009; 387:376-89. [PMID: 19356593 PMCID: PMC2667805 DOI: 10.1016/j.jmb.2009.01.058] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 01/08/2009] [Accepted: 01/27/2009] [Indexed: 11/22/2022]
Abstract
During the morphogenesis of mature human immunodeficiency virus-1 cores, viral capsid proteins assemble conical or tubular shells around viral ribonucleoprotein complexes. This assembly step is mimicked in vitro through reactions in which capsid proteins oligomerize to form long tubes, and this process can be modeled as consisting of a slow nucleation period, followed by a rapid phase of tube growth. We have developed a novel fluorescence microscopy approach to monitor in vitro assembly reactions and have employed it, along with electron microscopy analysis, to characterize the assembly process. Our results indicate that temperature, salt concentration, and pH changes have differential effects on tube nucleation and growth steps. We also demonstrate that assembly can be unidirectional or bidirectional, that growth can be capped, and that proteins can assemble onto the surfaces of tubes, yielding multiwalled or nested structures. Finally, experiments show that a peptide inhibitor of in vitro assembly also can dismantle preexisting tubes, suggesting that such reagents may possess antiviral effects against both viral assembly and uncoating. Our investigations help establish a basis for understanding the mechanism of mature human immunodeficiency virus-1 core assembly and avenues for antiviral inhibition.
Collapse
Affiliation(s)
- Eric Barklis
- Vollum Institute and Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Mail Code L220, 3181 SW Sam Jackson Park Road, Portland, OR 97201-3098, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Lokhandwala PM, Nguyen TLN, Bowzard JB, Craven RC. Cooperative role of the MHR and the CA dimerization helix in the maturation of the functional retrovirus capsid. Virology 2008; 376:191-8. [PMID: 18433823 PMCID: PMC2474745 DOI: 10.1016/j.virol.2008.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 02/23/2008] [Accepted: 03/01/2008] [Indexed: 12/25/2022]
Abstract
The second helix in the C-terminal domain of retroviral capsid (CA) protein functions as the site of dimerization between subunits in capsid assembly and is believed to participate in a unique interface between Gag molecules in immature particles. This study reports isolation of two substitutions in the dimerization helix of Rous sarcoma virus CA protein that have the ability to suppress lethal defects in core maturation imposed by alterations to the major homology region (MHR) motif just upstream. Together with two previously published suppressors, these define an extended region of the dimerization helix that is unlikely to contribute directly to CA-CA contacts but whose assembly-competence may be strongly affected by conformation. The broad-spectrum suppression and temperature-sensitivity exhibited by some mutants argues that they act through modulation of protein conformation. These findings provide important biological evidence in support of a significant conformational change involving the dimerization helix and the MHR during maturation.
Collapse
Affiliation(s)
- Parvez M. Lokhandwala
- Department of Microbiology and Immunology, The Pennsylvania State University, College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033
| | - Tam-Linh N. Nguyen
- Department of Microbiology and Immunology, The Pennsylvania State University, College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033
| | | | - Rebecca C. Craven
- Department of Microbiology and Immunology, The Pennsylvania State University, College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033
| |
Collapse
|
16
|
Thompson DH, Zhou M, Grey J, Kim HK. Design, Synthesis, and Performance of NTA-modified Lipids as Templates for Histidine-tagged Protein Crystallization. CHEM LETT 2007. [DOI: 10.1246/cl.2007.956] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
17
|
Larsen LSZ, Zhang M, Beliakova-Bethell N, Bilanchone V, Lamsa A, Nagashima K, Najdi R, Kosaka K, Kovacevic V, Cheng J, Baldi P, Hatfield GW, Sandmeyer S. Ty3 capsid mutations reveal early and late functions of the amino-terminal domain. J Virol 2007; 81:6957-72. [PMID: 17442718 PMCID: PMC1933270 DOI: 10.1128/jvi.02207-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2006] [Accepted: 03/26/2007] [Indexed: 01/14/2023] Open
Abstract
The Ty3 retrotransposon assembles into 50-nm virus-like particles that occur in large intracellular clusters in the case of wild-type (wt) Ty3. Within these particles, maturation of the Gag3 and Gag3-Pol3 polyproteins by Ty3 protease produces the structural proteins capsid (CA), spacer, and nucleocapsid. Secondary and tertiary structure predictions showed that, like retroviral CA, Ty3 CA contains a large amount of helical structure arranged in amino-terminal and carboxyl-terminal bundles. Twenty-six mutants in which alanines were substituted for native residues were used to study CA subdomain functions. Transposition was measured, and particle morphogenesis and localization were characterized by analysis of protein processing, cDNA production, genomic RNA protection, and sedimentation and by fluorescence and electron microscopy. These measures defined five groups of mutants. Proteins from each group could be sedimented in a large complex. Mutations in the amino-terminal domain reduced the formation of fluorescent Ty3 protein foci. In at least one major homology region mutant, Ty3 protein concentrated in foci but no wt clusters of particles were observed. One mutation in the carboxyl-terminal domain shifted assembly from spherical particles to long filaments. Two mutants formed foci separate from P bodies, the proposed sites of assembly, and formed defective particles. P-body association was therefore found to be not necessary for assembly but correlated with the production of functional particles. One mutation in the amino terminus blocked transposition after cDNA synthesis. Our data suggest that Ty3 proteins are concentrated first, assembly associated with P bodies occurs, and particle morphogenesis concludes with a post-reverse transcription, CA-dependent step. Particle formation was generally resistant to localized substitutions, possibly indicating that multiple domains are involved.
Collapse
Affiliation(s)
- Liza S Z Larsen
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Spidel JL, Wilson CB, Craven RC, Wills JW. Genetic Studies of the beta-hairpin loop of Rous sarcoma virus capsid protein. J Virol 2007; 81:1288-96. [PMID: 17093186 PMCID: PMC1797520 DOI: 10.1128/jvi.01551-06] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 10/31/2006] [Indexed: 12/14/2022] Open
Abstract
The first few residues of the Rous sarcoma virus (RSV) CA protein comprise a structurally dynamic region that forms part of a Gag-Gag interface in immature virus particles. Dissociation of this interaction during maturation allows refolding and formation of a beta-hairpin structure important for assembly of CA monomers into the mature capsid shell. A consensus binding site for the cellular Ubc9 protein was previously identified within this region, suggesting that binding of Ubc9 and subsequent small ubiquitin-like modifier protein 1 (SUMO-1) modification of CA may play a role either in regulating the assembly activity of CA in immature particles or mature cores or in controlling postentry function(s) during the establishment of infection. In the present study, mutations designed to eliminate the consensus binding site were used to dissect the potentially overlapping functions of these residues. The resulting replication defects could not be traced to a failure to form particles of normal composition but, rather, to a deficit in genome replication. Genetic suppressors of two detrimental beta-hairpin mutations improved infectivity without restoring the consensus site or creating a novel one elsewhere. Optimal restoration of infectivity to a Lys-to-Arg mutant required a combination of secondary changes, one on the surface of each domain of CA. Rather than arguing for a critical role of Ubc9 and SUMO in RSV replication, these findings provide strong support for a structural role of the N-terminal residues and a particularly striking example of long-range interactions between regions of CA in achieving a functional core competent for genome replication.
