1
|
Ben Zichri- David S, Shkuri L, Ast T. Pulling back the mitochondria's iron curtain. NPJ METABOLIC HEALTH AND DISEASE 2025; 3:6. [PMID: 40052109 PMCID: PMC11879881 DOI: 10.1038/s44324-024-00045-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/09/2024] [Indexed: 03/09/2025]
Abstract
Mitochondrial functionality and cellular iron homeostasis are closely intertwined. Mitochondria are biosynthetic hubs for essential iron cofactors such as iron-sulfur (Fe-S) clusters and heme. These cofactors, in turn, enable key mitochondrial pathways, such as energy and metabolite production. Mishandling of mitochondrial iron is associated with a spectrum of human pathologies ranging from rare genetic disorders to common conditions. Here, we review mitochondrial iron utilization and its intersection with disease.
Collapse
Affiliation(s)
| | - Liraz Shkuri
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001 Israel
| | - Tslil Ast
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001 Israel
| |
Collapse
|
2
|
Cory SA, Lin CW, Patra S, Havens SM, Putnam CD, Shirzadeh M, Russell DH, Barondeau DP. Frataxin Traps Low Abundance Quaternary Structure to Stimulate Human Fe-S Cluster Biosynthesis. Biochemistry 2025; 64:903-916. [PMID: 39909887 PMCID: PMC11840927 DOI: 10.1021/acs.biochem.4c00733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 02/07/2025]
Abstract
Iron-sulfur clusters are essential protein cofactors synthesized in human mitochondria by an NFS1-ISD11-ACP-ISCU2-FXN assembly complex. Surprisingly, researchers have discovered three distinct quaternary structures for cysteine desulfurase subcomplexes, which display similar interactions between NFS1-ISD11-ACP protomeric units but dramatically different dimeric interfaces between the protomers. Although the role of these different architectures is unclear, possible functions include regulating activity and promoting the biosynthesis of distinct sulfur-containing biomolecules. Here, crystallography, native ion-mobility mass spectrometry, and chromatography methods reveal the Fe-S assembly subcomplex exists as an equilibrium mixture of these different quaternary structures. Isotope labeling and native mass spectrometry experiments show that the NFS1-ISD11-ACP complexes disassemble into protomers, which can then undergo exchange reactions and dimerize to reform native complexes. Single crystals isolated in distinct architectures have the same activity profile and activation by the Friedreich's ataxia (FRDA) protein frataxin (FXN) when rinsed and dissolved in assay buffer. These results suggest FXN functions as a "molecular lock" and shifts the equilibrium toward one of the architectures to stimulate the cysteine desulfurase activity and promote iron-sulfur cluster biosynthesis. An NFS1-designed variant similarly shifts the equilibrium and partially replaces FXN in activating the complex. We propose that eukaryotic cysteine desulfurases are unusual members of the morpheein class of enzymes that control their activity through their oligomeric state. Overall, the findings support architectural switching as a regulatory mechanism linked to FXN activation of the human Fe-S cluster biosynthetic complex and provide new opportunities for therapeutic interventions of the fatal neurodegenerative disease FRDA.
Collapse
Affiliation(s)
- Seth A. Cory
- Department
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Cheng-Wei Lin
- Department
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Shachin Patra
- Department
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Steven M. Havens
- Department
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Christopher D. Putnam
- Department
of Medicine, University of California School
of Medicine, La Jolla, California 92093-0660, United States
| | - Mehdi Shirzadeh
- Department
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - David H. Russell
- Department
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - David P. Barondeau
- Department
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| |
Collapse
|
3
|
Want K, D'Autréaux B. Mechanism of mitochondrial [2Fe-2S] cluster biosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119811. [PMID: 39128597 DOI: 10.1016/j.bbamcr.2024.119811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/13/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Iron‑sulfur (Fe-S) clusters constitute ancient cofactors that accompany a versatile range of fundamental biological reactions across eukaryotes and prokaryotes. Several cellular pathways exist to coordinate iron acquisition and sulfur mobilization towards a scaffold protein during the tightly regulated synthesis of Fe-S clusters. The mechanism of mitochondrial eukaryotic [2Fe-2S] cluster synthesis is coordinated by the Iron-Sulfur Cluster (ISC) machinery and its aberrations herein have strong implications to the field of disease and medicine which is therefore of particular interest. Here, we describe our current knowledge on the step-by-step mechanism leading to the production of mitochondrial [2Fe-2S] clusters while highlighting the recent developments in the field alongside the challenges that are yet to be overcome.
Collapse
Affiliation(s)
- Kristian Want
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Benoit D'Autréaux
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| |
Collapse
|
4
|
Barahona E, Collantes-García JA, Rosa-Núñez E, Xiong J, Jiang X, Jiménez-Vicente E, Echávarri-Erasun C, Guo Y, Rubio LM, González-Guerrero M. Azotobacter vinelandii scaffold protein NifU transfers iron to NifQ as part of the iron-molybdenum cofactor biosynthesis pathway for nitrogenase. J Biol Chem 2024; 300:107900. [PMID: 39442618 PMCID: PMC11605450 DOI: 10.1016/j.jbc.2024.107900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
The Azotobacter vinelandii molybdenum nitrogenase obtains molybdenum from NifQ, a monomeric iron-sulfur molybdoprotein. This protein requires an existing [Fe-S] cluster to form a [Mo-Fe3-S4] group, which acts as a specific molybdenum donor during nitrogenase FeMo-co biosynthesis. Here, we show biochemical evidence supporting the role of NifU as the [Fe-S] cluster donor. Protein-protein interaction studies involving apo-NifQ and as-isolated NifU demonstrated their interaction, which was only effective when NifQ lacked its [Fe-S] cluster. Incubation of apo-NifQ with [Fe4-S4]-loaded NifU increased the iron content of the former, contingent on both proteins being able to interact with one another. As a result of this interaction, a [Fe4-S4] cluster was transferred from NifU to NifQ. In A. vinelandii, NifQ was preferentially metalated by NifU rather than by the [Fe-S] cluster scaffold protein IscU. These results indicate the necessity of co-expressing NifU and NifQ to efficiently provide molybdenum for FeMo-co biosynthesis when engineering nitrogenase in plants.
Collapse
Affiliation(s)
- Emma Barahona
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Juan Andrés Collantes-García
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Elena Rosa-Núñez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Jin Xiong
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Xi Jiang
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | | | - Carlos Echávarri-Erasun
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Luis M Rubio
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain.
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain.
| |
Collapse
|
5
|
Terahata T, Shimada Y, Maki C, Muroga S, Sakurai R, Kunichika K, Fujishiro T. Cysteine-Persulfide Sulfane Sulfur-Ligated Zn Complex of Sulfur-Carrying SufU in the SufCDSUB System for Fe-S Cluster Biosynthesis. Inorg Chem 2024; 63:19607-19618. [PMID: 39384553 DOI: 10.1021/acs.inorgchem.4c02654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
SufU, a component of the SufCDSUB Fe-S cluster biosynthetic system, serves as a Zn-dependent sulfur-carrying protein that delivers inorganic sulfur in the form of cysteine persulfide from SufS to SufBCD. To understand this sulfur delivery mechanism, we studied the X-ray crystal structure of SufU and its sulfur-carrying state (persulfurated SufU) and performed functional analysis of the conserved amino acid residues around the Zn sites. Interestingly, sulfur-carrying SufU with Cys41-persulfide (Cys41-Sγ-Sδ-) exhibited a unique Zn coordination structure, in which electrophilic Sγ is ligated to Zn and nucleophilic/anionic Sδ is bound to distally conserved Arg125. This structure is distinct from those of other Cys-persulfide-Sδ-ligated metals of metalloproteins, such as hybrid cluster proteins and SoxAX. Functional analysis of SufU variants with Zn-ligand and Arg125 substitutions revealed that both Zn and Arg125 are critical for the function of SufU with SufS. The Zn-persulfide structure of SufU provides insight into the sulfur-transfer process, suggesting that persulfide-Sδ- is stabilized via bridging by Zn and Arg125 of SufU.
Collapse
Affiliation(s)
- Takuya Terahata
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Yukino Shimada
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Chisato Maki
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Suguru Muroga
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Rina Sakurai
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Kouhei Kunichika
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Takashi Fujishiro
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| |
Collapse
|
6
|
Bak DW, Weerapana E. Proteomic strategies to interrogate the Fe-S proteome. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119791. [PMID: 38925478 PMCID: PMC11365765 DOI: 10.1016/j.bbamcr.2024.119791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/23/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Iron‑sulfur (Fe-S) clusters, inorganic cofactors composed of iron and sulfide, participate in numerous essential redox, non-redox, structural, and regulatory biological processes within the cell. Though structurally and functionally diverse, the list of all proteins in an organism capable of binding one or more Fe-S clusters is referred to as its Fe-S proteome. Importantly, the Fe-S proteome is highly dynamic, with continuous cluster synthesis and delivery by complex Fe-S cluster biogenesis pathways. This cluster delivery is balanced out by processes that can result in loss of Fe-S cluster binding, such as redox state changes, iron availability, and oxygen sensitivity. Despite continued expansion of the Fe-S protein catalogue, it remains a challenge to reliably identify novel Fe-S proteins. As such, high-throughput techniques that can report on native Fe-S cluster binding are required to both identify new Fe-S proteins, as well as characterize the in vivo dynamics of Fe-S cluster binding. Due to the recent rapid growth in mass spectrometry, proteomics, and chemical biology, there has been a host of techniques developed that are applicable to the study of native Fe-S proteins. This review will detail both the current understanding of the Fe-S proteome and Fe-S cluster biology as well as describing state-of-the-art proteomic strategies for the study of Fe-S clusters within the context of a native proteome.
Collapse
Affiliation(s)
- Daniel W Bak
- Department of Chemistry, Boston College, Chestnut Hill, MA, United States of America.
| | - Eranthie Weerapana
- Department of Chemistry, Boston College, Chestnut Hill, MA, United States of America.
| |
Collapse
|
7
|
Swindell J, Dos Santos PC. Interactions with sulfur acceptors modulate the reactivity of cysteine desulfurases and define their physiological functions. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119794. [PMID: 39033933 DOI: 10.1016/j.bbamcr.2024.119794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/21/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Sulfur-containing biomolecules such as [FeS] clusters, thiamin, biotin, molybdenum cofactor, and sulfur-containing tRNA nucleosides are essential for various biochemical reactions. The amino acid l-cysteine serves as the major sulfur source for the biosynthetic pathways of these sulfur-containing cofactors in prokaryotic and eukaryotic systems. The first reaction in the sulfur mobilization involves a class of pyridoxal-5'-phosphate (PLP) dependent enzymes catalyzing a Cys:sulfur acceptor sulfurtransferase reaction. The first half of the catalytic reaction involves a PLP-dependent CS bond cleavage, resulting in a persulfide enzyme intermediate. The second half of the reaction involves the subsequent transfer of the thiol group to a specific acceptor molecule, which is responsible for the physiological role of the enzyme. Structural and biochemical analysis of these Cys sulfurtransferase enzymes shows that specific protein-protein interactions with sulfur acceptors modulate their catalytic reactivity and restrict their biochemical functions.
