1
|
Walker JR, Zhu XD. Role of Cockayne Syndrome Group B Protein in Replication Stress: Implications for Cancer Therapy. Int J Mol Sci 2022; 23:10212. [PMID: 36142121 PMCID: PMC9499456 DOI: 10.3390/ijms231810212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 12/01/2022] Open
Abstract
A variety of endogenous and exogenous insults are capable of impeding replication fork progression, leading to replication stress. Several SNF2 fork remodelers have been shown to play critical roles in resolving this replication stress, utilizing different pathways dependent upon the nature of the DNA lesion, location on the DNA, and the stage of the cell cycle, to complete DNA replication in a manner preserving genetic integrity. Under certain conditions, however, the attempted repair may lead to additional genetic instability. Cockayne syndrome group B (CSB) protein, a SNF2 chromatin remodeler best known for its role in transcription-coupled nucleotide excision repair, has recently been shown to catalyze fork reversal, a pathway that can provide stability of stalled forks and allow resumption of DNA synthesis without chromosome breakage. Prolonged stalling of replication forks may collapse to give rise to DNA double-strand breaks, which are preferentially repaired by homology-directed recombination. CSB plays a role in repairing collapsed forks by promoting break-induced replication in S phase and early mitosis. In this review, we discuss roles of CSB in regulating the sources of replication stress, replication stress response, as well as the implications of CSB for cancer therapy.
Collapse
Affiliation(s)
| | - Xu-Dong Zhu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
2
|
Kemp MG. DNA damage-induced ATM- and Rad-3-related (ATR) kinase activation in non-replicating cells is regulated by the XPB subunit of transcription factor IIH (TFIIH). J Biol Chem 2017; 292:12424-12435. [PMID: 28592488 DOI: 10.1074/jbc.m117.788406] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/05/2017] [Indexed: 11/06/2022] Open
Abstract
The role of the DNA damage response protein kinase ataxia telangiectasia-mutated (ATM)- and Rad-3-related (ATR) in the cellular response to DNA damage during the replicative phase of the cell cycle has been extensively studied. However, little is known about ATR kinase function in cells that are not actively replicating DNA and that constitute most cells in the human body. Using small-molecule inhibitors of ATR kinase and overexpression of a kinase-inactive form of the enzyme, I show here that ATR promotes cell death in non-replicating/non-cycling cultured human cells exposed to N-acetoxy-2-acetylaminofluorene (NA-AAF), which generates bulky DNA adducts that block RNA polymerase movement. Immunoblot analyses of soluble protein extracts revealed that ATR and other cellular proteins containing SQ motifs become rapidly and robustly phosphorylated in non-cycling cells exposed to NA-AAF in a manner largely dependent on ATR kinase activity but independent of the essential nucleotide excision repair factor XPA. Although the topoisomerase I inhibitor camptothecin also activated ATR in non-cycling cells, other transcription inhibitors that do not directly damage DNA failed to do so. Interestingly, genetic and pharmacological inhibition of the XPB subunit of transcription factor IIH prevented the accumulation of the single-stranded DNA binding protein replication protein A (RPA) on damaged chromatin and severely abrogated ATR signaling in response to NA-AAF and camptothecin. Together, these results reveal a previously unknown role for transcription factor IIH in ATR kinase activation in non-replicating, non-cycling cells.
Collapse
Affiliation(s)
- Michael G Kemp
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio 45435.
| |
Collapse
|
3
|
Vélez-Cruz R, Egly JM. Cockayne syndrome group B (CSB) protein: at the crossroads of transcriptional networks. Mech Ageing Dev 2013; 134:234-42. [PMID: 23562425 DOI: 10.1016/j.mad.2013.03.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 03/14/2013] [Accepted: 03/25/2013] [Indexed: 10/27/2022]
Abstract
Cockayne syndrome (CS) is a rare genetic disorder characterized by a variety of growth and developmental defects, photosensitivity, cachectic dwarfism, hearing loss, skeletal abnormalities, progressive neurological degeneration, and premature aging. CS arises due to mutations in the CSA and CSB genes. Both gene products are required for the transcription-coupled (TC) branch of the nucleotide excision repair (NER) pathway, however, the severe phenotype of CS patients is hard to reconcile with a sole defect in TC-NER. Studies using cells from patients and mouse models have shown that the CSB protein is involved in a variety of cellular pathways and plays a major role in the cellular response to stress. CSB has been shown to regulate processes such as the transcriptional recovery after DNA damage, the p53 transcriptional response, the response to hypoxia, the response to insulin-like growth factor-1 (IGF-1), transactivation of nuclear receptors, transcription of housekeeping genes and the transcription of rDNA. Some of these processes are also affected in combined XP/CS patients. These new advances in the function(s) of CSB shed light onto the etiology of the clinical features observed in CS patients and could potentially open therapeutic avenues for these patients in the future. Moreover, the study of CS could further our knowledge of the aging process.
Collapse
Affiliation(s)
- Renier Vélez-Cruz
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/Université de Strasbourg, BP 163, 67404 Illkirch Cedex, C. U. Strasbourg, France.
| | | |
Collapse
|
4
|
McKay BC, Cabrita MA. Arresting transcription and sentencing the cell: the consequences of blocked transcription. Mech Ageing Dev 2013; 134:243-52. [PMID: 23542592 DOI: 10.1016/j.mad.2013.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/16/2013] [Accepted: 03/16/2013] [Indexed: 10/27/2022]
Abstract
Bulky DNA adducts induced by agents like ultraviolet light, cisplatin and oxidative metabolism pose a block to elongation by RNA polymerase II (RNAPII). The arrested RNAPII can initiate the repair of transcription-blocking DNA lesions by transcription-coupled nucleotide excision repair (TC-NER) to permit efficient recovery of mRNA synthesis while widespread sustained transcription blocks lead to apoptosis. Therefore, RNAPII serves as a processive DNA damage sensor that identifies transcription-blocking DNA lesions. Cockayne syndrome (CS) is an autosomal recessive disorder characterized by a complex phenotype that includes clinical photosensitivity, progressive neurological degeneration and premature-aging. CS is associated with defects in TC-NER and the recovery of mRNA synthesis, making CS cells exquisitely sensitive to a variety of DNA damaging agents. These defects in the coupling of repair and transcription appear to underlie some of the complex clinical features of CS. Recent insight into the consequences of blocked transcription and their relationship to CS will be discussed.