Collapse
Affiliation(s)
- Jared L Spidel
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
19
|
Adamson CS, Freed EO. Human Immunodeficiency Virus Type 1 Assembly, Release, and Maturation. ADVANCES IN PHARMACOLOGY 2007; 55:347-87. [PMID: 17586320 DOI: 10.1016/s1054-3589(07)55010-6] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Affiliation(s)
- Catherine S Adamson
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702, USA
| | | |
Collapse
|
20
|
Alfadhli A, Huseby D, Kapit E, Colman D, Barklis E. Human immunodeficiency virus type 1 matrix protein assembles on membranes as a hexamer. J Virol 2006; 81:1472-8. [PMID: 17108052 PMCID: PMC1797500 DOI: 10.1128/jvi.02122-06] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The membrane-binding matrix (MA) domain of the human immunodeficiency virus type 1 (HIV-1) structural precursor Gag (PrGag) protein oligomerizes in solution as a trimer and crystallizes in three dimensions as a trimer unit. A number of models have been proposed to explain how MA trimers might align with respect to PrGag capsid (CA) N-terminal domains (NTDs), which assemble hexagonal lattices. We have examined the binding of naturally myristoylated HIV-1 matrix (MyrMA) and matrix plus capsid (MyrMACA) proteins on membranes in vitro. Unexpectedly, MyrMA and MyrMACA proteins both assembled hexagonal cage lattices on phosphatidylserine-cholesterol membranes. Membrane-bound MyrMA proteins did not organize into trimer units but, rather, organized into hexamer rings. Our results yield a model in which MA domains stack directly above NTD hexamers in immature particles, and they have implications for HIV assembly and interactions between MA and the viral membrane glycoproteins.
Collapse
Affiliation(s)
- Ayna Alfadhli
- Vollum Institute and Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Mail Code L220, 3181 SW Sam Jackson Park Road, Portland, OR 97201-3098, USA
| | | | | | | | | |
Collapse
|
21
|
Ulbrich P, Haubova S, Nermut MV, Hunter E, Rumlova M, Ruml T. Distinct roles for nucleic acid in in vitro assembly of purified Mason-Pfizer monkey virus CANC proteins. J Virol 2006; 80:7089-99. [PMID: 16809314 PMCID: PMC1489063 DOI: 10.1128/jvi.02694-05] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In contrast to other retroviruses, Mason-Pfizer monkey virus (M-PMV) assembles immature capsids in the cytoplasm. We have compared the ability of minimal assembly-competent domains from M-PMV and human immunodeficiency virus type 1 (HIV-1) to assemble in vitro into virus-like particles in the presence and absence of nucleic acids. A fusion protein comprised of the capsid and nucleocapsid domains of Gag (CANC) and its N-terminally modified mutant (DeltaProCANC) were used to mimic the assembly of the viral core and immature particles, respectively. In contrast to HIV-1, where CANC assembled efficiently into cylindrical structures, the same domains of M-PMV were assembly incompetent. The addition of RNA or oligonucleotides did not complement this defect. In contrast, the M-PMV DeltaProCANC molecule was able to assemble into spherical particles, while that of HIV-1 formed both spheres and cylinders. For M-PMV, the addition of purified RNA increased the efficiency with which DeltaProCANC formed spherical particles both in terms of the overall amount and the numbers of completed spheres. The amount of RNA incorporated was determined, and for both rRNA and MS2-RNA, quantities similar to that of genomic RNA were encapsidated. Oligonucleotides also stimulated assembly; however, they were incorporated into DeltaProCANC spherical particles in trace amounts that could not serve as a stoichiometric structural component for assembly. Thus, oligonucleotides may, through a transient interaction, induce conformational changes that facilitate assembly, while longer RNAs appear to facilitate the complete assembly of spherical particles.
Collapse
Affiliation(s)
- Pavel Ulbrich
- Department of Biochemistry and Microbiology, Institute of Chemical Technology, Technicka 3, 166 28 Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
22
|
Zhou M, Haldar S, Franses J, Kim JM, Thompson DH. Synthesis and Self-assembly Properties of Acylated Cyclodextrins and Nitrilotriacetic Acid (NTA)-modified Inclusion Ligands for Interfacial Protein Crystallization. Supramol Chem 2006. [DOI: 10.1080/10610270412331329005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Mingkang Zhou
- a Department of Chemistry , 560 Oval Drive, Purdue University , West Lafayette, IN 47907, USA
| | - Saubhik Haldar
- a Department of Chemistry , 560 Oval Drive, Purdue University , West Lafayette, IN 47907, USA
| | - Joseph Franses
- a Department of Chemistry , 560 Oval Drive, Purdue University , West Lafayette, IN 47907, USA
| | - Jong-Mok Kim
- a Department of Chemistry , 560 Oval Drive, Purdue University , West Lafayette, IN 47907, USA
| | - David H. Thompson
- a Department of Chemistry , 560 Oval Drive, Purdue University , West Lafayette, IN 47907, USA
| |
Collapse
|
23
|
Morellet N, Druillennec S, Lenoir C, Bouaziz S, Roques BP. Helical structure determined by NMR of the HIV-1 (345-392)Gag sequence, surrounding p2: implications for particle assembly and RNA packaging. Protein Sci 2005; 14:375-86. [PMID: 15659370 PMCID: PMC2253411 DOI: 10.1110/ps.041087605] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Gag protein oligomerization, an essential step during virus assembly, results in budding of spherical virus particles. This process is critically dependent on the spacer p2, located between the capsid and the nucleocapsid proteins. P2 contributes also, in association with NCp7, to specific recognition of the HIV-1 packaging signal resulting in viral genome encapsidation. There is no structural information about the 20 last amino acids of the C-terminal part of capsid (CA[CTD]) and p2, in the molecular mechanism of Gag assembly. In this study the structure of a peptide encompassing the 14 residues of p2 with the upstream 21 residues and the downstream 13 residues was determined by (1)H NMR in 30% trifluoroethanol (TFE). The main structural motif is a well-defined amphipathic alpha-helix including p2, the seven last residues of the CA(CTD), and the two first residues of NCp7. Peptides containing the p2 domain have a strong tendency to aggregate in solution, as shown by gel filtration analyses in pure H(2)O. To take into account the aggregation phenomena, models of dimer and trimer formed through hydrophobic or hydrophilic interfaces were constructed by molecular dynamic simulations. Gel shift experiments demonstrate that the presence of at least p2 and the 13 first residues of NCp7 is required for RNA binding. A computer-generated model of the Gag polyprotein segment (282-434)Gag interacting with the packaging element SL3 is proposed, illustrating the importance of p2 and NCp7 in genomic encapsidation.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Capsid
- Capsid Proteins/chemistry
- Chromatography, Gel
- Databases, Protein
- Dimerization
- Gene Products, gag/chemistry
- Genes, gag
- Genome, Viral
- HIV-1/chemistry
- Magnetic Resonance Spectroscopy/methods
- Models, Molecular
- Molecular Sequence Data
- Peptide Fragments/chemistry
- Peptides/chemistry
- Protein Binding
- Protein Conformation
- Protein Structure, Secondary
- Protein Structure, Tertiary
- RNA/chemistry
- RNA, Viral/chemistry
- Software
- Virus Assembly
- Water/chemistry
- gag Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Nelly Morellet
- Unite de Pharmacologie Chimique et Genetique, INSERM U640, CNRS UMR 8151, UFR des Sciences Pharmaceutiques et Biologiques, 4, Avenue de l'Observatoire, 75270 Paris Cedex 06, France.