Collapse
Affiliation(s)
- Jimmy Swindell
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, 27109, United States of America
| | - Patricia C Dos Santos
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, 27109, United States of America.
| |
Collapse
|
8
|
Olivieri P, Crack JC, Lehmann A, Le Brun NE, Leimkühler S. CyaY and TusA regulate ISC- and SUF-mediated l-cysteine desulfurase activity. RSC Chem Biol 2024; 5:d4cb00225c. [PMID: 39372677 PMCID: PMC11446229 DOI: 10.1039/d4cb00225c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024] Open
Abstract
CyaY, the frataxin homolog of Escherichia coli, plays an important role in ISC iron-sulfur cluster assembly through interactions with the cysteine desulfurase IscS, which regulate the supply of sulfur. IscS is not exclusive for ISC Fe-S cluster assembly, as it functions as a hub for the supply of sulfur to a number of other sulfur-requiring pathways, such as for the biosynthesis of Moco and thiolated tRNAs. How the balance of sulfur supply to the various competing pathways is achieved is not fully understood, but a network of protein-protein interactions plays a key role. For example, IscU and TusA compete for binding to IscS and thus for sulfur supply to ISC and Moco/tRNA biosynthesis. Here, we show that TusA can displace CyaY from IscS and can form hetero-complexes involving IscS, CyaY and TusA. Displacement of CyaY from IscS raised the question of whether it can interact with the SUF pathway. The SUF cysteine desulfurase SufS functions as a complex with SufE. Native mass spectrometry studies showed that the SufS dimer can bind up to four SufE molecules, two at high affinity, and two at low affinity, sites. Titration of SufSE (or SufS alone) with CyaY demonstrated binding, probably at the lower affinity site in competition with SufE. Binding of CyaY dramatically reduced the activity of SufSE in vitro, and over-expression of CyaY also significantly affected total cellular desulfurase activity and Fe-S cluster assembly, with the greatest effect observed in mutant strains in which SufS was the principal desulfurase. These data point to a physiological role for CyaY in regulating the desulfurase activity of IscS and SufS and, hence, both the E.coli iron-sulfur assembly systems. They also demonstrate that TusA can displace the regulatory CyaY protein from IscS-CyaY complexes, facilitating sulfur delivery from IscS to other essential cellular processes, and increasing the likelihood of SufSE-CyaY interactions.
Collapse
Affiliation(s)
- Paolo Olivieri
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam D-14476 Potsdam Germany +49-331-977-5128 +49-331-977-5603
| | - Jason C Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, Pharmacy and Pharmacology, University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Angelika Lehmann
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam D-14476 Potsdam Germany +49-331-977-5128 +49-331-977-5603
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, Pharmacy and Pharmacology, University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Silke Leimkühler
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam D-14476 Potsdam Germany +49-331-977-5128 +49-331-977-5603
| |
Collapse
|
9
|
Yang J, Duan YF, Liu L. Crystal structure of the iron-sulfur cluster transfer protein ApbC from Escherichia coli. Biochem Biophys Res Commun 2024; 722:150167. [PMID: 38797154 DOI: 10.1016/j.bbrc.2024.150167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Iron-sulfur (Fe-S) clusters are ubiquitous and are necessary to sustain basic life processes. The intracellular Fe-S clusters do not form spontaneously and many proteins are required for their biosynthesis and delivery. The bacterial P-loop NTPase family protein ApbC participates in Fe-S cluster assembly and transfers the cluster into apoproteins, with the Walker A motif and CxxC motif being essential for functionality of ApbC in Fe-S protein biogenesis. However, the structural basis underlying the ApbC activity and the motifs' role remains unclear. Here, we report the crystal structure of Escherichia coli ApbC at 2.8 Å resolution. The dimeric structure is in a W shape and the active site is located in the 2-fold center. The function of the motifs can be annotated by structural analyses. ApbC has an additional N-terminal domain that differs from other P-loop NTPases, possibly conferring its inherent specificity in vivo.
Collapse
Affiliation(s)
- Jingyu Yang
- School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China.
| | - Ya-Fei Duan
- School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China
| | - Lin Liu
- School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China
| |
Collapse
|
10
|
Olivieri P, Zupok A, Yildiz T, Oltmanns J, Lehmann A, Sokolowska E, Skirycz A, Schünemann V, Leimkühler S. TusA influences Fe-S cluster assembly and iron homeostasis in E. coli by reducing the translation efficiency of Fur. Microbiol Spectr 2024; 12:e0055624. [PMID: 38916309 PMCID: PMC11302051 DOI: 10.1128/spectrum.00556-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/20/2024] [Indexed: 06/26/2024] Open
Abstract
All sulfur transfer pathways have generally a l-cysteine desulfurase as an initial sulfur-mobilizing enzyme in common, which serves as a sulfur donor for the biosynthesis of numerous sulfur-containing biomolecules in the cell. In Escherichia coli, the housekeeping l-cysteine desulfurase IscS has several interaction partners, which bind at different sites of the protein. So far, the interaction sites of IscU, Fdx, CyaY, and IscX involved in iron-sulfur (Fe-S) cluster assembly have been mapped, in addition to TusA, which is required for molybdenum cofactor biosynthesis and mnm5s2U34 tRNA modifications, and ThiI, which is involved in thiamine biosynthesis and s4U8 tRNA modifications. Previous studies predicted that the sulfur acceptor proteins bind to IscS one at a time. E. coli TusA has, however, been suggested to be involved in Fe-S cluster assembly, as fewer Fe-S clusters were detected in a ∆tusA mutant. The basis for this reduction in Fe-S cluster content is unknown. In this work, we investigated the role of TusA in iron-sulfur cluster assembly and iron homeostasis. We show that the absence of TusA reduces the translation of fur, thereby leading to pleiotropic cellular effects, which we dissect in detail in this study.IMPORTANCEIron-sulfur clusters are evolutionarily ancient prosthetic groups. The ferric uptake regulator plays a major role in controlling the expression of iron homeostasis genes in bacteria. We show that a ∆tusA mutant is impaired in the assembly of Fe-S clusters and accumulates iron. TusA, therefore, reduces fur mRNA translation leading to pleiotropic cellular effects.
Collapse
Affiliation(s)
- Paolo Olivieri
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, Potsdam, Germany
| | - Arkadiuz Zupok
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, Potsdam, Germany
| | - Tugba Yildiz
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, Potsdam, Germany
| | - Jonathan Oltmanns
- Department of Physics, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Angelika Lehmann
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, Potsdam, Germany
| | - Ewelina Sokolowska
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Aleksandra Skirycz
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Volker Schünemann
- Department of Physics, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Silke Leimkühler
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
11
|
Fisher CE, Bak DW, Miller KE, Washington-Hughes CL, Dickfoss AM, Weerapana E, Py B, Outten FW. Escherichia coli monothiol glutaredoxin GrxD replenishes Fe-S clusters to the essential ErpA A-type carrier under low iron stress. J Biol Chem 2024; 300:107506. [PMID: 38944118 PMCID: PMC11327457 DOI: 10.1016/j.jbc.2024.107506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/01/2024] [Accepted: 06/18/2024] [Indexed: 07/01/2024] Open
Abstract
Iron-sulfur (Fe-S) clusters are required for essential biological pathways, including respiration and isoprenoid biosynthesis. Complex Fe-S cluster biogenesis systems have evolved to maintain an adequate supply of this critical protein cofactor. In Escherichia coli, two Fe-S biosynthetic systems, the "housekeeping" Isc and "stress responsive" Suf pathways, interface with a network of cluster trafficking proteins, such as ErpA, IscA, SufA, and NfuA. GrxD, a Fe-S cluster-binding monothiol glutaredoxin, also participates in Fe-S protein biogenesis in both prokaryotes and eukaryotes. Previous studies in E. coli showed that the ΔgrxD mutation causes sensitivity to iron depletion, spotlighting a critical role for GrxD under conditions that disrupt Fe-S homeostasis. Here, we utilized a global chemoproteomic mass spectrometry approach to analyze the contribution of GrxD to the Fe-S proteome. Our results demonstrate that (1) GrxD is required for biogenesis of a specific subset of Fe-S proteins under iron-depleted conditions, (2) GrxD is required for cluster delivery to ErpA under iron limitation, (3) GrxD is functionally distinct from other Fe-S trafficking proteins, and (4) GrxD Fe-S cluster binding is responsive to iron limitation. All these results lead to the proposal that GrxD is required to maintain Fe-S cluster delivery to the essential trafficking protein ErpA during iron limitation conditions.
Collapse
Affiliation(s)
- Claire E Fisher
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Daniel W Bak
- Department of Chemistry, Boston College, Massachusetts, USA
| | - Kennedy E Miller
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | | | - Anna M Dickfoss
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | | | - Béatrice Py
- Aix-Marseille Université-Centre National de la Recherche Scientifique (UMR7283), Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Institut Microbiologie Bioénergies et Biotechnologie, Marseille, France.
| | - F Wayne Outten
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA.
| |
Collapse
|
12
|
Dean DR. On the path to [Fe-S] protein maturation: A personal perspective. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119750. [PMID: 38762171 DOI: 10.1016/j.bbamcr.2024.119750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/23/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
Azotobacter vinelandii is a genetically tractable Gram-negative proteobacterium able to fix nitrogen (N2) under aerobic growth conditions. This narrative describes how biochemical-genetic approaches using A. vinelandii to study nitrogen fixation led to the formulation of the "scaffold hypothesis" for the assembly of both simple and complex [Fe-S] clusters associated with biological nitrogen fixation. These studies also led to the discovery of a parallel, but genetically distinct, pathway for maturation of [Fe-S] proteins that support central metabolic processes.
Collapse
Affiliation(s)
- Dennis R Dean
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061-0346, United States of America.
| |
Collapse
|
13
|
Olivieri P, Klabes M, Crack JC, Lehmann A, Bennett SP, Le Brun NE, Leimkühler S. Binding of IscU and TusA to different but competing sites of IscS influences the activity of IscS and directs sulfur to the respective biomolecular synthesis pathway. Microbiol Spectr 2024; 12:e0094924. [PMID: 38980029 PMCID: PMC11302665 DOI: 10.1128/spectrum.00949-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/05/2024] [Indexed: 07/10/2024] Open
Abstract
All sulfur transfer pathways generally have in common an l-cysteine desulfurase as the initial sulfur-mobilizing enzyme, which serves as a sulfur donor for the biosynthesis of numerous sulfur-containing biomolecules in the cell. In Escherichia coli, the housekeeping l-cysteine desulfurase IscS functions as a hub for sulfur transfer through interactions with several partner proteins, which bind at different sites on IscS. So far, the interaction sites of IscU, Fdx, CyaY, and IscX involved in iron sulfur (Fe-S) cluster assembly, TusA, required for molybdenum cofactor biosynthesis and mnm5s2U34 transfer RNA (tRNA) modifications, and ThiI, involved in both the biosynthesis of thiamine and s4U8 tRNA modifications, have been mapped. Previous studies have suggested that IscS partner proteins bind only one at a time, with the exception of Fe-S cluster assembly, which involves the formation of a ternary complex involving IscS, IscU, and one of CyaY, Fdx, or IscX. Here, we show that the affinity of TusA for IscS is similar to but lower than that of IscU and that these proteins compete for binding to IscS. We show that heterocomplexes involving the IscS dimer and single IscU and TusA molecules are readily formed and that binding of both TusA and IscU to IscS affects its l-cysteine desulfurase activity. A model is proposed in which the delivery of sulfur to different sulfur-requiring pathways is controlled by sulfur acceptor protein levels, IscS-binding affinities, and acceptor protein-modulated IscS desulfurase activity.IMPORTANCEIron-sulfur clusters are evolutionarily ancient prosthetic groups. The housekeeping l-cysteine desulfurase IscS functions as a central core for sulfur transfer through interactions with several partner proteins, which bind at different sites on each IscS monomer with different affinities and partially overlapping binding sites. We show that heterocomplexes involving the IscS dimer and single IscU and TusA molecules at each site of the dimer are formed, thereby influencing the activity of IscS.