Collapse
Affiliation(s)
- Bruce C McKay
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Canada.
| | | |
Collapse
|
5
|
Krüger S, Meier C. Synthesis of Site-Specific Damaged DNA Strands by 8-(Acetylarylamino)-2′-deoxyguanosine Adducts and Effects on Various DNA Polymerases. European J Org Chem 2013. [DOI: 10.1002/ejoc.201200984] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Cramers P, Verhoeven EE, Filon AR, Rockx DAP, Santos SJ, van der Leer AA, Kleinjans JCS, van Zeeland AA, Mullenders LHF. Impaired repair of ionizing radiation-induced DNA damage in Cockayne syndrome cells. Radiat Res 2011; 175:432-43. [PMID: 21299404 DOI: 10.1667/rr1972.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cockayne syndrome (CS) cells are defective in transcription-coupled repair (TCR) and sensitive to oxidizing agents, including ionizing radiation. We examined the hypothesis that TCR plays a role in ionizing radiation-induced oxidative DNA damage repair or alternatively that CS plays a role in transcription elongation after irradiation. Irradiation with doses up to 100 Gy did not inhibit RNA polymerase II-dependent transcription in normal and CS-B fibroblasts. In contrast, RNA polymerase I-dependent transcription was severely inhibited at 5 Gy in normal cells, indicating different mechanisms of transcription response to X rays. The frequency of radiation-induced base damage was 2 × 10(-7) lesions/base/Gy, implying that 150 Gy is required to induce one lesion/30-kb transcription unit; no TCR of X-ray-induced base damage in the p53 gene was observed. Therefore, it is highly unlikely that defective TCR underlies the sensitivity of CS to ionizing radiation. Overall genome repair levels of radiation-induced DNA damage measured by repair replication were significantly reduced in CS-A and CS-B cells. Taken together, the results do not provide evidence for a key role of TCR in repair of radiation-induced oxidative damages in human cells; rather, impaired repair of oxidative lesions throughout the genome may contribute to the CS phenotype.
Collapse
Affiliation(s)
- Patricia Cramers
- Department of Toxicogenetics, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Lin Z, Zhang X, Tuo J, Guo Y, Green B, Chan CC, Tan W, Huang Y, Ling W, Kadlubar FF, Lin D, Ning B. A variant of the Cockayne syndrome B gene ERCC6 confers risk of lung cancer. Hum Mutat 2008; 29:113-22. [PMID: 17854076 PMCID: PMC2441604 DOI: 10.1002/humu.20610] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cockayne syndrome B protein (ERCC6) plays an essential role in DNA repair. However, the Cockayne syndrome caused by the ERCC6 defect has not been linked to cancer predisposition; likely due to the fact that cells with severe disruption of the ERCC6 function are sensitive to lesion-induced apoptosis, thus reducing the chance of tumorigenesis. The biological function and cancer susceptibility of a common variant rs3793784:C>G (c.-6530C>G) in the ERCC6 was examined. We show that the c.-6530C allele has lower binding affinity of Sp1 by EMSA and displays a lower transcriptional activity in vitro and in vivo. We then examined the contribution of this polymorphism to the risk of lung cancer in a case-control study with 1,000 cases and 1,000 controls. The case-control analysis revealed a 1.76-fold (P= x 10(-9)) excess risk of developing lung cancer for the c.-6530CC carriers compared with noncarriers. The c.-6530CC interacts with smoking to intensify lung cancer risk, with the odds ratio (OR)=9 for developing lung cancer among heavy smokers. Our data constituted strong evidence that ERCC6 rs3793784:C>G alters its transcriptional activity and may confer personalized susceptibility to lung cancer.
Collapse
Affiliation(s)
- Zhongning Lin
- Division of Personalized Nutrition and Medicine, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xuemei Zhang
- Department of Etiology and Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingsheng Tuo
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Yongli Guo
- Department of Etiology and Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bridgett Green
- Division of Personalized Nutrition and Medicine, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Chi-Chao Chan
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Wen Tan
- Department of Etiology and Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Huang
- Division of Personalized Nutrition and Medicine, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Wenhua Ling
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Fred F. Kadlubar
- Department of Epidemiology, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Correspondence to: Dongxin Lin, M.D., Department of Etiology and Carcinogenesis, Cancer Hospital & Institute, Chinese Academy of Medical Sciences, Beijing 100021, China. Fax: (86)10-67722460. E-mail: , Baitang Ning, Ph.D., 3900 NCTR Road, HFT-100, Jefferson, AR 72079. E-mail:
| | - Baitang Ning
- Division of Personalized Nutrition and Medicine, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
- Correspondence to: Dongxin Lin, M.D., Department of Etiology and Carcinogenesis, Cancer Hospital & Institute, Chinese Academy of Medical Sciences, Beijing 100021, China. Fax: (86)10-67722460. E-mail: , Baitang Ning, Ph.D., 3900 NCTR Road, HFT-100, Jefferson, AR 72079. E-mail:
| |
Collapse
|
9
|
Radovic S, Rapisarda VA, Tosato V, Bruschi CV. Functional and comparative characterization of Saccharomyces cerevisiae RVB1 and RVB2 genes with bacterial Ruv homologues. FEMS Yeast Res 2007; 7:527-39. [PMID: 17302941 DOI: 10.1111/j.1567-1364.2006.00205.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Expression of yeast RuvB-like gene analogues of bacterial RuvB is self-regulated, as episomal overexpression of RVB1 and RVB2 decreases the expression of their chromosomal copies by 85%. Heterozygosity for either gene correlates with lower double-strand break repair of inverted-repeat DNA and decreased survival after UV irradiation, suggesting their haploinsufficiency, while overexpression of the bacterial RuvAB complex improves UV survival in yeast. Rvb2p preferentially binds artificial DNA Holiday junctions like the bacterial RuvAB complex, whereas Rvb1p binds to duplex or cruciform DNA. As both proteins also interact with chromatin, their role in recombination and repair through chromatin remodelling, and their evolutionary relationship to the bacterial homologue, is discussed.
Collapse
Affiliation(s)
- Slobodanka Radovic
- Yeast Molecular Genetics Group, ICGEB, Area Science Park - W, Trieste, Italy
| | | | | | | |
Collapse
|
10
|
Dorazi R, Götz D, Munro S, Bernander R, White MF. Equal rates of repair of DNA photoproducts in transcribed and non-transcribed strands in Sulfolobus solfataricus. Mol Microbiol 2006; 63:521-9. [PMID: 17163966 DOI: 10.1111/j.1365-2958.2006.05516.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The nucleotide excision repair (NER) pathway removes bulky lesions such as photoproducts from DNA. In both bacteria and eukarya, lesions located in transcribed strands are repaired significantly faster than those located in non-transcribed strands due to damage signalling by stalled RNA polymerase molecules: a phenomenon known as transcription-coupled repair (TCR). TCR requires a mechanism for coupling the detection of stalled RNA polymerase molecules to the NER pathway, provided in bacteria by the Mfd protein. In the third domain of life, archaea, the pathway of NER is not well defined, there are no Mfd homologues and the existence of TCR has not been investigated. In this report we looked at rates of removal of photoproducts in three different operons of the crenarchaeon Sulfolobus solfataricus following UV irradiation. We found no evidence for significantly faster repair in the transcribed strands of these three operons. The rate of global genome repair in S. solfataricus is relatively rapid, and this may obviate the requirement for a specialized TCR pathway. Significantly faster repair kinetics were observed in the presence of visible light, consistent with the presence of a gene for photolyase in the genome of S. solfataricus.