| | | | | | | | | |
Collapse
|
24
|
Huseby D, Barklis RL, Alfadhli A, Barklis E. Assembly of human immunodeficiency virus precursor gag proteins. J Biol Chem 2005; 280:17664-70. [PMID: 15734744 DOI: 10.1074/jbc.m412325200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate the mechanism by which human immunodeficiency virus (HIV) precursor Gag (PrGag) proteins assemble to form immature virus particles, we examined the in vitro assembly of MACANC proteins, composed of the PrGag matrix, capsid, and nucleocapsid domains. In the absence of other components, MACANC proteins assembled efficiently at physiological temperature but inefficiently at lower temperatures. However, the addition of RNA reduced the temperature sensitivity of assembly reactions. Assembly of MACANC proteins also was affected by pH because the proteins preferentially formed tubes at pH 6.0, whereas spheres were obtained at pH 8.0. Because neither tubes nor spheres were amenable to analysis of protein-protein contacts, we also examined the membrane-bound assemblies of MACANC proteins. Interestingly, MACANC proteins organized on membranes in tightly packed hexameric rings. The observed hexamer spacing of 79.7 A is consistent with the notion that more PrGag proteins assemble into virions than are needed to provide capsid proteins for mature virus cores. Our data are also consistent with a model for PrGag contacts in immature virions where capsid hexamers are tightly packed, where nucleocapsid domains align beneath capsid C-terminal domains, and where matrix domains form trimers at the nexus of three neighbor hexamers.
Collapse
Affiliation(s)
- Doug Huseby
- Vollum Institute and Department of Microbiology, Oregon Health and Science University, Portland, Oregon 97201-3098, USA
| | | | | | | |
Collapse
|
25
|
Scholz I, Arvidson B, Huseby D, Barklis E. Virus particle core defects caused by mutations in the human immunodeficiency virus capsid N-terminal domain. J Virol 2005; 79:1470-9. [PMID: 15650173 PMCID: PMC544128 DOI: 10.1128/jvi.79.3.1470-1479.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Accepted: 09/14/2004] [Indexed: 12/18/2022] Open
Abstract
The N-terminal domains (NTDs) of the human immunodeficiency virus type 1 (HIV-1) capsid (CA) protein have been modeled to form hexamer rings in the mature cores of virions. In vitro, hexamer ring units organize into either tubes or spheres, in a pH-dependent fashion. To probe factors which might govern hexamer assembly preferences in vivo, we examined the effects of mutations at CA histidine residue 84 (H84), modeled at the outer edges of NTD hexamers, as well as a nearby histidine (H87) in the cyclophilin A (CypA) binding loop. Although mutations at H87 yielded infectious virions, mutations at H84 produced assembly-competent but poorly infectious virions. The H84 mutant viruses incorporated wild-type levels of CypA and viral RNAs and showed nearly normal signals in virus entry assays. However, mutant CA proteins assembled aberrant virus cores, and mutant core fractions retained abnormally high levels of CA but reduced reverse transcriptase activities. Our results suggest that HIV-1 CA residue 84 contributes to a structure which helps control either NTD hexamer assembly or the organization of hexamers into higher-order structures.
Collapse
Affiliation(s)
- Isabel Scholz
- Vollum Institute and Department of Microbiology, Mail Code L220, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97201-3098, USA
| | | | | | | |
Collapse
|
26
|
Rayne F, Kajava AV, Lalanne J, Mamoun RZ. In vivo homodimerisation of HTLV-1 Gag and MA gives clues to the retroviral capsid and TM envelope protein arrangement. J Mol Biol 2004; 343:903-16. [PMID: 15476809 DOI: 10.1016/j.jmb.2004.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Revised: 09/08/2004] [Accepted: 09/08/2004] [Indexed: 10/26/2022]
Abstract
During retroviral particle formation, the capsid precursors (Gag) associate with the cell membrane via their matrix (MA) domain to form viral assembling particles. After budding, Gag and its proteolytically matured MA, form a shell in the released immature and mature particles, respectively. Although the arrangement of Gag domains in vitro and their radial organisation in retroviral particles have been extensively studied, little is known concerning Gag inter-subunit interactions in authentic retroviruses. We report that human T-cell leukemia virus type 1 Gag homodimerises in the cell via a disulphide bonding at cysteine 61 in the MA domain. Most Gags are homodimeric after budding and MAs are also dimeric in mature authentic virions. Molecular modelling of the MA domain indicates that non-covalent interactions at the MA dimer interface may also be important for Gag (and MA) dimerisation. In addition, all amino acids previously reported to be involved in MA-transmembrane (TM) interactions are located on the MA face opposite to the dimer interface. The model reveals that homodimerisation is compatible with a hexameric network of Gag and MA dimers that look like the hexameric networks observed for other retroviruses. These data, together with previous studies, lead us to propose a supra-molecular arrangement model in which the transmembrane glycoproteins of the virion envelope are anchored in a hexameric cage hole formed by the MA.
Collapse
Affiliation(s)
- Fabienne Rayne
- INSERM U443, Equipe Rétrovirus et Transfert génique, 146, rue Léo Saignat, F-33076 Bordeaux Cedex, France
| | | | | | | |
Collapse
|
27
|
Abstract
The assembly of HIV is relatively poorly investigated when compared with the process of virus entry. Yet a detailed understanding of the mechanism of assembly is fundamental to our knowledge of the complete life cycle of this virus and also has the potential to inform the development of new antiviral strategies. The repeated multiple interaction of the basic structural unit, Gag, might first appear to be little more than concentration dependent self-assembly but the precise mechanisms emerging for HIV are far from simple. Gag interacts not only with itself but also with host cell lipids and proteins in an ordered and stepwise manner. It binds both the genomic RNA and the virus envelope protein and must do this at an appropriate time and place within the infected cell. The assembled virus particle must successfully release from the cell surface and, whilst being robust enough for transmission between hosts, must nonetheless be primed for rapid disassembly when infection occurs. Our current understanding of these processes and the domains of Gag involved at each stage is the subject of this review.