Collapse
Affiliation(s)
- Paolo Olivieri
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Moritz Klabes
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Jason C. Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom
| | - Angelika Lehmann
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Sophie P. Bennett
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom
| | - Nick E. Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom
| | - Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
14
|
Chen S, Ye J, Lin Y, Chen W, Huang S, Yang Q, Qian H, Gao S, Hua C. Crucial Roles of RSAD2/viperin in Immunomodulation, Mitochondrial Metabolism and Autoimmune Diseases. Inflammation 2024:10.1007/s10753-024-02076-5. [PMID: 38909344 DOI: 10.1007/s10753-024-02076-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 06/24/2024]
Abstract
Autoimmune diseases are typically characterized by aberrant activation of immune system that leads to excessive inflammatory reactions and tissue damage. Nevertheless, precise targeted and efficient therapies are limited. Thus, studies into novel therapeutic targets for the management of autoimmune diseases are urgently needed. Radical S-adenosyl methionine domain-containing 2 (RSAD2) is an interferon-stimulated gene (ISG) renowned for the antiviral properties of the protein it encodes, named viperin. An increasing number of studies have underscored the new roles of RSAD2/viperin in immunomodulation and mitochondrial metabolism. Previous studies have shown that there is a complex interplay between RSAD2/vipeirn and mitochondria and that binding of the iron-sulfur (Fe-S) cluster is necessary for the involvement of viperin in mitochondrial metabolism. Viperin influences the proliferation and development of immune cells as well as inflammation via different signaling pathways. However, the function of RSAD2/viperin varies in different studies and a comprehensive overview of this emerging theme is lacking. This review will describe the characteristics of RSAD2/viperin, decipher its function in immunometabolic processes, and clarify the crosstalk between RSAD2/viperin and mitochondria. Furthermore, we emphasize the crucial roles of RSAD2 in autoimmune diseases and its potential application value.
Collapse
Affiliation(s)
- Siyan Chen
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Jiani Ye
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Yinfang Lin
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Wenxiu Chen
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Shenghao Huang
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Qianru Yang
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Hengrong Qian
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Sheng Gao
- Laboratory Animal Center, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China.
| | - Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China.
| |
Collapse
|
15
|
de Kok NAW, Miao H, Schmidt S. In vitro analysis of the three-component Rieske oxygenase cumene dioxygenase from Pseudomonas fluorescens IP01. Methods Enzymol 2024; 703:167-192. [PMID: 39260995 DOI: 10.1016/bs.mie.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Rieske non-heme iron-dependent oxygenases (ROs) are a versatile group of enzymes traditionally associated with the degradation of aromatic xenobiotics. In addition, ROs have been found to play key roles in natural product biosynthesis, displaying a wide catalytic diversity with typically high regio- and stereo- selectivity. However, the detailed characterization of ROs presents formidable challenges due to their complex structural and functional properties, including their multi-component composition, cofactor dependence, and susceptibility to reactive oxygen species. In addition, the substrate availability of natural product biosynthetic intermediates, the limited solubility of aromatic hydrocarbons, and the radical-mediated reaction mechanism can further complicate functional assays. Despite these challenges, ROs hold immense potential as biocatalysts for pharmaceutical applications and bioremediation. Using cumene dioxygenase (CDO) from Pseudomonas fluorescens IP01 as a model enzyme, this chapter details techniques for characterizing ROs that oxyfunctionalize aromatic hydrocarbons. Moreover, potential pitfalls, anticipated complications, and proposed solutions for the characterization of novel ROs are described, providing a framework for future RO research and strategies for studying this enzyme class. In particular, we describe the methods used to obtain CDO, from construct design to expression conditions, followed by a purification procedure, and ultimately activity determination through various activity assays.
Collapse
Affiliation(s)
- Niels A W de Kok
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Hui Miao
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Sandy Schmidt
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
16
|
Shomar H, Bokinsky G. Harnessing iron‑sulfur enzymes for synthetic biology. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119718. [PMID: 38574823 DOI: 10.1016/j.bbamcr.2024.119718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Reactions catalysed by iron-sulfur (Fe-S) enzymes appear in a variety of biosynthetic pathways that produce valuable natural products. Harnessing these biosynthetic pathways by expression in microbial cell factories grown on an industrial scale would yield enormous economic and environmental benefits. However, Fe-S enzymes often become bottlenecks that limits the productivity of engineered pathways. As a consequence, achieving the production metrics required for industrial application remains a distant goal for Fe-S enzyme-dependent pathways. Here, we identify and review three core challenges in harnessing Fe-S enzyme activity, which all stem from the properties of Fe-S clusters: 1) limited Fe-S cluster supply within the host cell, 2) Fe-S cluster instability, and 3) lack of specialized reducing cofactor proteins often required for Fe-S enzyme activity, such as enzyme-specific flavodoxins and ferredoxins. We highlight successful methods developed for a variety of Fe-S enzymes and electron carriers for overcoming these difficulties. We use heterologous nitrogenase expression as a grand case study demonstrating how each of these challenges can be addressed. We predict that recent breakthroughs in protein structure prediction and design will prove well-suited to addressing each of these challenges. A reliable toolkit for harnessing Fe-S enzymes in engineered metabolic pathways will accelerate the development of industry-ready Fe-S enzyme-dependent biosynthesis pathways.
Collapse
Affiliation(s)
- Helena Shomar
- Institut Pasteur, université Paris Cité, Inserm U1284, Diversité moléculaire des microbes (Molecular Diversity of Microbes lab), 75015 Paris, France
| | - Gregory Bokinsky
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
17
|
Dancis A, Pandey AK, Pain D. Mitochondria function in cytoplasmic FeS protein biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119733. [PMID: 38641180 DOI: 10.1016/j.bbamcr.2024.119733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/18/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
Iron‑sulfur (FeS) clusters are cofactors of numerous proteins involved in essential cellular functions including respiration, protein translation, DNA synthesis and repair, ribosome maturation, anti-viral responses, and isopropylmalate isomerase activity. Novel FeS proteins are still being discovered due to the widespread use of cryogenic electron microscopy (cryo-EM) and elegant genetic screens targeted at protein discovery. A complex sequence of biochemical reactions mediated by a conserved machinery controls biosynthesis of FeS clusters. In eukaryotes, a remarkable epistasis has been observed: the mitochondrial machinery, termed ISC (Iron-Sulfur Cluster), lies upstream of the cytoplasmic machinery, termed CIA (Cytoplasmic Iron‑sulfur protein Assembly). The basis for this arrangement is the production of a hitherto uncharacterized intermediate, termed X-S or (Fe-S)int, produced in mitochondria by the ISC machinery, exported by the mitochondrial ABC transporter Atm1 (ABCB7 in humans), and then utilized by the CIA machinery for the cytoplasmic/nuclear FeS cluster assembly. Genetic and biochemical findings supporting this sequence of events are herein presented. New structural views of the Atm1 transport phases are reviewed. The key compartmental roles of glutathione in cellular FeS cluster biogenesis are highlighted. Finally, data are presented showing that every one of the ten core components of the mitochondrial ISC machinery and Atm1, when mutated or depleted, displays similar phenotypes: mitochondrial and cytoplasmic FeS clusters are both rendered deficient, consistent with the epistasis noted above.
Collapse
Affiliation(s)
- Andrew Dancis
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA.
| | - Ashutosh K Pandey
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Debkumar Pain
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| |
Collapse
|
18
|
Hasnat MA, Leimkühler S. Shared functions of Fe-S cluster assembly and Moco biosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119731. [PMID: 38631442 DOI: 10.1016/j.bbamcr.2024.119731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/29/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024]
Abstract
Molybdenum cofactor (Moco) biosynthesis is a complex process that involves the coordinated function of several proteins. In the recent years it has become evident that the availability of Fe-S clusters play an important role for the biosynthesis of Moco. First, the MoaA protein binds two [4Fe-4S] clusters per monomer. Second, the expression of the moaABCDE and moeAB operons is regulated by FNR, which senses the availability of oxygen via a functional [4Fe-4S] cluster. Finally, the conversion of cyclic pyranopterin monophosphate to molybdopterin requires the availability of the L-cysteine desulfurase IscS, which is an enzyme involved in the transfer of sulfur to various acceptor proteins with a main role in the assembly of Fe-S clusters. In this review, we dissect the dependence of the production of active molybdoenzymes in detail, starting from the regulation of gene expression and further explaining sulfur delivery and Fe-S cluster insertion into target enzymes. Further, Fe-S cluster assembly is also linked to iron availability. While the abundance of selected molybdoenzymes is largely decreased under iron-limiting conditions, we explain that the expression of the genes is dependent on an active FNR protein. FNR is a very important transcription factor that represents the master-switch for the expression of target genes in response to anaerobiosis. Moco biosynthesis is further directly dependent on the presence of ArcA and also on an active Fur protein.
Collapse
Affiliation(s)
- Muhammad Abrar Hasnat
- University of Potsdam, Institute of Biochemistry and Biology, Department of Molecular Enzymology, Karl-Liebknecht Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Silke Leimkühler
- University of Potsdam, Institute of Biochemistry and Biology, Department of Molecular Enzymology, Karl-Liebknecht Str. 24-25, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
19
|
Sourice M, Oriol C, Aubert C, Mandin P, Py B. Genetic dissection of the bacterial Fe-S protein biogenesis machineries. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119746. [PMID: 38719030 DOI: 10.1016/j.bbamcr.2024.119746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/12/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Iron‑sulfur (Fe-S) clusters are one of the most ancient and versatile inorganic cofactors present in the three domains of life. Fe-S clusters are essential cofactors for the activity of a large variety of metalloproteins that play crucial physiological roles. Fe-S protein biogenesis is a complex process that starts with the acquisition of the elements (iron and sulfur atoms) and their assembly into an Fe-S cluster that is subsequently inserted into the target proteins. The Fe-S protein biogenesis is ensured by multiproteic systems conserved across all domains of life. Here, we provide an overview on how bacterial genetics approaches have permitted to reveal and dissect the Fe-S protein biogenesis process in vivo.