Collapse
Affiliation(s)
- Robert Dorazi
- Centre for Biomolecular Sciences, University of St Andrews, St Andrews, Fife KY16 9ST, UK
| | | | | | | | | |
Collapse
|
11
|
Lainé JP, Egly JM. When transcription and repair meet: a complex system. Trends Genet 2006; 22:430-6. [PMID: 16797777 DOI: 10.1016/j.tig.2006.06.006] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 04/11/2006] [Accepted: 06/06/2006] [Indexed: 01/03/2023]
Abstract
Transcription-coupled repair (TCR) is a mechanism that removes DNA lesions so that genes can be transcribed correctly. However, the sequence of events that results in a DNA lesion being repaired remains elusive. In this review, we illustrate the potential chain of events leading to the elimination of the damaged DNA and the proper resumption of transcription. We focus on the roles of CSA and CSB proteins, which, when mutated, impair TCR. Defective TCR is one of the features of Cockayne syndrome, a DNA-repair disorder.
Collapse
Affiliation(s)
- Jean-Philippe Lainé
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, BP 163, 67404 Illkirch Cedex, C. U. Strasbourg, France
| | | |
Collapse
|
12
|
Souliotis VL, Dimopoulos MA, Episkopou HG, Kyrtopoulos SA, Sfikakis PP. Preferential in vivo DNA repair of melphalan-induced damage in human genes is greatly affected by the local chromatin structure. DNA Repair (Amst) 2006; 5:972-85. [PMID: 16781199 DOI: 10.1016/j.dnarep.2006.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 05/08/2006] [Accepted: 05/12/2006] [Indexed: 10/24/2022]
Abstract
To investigate the molecular mechanisms of action of the nitrogen mustard melphalan in patients treated for multiple myeloma, the in vivo induction and repair of melphalan-induced DNA damage was measured in genes with different transcriptional activity (b-actin>p53>N-ras>d-globin) from leukocytes of 20 multiple myeloma patients following chemotherapeutic administration of high-dose melphalan (200mg/m(2)) and autologous blood stem cell transplantation. Heterogeneous repair was found among the studied genes. The extent of repair was always in the order: b-actin>p53>N-ras>d-globin, correlating with the gene transcriptional state. Similar findings were obtained using peripheral blood mononuclear cells (PBMC) from healthy volunteers following in vitro treatment with melphalan, indicating that these results are not malignant disease-specific. Following in vitro treatment of PBMC from healthy volunteers with alpha-amanitin, an inhibitor of RNA polymerase II that can also induce condensation of chromatin structure, a significant inhibition of the removal of melphalan-induced damage in the three active genes but not in the silent d-globin gene was found, suggesting that transcription and/or chromatin structure may play important roles in the preferential DNA repair. When the in vivo DNA damage formation and repair in multiple myeloma patients following chemotherapeutic administration of melphalan was measured in the two strands of the active genes, no strand bias was found, indicating that the global genome repair subpathway of nucleotide excision repair may play a crucial role in the repair of these adducts. These results were also confirmed in PBMC from healthy volunteers following in vitro treatment with melphalan. Using micrococcal nuclease digestion of nuclei isolated from PBMC of multiple myeloma patients before the chemotherapeutic treatment, as well as from PBMC of healthy volunteers, we probed the chromatin structure in each gene and found that the "looseness" of the chromatin structure correlated with the levels of the gene-specific repair, being again in the order: b-actin>p53>N-ras>d-globin. To conclude, the in vivo gene-specific repair of melphalan-induced damage in humans is greatly affected by the local chromatin structure.
Collapse
Affiliation(s)
- Vassilis L Souliotis
- National Hellenic Research Foundation, Institute of Biological Research and Biotechnology, 48 Vassileos Constantinou Ave., Athens 11635, Greece.
| | | | | | | | | |
Collapse
|
13
|
Zacal NJ, Francis MA, Rainbow AJ. Enhanced expression from the human cytomegalovirus immediate-early promoter in a non-replicating adenovirus encoded reporter gene following cellular exposure to chemical DNA damaging agents. Biochem Biophys Res Commun 2005; 332:441-9. [PMID: 15894289 DOI: 10.1016/j.bbrc.2005.04.148] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Accepted: 04/29/2005] [Indexed: 11/15/2022]
Abstract
We have examined expression from the human cytomegalovirus (CMV) promoter of a reporter gene encoded in a replication-deficient adenovirus following cellular exposure to heat shock and chemical DNA damaging agents. Expression of the reporter gene was enhanced following prior treatment of cells with cisplatin and N-acetoxy-acetylaminofluorine, but not heat shock. This enhancement was more pronounced and induced by lower chemical concentrations in xeroderma pigmentosum (XP) and Cockayne syndrome fibroblasts that are deficient in the transcription-coupled repair (TCR) pathway of nucleotide excision repair (NER) compared to that in TCR-proficient XP-C and normal strains. This is consistent with an induction of expression from the CMV promoter mediated by persistent (unrepaired) DNA damage in active genes. We show also that expression of the CMV-driven reporter is enhanced following treatment of several human tumour cell lines. This later finding has implications for combined chemotherapy and gene therapy using CMV-driven expression vectors.
Collapse
Affiliation(s)
- Natalie J Zacal
- Department of Biology, McMaster University, Hamilton, Ont., Canada L8S 4K1
| | | | | |
Collapse
|
14
|
Fousteri M, van Hoffen A, Vargova H, Mullenders LHF. Repair of DNA lesions in chromosomal DNA. DNA Repair (Amst) 2005; 4:919-25. [PMID: 15961352 DOI: 10.1016/j.dnarep.2005.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2005] [Indexed: 10/25/2022]
Abstract
Decondensation of chromatin is essential to facilitate access to DNA metabolizing processes such as transcription and DNA repair. Disruption of histone-DNA contacts by histone modification or by ATP dependent chromatin remodelling allows DNA-binding proteins to compete with histones for DNA. The efficiency of global genome nucleotide excision repair (GGR) that removes a variety of helix distorting DNA lesions is known to be affected by chromatin structure most notably demonstrated by the slow repair of heterochromatin. In addition, the efficiency of GGR to repair lesions in transcriptionally active genes requires functional CSA and B proteins. We found that repair of UV-photolesions in both strands of the active adenosine deaminase gene was delayed in CS cells when compared to normal human fibroblasts. We suggest that the lack of transcription recovery characteristic for CS cells exposed to DNA damaging agents, might lead to changes in the chromatin structure of active genes, causing less efficient repair of lesions in these genes when compared to normal cells.