Collapse
Affiliation(s)
- Catherine S Adamson
- School of Animal and Microbial Sciences, The University of Reading, Reading RG6 6AJ, UK.
| | | |
Collapse
|
28
|
Ganser BK, Cheng A, Sundquist WI, Yeager M. Three-dimensional structure of the M-MuLV CA protein on a lipid monolayer: a general model for retroviral capsid assembly. EMBO J 2003; 22:2886-92. [PMID: 12805204 PMCID: PMC162131 DOI: 10.1093/emboj/cdg276] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although retroviruses from different genera form morphologically distinct capsids, we have proposed that all of these structures are composed of similar hexameric arrays of capsid (CA) protein subunits and that their distinct morphologies reflect different distributions of pentameric declinations that allow the structures to close. Consistent with this model, CA proteins from both HIV-1 and Rous sarcoma virus (RSV) form similar hexagonal lattices. However, recent structural studies have suggested that the Moloney murine leukemia virus (M-MuLV) CA protein may assemble differently. We now report an independent three-dimensional reconstruction of two-dimensional crystals of M-MuLV CA. This new reconstruction reveals a hexameric lattice that is similar to those formed by HIV-1 and RSV CA, supporting a generalized model for retroviral capsid assembly.
Collapse
Affiliation(s)
- Barbie K Ganser
- Department of Biochemistry, University of Utah, 20 North 1900 East, Salt Lake City, UT 84132, USA
| | | | | | | |
Collapse
|
29
|
Briggs JAG, Wilk T, Welker R, Kräusslich HG, Fuller SD. Structural organization of authentic, mature HIV-1 virions and cores. EMBO J 2003; 22:1707-15. [PMID: 12660176 PMCID: PMC152888 DOI: 10.1093/emboj/cdg143] [Citation(s) in RCA: 373] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2002] [Revised: 02/03/2003] [Accepted: 02/04/2003] [Indexed: 11/13/2022] Open
Abstract
Mature, infectious HIV-1 particles contain a characteristic cone-shaped core that encases the viral RNA and replication proteins. The architectures of mature virions and isolated cores were studied using cryo-electron microscopy. The average size ( approximately 145 nm) of the virion was unchanged during maturation. Most virions contained a single core but roughly one-third contained two or more cores. Consideration of the capsid protein concentration during core assembly indicated that core formation in vivo is template-mediated rather than concentration-driven. Although most cores were conical, 7% were tubular. These displayed a stacked-disc arrangement with 7-, 8-, 9- or 10-fold axial symmetry. Layer line filtration of these images showed that the capsid subunit arrangement is consistent with a 9.6 nm hexamer resembling that previously seen in the helical tubes assembled from purified capsid protein. A common reflection (1/3.2 nm) shared between the tubular and conical cores suggested they share a similar organization. The extraordinary flexibility observed in the assembly of the mature core appears to be well suited to accommodating variation and hence there may be no single structure for the infectious virion.
Collapse
Affiliation(s)
- John A G Briggs
- The Wellcome Trust Centre for Human Genetics, Division of Structural Biology, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7BN, UK
| | | | | | | | | |
Collapse
|
30
|
Mayo K, Huseby D, McDermott J, Arvidson B, Finlay L, Barklis E. Retrovirus capsid protein assembly arrangements. J Mol Biol 2003; 325:225-37. [PMID: 12473464 DOI: 10.1016/s0022-2836(02)01176-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
During retrovirus particle assembly and morphogenesis, the retrovirus structural (Gag) proteins organize into two different arrangements: an immature form assembled by precursor Gag (PrGag) proteins; and a mature form, composed of proteins processed from PrGag. Central to both Gag protein arrangements is the capsid (CA) protein, a domain of PrGag, which is cleaved from the precursor to yield a mature Gag protein composed of an N-terminal domain (NTD), a flexible linker region, and a C-terminal domain (CTD). Because Gag interactions have proven difficult to examine in virions, a number of investigations have focused on the analysis of structures assembled in vitro. We have used electron microscope (EM) image reconstruction techniques to examine assembly products formed by two different CA variants of both human immunodeficiency virus type 1 (HIV-1) and the Moloney murine leukemia virus (M-MuLV). Interestingly, two types of hexameric protein arrangements were observed for each virus type. One organizational scheme featured hexamers composed of putative NTD dimer subunits, with sharing of subunits between neighbor hexamers. The second arrangement used apparent NTD monomers to coordinate hexamers, involved no subunit sharing, and employed putative CTD interactions to connect hexamers. Conversion between the two assembly forms may be achieved by making or breaking the proposed symmetric NTD dimer contacts in a process that appears to mimic viral morphogenesis.
Collapse
Affiliation(s)
- Keith Mayo
- Vollum Institute and Department of Microbiology MC L220, Oregon Health and Science University, 31814 SW Sam Jackson Park Rd, Portland, OR 97201-3098, USA
| | | | | | | | | | | |
Collapse
|
31
|
Mayo K, McDermott J, Barklis E. Hexagonal organization of Moloney murine leukemia virus capsid proteins. Virology 2002; 298:30-8. [PMID: 12093170 DOI: 10.1006/viro.2002.1452] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To help elucidate the mechanisms by which retrovirus structural proteins associate to form virus particles, we have examined membrane-bound assemblies of Moloney murine leukemia virus (M-MuLV) capsid (CA) proteins. Electron microscopy and image reconstruction techniques showed that CA dimers appear to function as organizational subunits of the cage-like, membrane-bound protein arrays. However, new three-dimensional (3D) data also were consistent with hexagonal (p6) assembly models. The p6 3D reconstructions of membrane-bound M-MuLV CA proteins gave unit cells of a = b = 80.3 A, c = 110 A, gamma = 120 degrees, in which six dimer units formed a cage lattice. Neighbor cage hole-to-hole distances were 45 A, while distances between hexagonal cage holes corresponded to unit cell lengths (80.3 A). The hexagonal model predicts two types of cage holes (trimer and hexamer holes), uses symmetric head-to-head dimer building blocks, and permits the introduction of lattice curvature by conversion of hexamer to pentamer units. The M-MuLV CA lattice is similar to those formed in helical tubes by HIV CA in that hexamer units surround cage holes of 25-30 A, but differs in that M-MuLV hexamer units appear to be CA dimers, whereas HIV CA units appear to be monomers. These results suggest that while general assembly principles apply to different retroviruses, clear assembly distinctions exist between these virus types.