Collapse
Affiliation(s)
- Mathieu Sourice
- Laboratoire de Chimie Bactérienne (UMR7283), Institut de Microbiologie de la Méditerranée, Institut Microbiologie Bioénergies et Biotechnologie, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| | - Charlotte Oriol
- Laboratoire de Chimie Bactérienne (UMR7283), Institut de Microbiologie de la Méditerranée, Institut Microbiologie Bioénergies et Biotechnologie, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| | - Corinne Aubert
- Laboratoire de Chimie Bactérienne (UMR7283), Institut de Microbiologie de la Méditerranée, Institut Microbiologie Bioénergies et Biotechnologie, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| | - Pierre Mandin
- Laboratoire de Chimie Bactérienne (UMR7283), Institut de Microbiologie de la Méditerranée, Institut Microbiologie Bioénergies et Biotechnologie, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| | - Béatrice Py
- Laboratoire de Chimie Bactérienne (UMR7283), Institut de Microbiologie de la Méditerranée, Institut Microbiologie Bioénergies et Biotechnologie, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France.
| |
Collapse
|
20
|
Purcell AG, Fontenot CR, Ding H. Iron-sulfur cluster assembly scaffold protein IscU is required for activation of ferric uptake regulator (Fur) in Escherichiacoli. J Biol Chem 2024; 300:107142. [PMID: 38452854 PMCID: PMC11001641 DOI: 10.1016/j.jbc.2024.107142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024] Open
Abstract
It was generally postulated that when intracellular free iron content is elevated in bacteria, the ferric uptake regulator (Fur) binds its corepressor a mononuclear ferrous iron to regulate intracellular iron homeostasis. However, the proposed iron-bound Fur had not been identified in any bacteria. In previous studies, we have demonstrated that Escherichia coli Fur binds a [2Fe-2S] cluster in response to elevation of intracellular free iron content and that binding of the [2Fe-2S] cluster turns on Fur as an active repressor to bind a specific DNA sequence known as the Fur-box. Here we find that the iron-sulfur cluster assembly scaffold protein IscU is required for the [2Fe-2S] cluster assembly in Fur, as deletion of IscU inhibits the [2Fe-2S] cluster assembly in Fur and prevents activation of Fur as a repressor in E. coli cells in response to elevation of intracellular free iron content. Additional studies reveal that IscU promotes the [2Fe-2S] cluster assembly in apo-form Fur and restores its Fur-box binding activity in vitro. While IscU is also required for the [2Fe-2S] cluster assembly in the Haemophilus influenzae Fur in E. coli cells, deletion of IscU does not significantly affect the [2Fe-2S] cluster assembly in the E. coli ferredoxin and siderophore-reductase FhuF. Our results suggest that IscU may have a unique role for the [2Fe-2S] cluster assembly in Fur and that regulation of intracellular iron homeostasis is closely coupled with iron-sulfur cluster biogenesis in E. coli.
Collapse
Affiliation(s)
- Aidan G Purcell
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Chelsey R Fontenot
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Huangen Ding
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA.
| |
Collapse
|
21
|
Lachowicz JC, Lennox-Hvenekilde D, Myling-Petersen N, Salomonsen B, Verkleij G, Acevedo-Rocha CG, Caddell B, Gronenberg LS, Almo SC, Sommer MOA, Genee HJ, Grove TL. Discovery of a Biotin Synthase That Utilizes an Auxiliary 4Fe-5S Cluster for Sulfur Insertion. J Am Chem Soc 2024; 146:1860-1873. [PMID: 38215281 PMCID: PMC10813225 DOI: 10.1021/jacs.3c05481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024]
Abstract
Biotin synthase (BioB) is a member of the Radical SAM superfamily of enzymes that catalyzes the terminal step of biotin (vitamin B7) biosynthesis, in which it inserts a sulfur atom in desthiobiotin to form a thiolane ring. How BioB accomplishes this difficult reaction has been the subject of much controversy, mainly around the source of the sulfur atom. However, it is now widely accepted that the sulfur atom inserted to form biotin stems from the sacrifice of the auxiliary 2Fe-2S cluster of BioB. Here, we bioinformatically explore the diversity of BioBs available in sequence databases and find an unexpected variation in the coordination of the auxiliary iron-sulfur cluster. After in vitro characterization, including the determination of biotin formation and representative crystal structures, we report a new type of BioB utilized by virtually all obligate anaerobic organisms. Instead of a 2Fe-2S cluster, this novel type of BioB utilizes an auxiliary 4Fe-5S cluster. Interestingly, this auxiliary 4Fe-5S cluster contains a ligated sulfide that we propose is used for biotin formation. We have termed this novel type of BioB, Type II BioB, with the E. coli 2Fe-2S cluster sacrificial BioB representing Type I. This surprisingly ubiquitous Type II BioB has implications for our understanding of the function and evolution of Fe-S clusters in enzyme catalysis, highlighting the difference in strategies between the anaerobic and aerobic world.
Collapse
Affiliation(s)
- Jake C. Lachowicz
- Department
of Biochemistry, Albert Einstein College
of Medicine, Bronx, New York 10461, United States
| | - David Lennox-Hvenekilde
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
- Biosyntia
ApS, Copenhagen, 2100, Denmark
| | | | | | | | - Carlos G. Acevedo-Rocha
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
- Biosyntia
ApS, Copenhagen, 2100, Denmark
| | | | | | - Steven C. Almo
- Department
of Biochemistry, Albert Einstein College
of Medicine, Bronx, New York 10461, United States
| | - Morten O. A. Sommer
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | | | - Tyler L. Grove
- Department
of Biochemistry, Albert Einstein College
of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
22
|
Lachowicz J, Lee J, Sagatova A, Jew K, Grove TL. The new epoch of structural insights into radical SAM enzymology. Curr Opin Struct Biol 2023; 83:102720. [PMID: 37862762 DOI: 10.1016/j.sbi.2023.102720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/22/2023]
Abstract
The Radical SAM (RS) superfamily of enzymes catalyzes a wide array of enzymatic reactions. The majority of these enzymes employ an electron from a reduced [4Fe-4S]+1 cluster to facilitate the reductive cleavage of S-adenosyl-l-methionine, thereby producing a highly reactive 5'-deoxyadenosyl radical (5'-dA⋅) and l-methionine. Typically, RS enzymes use this 5'-dA⋅ to extract a hydrogen atom from the target substrate, starting the cascade of an expansive and impressive variety of chemical transformations. While a great deal of understanding has been gleaned for 5'-dA⋅ formation, because of the chemical diversity within this superfamily, the subsequent chemical transformations have only been fully elucidated in a few examples. In addition, with the advent of new sequencing technology, the size of this family now surpasses 700,000 members, with the number of uncharacterized enzymes and domains also rapidly expanding. In this review, we outline the history of RS enzyme characterization in what we term "epochs" based on advances in technology designed for stably producing these enzymes in an active state. We propose that the state of the field has entered the fourth epoch, which we argue should commence with a protein structure initiative focused solely on RS enzymes to properly tackle this unique superfamily and uncover more novel chemical transformations that likely exist.
Collapse
Affiliation(s)
- Jake Lachowicz
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - James Lee
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Alia Sagatova
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kristen Jew
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Tyler L Grove
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
23
|
Rosa-Núñez E, Echavarri-Erasun C, Armas AM, Escudero V, Poza-Carrión C, Rubio LM, González-Guerrero M. Iron Homeostasis in Azotobacter vinelandii. BIOLOGY 2023; 12:1423. [PMID: 37998022 PMCID: PMC10669500 DOI: 10.3390/biology12111423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
Iron is an essential nutrient for all life forms. Specialized mechanisms exist in bacteria to ensure iron uptake and its delivery to key enzymes within the cell, while preventing toxicity. Iron uptake and exchange networks must adapt to the different environmental conditions, particularly those that require the biosynthesis of multiple iron proteins, such as nitrogen fixation. In this review, we outline the mechanisms that the model diazotrophic bacterium Azotobacter vinelandii uses to ensure iron nutrition and how it adapts Fe metabolism to diazotrophic growth.
Collapse
Affiliation(s)
- Elena Rosa-Núñez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Campus de Montegancedo UPM, Crta. M-40 km 38, 28223 Madrid, Spain; (E.R.-N.); (C.E.-E.); (A.M.A.); (C.P.-C.); (L.M.R.)
- Escuela Técnica de Ingeniería Agraria, Alimentaria, y de Biosistemas, Universidad Politécnica de Madrid, Avda. Puerta de Hierro, 2, 28040 Madrid, Spain
| | - Carlos Echavarri-Erasun
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Campus de Montegancedo UPM, Crta. M-40 km 38, 28223 Madrid, Spain; (E.R.-N.); (C.E.-E.); (A.M.A.); (C.P.-C.); (L.M.R.)
- Escuela Técnica de Ingeniería Agraria, Alimentaria, y de Biosistemas, Universidad Politécnica de Madrid, Avda. Puerta de Hierro, 2, 28040 Madrid, Spain
| | - Alejandro M. Armas
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Campus de Montegancedo UPM, Crta. M-40 km 38, 28223 Madrid, Spain; (E.R.-N.); (C.E.-E.); (A.M.A.); (C.P.-C.); (L.M.R.)
| | - Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Campus de Montegancedo UPM, Crta. M-40 km 38, 28223 Madrid, Spain; (E.R.-N.); (C.E.-E.); (A.M.A.); (C.P.-C.); (L.M.R.)
| | - César Poza-Carrión
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Campus de Montegancedo UPM, Crta. M-40 km 38, 28223 Madrid, Spain; (E.R.-N.); (C.E.-E.); (A.M.A.); (C.P.-C.); (L.M.R.)
| | - Luis M. Rubio
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Campus de Montegancedo UPM, Crta. M-40 km 38, 28223 Madrid, Spain; (E.R.-N.); (C.E.-E.); (A.M.A.); (C.P.-C.); (L.M.R.)
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Campus de Montegancedo UPM, Crta. M-40 km 38, 28223 Madrid, Spain; (E.R.-N.); (C.E.-E.); (A.M.A.); (C.P.-C.); (L.M.R.)
- Escuela Técnica de Ingeniería Agraria, Alimentaria, y de Biosistemas, Universidad Politécnica de Madrid, Avda. Puerta de Hierro, 2, 28040 Madrid, Spain
| |
Collapse
|
24
|
Wang PH, Nishikawa S, McGlynn SE, Fujishima K. One-Pot De Novo Synthesis of [4Fe-4S] Proteins Using a Recombinant SUF System under Aerobic Conditions. ACS Synth Biol 2023; 12:2887-2896. [PMID: 37467114 PMCID: PMC10594875 DOI: 10.1021/acssynbio.3c00155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Indexed: 07/21/2023]
Abstract
Fe-S clusters are essential cofactors mediating electron transfer in respiratory and metabolic networks. However, obtaining active [4Fe-4S] proteins with heterologous expression is challenging due to (i) the requirements for [4Fe-4S] cluster assembly, (ii) the O2 lability of [4Fe-4S] clusters, and (iii) copurification of undesired proteins (e.g., ferredoxins). Here, we established a facile and efficient protocol to express mature [4Fe-4S] proteins in the PURE system under aerobic conditions. An enzyme aconitase and thermophilic ferredoxin were selected as model [4Fe-4S] proteins for functional verification. We first reconstituted the SUF system in vitro via a stepwise manner using the recombinant SUF subunits (SufABCDSE) individually purified from E. coli. Later, the incorporation of recombinant SUF helper proteins into the PURE system enabled mRNA translation-coupled [4Fe-4S] cluster assembly under the O2-depleted conditions. To overcome the O2 lability of [4Fe-4S] Fe-S clusters, an O2-scavenging enzyme cascade was incorporated, which begins with formate oxidation by formate dehydrogenase for NADH regeneration. Later, NADH is consumed by flavin reductase for FADH2 regeneration. Finally, bifunctional flavin reductase, along with catalase, removes O2 from the reaction while supplying FADH2 to the SufBC2D complex. These amendments enabled a one-pot, two-step synthesis of mature [4Fe-4S] proteins under aerobic conditions, yielding holo-aconitase with a maximum concentration of ∼0.15 mg/mL. This renovated system greatly expands the potential of the PURE system, paving the way for the future reconstruction of redox-active synthetic cells and enhanced cell-free biocatalysis.