Collapse
Affiliation(s)
- Maria Fousteri
- Department of Toxicogenetics, Leiden University Medical Centre, Wassenaarseweg 72, 2333 AL Leiden, The Netherlands
| | | | | | | |
Collapse
|
15
|
Hoogervorst EM, van Oostrom CTM, Beems RB, van Benthem J, van den Berg J, van Kreijl CF, Vos JG, de Vries A, van Steeg H. 2-AAF-induced tumor development in nucleotide excision repair-deficient mice is associated with a defect in global genome repair but not with transcription coupled repair. DNA Repair (Amst) 2005; 4:3-9. [PMID: 15533832 DOI: 10.1016/j.dnarep.2004.08.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Indexed: 11/24/2022]
Abstract
The nucleotide excision repair (NER) pathway comprises two sub-pathways, transcription coupled repair (TCR) and global genome repair (GGR). To establish the importance of these separate sub-pathways in tumor suppression, we exposed mice deficient for either TCR (Csb), GGR (Xpc) or both (Xpa) to 300 ppm 2-acetylaminofluorene (in feed, ad libitum) in a unique comparative exposure experiment. We found that cancer proneness was directly linked to a defect in the GGR pathway of NER as both Xpa and Xpc mice developed significantly more liver tumors upon 2-AAF exposure than wild type or Csb mice. In contrast, a defect in TCR appeared to act tumor suppressive, leading to a lower hepatocellular tumor response in Xpa mice (tumor incidence of 25%) as compared to Xpc mice (53% tumor-bearing mice). The link between deficient GGR and tumor proneness was most pronounced in the liver, but this phenomenon was also found in the urinary bladder. As tumor induction by 2-AAF appeared almost exclusively dependent on a defect in GGR, we examined whether gene mutation induction in the non-transcribed lacZ locus could reliably predict tumor risk. Interestingly, however, short-term 2-AAF exposure induced lacZ mutant levels in Csb mice almost as high as those found in Xpa or Xpc mice. This indicates that lacZ mutant frequencies are not correlated with a specific DNA repair defect and eventual tumor outcome, at least not in the experimental design presented here.
Collapse
Affiliation(s)
- Esther M Hoogervorst
- Laboratory of Toxicology, Pathology and Genetics, National Institute of Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gillet LCJ, Alzeer J, Schärer OD. Site-specific incorporation of N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (dG-AAF) into oligonucleotides using modified 'ultra-mild' DNA synthesis. Nucleic Acids Res 2005; 33:1961-9. [PMID: 15814813 PMCID: PMC1074722 DOI: 10.1093/nar/gki335] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2004] [Revised: 03/16/2005] [Accepted: 03/16/2005] [Indexed: 12/30/2022] Open
Abstract
Aromatic amino and nitro compounds are potent carcinogens found in the environment that exert their toxic effects by reacting with DNA following metabolic activation. One important adduct is N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (dG-AAF), which has been extensively used in studies of the mechanisms of DNA repair and mutagenesis. Despite the importance of dG-AAF adducts in DNA, an efficient method for its incorporation into DNA using solid-phase synthesis is still missing. We report the development of a modified 'ultra-mild' DNA synthesis protocol that allows the incorporation of dG-AAF into oligonucleotides of any length accessible by solid-phase DNA synthesis with high efficiency and independent of sequence context. Key to this endeavor was the development of improved deprotection conditions (10% diisopropylamine in methanol supplemented with 0.25 M of beta-mercaptoethanol) designed to remove protecting groups of commercially available 'ultra-mild' phosphoramidite building blocks without compromising the integrity of the exquisitely base-labile acetyl group at N8 of dG-AAF. We demonstrate the suitability of these oligonucleotides in the nucleotide excision repair reaction. Our synthetic approach should facilitate comprehensive studies of the mechanisms of repair and mutagenesis induced by dG-AAF adducts in DNA and should be of general use for the incorporation of base-labile functionalities into DNA.
Collapse
Affiliation(s)
- Ludovic C. J. Gillet
- Institute for Molecular Cancer Research, University of ZürichAugust Forel Strasse 7, 8008 Zürich, Switzerland
| | - Jawad Alzeer
- Institute for Molecular Cancer Research, University of ZürichAugust Forel Strasse 7, 8008 Zürich, Switzerland
| | - Orlando D. Schärer
- Institute for Molecular Cancer Research, University of ZürichAugust Forel Strasse 7, 8008 Zürich, Switzerland
| |
Collapse
|
17
|
Iwamoto TA, Kobayashi N, Imoto K, Yamamoto A, Nakamura Y, Yamauchi Y, Okumura H, Tanaka A, Hanaoka F, Shibutani S, Miyagawa S, Mori T. In situ detection of acetylaminofluorene-DNA adducts in human cells using monoclonal antibodies. DNA Repair (Amst) 2005; 3:1475-82. [PMID: 15380103 DOI: 10.1016/j.dnarep.2004.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Revised: 05/26/2004] [Accepted: 05/28/2004] [Indexed: 10/26/2022]
Abstract
The present study was performed to generate monoclonal antibodies capable of detecting N-acetoxy-2-acetylaminofluorene (NA-AAF)-derived DNA adducts in human cells in situ. As an immunogen, we employed NA-AAF-modified single-stranded DNA coupled electrostatically to methylated protein and we produced five different monoclonal antibodies. All of them showed strong binding to NA-AAF-modified DNA, but had undetectable or minimal binding to undamaged DNA. Competitive inhibition experiments revealed that the epitope recognized by these antibodies is N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (dG-C8-AAF) in DNA, although deacetylated N-(deoxyguanosin-8-yl)-2-aminofluorene in DNA is also recognized with slightly less efficiency. In contrast, these antibodies did not bind to 3-(deoxyguanosin-N(2)-yl)-2-acetylaminofluorene in DNA or to UV-induced lesions in DNA. Interestingly, they showed only minimal binding to small AAF-nucleoside adducts (dG-C8-AAF), indicating that DNA regions flanking a DNA-bound adduct, in addition to the adduct itself, are essential for the stable binding of the antibodies. Using an enzyme-linked immunosorbent assay with the most promising antibody (AAF-1), we detected the concentration-dependent induction of NA-AAF-modified adducts in DNA from repair deficient xeroderma pigmentosum (XP) cells treated with physiological concentrations of NA-AAF. Moreover, the assay enabled to confirm that normal human cells efficiently repaired NA-AAF-induced DNA adducts but not XP-A cells. Most importantly, the formation of NA-AAF-induced DNA adducts in individual nuclei of XP cells could be clearly visualized using indirect immunofluorescence. Thus, we succeeded in establishing novel monoclonal antibodies capable of the in situ detection of NA-AAF-induced DNA adducts in human cells.