Collapse
Affiliation(s)
- Keith Mayo
- Vollum Institute and Department of Microbiology, Oregon Health Sciences University, Portland 97201-3098, USA
| | | | | |
Collapse
|
32
|
Nermut MV, Bron P, Thomas D, Rumlova M, Ruml T, Hunter E. Molecular organization of Mason-Pfizer monkey virus capsids assembled from Gag polyprotein in Escherichia coli. J Virol 2002; 76:4321-30. [PMID: 11932398 PMCID: PMC155098 DOI: 10.1128/jvi.76.9.4321-4330.2002] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2001] [Accepted: 01/17/2002] [Indexed: 11/20/2022] Open
Abstract
We describe the results of a study by electron microscopy and image processing of Gag protein shells-immature capsids--of Mason-Pfizer monkey virus assembled in Escherichia coli from two truncated forms of the Gag precursor: Deltap4Gag, in which the C-terminal p4Gag was deleted, and Pro(-)CA.NC, in which the N-terminal peptides and proline 1 of the CA domain were deleted. Negative staining of capsids revealed small patches of holes forming a trigonal or hexagonal pattern most clearly visible on occasional tubular forms. The center-to-center spacing of holes in the network was 7.1 nm in Deltap4Gag capsids and 7.4 nm in Pro(-)CA.NC capsids. Image processing of Deltap4Gag tubes revealed a hexagonal network of holes formed by six subunits with a single subunit shared between rings. This organization suggests that the six subunits are contributed by three trimers of the truncated Gag precursor. Similar molecular organization was observed in negatively stained Pro(-)CA.NC capsids. Shadowed replicas of freeze-etched capsids produced by either construct confirmed the presence of a hexagonal network of holes with a similar center-to-center spacing. We conclude that the basic building block of the cage-like network is a trimer of the Deltap4Gag or Pro(-)CA.NC domains. In addition, our results point to a key role of structurally constrained CA domain in the trimeric interaction of the Gag polyprotein.
Collapse
Affiliation(s)
- Milan V Nermut
- National Institute for Biological Standards and Control, South Mimms, Hertfordshire EN6 3QG, United Kingdom.
| | | | | | | | | | | |
Collapse
|
33
|
Mayo K, Vana ML, McDermott J, Huseby D, Leis J, Barklis E. Analysis of Rous sarcoma virus capsid protein variants assembled on lipid monolayers. J Mol Biol 2002; 316:667-78. [PMID: 11866525 DOI: 10.1006/jmbi.2001.5354] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During assembly and morphogenesis of Rous sarcoma virus (RSV), proteolytic processing of the structural precursor (Pr76Gag) protein generates three capsid (CA) protein variants, CA476, CA479, and CA488. The proteins share identical N-terminal domains (NTDs), but are truncated at residues corresponding to gag codons 476, 479, and 488 in their CA C-terminal domains (CTDs). To characterize oligomeric forms of the RSV CA variants, we examined 2D crystals of the capsid proteins, assembled on lipid monolayers. Using electron microscopy and image analysis approaches, the CA proteins were observed to organize in hexagonal (p6) arrangements, where rings of membrane-proximal NTD hexamers were spaced at 95 A intervals. Differences between the oligomeric structures of the CA variants were most evident in membrane-distal regions, where apparent CTDs interconnect hexamer rings. In this region, CA488 connections were observed readily, while CA476 and CA479 contacts were resolved poorly, suggesting that in vivo processing of CA488 to the shorter forms may permit virions to adopt a dissembly-competent conformation. In addition to crystalline arrays, the CA479 and CA488 proteins formed small spherical particles with diameters of 165-175 A. The spheres appear to be arranged from hexamer or hexamer plus pentamer ring subunits that are related to the 2D crystal forms. Our results implicate RSV CA hexamer rings as basic elements in the assembly of RSV virus cores.
Collapse
Affiliation(s)
- Keith Mayo
- Vollum Institute and Department of Microbiology, Oregon Health & Science University, Portland, OR 97201-3098, USA
| | | | | | | | | | | |
Collapse
|
34
|
Parker SD, Wall JS, Hunter E. Analysis of Mason-Pfizer monkey virus Gag particles by scanning transmission electron microscopy. J Virol 2001; 75:9543-8. [PMID: 11533218 PMCID: PMC114523 DOI: 10.1128/jvi.75.19.9543-9548.2001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mason-Pfizer monkey virus immature capsids selected from the cytoplasm of baculovirus-infected cells were imaged by scanning transmission electron microscopy. The masses of individual selected Gag particles were measured, and the average mass corresponded to 1,900 to 2,100 Gag polyproteins per particle. A large variation in Gag particle mass was observed within each population measured.
Collapse
Affiliation(s)
- S D Parker
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
35
|
Scianimanico S, Schoehn G, Timmins J, Ruigrok RH, Klenk HD, Weissenhorn W. Membrane association induces a conformational change in the Ebola virus matrix protein. EMBO J 2000; 19:6732-41. [PMID: 11118208 PMCID: PMC305896 DOI: 10.1093/emboj/19.24.6732] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The matrix protein VP40 from Ebola virus is targeted to the plasma membrane, where it is thought to induce assembly and budding of virions through its association with the lipid bilayer. Ebola virus VP40 is expressed as a monomeric molecule in solution, consisting of two loosely associated domains. Here we show that a C-terminal truncation of seven residues destabilizes the monomeric closed conformation and induces spontaneous hexamerization in solution, as indicated by chemical cross-linking and electron microscopy. Three-dimensional reconstruction of electron microscopy images shows ring-like structures consisting of the N-terminal domain along with evidence for flexibly attached C-terminal domains. In vitro destabilization of the monomer by urea treatment results in similar hexameric molecules in solution. In addition, we demonstrate that membrane association of wild-type VP40 also induces the conformational switch from monomeric to hexameric molecules that may form the building blocks for initiation of virus assembly and budding. Such a conformational change induced by bilayer targeting may be a common feature of many viral matrix proteins and its potential inhibition may result in new anti-viral therapies.
Collapse
Affiliation(s)
- S Scianimanico
- European Molecular Biology Laboratory (EMBL) Grenoble Outstation, 6 rue Jules Horowitz, 38000 Grenoble, France
| | | | | | | | | | | |
Collapse
|
36
|
McDermott J, Mayo K, Barklis E. Three-dimensional organization of retroviral capsid proteins on a lipid monolayer. J Mol Biol 2000; 302:121-33. [PMID: 10964565 DOI: 10.1006/jmbi.2000.4030] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have used a method for the two-dimensional crystallization of retroviral structural proteins to obtain a three-dimensional structure of negatively stained, membrane-bound, histidine-tagged Moloney murine leukemia virus (M-MuLV) capsid protein (his-MoCA) arrays. Tilted and untilted micrographs from crystals formed by purified his-MoCA proteins incubated beneath lipid monolayers containing nickel-chelating lipids were used in 3D reconstructions. The 2D crystals had unit cell dimensions of a=72.6 A, b=72.5 A and gamma=119.5 degrees, but appeared to have no intrinsic symmetry (p1) in 3D, in contrast to the trigonal or hexagonal appearance of their 2D projections. Membrane-bound his-MoCA proteins showed a strand-like organization, apparently with dimer building blocks. Membrane-proximal regions, or putative N-terminal domains (NTDs), dimerized with different partners than the membrane-distal putative C-terminal domains (CTDs). Evidence also suggests that CTDs can adopt alternate orientations relative to their NTDs, forming interstrand connections. Our results are consistent with helical-spiral models for retrovirus particle assembly, but are not easily reconcilable with icosahedral models.