Collapse
Affiliation(s)
- Po-Hsiang Wang
- Department
of Chemical Engineering and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
- Graduate
Institute of Environmental Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Shota Nishikawa
- Earth-Life
Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
- School
of Life Science and Technology, Tokyo Institute
of Technology, Tokyo 152-8550, Japan
| | - Shawn Erin McGlynn
- Earth-Life
Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
- Blue
Marble Space Institute of Science, Seattle, Washington 98154, United States
| | - Kosuke Fujishima
- Earth-Life
Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
- Graduate
School of Media and Governance, Keio University, Fujisawa 252-0882, Japan
| |
Collapse
|
25
|
Williams SM, Chatterji D. Dps Functions as a Key Player in Bacterial Iron Homeostasis. ACS OMEGA 2023; 8:34299-34309. [PMID: 37779979 PMCID: PMC10536872 DOI: 10.1021/acsomega.3c03277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023]
Abstract
Iron plays a vital role in the maintenance of life, being central to various cellular processes, from respiration to gene regulation. It is essential for iron to be stored in a nontoxic and readily available form. DNA binding proteins under starvation (Dps) belong to the ferritin family of iron storage proteins and are adept at storing iron in their hollow protein shells. Existing solely in prokaryotes, these proteins have the additional functions of DNA binding and protection from oxidative stress. Iron storage proteins play a functional role in storage, release, and transfer of iron and therefore are central to the optimal functioning of iron homeostasis. Here we review the multifarious properties of Dps through relevant biochemical and structural studies with a focus on iron storage and ferroxidation. We also examine the role of Dps as a possible candidate as an iron donor to iron-sulfur (Fe-S) clusters, which are ubiquitous to many biological processes.
Collapse
Affiliation(s)
- Sunanda Margrett Williams
- Institute
of Structural and Molecular Biology, Birkbeck,
University of London, Malet Street, London WC1E
7HX, United Kingdom
| | - Dipankar Chatterji
- Molecular
Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
26
|
Kirchner L, Müller V, Averhoff B. A temperature dependent pilin promoter for production of thermostable enzymes in Thermus thermophilus. Microb Cell Fact 2023; 22:187. [PMID: 37726752 PMCID: PMC10507856 DOI: 10.1186/s12934-023-02192-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/02/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Enzymes from thermophiles are of great interest for research and bioengineering due to their stability and efficiency. Thermophilic expression hosts such as Thermus thermophilus [T. thermophilus] can overcome specific challenges experienced with protein production in mesophilic expression hosts, such as leading to better folding, increased protein stability, solubility, and enzymatic activity. However, available inducible promoters for efficient protein production in T. thermophilus HB27 are limited. RESULTS In this study, we characterized the pilA4 promoter region and evaluated its potential as a tool for production of thermostable enzymes in T. thermophilus HB27. Reporter gene analysis using a promoterless β-glucosidase gene revealed that the pilA4 promoter is highly active under optimal growth conditions at 68 °C and downregulated during growth at 80 °C. Furthermore, growth in minimal medium led to significantly increased promoter activity in comparison to growth in complex medium. Finally, we proved the suitability of the pilA4 promoter for heterologous production of thermostable enzymes in T. thermophilus by producing a fully active soluble mannitol-1-phosphate dehydrogenase from Thermoanaerobacter kivui [T. kivui], which is used in degradation of brown algae that are rich in mannitol. CONCLUSIONS Our results show that the pilA4 promoter is an efficient tool for gene expression in T. thermophilus with a high potential for use in biotechnology and synthetic biology applications.
Collapse
Affiliation(s)
- Lennart Kirchner
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue- Str. 9, 60438, Frankfurt, Germany
| | - Volker Müller
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue- Str. 9, 60438, Frankfurt, Germany
| | - Beate Averhoff
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue- Str. 9, 60438, Frankfurt, Germany.
| |
Collapse
|
27
|
Niemand Wolhuter N, Ngakane L, de Wet TJ, Warren RM, Williams MJ. The Mycobacterium smegmatis HesB Protein, MSMEG_4272, Is Required for In Vitro Growth and Iron Homeostasis. Microorganisms 2023; 11:1573. [PMID: 37375075 DOI: 10.3390/microorganisms11061573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
A-type carrier (ATC) proteins are proposed to function in the biogenesis of Fe-S clusters, although their exact role remains controversial. The genome of Mycobacterium smegmatis encodes a single ATC protein, MSMEG_4272, which belongs to the HesB/YadR/YfhF family of proteins. Attempts to generate an MSMEG_4272 deletion mutant by two-step allelic exchange were unsuccessful, suggesting that the gene is essential for in vitro growth. CRISPRi-mediated transcriptional knock-down of MSMEG_4272 resulted in a growth defect under standard culture conditions, which was exacerbated in mineral-defined media. The knockdown strain displayed reduced intracellular iron levels under iron-replete conditions and increased susceptibility to clofazimine, 2,3-dimethoxy-1,4-naphthoquinone (DMNQ), and isoniazid, while the activity of the Fe-S containing enzymes, succinate dehydrogenase, and aconitase were not affected. This study suggests that MSMEG_4272 plays a role in the regulation of intracellular iron levels and is required for in vitro growth of M. smegmatis, particularly during exponential growth.
Collapse
Affiliation(s)
- Nandi Niemand Wolhuter
- NRF/DSI Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Lerato Ngakane
- NRF/DSI Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Timothy J de Wet
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Robin M Warren
- NRF/DSI Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Monique J Williams
- NRF/DSI Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town 7700, South Africa
| |
Collapse
|
28
|
Pedroletti L, Moseler A, Meyer AJ. Assembly, transfer, and fate of mitochondrial iron-sulfur clusters. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3328-3344. [PMID: 36846908 DOI: 10.1093/jxb/erad062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/13/2023] [Indexed: 06/08/2023]
Abstract
Since the discovery of an autonomous iron-sulfur cluster (Fe-S) assembly machinery in mitochondria, significant efforts to examine the nature of this process have been made. The assembly of Fe-S clusters occurs in two distinct steps with the initial synthesis of [2Fe-2S] clusters by a first machinery followed by a subsequent assembly into [4Fe-4S] clusters by a second machinery. Despite this knowledge, we still have only a rudimentary understanding of how Fe-S clusters are transferred and distributed among their respective apoproteins. In particular, demand created by continuous protein turnover and the sacrificial destruction of clusters for synthesis of biotin and lipoic acid reveal possible bottlenecks in the supply chain of Fe-S clusters. Taking available information from other species into consideration, this review explores the mitochondrial assembly machinery of Arabidopsis and provides current knowledge about the respective transfer steps to apoproteins. Furthermore, this review highlights biotin synthase and lipoyl synthase, which both utilize Fe-S clusters as a sulfur source. After extraction of sulfur atoms from these clusters, the remains of the clusters probably fall apart, releasing sulfide as a highly toxic by-product. Immediate refixation through local cysteine biosynthesis is therefore an essential salvage pathway and emphasizes the physiological need for cysteine biosynthesis in plant mitochondria.
Collapse
Affiliation(s)
- Luca Pedroletti
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Anna Moseler
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Andreas J Meyer
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| |
Collapse
|
29
|
Caubrière D, Moseler A, Rouhier N, Couturier J. Diversity and roles of cysteine desulfurases in photosynthetic organisms. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3345-3360. [PMID: 36861318 DOI: 10.1093/jxb/erad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/22/2023] [Indexed: 06/08/2023]
Abstract
As sulfur is part of many essential protein cofactors such as iron-sulfur clusters, molybdenum cofactors, or lipoic acid, its mobilization from cysteine represents a fundamental process. The abstraction of the sulfur atom from cysteine is catalysed by highly conserved pyridoxal 5'-phosphate-dependent enzymes called cysteine desulfurases. The desulfuration of cysteine leads to the formation of a persulfide group on a conserved catalytic cysteine and the concomitant release of alanine. Sulfur is then transferred from cysteine desulfurases to different targets. Numerous studies have focused on cysteine desulfurases as sulfur-extracting enzymes for iron-sulfur cluster synthesis in mitochondria and chloroplasts but also for molybdenum cofactor sulfuration in the cytosol. Despite this, knowledge about the involvement of cysteine desulfurases in other pathways is quite rudimentary, particularly in photosynthetic organisms. In this review, we summarize current understanding of the different groups of cysteine desulfurases and their characteristics in terms of primary sequence, protein domain architecture, and subcellular localization. In addition, we review the roles of cysteine desulfurases in different fundamental pathways and highlight the gaps in our knowledge to encourage future work on unresolved issues especially in photosynthetic organisms.
Collapse
Affiliation(s)
| | - Anna Moseler
- Institute of Crop Science and Resource Conservation (INRES) - Chemical Signalling, University of Bonn, 53113 Bonn, Germany
| | | | - Jérémy Couturier
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France
- Institut Universitaire de France, F-75000, Paris, France
| |
Collapse
|
30
|
Marquez MD, Greth C, Buzuk A, Liu Y, Blinn CM, Beller S, Leiskau L, Hushka A, Wu K, Nur K, Netz DJ, Perlstein DL, Pierik AJ. Cytosolic iron-sulfur protein assembly system identifies clients by a C-terminal tripeptide. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.541488. [PMID: 37292740 PMCID: PMC10245660 DOI: 10.1101/2023.05.19.541488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The eukaryotic cytosolic Fe-S protein assembly (CIA) machinery inserts iron-sulfur (Fe-S) clusters into cytosolic and nuclear proteins. In the final maturation step, the Fe-S cluster is transferred to the apo-proteins by the CIA-targeting complex (CTC). However, the molecular recognition determinants of client proteins are unknown. We show that a conserved [LIM]-[DES]-[WF]-COO- tripeptide present at the C-terminus of clients is necessary and sufficient for binding to the CTC in vitro and directing Fe-S cluster delivery in vivo. Remarkably, fusion of this TCR (target complex recognition) signal enables engineering of cluster maturation on a non-native protein via recruitment of the CIA machinery. Our study significantly advances our understanding of Fe-S protein maturation and paves the way for bioengineering applications.