Collapse
Affiliation(s)
- Taka-aki Iwamoto
- Radioisotope Research Center, Department of Dermatology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Licht CL, Stevnsner T, Bohr VA. Cockayne syndrome group B cellular and biochemical functions. Am J Hum Genet 2003; 73:1217-39. [PMID: 14639525 PMCID: PMC1180389 DOI: 10.1086/380399] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Accepted: 10/01/2003] [Indexed: 01/17/2023] Open
Abstract
The devastating genetic disorder Cockayne syndrome (CS) arises from mutations in the CSA and CSB genes. CS is characterized by progressive multisystem degeneration and is classified as a segmental premature-aging syndrome. The CS complementation group B (CSB) protein is at the interface of transcription and DNA repair and is involved in transcription-coupled and global genome-DNA repair, as well as in general transcription. Recent structure-function studies indicate a process-dependent variation in the molecular mechanism employed by CSB and provide a starting ground for a description of the mechanisms and their interplay.
Collapse
Affiliation(s)
- Cecilie Löe Licht
- Laboratory of DNA Repair, Department of Molecular Biology, University of Aarhus, Aarhus, Denmark; and Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore
| | - Tinna Stevnsner
- Laboratory of DNA Repair, Department of Molecular Biology, University of Aarhus, Aarhus, Denmark; and Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore
| | - Vilhelm A. Bohr
- Laboratory of DNA Repair, Department of Molecular Biology, University of Aarhus, Aarhus, Denmark; and Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore
| |
Collapse
|
19
|
van Hoffen A, Balajee AS, van Zeeland AA, Mullenders LHF. Nucleotide excision repair and its interplay with transcription. Toxicology 2003; 193:79-90. [PMID: 14599769 DOI: 10.1016/j.tox.2003.06.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Nucleotide excision repair (NER) is a multistep process capable to remove a variety of DNA distorting lesions from prokaryotic and eukaryotic genomes. In eukaryotic cells, the process requires more than 30 proteins to perform the different steps, i.e. recognition of DNA damage, single strand incisions and excision of the lesion-containing DNA fragment and DNA repair synthesis/ligation. NER can operate via two subpathways: global genome repair (GGR) and a specialized pathway coupled to active transcription (transcription-coupled repair, TCR) and directed to DNA lesions in the transcribed strand of active genes. Both in vivo as well as in cultured cells the fast removal of transcription blocking lesions by TCR is crucial to escape from lethal effects of inhibited transcription inhibition The most delicate step in NER is the recognition of the DNA lesions in their different chromatin context and the mechanism of damage recognition in GGR and TCR is principally different and requires specific proteins. In GGR, the XPC-HR23B is essential for the formation of the incision complex. In TCR the Cockayne syndrome (CS) gene products are key players in the recognition of a stalled RNA polymerase the presumed signaling structure for repair of transcribed strands. In this study, we show that the extent of recovery of UV-inhibited transcription and TCR strictly depends on the amount of CSB protein as well as the amount of DNA damage present in the cell. This indicates that the ratio between DNA damage frequency and CSB protein concentration in the cell is rather critical for acute cellular response, i.e. recovery of inhibited transcription upon DNA damage infliction, and hence cellular survival.
Collapse
Affiliation(s)
- Anneke van Hoffen
- MGC-Department of Toxicogenetics, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, The Netherlands
| | | | | | | |
Collapse
|
20
|
van Gijssel HE, Mullenders LHF, van Oosterwijk MF, Meerman JHN. Blockage of transcription as a trigger for p53 accumulation by 2-acetylaminofluorene DNA-adducts. Life Sci 2003; 73:1759-71. [PMID: 12888115 DOI: 10.1016/s0024-3205(03)00506-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The hepatocarcinogen 2-acetylaminofluorene is one of the most studied experimental carcinogens. We have shown previously that normal rat hepatocytes accumulate the tumour suppressor p53 after exposure to this compound while preneoplastic rat hepatocytes do not. We suggested that the lack of p53 response may confer a growth advantage on preneoplastic hepatocytes and may be an important factor in hepatic tumor promotion by 2-acetylaminofluorene and other genotoxic compounds. Inhibition of RNA polymerase II driven transcription by DNA lesions may constitute one of the mechanisms leading to accumulation of the tumour suppressor p53. We have investigated the accumulation of p53 by structurally different DNA lesions of 2-acetylaminofluorene for which the rate of nucleotide excision repair (NER) and inhibition of transcription are known. Experiments were performed with NER proficient human fibroblasts as well as repair deficient xeroderma pigmentosum group A (XPA) cells, XPC cells [only transcription coupled repair (TCR)] and Cockayne syndrome (CS)B cells [only global genome repair (GGR)]. The cells were exposed to N-acetoxy-acetylaminofluorene (NAAAF) in the presence or absence of paraoxon inducing dG-C8-AAF or dG-C8-AF adducts respectively. Both treatments led to accumulation of p53 in all cells. However, dG-C8-AAF adducts produced greater p53 induction than dG-C8-AF adducts. The percentage p53-positive cells was highest and the threshold for p53 accumulation was lowest in XPA and CSB cells. Our results further demonstrate that both the potency of a lesion to inhibit transcription as well as the restoration of RNA synthesis determines the magnitude of p53 induction.
Collapse
Affiliation(s)
- Hilde E van Gijssel
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands
| | | | | | | |
Collapse
|
21
|
Gillet LCJ, Schärer OD. Preparation of C8-amine and acetylamine adducts of 2'-deoxyguanosine suitably protected for DNA synthesis. Org Lett 2002; 4:4205-8. [PMID: 12443059 DOI: 10.1021/ol026474f] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
[reaction: see text] C8-Amine and acetylamine adducts of 2'-deoxyguanosine were synthesized. Our approach provides solutions for the coupling of aromatic amines to a protected 8-bromo-2'-deoxyguanosine derivative, for the selective acetylation of the coupled adduct at N(8) and for a protecting group scheme preserving the integrity of the base-labile N(8) acetyl group during DNA synthesis.