Collapse
Affiliation(s)
- J McDermott
- Vollum Institute and Department of Microbiology, Oregon Health Sciences University, Portland, OR 97201-3098, USA
| | | | | |
Collapse
|
37
|
Zuber G, McDermott J, Karanjia S, Zhao W, Schmid MF, Barklis E. Assembly of retrovirus capsid-nucleocapsid proteins in the presence of membranes or RNA. J Virol 2000; 74:7431-41. [PMID: 10906196 PMCID: PMC112263 DOI: 10.1128/jvi.74.16.7431-7441.2000] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retrovirus Gag precursor (PrGag) proteins direct the assembly of roughly spherical immature virus particles, while after proteolytic processing events, the Gag capsid (CA) and nucleocapsid (NC) domains condense on viral RNAs to form mature retrovirus core structures. To investigate the process of retroviral morphogenesis, we examined the properties of histidine-tagged (His-tagged) Moloney murine leukemia (M-MuLV) capsid plus nucleocapsid (CANC) (His-MoCANC) proteins in vitro. The His-MoCANC proteins bound RNA, possessed nucleic acid-annealing activities, and assembled into strand, circle (or sphere), and tube forms in the presence of RNA. Image analysis of electron micrographs revealed that tubes were formed by cage-like lattices of CANC proteins surrounding at least two different types of protein-free cage holes. By virtue of a His tag association with nickel-chelating lipids, His-MoCANC proteins also assembled into planar sheets on lipid monolayers, mimicking the membrane-associated immature PrGag protein forms. Membrane-bound His-MoCANC proteins organized into two-dimensional (2D) cage-like lattices that were closely related to the tube forms, and in the presence of both nickel-chelating lipids and RNAs, 2D lattice forms appeared similar to lattices assembled in the absence of RNA. Our observations are consistent with a M-MuLV morphogenesis model in which proteolytic processing of membrane-bound Gag proteins permits CA and NC domains to rearrange from an immature spherical structure to a condensed mature form while maintaining local protein-protein contacts.
Collapse
Affiliation(s)
- G Zuber
- Laboratoire de Chimie Genetique, Faculté de Pharmacie, University of Strasbourg, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
38
|
Forster MJ, Mulloy B, Nermut MV. Molecular modelling study of HIV p17gag (MA) protein shell utilising data from electron microscopy and X-ray crystallography. J Mol Biol 2000; 298:841-57. [PMID: 10801353 DOI: 10.1006/jmbi.2000.3715] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The matrix protein p17gag (MA) is a product of proteolytic cleavage of the gag gene encoded polyprotein (pr55gag) and is formed when HIV particles undergo the process of maturation. The MA protein is associated with the inner surface of the viral membrane and determines the overall shape of the virion. Previous studies have shown the existence of trimers of MA in solution and in the crystalline state. Here, we used molecular modelling methods to identify feasible interactions between pairs of MA trimers and have related this to structural data from electron microscopy. A systematic search docking procedure was able to identify many energetically favourable conformations for a pair of trimers, including some which have been previously reported. These conformations were used to generate several networks of MA trimers, which were then evaluated against structural observations of the MA network. The model suggested here provides a good match with experimental data such as the spacing between gag protein rings, the number and disposition of glycoprotein (gp41-gp120) knobs and the number of copies of MA in a virus particle. It also rationalizes the observed distribution of sizes of virus particles and is consistent with the presence of icosahedral organisation in mature HIV. Energy minimisation performed with explicit water and counter ions, was used to identify residues participating in inter-trimer interactions. The nature of these interactions is discussed in relation to the conservation of these residues in reported variants of the HIV and SIV MA protein sequences.
Collapse
Affiliation(s)
- M J Forster
- Informatics Laboratory, National Institute for Standards and Control, South Mimms, Herfordshire, UK.
| | | | | |
Collapse
|
39
|
McDermott J, Karanjia S, Love Z, Barklis E. Crosslink analysis of N-terminal, C-terminal, and N/B determining regions of the Moloney murine leukemia virus capsid protein. Virology 2000; 269:190-200. [PMID: 10725211 DOI: 10.1006/viro.2000.0212] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To analyze contacts made by Moloney murine leukemia virus (M-MuLV) capsid (CA) proteins in immature and mature virus particles, we have employed a cysteine-specific crosslinking approach that permits the identification of retroviral Gag protein interactions at particular residues. For analysis, single cysteine creation mutations were made in the context of protease-deficient or protease-competent parental constructs. Cysteine creation mutations were chosen near the N- and C-termini of CA and at a site adjacent to the M-MuLV Glu-Ala Fv1 N/B host range determination sequence. Analysis of immature virions showed that PrGag proteins were crosslinked at C-terminal CA residues to form dimers while crosslinking of particle-associated N-terminal and N/B region mutant proteins did not yield dimers, but showed evidence of linking to an unknown 140- to 160-kDa partner. Analysis of mature virions demonstrated that both N- and C-terminal CA residues participated in dimer formation, suggesting that processed CA N- and C-termini are free to establish interprotein associations. Interestingly, N/B region mutant residues in mature virus particles did not crosslink to form dimers, but showed a novel crosslinked band, consistent with an interaction between the N/B tropism determining region and a cellular protein of 45-55 kDa.
Collapse
Affiliation(s)
- J McDermott
- Vollum Institute and Department of Microbiology, Oregon Health Sciences University, Portland, OR 97201-3098, USA
| | | | | | | |
Collapse
|
40
|
Matsui H, Gologan B. Crystalline Glycylglycine Bolaamphiphile Tubules and Their pH-Sensitive Structural Transformation. J Phys Chem B 2000. [DOI: 10.1021/jp994117p] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hiroshi Matsui
- University of Central Florida, Department of Chemistry, Orlando, Florida 32816
| | - Bogdan Gologan
- University of Central Florida, Department of Chemistry, Orlando, Florida 32816
| |
Collapse
|
41
|
Campos-Olivas R, Newman JL, Summers MF. Solution structure and dynamics of the Rous sarcoma virus capsid protein and comparison with capsid proteins of other retroviruses. J Mol Biol 2000; 296:633-49. [PMID: 10669613 DOI: 10.1006/jmbi.1999.3475] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The solution structure and dynamics of the recombinant 240 amino acid residue capsid protein from the Rous sarcoma virus has been determined by NMR methods. The structure was determined using 2200 distance restraints and 330 torsion angle restraints, and the dynamics analysis was based on (15)N relaxation parameters (R(1), R(2), and (1)H-(15)N NOE) measured for 153 backbone amide groups. The monomeric protein consists of independently folded N- and C-terminal domains that comprise residues Leu14-Leu146 and Ala150-Gln226, respectively. The domains exhibit different rotational correlation times (16.6(+/-0.1) ns and 12.6(+/-0.1) ns, respectively), are connected by a flexible linker (Ala147-Pro149), and do not give rise to inter-domain NOE values, indicating that they are dynamically independent. Despite limited sequence similarity, the structure of the Rous sarcoma virus capsid protein is similar to the structures determined recently for the capsid proteins of retroviruses belonging to the lentivirus and human T-cell leukemia virus/bovine leukemia virus genera. Structural differences that exist in the C-terminal domain of Rous sarcoma virus capsid relative to the other capsid proteins appear to be related to the occurrence of conserved cysteine residues. Whereas most genera of retroviruses contain a pair of conserved and essential cysteine residues in the C-terminal domain that appear to function by forming an intramolecular disulfide bond during assembly, the Rous sarcoma virus capsid protein does not. Instead, the Rous sarcoma virus capsid protein contains a single cysteine residue that appears to be conserved among the avian C-type retroviruses and is positioned in a manner that might allow the formation of an intermolecular disulfide bond during capsid assembly.