Collapse
Affiliation(s)
| | - Carina Greth
- Department of Chemistry, RPTU Kaiserslautern-Landau; 67663 Kaiserslautern, Germany
| | | | - Yaxi Liu
- Department of Chemistry, Boston University; Boston, MA, USA
| | - Catharina M. Blinn
- Department of Chemistry, RPTU Kaiserslautern-Landau; 67663 Kaiserslautern, Germany
| | - Simone Beller
- Department of Chemistry, RPTU Kaiserslautern-Landau; 67663 Kaiserslautern, Germany
| | - Laura Leiskau
- Department of Chemistry, RPTU Kaiserslautern-Landau; 67663 Kaiserslautern, Germany
| | - Anthony Hushka
- Department of Chemistry, Boston University; Boston, MA, USA
| | - Kassandra Wu
- Department of Chemistry, Boston University; Boston, MA, USA
| | - Kübra Nur
- Department of Chemistry, RPTU Kaiserslautern-Landau; 67663 Kaiserslautern, Germany
| | - Daili J. Netz
- Department of Chemistry, RPTU Kaiserslautern-Landau; 67663 Kaiserslautern, Germany
| | | | - Antonio J. Pierik
- Department of Chemistry, RPTU Kaiserslautern-Landau; 67663 Kaiserslautern, Germany
| |
Collapse
|
31
|
Fontenot CR, Ding H. Ferric uptake regulator (Fur) binds a [2Fe-2S] cluster to regulate intracellular iron homeostasis in Escherichia coli. J Biol Chem 2023; 299:104748. [PMID: 37100285 DOI: 10.1016/j.jbc.2023.104748] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023] Open
Abstract
Intracellular iron homeostasis in bacteria is primarily regulated by Ferric uptake regulator (Fur). It has been postulated that when intracellular free iron content is elevated, Fur binds ferrous iron to down-regulate the genes for iron uptake. However, the iron-bound Fur had not been identified in any bacteria until we recently found that Escherichia coli Fur binds a [2Fe-2S] cluster, but not a mononuclear iron, in E. coli mutant cells that hyperaccumulate intracellular free iron. Here we report that E. coli Fur also binds a [2Fe-2S] cluster in wild type E. coli cells grown in M9 medium supplemented with increasing concentrations of iron under aerobic growth conditions. Additionally, we find that binding of the [2Fe-2S] cluster in Fur turns on its binding activity for specific DNA sequences known as the Fur-box, and that removal of the [2Fe-2S] cluster from Fur eliminates its Fur-box binding activity. Mutation of the conserved cysteine residues Cys-93 and Cys-96 to Ala in Fur results in the Fur mutants that fail to bind the [2Fe-2S] cluster, have a diminished binding activity for the Fur-box in vitro, and are inactive to complement the function of Fur in vivo. Our results suggest that Fur binds a [2Fe-2S] cluster to regulate intracellular iron homeostasis in response to elevation of intracellular free iron content in E. coli cells.
Collapse
Affiliation(s)
- Chelsey R Fontenot
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Huangen Ding
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
32
|
Martin Del Campo JS, Rigsbee J, Bueno Batista M, Mus F, Rubio LM, Einsle O, Peters JW, Dixon R, Dean DR, Dos Santos PC. Overview of physiological, biochemical, and regulatory aspects of nitrogen fixation in Azotobacter vinelandii. Crit Rev Biochem Mol Biol 2023; 57:492-538. [PMID: 36877487 DOI: 10.1080/10409238.2023.2181309] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Understanding how Nature accomplishes the reduction of inert nitrogen gas to form metabolically tractable ammonia at ambient temperature and pressure has challenged scientists for more than a century. Such an understanding is a key aspect toward accomplishing the transfer of the genetic determinants of biological nitrogen fixation to crop plants as well as for the development of improved synthetic catalysts based on the biological mechanism. Over the past 30 years, the free-living nitrogen-fixing bacterium Azotobacter vinelandii emerged as a preferred model organism for mechanistic, structural, genetic, and physiological studies aimed at understanding biological nitrogen fixation. This review provides a contemporary overview of these studies and places them within the context of their historical development.
Collapse
Affiliation(s)
| | - Jack Rigsbee
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, USA
| | | | - Florence Mus
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Luis M Rubio
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Pozuelo de Alarcón, Spain
| | - Oliver Einsle
- Department of Biochemistry, University of Freiburg, Freiburg, Germany
| | - John W Peters
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Ray Dixon
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | - Dennis R Dean
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
| | | |
Collapse
|
33
|
Rahman MA, Heme UH, Parvez MAK. In silico functional annotation of hypothetical proteins from the Bacillus paralicheniformis strain Bac84 reveals proteins with biotechnological potentials and adaptational functions to extreme environments. PLoS One 2022; 17:e0276085. [PMID: 36228026 PMCID: PMC9560612 DOI: 10.1371/journal.pone.0276085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/28/2022] [Indexed: 11/26/2022] Open
Abstract
Members of the Bacillus genus are industrial cell factories due to their capacity to secrete significant quantities of biomolecules with industrial applications. The Bacillus paralicheniformis strain Bac84 was isolated from the Red Sea and it shares a close evolutionary relationship with Bacillus licheniformis. However, a significant number of proteins in its genome are annotated as functionally uncharacterized hypothetical proteins. Investigating these proteins' functions may help us better understand how bacteria survive extreme environmental conditions and to find novel targets for biotechnological applications. Therefore, the purpose of our research was to functionally annotate the hypothetical proteins from the genome of B. paralicheniformis strain Bac84. We employed a structured in-silico approach incorporating numerous bioinformatics tools and databases for functional annotation, physicochemical characterization, subcellular localization, protein-protein interactions, and three-dimensional structure determination. Sequences of 414 hypothetical proteins were evaluated and we were able to successfully attribute a function to 37 hypothetical proteins. Moreover, we performed receiver operating characteristic analysis to assess the performance of various tools used in this present study. We identified 12 proteins having significant adaptational roles to unfavorable environments such as sporulation, formation of biofilm, motility, regulation of transcription, etc. Additionally, 8 proteins were predicted with biotechnological potentials such as coenzyme A biosynthesis, phenylalanine biosynthesis, rare-sugars biosynthesis, antibiotic biosynthesis, bioremediation, and others. Evaluation of the performance of the tools showed an accuracy of 98% which represented the rationality of the tools used. This work shows that this annotation strategy will make the functional characterization of unknown proteins easier and can find the target for further investigation. The knowledge of these hypothetical proteins' potential functions aids B. paralicheniformis strain Bac84 in effectively creating a new biotechnological target. In addition, the results may also facilitate a better understanding of the survival mechanisms in harsh environmental conditions.
Collapse
Affiliation(s)
- Md. Atikur Rahman
- Institute of Microbiology, Friedrich Schiller University Jena, Thuringia, Germany
| | - Uzma Habiba Heme
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Thuringia, Germany
| | | |
Collapse
|
34
|
He W, Burén S, Baysal C, Jiang X, Capell T, Christou P, Rubio LM. Nitrogenase Cofactor Maturase NifB Isolated from Transgenic Rice is Active in FeMo-co Synthesis. ACS Synth Biol 2022; 11:3028-3036. [PMID: 35998307 PMCID: PMC9486962 DOI: 10.1021/acssynbio.2c00194] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The engineering of nitrogen fixation in plants requires assembly of an active prokaryotic nitrogenase complex, which is yet to be achieved. Nitrogenase biogenesis relies on NifB, which catalyzes the formation of the [8Fe-9S-C] metal cluster NifB-co. This is the first committed step in the biosynthesis of the iron-molybdenum cofactor (FeMo-co) found at the nitrogenase active site. The production of NifB in plants is challenging because this protein is often insoluble in eukaryotic cells, and its [Fe-S] clusters are extremely unstable and sensitive to O2. As a first step to address this challenge, we generated transgenic rice plants expressing NifB from the Archaea Methanocaldococcus infernus and Methanothermobacter thermautotrophicus. The recombinant proteins were targeted to the mitochondria to limit exposure to O2 and to have access to essential [4Fe-4S] clusters required for NifB-co biosynthesis. M. infernus and M. thermautotrophicus NifB accumulated as soluble proteins in planta, and the purified proteins were functional in the in vitro FeMo-co synthesis assay. We thus report NifB protein expression and purification from an engineered staple crop, representing a first step in the biosynthesis of a functional NifDK complex, as required for independent biological nitrogen fixation in cereals.
Collapse
Affiliation(s)
- Wenshu He
- Department
of Plant Production and Forestry Science, University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Stefan Burén
- Centro
de Biotecnología y Genómica de Plantas, Universidad
Politécnica de Madrid (UPM), Instituto
Nacional de Investigación y Tecnología Agraria y Alimentaria
(INIA), Campus Montegancedo
UPM, Pozuelo de Alarcón, 28223 , Madrid, Spain,Departamento
de Biotecnología-Biología Vegetal, Escuela Técnica
Superior de Ingeniería Agronómica, Alimentaria y de
Biosistemas, Universidad Politécnica
de Madrid, 28040 Madrid, Spain
| | - Can Baysal
- Department
of Plant Production and Forestry Science, University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Xi Jiang
- Centro
de Biotecnología y Genómica de Plantas, Universidad
Politécnica de Madrid (UPM), Instituto
Nacional de Investigación y Tecnología Agraria y Alimentaria
(INIA), Campus Montegancedo
UPM, Pozuelo de Alarcón, 28223 , Madrid, Spain,Departamento
de Biotecnología-Biología Vegetal, Escuela Técnica
Superior de Ingeniería Agronómica, Alimentaria y de
Biosistemas, Universidad Politécnica
de Madrid, 28040 Madrid, Spain
| | - Teresa Capell
- Department
of Plant Production and Forestry Science, University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Paul Christou
- Department
of Plant Production and Forestry Science, University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain,ICREA,
Catalan Institute for Research and Advanced Studies, Passeig Lluís Companys 23, 08010 Barcelona, Spain,
| | - Luis M. Rubio
- Centro
de Biotecnología y Genómica de Plantas, Universidad
Politécnica de Madrid (UPM), Instituto
Nacional de Investigación y Tecnología Agraria y Alimentaria
(INIA), Campus Montegancedo
UPM, Pozuelo de Alarcón, 28223 , Madrid, Spain,Departamento
de Biotecnología-Biología Vegetal, Escuela Técnica
Superior de Ingeniería Agronómica, Alimentaria y de
Biosistemas, Universidad Politécnica
de Madrid, 28040 Madrid, Spain,
| |
Collapse
|
35
|
Chatterjee S, Parson KF, Ruotolo BT, McCracken J, Hu J, Hausinger RP. Characterization of a [4Fe-4S]-dependent LarE sulfur insertase that facilitates nickel-pincer nucleotide cofactor biosynthesis in Thermotoga maritima. J Biol Chem 2022; 298:102131. [PMID: 35700827 PMCID: PMC9283937 DOI: 10.1016/j.jbc.2022.102131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 11/10/2022] Open
Abstract
Sulfur-insertion reactions are essential for the biosynthesis of several cellular metabolites, including enzyme cofactors. In Lactobacillus plantarum, a sulfur-containing nickel-pincer nucleotide (NPN) cofactor is used as a coenzyme of lactic acid racemase, LarA. During NPN biosynthesis in L. plantarum, sulfur is transferred to a nicotinic acid-derived substrate by LarE, which sacrifices the sulfur atom of its single cysteinyl side chain, forming a dehydroalanine residue. Most LarE homologs contain three conserved cysteine residues that are predicted to cluster at the active site; however, the function of this cysteine cluster is unclear. In this study, we characterized LarE from Thermotoga maritima (LarETm) and show that it uses these three conserved cysteine residues to bind a [4Fe-4S] cluster that is required for sulfur transfer. Notably, we found LarETm retains all side chain sulfur atoms, in contrast to LarELp. We also demonstrate that when provided with L-cysteine and cysteine desulfurase from Escherichia coli (IscSEc), LarETm functions catalytically with IscSEc transferring sulfane sulfur atoms to LarETm. Native mass spectrometry results are consistent with a model wherein the enzyme coordinates sulfide at the nonligated iron atom of the [4Fe-4S] cluster, forming a [4Fe-5S] species, and transferring the noncore sulfide to the activated substrate. This proposed mechanism is like that of TtuA that catalyzes sulfur transfer during 2-thiouridine synthesis. In conclusion, we found that LarE sulfur insertases associated with NPN biosynthesis function either by sacrificial sulfur transfer from the protein or by transfer of a noncore sulfide bound to a [4Fe-4S] cluster.