Collapse
Affiliation(s)
- Ludovic C J Gillet
- Institute of Medical Radiobiology, University of Zürich, August Forel Str. 7, 8008 Zürich, Switzerland
| | | |
Collapse
|
22
|
Hoogstraten D, Nigg AL, Heath H, Mullenders LHF, van Driel R, Hoeijmakers JHJ, Vermeulen W, Houtsmuller AB. Rapid switching of TFIIH between RNA polymerase I and II transcription and DNA repair in vivo. Mol Cell 2002; 10:1163-74. [PMID: 12453423 DOI: 10.1016/s1097-2765(02)00709-8] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The transcription/repair factor TFIIH operates as a DNA helix opener in RNA polymerase II (RNAP2) transcription and nucleotide excision repair. To study TFIIH in vivo, we generated cell lines expressing functional GFP-tagged TFIIH. TFIIH was homogeneously distributed throughout the nucleus with nucleolar accumulations. We provide in vivo evidence for involvement of TFIIH in RNA polymerase I (RNAP1) transcription. Photobleaching revealed that TFIIH moves freely and gets engaged in RNAP1 and RNAP2 transcription for approximately 25 and approximately 6 s, respectively. TFIIH readily switches between transcription and repair sites (where it is immobilized for approximately 4 min) without large-scale alterations in composition. Our findings support a model of diffusion and random collision of individual components that permits a quick and versatile response to changing conditions.
Collapse
Affiliation(s)
- Deborah Hoogstraten
- Department of Cell Biology and Genetics, Medical Genetics Center, CBG, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Plosky B, Samson L, Engelward BP, Gold B, Schlaen B, Millas T, Magnotti M, Schor J, Scicchitano DA. Base excision repair and nucleotide excision repair contribute to the removal of N-methylpurines from active genes. DNA Repair (Amst) 2002; 1:683-96. [PMID: 12509290 DOI: 10.1016/s1568-7864(02)00075-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Many different cellular pathways have evolved to protect the genome from the deleterious effects of DNA damage that result from exposure to chemical and physical agents. Among these is a process called transcription-coupled repair (TCR) that catalyzes the removal of DNA lesions from the transcribed strand of expressed genes, often resulting in a preferential bias of damage clearance from this strand relative to its non-transcribed counterpart. Lesions subject to this type of repair include cyclobutane pyrimidine dimers that are normally repaired by nucleotide excision repair (NER) and thymine glycols (TGs) that are removed primarily by base excision repair (BER). While the mechanism underlying TCR is not completely clear, it is known that its facilitation requires proteins used by other repair pathways like NER. It is also believed that the signal for TCR is the stalled RNA polymerase that results when DNA damage prevents its translocation during transcription elongation. While there is a clear role for some NER proteins in TCR, the involvement of BER proteins is less clear. To explore this further, we studied the removal of 7-methylguanine (7MeG) and 3-methyladenine (3MeA) from the dihydrofolate reductase (dhfr) gene of murine cell lines that vary in their repair phenotypes. 7MeG and 3MeA constitute the two principal N-methylpurines formed in DNA following exposure to methylating agents. In mammalian cells, alkyladenine DNA alkyladenine glycosylase (Aag) is the major enzyme required for the repair of these lesions via BER, and their removal from the total genome is quite rapid. There is no observable TCR of these lesions in specific genes in DNA repair proficient cells; however, it is possible that the rapid repair of these adducts by BER masks any TCR. The repair of 3MeA and 7MeG was examined in cells lacking Aag, NER, or both Aag and NER to determine if rapid overall repair masks TCR. The results show that both 3MeA and 7MeG are removed without strand bias from the dhfr gene of BER deficient (Aag deficient) and NER deficient murine cell lines. Furthermore, repair of 3MeA in this region is highly dependent on Aag, but repair of 7MeG is equally efficient in the repair proficient, BER deficient, and NER deficient cell lines. Strikingly, in the absence of both BER and NER, neither 7MeG nor 3MeA is repaired. These results demonstrate that NER, but not TCR, contributes to the repair of 7MeG, and to a lesser extent 3MeA.
Collapse
Affiliation(s)
- Brian Plosky
- Department of Biology, New York University, New York, NY 10003, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zheng Y, Pao A, Adair GM, Tang M. Cyclobutane pyrimidine dimers and bulky chemical DNA adducts are efficiently repaired in both strands of either a transcriptionally active or promoter-deleted APRT gene. J Biol Chem 2001; 276:16786-96. [PMID: 11278801 DOI: 10.1074/jbc.m010973200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Both prokaryotic and eukaryotic cells have the capacity to repair DNA damage preferentially in the transcribed strand of actively expressed genes. However, we have found that several types of DNA damage, including cyclobutane pyrimidine dimers (CPDs) are repaired with equal efficiency in both the transcribed and nontranscribed strands of the adenine phosphoribosyltransferase (APRT) gene in Chinese hamster ovary cells. We further found that, in two mutant cell lines in which the entire APRT promoter region has been deleted, CPDs are still efficiently repaired in both strands of the promoterless APRT gene, even though neither strand appears to be transcribed. These results suggest that efficient repair of both strands at this locus does not require transcription of the APRT gene. We have also mapped CPD repair in exon 3 of the APRT gene in each cell line at single nucleotide resolution. Again, we found similar rates of CPD repair in both strands of the APRT gene domain in both APRT promoter-deletion mutants and their parental cell line. Our findings suggest that current models of transcription-coupled repair and global genomic repair may underestimate the importance of factors other than transcription in governing the efficiency of nucleotide excision repair.
Collapse
Affiliation(s)
- Y Zheng
- Department of Carcinogenesis, University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957, USA
| | | | | | | |
Collapse
|
25
|
Jansen J, Olsen AK, Wiger R, Naegeli H, de Boer P, van Der Hoeven F, Holme JA, Brunborg G, Mullenders L. Nucleotide excision repair in rat male germ cells: low level of repair in intact cells contrasts with high dual incision activity in vitro. Nucleic Acids Res 2001; 29:1791-800. [PMID: 11292852 PMCID: PMC31314 DOI: 10.1093/nar/29.8.1791] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The acquisition of genotoxin-induced mutations in the mammalian germline is detrimental to the stable transfer of genomic information. In somatic cells, nucleotide excision repair (NER) is a major pathway to counteract the mutagenic effects of DNA damage. Two NER subpathways have been identified, global genome repair (GGR) and transcription-coupled repair (TCR). In contrast to somatic cells, little is known regarding the expression of these pathways in germ cells. To address this basic question, we have studied NER in rat spermatogenic cells in crude cell suspension, in enriched cell stages and within seminiferous tubules after exposure to UV or N-acetoxy-2-acetylaminofluorene. Surprisingly, repair in spermatogenic cells was inefficient in the genome overall and in transcriptionally active genes indicating non-functional GGR and TCR. In contrast, extracts from early/mid pachytene cells displayed dual incision activity in vitro as high as extracts from somatic cells, demonstrating that the proteins involved in incision are present and functional in premeiotic cells. However, incision activities of extracts from diplotene cells and round spermatids were low, indicating a stage-dependent expression of incision activity. We hypothesize that sequestering of NER proteins by mispaired regions in DNA involved in synapsis and recombination may underlie the lack of NER activity in premeiotic cells.