Collapse
Affiliation(s)
- R Campos-Olivas
- Howard Hughes Medical Institute, Department of Chemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | | | | |
Collapse
|
42
|
Zuber G, Barklis E. Atomic force microscopy and electron microscopy analysis of retrovirus Gag proteins assembled in vitro on lipid bilayers. Biophys J 2000; 78:373-84. [PMID: 10620301 PMCID: PMC1300645 DOI: 10.1016/s0006-3495(00)76600-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We have used an in vitro system that mimics the assembly of immature Moloney murine leukemia virus (M-MuLV) particles to examine how viral structural (Gag) proteins oligomerize at membrane interfaces. Ordered arrays of histidine-tagged Moloney capsid protein (his-MoCA) were obtained on membrane bilayers composed of phosphatidylcholine (PC) and the nickel-chelating lipid 1, 2-di-O-hexadecyl-sn-glycero-3-(1'-2"-R-hydroxy-3'N-(5-amino-1-carboxy pentyl)iminodiacetic acid)propyl ether (DHGN). The membrane-bound arrays were analyzed by electron microscopy (EM) and atomic force microscopy (AFM). Two-dimensional projection images obtained by EM showed that bilayer-bound his-MoCA proteins formed cages surrounding different types of protein-free cage holes with similar cage holes spaced at 81.5-A distances and distances between dissimilar cage holes of 45.5 A. AFM images, showing topological features viewed near the membrane-proximal domain of the his-MoCA protein, revealed a cage network of only symmetrical hexamers spaced at 79-A distances. These results are consistent with a model in which dimers constitute structural building blocks and where membrane-proximal and distal his-MoCA regions interact with different partners in membrane-bound arrays.
Collapse
Affiliation(s)
- G Zuber
- Vollum Institute, Department of Microbiology, Oregon Health Sciences University, Portland, Oregon 97201-3098 USA
| | | |
Collapse
|
43
|
Kühlbrandt W, Williams KA. Analysis of macromolecular structure and dynamics by electron cryo-microscopy. Curr Opin Chem Biol 1999; 3:537-43. [PMID: 10508672 DOI: 10.1016/s1367-5931(99)00005-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Electron cryo-microscopy has yielded a wealth of detailed new information on structures of biological macromolecules ranging from alphabeta-tubulin at 3.7 A resolution to hepatitis B virus at 7.4 A resolution, as well as a number of membrane proteins at 6-8 A resolution. Much of this progress was made possible by recent advances in instrumentation and image processing techniques.
Collapse
Affiliation(s)
- W Kühlbrandt
- Max-Planck-Institute of Biophysics, Department of Structural Biology, Heinrich-Hoffmann-Strasse 7, Frankfurt am Main, D-60528, Germany.
| | | |
Collapse
|
44
|
Burniston MT, Cimarelli A, Colgan J, Curtis SP, Luban J. Human immunodeficiency virus type 1 Gag polyprotein multimerization requires the nucleocapsid domain and RNA and is promoted by the capsid-dimer interface and the basic region of matrix protein. J Virol 1999; 73:8527-40. [PMID: 10482606 PMCID: PMC112873 DOI: 10.1128/jvi.73.10.8527-8540.1999] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) Gag polyprotein directs the formation of virions from productively infected cells. Many gag mutations disrupt virion assembly, but little is known about the biochemical effects of many of these mutations. Protein-protein interactions among Gag monomers are believed to be necessary for virion assembly, and data suggest that RNA may modify protein-protein interactions or even serve as a bridge linking Gag polyprotein monomers. To evaluate the primary sequence requirements for HIV-1 Gag homomeric interactions, a panel of HIV-1 Gag deletion mutants was expressed in bacteria and evaluated for the ability to associate with full-length Gag in vitro. The nucleocapsid protein, the major RNA-binding domain of Gag, exhibited activity comparable to that of the complete polyprotein. In the absence of the nucleocapsid protein, relatively weak activity was observed that was dependent upon both the capsid-dimer interface and basic residues within the matrix domain. The relevance of the in vitro findings was confirmed with an assay in which nonmyristylated mutant Gags were assessed for the ability to be incorporated into virions produced by wild-type Gag expressed in trans. Evidence of the importance of RNA for Gag-Gag interaction was provided by the demonstration that RNase impairs the Gag-Gag interaction and that HIV-1 Gag interacts efficiently with Gags encoded by distantly related retroviruses and with structurally unrelated RNA-binding proteins. These results are consistent with models in which Gag multimerization involves indirect contacts via an RNA bridge as well as direct protein-protein interactions.
Collapse
Affiliation(s)
- M T Burniston
- Departments of Microbiology, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
45
|
Khorasanizadeh S, Campos-Olivas R, Summers MF. Solution structure of the capsid protein from the human T-cell leukemia virus type-I. J Mol Biol 1999; 291:491-505. [PMID: 10438634 DOI: 10.1006/jmbi.1999.2986] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The solution structure of the capsid protein (CA) from the human T-cell leukemia virus type one (HTLV-I), a retrovirus that causes T-cell leukemia and HTLV-I-associated myelopathy in humans, has been determined by NMR methods. The protein consists of independent N and C-terminal domains connected by a flexible linker. The domains are structurally similar to the N-terminal "core" and C-terminal "dimerization" domains, respectively, of the human immunodeficiency virus type one (HIV-1) and equine infectious anemia virus (EIAV) capsid proteins, although several important differences exist. In particular, hydrophobic residues near the major homology region are partially buried in HTLV-I CA, which is monomeric in solution, whereas analogous residues in HIV-1 and EIAV CA project from the C-terminal domain and promote dimerization. These differences in the structure and oligomerization state of the proteins appear to be related to, and possibly controlled by, the oxidation state of conserved cysteine residues, which are reduced in HTLV-I CA but form a disulfide bond in the HIV-1 and EIAV CA crystal structures. The results are consistent with an oxidative capsid assembly mechanism, in which CA oligomerization or maturation is triggered by disulfide bo nd formation as the budding virus enters the oxidizing environment of the bloodstream.