Collapse
Affiliation(s)
- Shramana Chatterjee
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Kristine F Parson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - John McCracken
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Jian Hu
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Robert P Hausinger
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
36
|
Purification and characterization of sequential cobalamin-dependent radical SAM methylases ThnK and TokK in carbapenem β-lactam antibiotic biosynthesis. Methods Enzymol 2022; 669:29-44. [PMID: 35644176 DOI: 10.1016/bs.mie.2021.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
ThnK and TokK are cobalamin-dependent radical S-adenosylmethionine enzymes that catalyze sequential methylations of a common carbapenem biosynthetic intermediate. ThnK was an early characterized member of the subfamily of cobalamin-dependent radical S-adenosylmethionine enzymes. Since initial publication of the ThnK function, the field has progressed, and we have made methodological strides in the expression and purification of this enzyme and its ortholog TokK. An optimized protocol for obtaining the enzymes in pure and active form has enabled us to characterize their reactions and gain greater insight into the kinetic behavior of the sequential methylations they catalyze. We share here the methods and strategy that we have developed through our study of these enzymes.
Collapse
|
37
|
Knox HL, Booker SJ. Structural characterization of cobalamin-dependent radical S-adenosylmethionine methylases. Methods Enzymol 2022; 669:3-27. [PMID: 35644177 DOI: 10.1016/bs.mie.2021.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cobalamin-dependent radical S-adenosylmethionine (SAM) methylases catalyze key steps in the biosynthesis of numerous biomolecules, including protein cofactors, antibiotics, herbicides, and other natural products, but have remained a relatively understudied subclass of radical SAM enzymes due to their inherent insolubility upon overproduction in Escherichia coli. These enzymes contain two cofactors: a [4Fe-4S] cluster that is ligated by three cysteine residues, and a cobalamin cofactor typically bound by residues in the N-terminal portion of the enzyme. Recent advances in the expression and purification of these enzymes in their active states and with both cofactors present has allowed for more detailed biochemical studies as well as structure determination by X-ray crystallography. Herein, we use KsTsrM and TokK to highlight methods for the structural characterization of cobalamin-dependent radical SAM (RS) enzymes and describe recent advances in in the overproduction and purification of these enzymes.
Collapse
Affiliation(s)
- Hayley L Knox
- The Department of Chemistry, The Pennsylvania State University, University Park, PA, United States
| | - Squire J Booker
- The Department of Chemistry, The Pennsylvania State University, University Park, PA, United States; The Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States; The Howard Hughes Medical Institute, The Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|
38
|
Dill Z, Li B, Bridwell-Rabb J. Purification and structural elucidation of a cobalamin-dependent radical SAM enzyme. Methods Enzymol 2022; 669:91-116. [PMID: 35644182 DOI: 10.1016/bs.mie.2021.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The cobalamin (Cbl)-dependent radical S-adenosylmethionine (SAM) enzymes use a [4Fe-4S] cluster, SAM, and Cbl to carry out remarkable catalytic feats in a large number of biosynthetic pathways. However, despite the abundance of annotated Cbl-dependent radical SAM enzymes, relatively few molecular details exist regarding how these enzymes function. Traditionally, challenges associated with purifying and reconstituting Cbl-dependent radical SAM enzymes have hindered biochemical studies aimed at elucidating the structures and mechanisms of these enzymes. Herein, we describe a bottom-up approach that was used to crystallize OxsB, learn about the overall architecture of a Cbl-dependent radical SAM enzyme, and facilitate mechanistic studies. We report lessons learned from the crystallization of different states of OxsB, including the apo-, selenomethionine (SeMet)-labeled, and fully reconstituted form of OxsB that has a [4Fe-4S] cluster, SAM, and Cbl bound. Further, we suggest that, when appropriate, this bottom-up method can be used to facilitate studies on enzymes in this class for which there are challenges associated with purifying and reconstituting the active enzyme.
Collapse
Affiliation(s)
- Zerick Dill
- Department of Chemistry, University of Michigan, Ann Arbor, MI, United States; Program in Chemical Biology, University of Michigan, Ann Arbor, MI, United States
| | - Bin Li
- Department of Chemistry, University of Michigan, Ann Arbor, MI, United States
| | - Jennifer Bridwell-Rabb
- Department of Chemistry, University of Michigan, Ann Arbor, MI, United States; Program in Chemical Biology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
39
|
Chen WF, Fu YW, Zeng ZY, Guo SQ, Yan YL, Tu YF, Gou TG, Zhang QZ. Establishment and application of a TaqMan probe–based qPCR for the detection of Enterocytozoon hepatopenaei in shrimp Litopenaeus vannamei. Parasitol Res 2022; 121:2263-2274. [DOI: 10.1007/s00436-022-07559-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
|
40
|
Bonomi F, Iametti S, Barbiroli A. Protein interactions in the biological assembly of iron-sulfur clusters in Escherichia coli: Molecular and mechanistic aspects of the earliest assembly steps. IUBMB Life 2022; 74:723-732. [PMID: 35611886 PMCID: PMC9321986 DOI: 10.1002/iub.2622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/24/2022] [Indexed: 11/11/2022]
Abstract
This contribution focuses on the earliest steps of the assembly of FeS clusters and their insertion into acceptor apoproteins, that call for transient formation of a 2Fe2S cluster on a scaffold protein from sulfide and iron salts. For the sake of simplicity, this report is essentially limited to the Escherichia coli isc-encoded proteins and does not take into account agents that modulate the enzymatic synthesis of sulfide by protein in the same operon or the redox events associated with both sulfide generation and conversion of 2Fe2S structures in clusters of higher nuclearity. Therefore, the results discussed here are based on chemical reconstitution systems using inorganic sulfide, ferric salts, and excess thiols. This simplification offers the possibility to address some mechanistic issues related to the role of protein/protein interaction as for modulating: (a) the rate of cluster assembly on scaffold proteins; (b) the stability of the cluster on the scaffold protein; and (c) the rate of transfer to acceptor apoproteins as also influenced by the acceptor concentration. The emerging picture highlights the mechanistic versatility of the systems, that is discussed in terms of the capability of such an apparently simple combination of proteins to cope with various physiological situation. The hypothetical mechanism presented here may represent an additional way of modulating the rate and outcome of the overall process while avoiding potential toxicity issues.
Collapse
Affiliation(s)
- Francesco Bonomi
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Stefania Iametti
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Alberto Barbiroli
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
41
|
Nakamura R, Ogawa S, Takahashi Y, Fujishiro T. Cycloserine enantiomers inhibit PLP‐dependent cysteine desulfurase SufS via distinct mechanisms. FEBS J 2022; 289:5947-5970. [DOI: 10.1111/febs.16455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/20/2022] [Accepted: 04/07/2022] [Indexed: 01/31/2023]
Affiliation(s)
- Ryosuke Nakamura
- Department of Biochemistry and Molecular Biology Graduate School of Science and Engineering Saitama University Japan
| | - Shoko Ogawa
- Department of Biochemistry and Molecular Biology Graduate School of Science and Engineering Saitama University Japan
| | - Yasuhiro Takahashi
- Department of Biochemistry and Molecular Biology Graduate School of Science and Engineering Saitama University Japan
| | - Takashi Fujishiro
- Department of Biochemistry and Molecular Biology Graduate School of Science and Engineering Saitama University Japan
| |
Collapse
|
42
|
Abstract
CyuA of Escherichia coli is an inducible desulfidase that degrades cysteine to pyruvate, ammonium, and hydrogen sulfide. Workers have conjectured that its role may be to defend bacteria against the toxic effects of cysteine. However, cyuA sits in an operon alongside cyuP, which encodes a cysteine importer that seems ill suited to protecting the cell from environmental cysteine. In this study, transport measurements established that CyuP is a cysteine-specific, high-flux importer. The concerted action of CyuP and CyuA allowed anaerobic E. coli to employ cysteine as either the sole nitrogen or the sole carbon/energy source. CyuA was essential for this function, and although other transporters can slowly bring cysteine into the cell, CyuP-proficient cells outcompeted cyuP mutants. Cells immediately consumed the ammonia and pyruvate that CyuA generated, with little or none escaping from the cell. The expression of the cyuPA operon depended upon both CyuR, a cysteine-activated transcriptional activator, and Crp. This control is consistent with its catabolic function. In fact, the cyuPA operon sits immediately downstream of the thrABCDEFG operon, which allows the analogous fermentation of serine and threonine; this arrangement suggests that this gene cluster may have moved jointly through the anaerobic biota, providing E. coli with the ability to ferment a limited set of amino acids. Interestingly, both the cyu- and thr-encoded pathways depend upon oxygen-sensitive enzymes and cannot contribute to amino acid catabolism in oxic environments.
Collapse
|
43
|
Selles B, Moseler A, Caubrière D, Sun SK, Ziesel M, Dhalleine T, Hériché M, Wirtz M, Rouhier N, Couturier J. The cytosolic Arabidopsis thaliana cysteine desulfurase ABA3 delivers sulfur to the sulfurtransferase STR18. J Biol Chem 2022; 298:101749. [PMID: 35189141 PMCID: PMC8931425 DOI: 10.1016/j.jbc.2022.101749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 11/23/2022] Open
Abstract
The biosynthesis of many sulfur-containing molecules depends on cysteine as a sulfur source. Both the cysteine desulfurase (CD) and rhodanese (Rhd) domain–containing protein families participate in the trafficking of sulfur for various metabolic pathways in bacteria and human, but their connection is not yet described in plants. The existence of natural chimeric proteins containing both CD and Rhd domains in specific bacterial genera, however, suggests a general interaction between these proteins. We report here the biochemical relationships between two cytosolic proteins from Arabidopsis thaliana, a Rhd domain–containing protein, the sulfurtransferase 18 (STR18), and a CD isoform referred to as ABA3, and compare these biochemical features to those of a natural CD–Rhd fusion protein from the bacterium Pseudorhodoferax sp. We observed that the bacterial enzyme is bifunctional exhibiting both CD and STR activities using l-cysteine and thiosulfate as sulfur donors but preferentially using l-cysteine to catalyze transpersulfidation reactions. In vitro activity assays and mass spectrometry analyses revealed that STR18 stimulates the CD activity of ABA3 by reducing the intermediate persulfide on its catalytic cysteine, thereby accelerating the overall transfer reaction. We also show that both proteins interact in planta and form an efficient sulfur relay system, whereby STR18 catalyzes transpersulfidation reactions from ABA3 to the model acceptor protein roGFP2. In conclusion, the ABA3–STR18 couple likely represents an uncharacterized pathway of sulfur trafficking in the cytosol of plant cells, independent of ABA3 function in molybdenum cofactor maturation.