Collapse
Affiliation(s)
- J Jansen
- MGC-Department of Radiation Genetics and Chemical Mutagenesis, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Proietti De Santis L, Garcia CL, Balajee AS, Brea Calvo GT, Bassi L, Palitti F. Transcription coupled repair deficiency results in increased chromosomal aberrations and apoptotic death in the UV61 cell line, the Chinese hamster homologue of Cockayne's syndrome B. Mutat Res 2001; 485:121-32. [PMID: 11182543 DOI: 10.1016/s0921-8777(00)00065-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transcription coupled repair (TCR), a special sub-pathway of nucleotide excision repair (NER), removes transcription blocking lesions rapidly from the transcribing strand of active genes. In this study, we have evaluated the importance of the TCR pathway in the induction of chromosomal aberrations and apoptosis in isogenic Chinese hamster cell lines, which differ in TCR efficiency. AA8 is the parental cell line, which is proficient in the genome overall repair of UV-C radiation induced 6-4 photoproducts (6-4 PP) and the repair of cyclobutane pyrimidine dimer (CPD) from the transcribing strand of active genes. UV61 cells (hamster homologue of human Cockayne's syndrome (CS) group B cells) originally isolated from AA8, exhibit proficient repair of 6-4 PP but are deficient in CPD removal by the TCR pathway. Upon UV-C irradiation of cells in G1-phase, UV61 showed a dramatic increase in apoptotic response as compared to AA8 cells. Abolition of TCR by treatment with alpha-amanitin (an inhibitor of RNA polymerase II) in AA8 cells also resulted in an elevated apoptotic response like that observed in UV61 cells treated with UV alone. This suggests that the lack of TCR is largely responsible for increased apoptotic response in UV61 cells. Furthermore, the chromosomal aberrations and sister chromatid exchange (SCE) induced by UV were also found to be higher in UV61 cells than in TCR proficient AA8 cells. This study shows that the increased chromosomal aberrations and apoptotic death in UV61 cells is due to their inability to remove CPD from the transcribing strand of active genes and suggests a protective role for TCR in the prevention of both chromosomal aberrations and apoptosis induced by DNA damage. Furthermore, flow cytometry analysis and time-course appearance of apoptotic cells suggest that the conversion of UV-DNA damage into chromosomal aberrations precedes and determines the apoptotic process.
Collapse
Affiliation(s)
- L Proietti De Santis
- Laboratory of Molecular Cytogenetic and Mutagenesis, DABAC, Università degli Studi della Tuscia, Via S. Camillo de Lellis, 01100, Viterbo, Italy
| | | | | | | | | | | |
Collapse
|
27
|
van Zeeland AA, Mullenders LH, Vrieling H. Gene and sequence specificity of DNA damage induction and repair: consequences for mutagenesis. Mutat Res 2001; 485:15-21. [PMID: 11341990 DOI: 10.1016/s0921-8777(00)00072-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The field of DNA repair has been expanded enormously in the last 20 years. In this paper, work on gene and sequence specificity of DNA damage induction and repair is summarized in the light of the large and broad contribution of Phil Hanawalt to this field of research. Furthermore, the consequences of DNA damage and repair for mutation induction is discussed, and the contribution of Paul Lohman to the development of assays employing transgenic mice for the detection of gene mutations is highlighted.
Collapse
Affiliation(s)
- A A van Zeeland
- Department of Radiation Genetics and Chemical Mutagenesis - MGC, Leiden University Medical Center, Sylvius Laboratories, Wassenaarseweg 72, 2333 AL Leiden, The Netherlands.
| | | | | |
Collapse
|
28
|
Vermeulen W, Bergmann E, Auriol J, Rademakers S, Frit P, Appeldoorn E, Hoeijmakers JH, Egly JM. Sublimiting concentration of TFIIH transcription/DNA repair factor causes TTD-A trichothiodystrophy disorder. Nat Genet 2000; 26:307-13. [PMID: 11062469 DOI: 10.1038/81603] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The repair-deficient form of trichothiodystrophy (TTD) most often results from mutations in the genes XPB or XPD, encoding helicases of the transcription/repair factor TFIIH. The genetic defect in a third group, TTD-A, is unknown, but is also caused by dysfunctioning TFIIH. None of the TFIIH subunits carry a mutation and TFIIH from TTD-A cells is active in both transcription and repair. Instead, immunoblot and immunofluorescence analyses reveal a strong reduction in the TFIIH concentration. Thus, the phenotype of TTD-A appears to result from sublimiting amounts of TFIIH, probably due to a mutation in a gene determining the complex stability. The reduction of TFIIH mainly affects its repair function and hardly influences transcription.
Collapse
Affiliation(s)
- W Vermeulen
- Department of Cell Biology and Genetics, Medical Genetics Center, Erasmus University Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Nucleotide excision repair (NER) is one of the major cellular pathways that removes bulky DNA adducts and helix-distorting lesions. The biological consequences of defective NER in humans include UV-light-induced skin carcinogenesis and extensive neurodegeneration. Understanding the mechanism of the NER process is of great importance as the number of individuals diagnosed with skin cancer has increased considerably in recent years, particularly in the United States. Rapid progress made in the DNA repair field since the early 1980s has revealed the complexity of NER, which operates differently in different genomic regions. The genomic heterogeneity of repair seems to be governed by the functional compartmentalization of chromatin into transcriptionally active and inactive domains in the nucleus. Two sub-pathways of NER remove UV-induced photolesions: (I) Global Genome Repair (GGR) and (II) Transcription Coupled Repair (TCR). GGR is a random process that occurs slowly, while the TCR, which is tightly linked to RNA polymerase II transcription, is highly specific and efficient. The efficiency of these pathways is important in avoiding cancer and genomic instability. Studies with cell lines derived from Cockayne syndrome (CS) and Xeroderma pigmentosum (XP) group C patients, that are defective in the NER sub-pathways, have yielded valuable information regarding the genomic heterogeneity of DNA repair. This review deals with the complexity of repair heterogeneity, its mechanism and interacting molecular pathways as well as its relevance in the maintenance of genomic integrity.