Collapse
Affiliation(s)
- S Khorasanizadeh
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | | | | |
Collapse
|
46
|
Wilk T, Fuller SD. Towards the structure of the human immunodeficiency virus: divide and conquer. Curr Opin Struct Biol 1999; 9:231-43. [PMID: 10322217 DOI: 10.1016/s0959-440x(99)80033-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Recent publications have expanded our knowledge of the major structural proteins of the human immunodeficiency virus as isolated proteins. The next challenge lies in understanding the changes in structure and the interactions of these components during assembly and maturation.
Collapse
Affiliation(s)
- T Wilk
- Structural Biology Programme, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | | |
Collapse
|
47
|
Abstract
The human immunodeficiency virus (HIV) genome encodes a total of three structural proteins, two envelope proteins, three enzymes, and six accessory proteins. Studies over the past ten years have provided high-resolution three-dimensional structural information for all of the viral enzymes, structural proteins and envelope proteins, as well as for three of the accessory proteins. In some cases it has been possible to solve the structures of the intact, native proteins, but in most cases structural data were obtained for isolated protein domains, peptidic fragments, or mutants. Peptide complexes with two regulatory RNA fragments and a protein complex with an RNA recognition/encapsidation element have also been structurally characterized. This article summarizes the high-resolution structural information that is currently available for HIV proteins and reviews current structure-function and structure-biological relationships.
Collapse
Affiliation(s)
- B G Turner
- Howard Hughes Medical Institute, Department of Chemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | | |
Collapse
|
48
|
Ott DE, Chertova EN, Busch LK, Coren LV, Gagliardi TD, Johnson DG. Mutational analysis of the hydrophobic tail of the human immunodeficiency virus type 1 p6(Gag) protein produces a mutant that fails to package its envelope protein. J Virol 1999; 73:19-28. [PMID: 9847302 PMCID: PMC103803 DOI: 10.1128/jvi.73.1.19-28.1999] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The p6(Gag) protein of human immunodeficiency virus type 1 (HIV-1) is produced as the carboxyl-terminal sequence within the Gag polyprotein. The amino acid composition of this protein is high in hydrophilic and polar residues except for a patch of relatively hydrophobic amino acids found in the carboxyl-terminal 16 amino acids. Internal cleavage of p6(Gag) between Y36 and P37, apparently by the HIV-1 protease, removes this hydrophobic tail region from approximately 30% of the mature p6(Gag) proteins in HIV-1MN. To investigate the importance of this cleavage and the hydrophobic nature of this portion of p6(Gag), site-directed mutations were made at the minor protease cleavage site and within the hydrophobic tail. The results showed that all of the single-amino-acid-replacement mutants exhibited either reduced or undetectable cleavage at the site yet almost all were nearly as infectious as wild-type virus, demonstrating that processing at this site is not important for viral replication. However, one exception, Y36F, was 300-fold as infectious the wild type. In contrast to the single-substitution mutants, a virus with two substitutions in this region of p6(Gag), Y36S-L41P, could not infect susceptible cells. Protein analysis showed that while the processing of the Gag precursor was normal, the double mutant did not incorporate Env into virus particles. This mutant could be complemented with surface glycoproteins from vesicular stomatitis virus and murine leukemia virus, showing that the inability to incorporate Env was the lethal defect for the Y36S-L41P virus. However, this mutant was not rescued by an HIV-1 Env with a truncated gp41(TM) cytoplasmic domain, showing that it is phenotypically different from the previously described MA mutants that do not incorporate their full-length Env proteins. Cotransfection experiments with Y36S-L41P and wild-type proviral DNAs revealed that the mutant Gag dominantly blocked the incorporation of Env by wild-type Gag. These results show that the Y36S-L41P p6(Gag) mutation dramatically blocks the incorporation of HIV-1 Env, presumably acting late in assembly and early during budding.
Collapse
Affiliation(s)
- D E Ott
- AIDS Vaccine Program, SAIC/Frederick, National Cancer Institute, Frederick Cancer Research and Development Center, Frederick, Maryland 21702-1201, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Ganser BK, Li S, Klishko VY, Finch JT, Sundquist WI. Assembly and analysis of conical models for the HIV-1 core. Science 1999; 283:80-3. [PMID: 9872746 DOI: 10.1126/science.283.5398.80] [Citation(s) in RCA: 534] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The genome of the human immunodeficiency virus (HIV) is packaged within an unusual conical core particle located at the center of the infectious virion. The core is composed of a complex of the NC (nucleocapsid) protein and genomic RNA, surrounded by a shell of the CA (capsid) protein. A method was developed for assembling cones in vitro using pure recombinant HIV-1 CA-NC fusion proteins and RNA templates. These synthetic cores are capped at both ends and appear similar in size and morphology to authentic viral cores. It is proposed that both viral and synthetic cores are organized on conical hexagonal lattices, which by Euler's theorem requires quantization of their cone angles. Electron microscopic analyses revealed that the cone angles of synthetic cores were indeed quantized into the five allowed angles. The viral core and most synthetic cones exhibited cone angles of approximately 19 degrees (the narrowest of the allowed angles). These observations suggest that the core of HIV is organized on the principles of a fullerene cone, in analogy to structures recently observed for elemental carbon.
Collapse
Affiliation(s)
- B K Ganser
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA
| | | | | | | | | |
Collapse
|
50
|
Nermut MV, Hockley DJ, Bron P, Thomas D, Zhang WH, Jones IM. Further evidence for hexagonal organization of HIV gag protein in prebudding assemblies and immature virus-like particles. J Struct Biol 1998; 123:143-9. [PMID: 9843668 DOI: 10.1006/jsbi.1998.4024] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The fullerene-like model for the organization of HIV gag encoded precursor pr55gag was based on the study of prebudding assemblies at the plasma membrane of cells infected with a recombinant baculovirus expressing HIV-1 gag protein. The objective of the present study was to support the model by image processing of virus-like particles (VLP). In this work we used VLP purified by density gradient centrifugation, which caused partial or occasionally complete loss of the lipid bilayer in some VLP without the use of detergent. In addition more plasma membrane-associated pr55gag protein assemblies were processed. Image processing of negatively stained specimens revealed the presence of threefold symmetry and a hexagonal network of rings with a resolution of 29 A in VLP and better than 25 A in membrane associated assemblies. The center-to-center spacing of the rings was 67 A in VLP and 70 A in membrane assemblies. Patches of gag protein oligomers at the plasma membrane were usually round and varying in size, but some of them were triangular. Indication of triangular-shaped gag protein assemblies was also seen in partly dissociated VLP. Since the hexagonal network is formed by the uncleaved gag polyprotein, we conclude that the threefold symmetry applies to all domains including p24gag. The presence of threefold symmetry and the hexagonal network in VLP are consistent with the hypothesis that immature HIV particles possess icosahedral symmetry.
Collapse
Affiliation(s)
- M V Nermut
- National Institute for Biological Standards and Control, South Mimms, Hertfordshire, EN6 3QG, U.K
| | | | | | | | | | | |
Collapse
|