Collapse
Affiliation(s)
| | - Anna Moseler
- Université de Lorraine, INRAE, IAM, Nancy, France
| | | | - Sheng-Kai Sun
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | | | | | | | - Markus Wirtz
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | | | - Jérémy Couturier
- Université de Lorraine, INRAE, IAM, Nancy, France; Institut Universitaire de France, France.
| |
Collapse
|
44
|
Sinner E, Marous DR, Townsend CA. Evolution of Methods for the Study of Cobalamin-Dependent Radical SAM Enzymes. ACS BIO & MED CHEM AU 2022; 2:4-10. [PMID: 35341020 PMCID: PMC8950095 DOI: 10.1021/acsbiomedchemau.1c00032] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While bioinformatic evidence of cobalamin-dependent radical S-adenosylmethionine (SAM) enzymes has existed since the naming of the radical SAM superfamily in 2001, none were biochemically characterized until 2011. In the past decade, the field has flourished as methodological advances have facilitated study of the subfamily. Because of the ingenuity and perseverance of researchers in this field, we now have functional, mechanistic, and structural insight into how this class of enzymes harnesses the power of both the cobalamin and radical SAM cofactors to achieve catalysis. All of the early characterized enzymes in this subfamily were methylases, but the activity of these enzymes has recently been expanded beyond methylation. We anticipate that the characterized functions of these enzymes will become both better understood and increasingly diverse with continued study.
Collapse
Affiliation(s)
- Erica
K. Sinner
- Department
of Chemistry, Johns Hopkins University, 3400 N Charles St., Baltimore, Maryland 21218, United States
| | - Daniel R. Marous
- Department
of Chemistry, Wittenberg University, 200 W Ward St., Springfield, Ohio 45504, United States
| | - Craig A. Townsend
- Department
of Chemistry, Johns Hopkins University, 3400 N Charles St., Baltimore, Maryland 21218, United States
| |
Collapse
|
45
|
Puglisi R. Protein Mutations and Stability, a Link with Disease: The Case Study of Frataxin. Biomedicines 2022; 10:biomedicines10020425. [PMID: 35203634 PMCID: PMC8962269 DOI: 10.3390/biomedicines10020425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
Protein mutations may lead to pathologies by causing protein misfunction or propensity to degradation. For this reason, several studies have been performed over the years to determine the capability of proteins to retain their native conformation under stress condition as well as factors to explain protein stabilization and the mechanisms behind unfolding. In this review, we explore the paradigmatic example of frataxin, an iron binding protein involved in Fe–S cluster biogenesis, and whose impairment causes a neurodegenerative disease called Friedreich’s Ataxia (FRDA). We summarize what is known about most common point mutations identified so far in heterozygous FRDA patients, their effects on frataxin structure and function and the consequences of its binding with partners.
Collapse
Affiliation(s)
- Rita Puglisi
- UK Dementia Research Institute at the Wohl Institute of King's College London, London SE59RT, UK
| |
Collapse
|
46
|
Karunakaran G, Yang Y, Tremblay V, Ning Z, Martin J, Belaouad A, Figeys D, Brunzelle J, Giguere PM, Stintzi A, Couture JF. Structural analysis of Atopobium parvulum SufS cysteine desulfurase linked to Crohn's disease. FEBS Lett 2022; 596:898-909. [PMID: 35122247 DOI: 10.1002/1873-3468.14295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/09/2022]
Abstract
Crohn's Disease (CD) is characterized by the chronic inflammation of the gastrointestinal tract. A dysbiotic microbiome and a defective immune system are linked to CD, where hydrogen sulfide (H2 S) microbial producers positively correlate with the severity of the disease. Atopobium parvulum is a key H2 S producer from the microbiome of CD patients. In this study, the biochemical characterization of two Atopobium parvulum cysteine desulfurases, ApSufS and ApCsdB, show that the enzymes are allosterically regulated. Structural analyses reveal that ApSufS forms a dimer with conserved characteristics observed in type II cysteine desulfurases. Four residues surrounding the active site are essential to catalyze cysteine desulfurylation, and a segment of short-chain residues grant access for substrate binding. A better understanding of ApSufS will help future avenues for CD treatment.
Collapse
Affiliation(s)
- Gapisha Karunakaran
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Shanghai Institute of Materia Medica-University of Ottawa Joint Research Centre on Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON, Canada.,Faculty of Medicine, Ottawa, ON, Canada
| | - Yidai Yang
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Shanghai Institute of Materia Medica-University of Ottawa Joint Research Centre on Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON, Canada.,Faculty of Medicine, Ottawa, ON, Canada
| | - Véronique Tremblay
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Shanghai Institute of Materia Medica-University of Ottawa Joint Research Centre on Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON, Canada.,Faculty of Medicine, Ottawa, ON, Canada
| | - Zhibin Ning
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Shanghai Institute of Materia Medica-University of Ottawa Joint Research Centre on Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON, Canada.,Faculty of Medicine, Ottawa, ON, Canada
| | - Jade Martin
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Shanghai Institute of Materia Medica-University of Ottawa Joint Research Centre on Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON, Canada.,Faculty of Medicine, Ottawa, ON, Canada
| | - Amine Belaouad
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Shanghai Institute of Materia Medica-University of Ottawa Joint Research Centre on Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON, Canada.,Faculty of Medicine, Ottawa, ON, Canada
| | - Daniel Figeys
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Shanghai Institute of Materia Medica-University of Ottawa Joint Research Centre on Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON, Canada.,Faculty of Medicine, Ottawa, ON, Canada
| | - Joseph Brunzelle
- Feinberg School of Medicine, Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, Chicago, Illinois, 60611, USA
| | - Patrick M Giguere
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Faculty of Medicine, Ottawa, ON, Canada
| | - Alain Stintzi
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Shanghai Institute of Materia Medica-University of Ottawa Joint Research Centre on Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON, Canada.,Faculty of Medicine, Ottawa, ON, Canada
| | - Jean-François Couture
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Shanghai Institute of Materia Medica-University of Ottawa Joint Research Centre on Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON, Canada.,Faculty of Medicine, Ottawa, ON, Canada
| |
Collapse
|
47
|
Lee YH, Liu HW. Studies of GenK and OxsB, two B 12-dependent radical SAM enzymes involved in natural product biosynthesis. Methods Enzymol 2022; 669:71-90. [PMID: 35644181 PMCID: PMC9178707 DOI: 10.1016/bs.mie.2021.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The B12-dependent radical SAM enzymes are an emerging subgroup of biological catalysts that bind a cobalamin cofactor in addition to the canonical [Fe4S4] cluster characteristic of radical SAM enzymes. Most of the B12-dependent radical SAM enzymes that have been characterized mediated methyltransfer reactions; however, a small number are known to catalyze more diverse reactions such as ring contractions. Thus, Genk is a methyltransferase from the gentamicin C biosynthetic pathway, whereas OxsB catalyzes the oxidative ring contraction of 2'-deoxyadenosine 5'-phosphates to generate an oxetane aldehyde during the biosynthesis of oxetanocin A. The preparation and in vitro characterization of such enzymes is complicated by the presence of two redox sensitive cofactors in addition to challenges in obtaining soluble protein for study. This chapter describes expression, purification and assay methodologies for GenK and OxsB highlighting the use of denaturation/refolding protocols for solubilizing inclusion bodies as well as the use of cluster assembly and cobalamin uptake machinery during in vivo expression.
Collapse
Affiliation(s)
- Yu-Hsuan Lee
- Department of Chemistry, University of Texas at Austin, Austin, TX, United States
| | - Hung-Wen Liu
- Department of Chemistry, University of Texas at Austin, Austin, TX, United States; Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
48
|
The B 12-independent glycerol dehydratase activating enzyme from Clostridium butyricum cleaves SAM to produce 5'-deoxyadenosine and not 5'-deoxy-5'-(methylthio)adenosine. J Inorg Biochem 2022; 227:111662. [PMID: 34847521 PMCID: PMC8889718 DOI: 10.1016/j.jinorgbio.2021.111662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 02/03/2023]
Abstract
Glycerol dehydratase activating enzyme (GD-AE) is a radical S-adenosyl-l-methionine (SAM) enzyme that installs a catalytically essential amino acid backbone radical onto glycerol dehydratase in bacteria under anaerobic conditions. Although GD-AE is closely homologous to other radical SAM activases that have been shown to cleave the S-C(5') bond of SAM to produce 5'-deoxyadenosine (5'-dAdoH) and methionine, GD-AE from Clostridium butyricum has been reported to instead cleave the S-C(γ) bond of SAM to yield 5'-deoxy-5'-(methylthio)adenosine (MTA). Here we re-investigate the SAM cleavage reaction catalyzed by GD-AE and show that it produces the widely observed 5'-dAdoH, and not the less conventional product MTA.
Collapse
|
49
|
Maio N, Rouault TA. Mammalian iron sulfur cluster biogenesis: From assembly to delivery to recipient proteins with a focus on novel targets of the chaperone and co‐chaperone proteins. IUBMB Life 2022; 74:684-704. [PMID: 35080107 PMCID: PMC10118776 DOI: 10.1002/iub.2593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/05/2021] [Accepted: 12/23/2021] [Indexed: 12/17/2022]
Affiliation(s)
- Nunziata Maio
- Molecular Medicine Branch Eunice Kennedy Shriver National Institute of Child Health and Human Development Bethesda Maryland USA
| | - Tracey A. Rouault
- Molecular Medicine Branch Eunice Kennedy Shriver National Institute of Child Health and Human Development Bethesda Maryland USA
| |
Collapse
|
50
|
Fujishiro T, Nakamura R, Kunichika K, Takahashi Y. Structural diversity of cysteine desulfurases involved in iron-sulfur cluster biosynthesis. Biophys Physicobiol 2022; 19:1-18. [PMID: 35377584 PMCID: PMC8918507 DOI: 10.2142/biophysico.bppb-v19.0001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/02/2022] [Indexed: 12/04/2022] Open
Abstract
Cysteine desulfurases are pyridoxal-5'-phosphate (PLP)-dependent enzymes that mobilize sulfur derived from the l-cysteine substrate to the partner sulfur acceptor proteins. Three cysteine desulfurases, IscS, NifS, and SufS, have been identified in ISC, NIF, and SUF/SUF-like systems for iron-sulfur (Fe-S) cluster biosynthesis, respectively. These cysteine desulfurases have been investigated over decades, providing insights into shared/distinct catalytic processes based on two types of enzymes (type I: IscS and NifS, type II: SufS). This review summarizes the insights into the structural/functional varieties of bacterial and eukaryotic cysteine desulfurases involved in Fe-S cluster biosynthetic systems. In addition, an inactive cysteine desulfurase IscS paralog, which contains pyridoxamine-5'-phosphate (PMP), instead of PLP, is also described to account for its hypothetical function in Fe-S cluster biosynthesis involving this paralog. The structural basis for cysteine desulfurase functions will be a stepping stone towards understanding the diversity and evolution of Fe-S cluster biosynthesis.
Collapse
Affiliation(s)
- Takashi Fujishiro
- Department of Biochemistry and Moecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Ryosuke Nakamura
- Department of Biochemistry and Moecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Kouhei Kunichika
- Department of Biochemistry and Moecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Yasuhiro Takahashi
- Department of Biochemistry and Moecular Biology, Graduate School of Science and Engineering, Saitama University
| |
Collapse
|