Collapse
Affiliation(s)
- A S Balajee
- Department of Radiation Oncology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
30
|
Brosh RM, Balajee AS, Selzer RR, Sunesen M, Proietti De Santis L, Bohr VA. The ATPase domain but not the acidic region of Cockayne syndrome group B gene product is essential for DNA repair. Mol Biol Cell 1999; 10:3583-94. [PMID: 10564257 PMCID: PMC25641 DOI: 10.1091/mbc.10.11.3583] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cockayne syndrome (CS) is a human genetic disorder characterized by UV sensitivity, developmental abnormalities, and premature aging. Two of the genes involved, CSA and CSB, are required for transcription-coupled repair (TCR), a subpathway of nucleotide excision repair that removes certain lesions rapidly and efficiently from the transcribed strand of active genes. CS proteins have also been implicated in the recovery of transcription after certain types of DNA damage such as those lesions induced by UV light. In this study, site-directed mutations have been introduced to the human CSB gene to investigate the functional significance of the conserved ATPase domain and of a highly acidic region of the protein. The CSB mutant alleles were tested for genetic complementation of UV-sensitive phenotypes in the human CS-B homologue of hamster UV61. In addition, the CSB mutant alleles were tested for their ability to complement the sensitivity of UV61 cells to the carcinogen 4-nitroquinoline-1-oxide (4-NQO), which introduces bulky DNA adducts repaired by global genome repair. Point mutation of a highly conserved glutamic acid residue in ATPase motif II abolished the ability of CSB protein to complement the UV-sensitive phenotypes of survival, RNA synthesis recovery, and gene-specific repair. These data indicate that the integrity of the ATPase domain is critical for CSB function in vivo. Likewise, the CSB ATPase point mutant failed to confer cellular resistance to 4-NQO, suggesting that ATP hydrolysis is required for CSB function in a TCR-independent pathway. On the contrary, a large deletion of the acidic region of CSB protein did not impair the genetic function in the processing of either UV- or 4-NQO-induced DNA damage. Thus the acidic region of CSB is likely to be dispensable for DNA repair, whereas the ATPase domain is essential for CSB function in both TCR-dependent and -independent pathways.
Collapse
Affiliation(s)
- R M Brosh
- Laboratory of Molecular Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | | | |
Collapse
|
31
|
Ye N, Bianchi MS, Bianchi NO, Holmquist GP. Adaptive enhancement and kinetics of nucleotide excision repair in humans. Mutat Res 1999; 435:43-61. [PMID: 10526216 DOI: 10.1016/s0921-8777(99)00022-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
An adaptive response, low doses of a mutagen rendering cells more able to subsequently cope with higher doses of that or a related challenging mutagen, enhances nucleotide excision repair in human fibroblasts. After fibroblasts were flashed with 20 J/m2 of UVC, the cyclopyrimidine dimer frequency at any single dinucleotide position remained unchanged for several hours before abruptly displaying first order kinetics of repair. These kinetics were determined by ligation-mediated PCR along exon 9 of the human p53 gene. When a chronic dose of quinacrine mustard (QM) preceded the UVC challenge, the duration of the cyclobutane pyrimidine dimer (CPD) repair lags were reduced by a factor of three and the kinetic half-lives for CPD repair were reduced by a factor of three. The observed repair kinetics are consistent with the following model. The UVC dose required (K(m)) to generate a substrate concentration which half-saturates the cell's repair capacity is 3 J/m2 for the high affinity (6-4) photoproducts and greater than 100 J/m2 for the low affinity cyclobutane dimers. After 20 J/m2 of UVC, the repair enzyme is saturated with (6-4) photoproducts; these competitively inhibit CPD repair by binding all available repair enzyme. After the (6-4)s are repaired, the CPD concentration is less than K(m)(CPD) and so CPD repair kinetics initiate with first order kinetics. QM-induced enhancement, by increasing the concentration, Vmax, of repair enzyme, shortens the duration of (6-4) saturation and increases the rate constant for cyclobutane dimer repair. The data exactly fit the expectations from Michaelis kinetics. Transcription coupled repair is less amenable to Michaelis interpretations and enhanced global repair was almost as rapid as the slightly enhanced transcription coupled repair. We infer that repair enhancement is unable to proportionally increase the number of matrix attachment sites necessary for transcription coupled repair. Understanding competitive inhibition between adduct classes and adaptive enhancement of Vmax is important to understanding the effects of high doses of mutagen mixtures.
Collapse
Affiliation(s)
- N Ye
- Beckman Research Institute, Department of Biology, City of Hope Medical Center, Duarte, CA 91010, USA
| | | | | | | |
Collapse
|
32
|
Hara R, Selby CP, Liu M, Price DH, Sancar A. Human transcription release factor 2 dissociates RNA polymerases I and II stalled at a cyclobutane thymine dimer. J Biol Chem 1999; 274:24779-86. [PMID: 10455150 DOI: 10.1074/jbc.274.35.24779] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNA polymerase II stalled at a lesion in the transcribed strand is thought to constitute a signal for transcription-coupled repair. Transcription factors that act on RNA polymerase in elongation mode potentially influence this mode of repair. Previously, it was shown that transcription elongation factors TFIIS and Cockayne's syndrome complementation group B protein did not disrupt the ternary complex of RNA polymerase II stalled at a thymine cyclobutane dimer, nor did they enable RNA polymerase II to bypass the dimer. Here we investigated the effect of the transcription factor 2 on RNA polymerase II and RNA polymerase I stalled at thymine dimers. Transcription factor 2 is known to release transcripts from RNA polymerase II early elongation complex generated by pulse-transcription. We found that factor 2 (which is also called release factor) disrupts the ternary complex of RNA polymerase II at a thymine dimer and surprisingly exerts the same effect on RNA polymerase I. These findings show that in mammalian cells a RNA polymerase I or RNA polymerase II transcript truncated by a lesion in the template strand may be discarded unless repair is accomplished rapidly by a mechanism that does not displace stalled RNA polymerases.
Collapse
Affiliation(s)
- R Hara
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
33
|
Frit P, Bergmann E, Egly JM. Transcription factor IIH: a key player in the cellular response to DNA damage. Biochimie 1999; 81:27-38. [PMID: 10214907 DOI: 10.1016/s0300-9084(99)80035-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
TFIIH (transcription factor IIH) is a multiprotein complex consisting of nine subunits initially characterized as a basal transcription factor required for initiation of protein-coding RNA synthesis. TFIIH was the first transcription factor shown to harbor several enzymatic activities, likely indicative of functional complexity. This intricacy was further emphasized with the cloning of the genes encoding the different subunits which disclosed direct connections between transcription, DNA repair and cell cycle regulation. In this review, we emphasize those functions of TFIIH involved in DNA repair, as well as their relationship to TFIIH's roles in transcription, cell cycle control and apoptosis. These connections may prove to be essential for the cellular response to DNA damage.
Collapse
Affiliation(s)
- P Frit
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université Louis-Pasteur, Strasbourg, Illkirch, France
| | | | | |
Collapse
|
34
|
Affiliation(s)
- L H Mullenders
- Department of Radiation Genetics and Chemical Mutagenesis-MGC, Leiden University Medical Center, Netherlands.
| |
Collapse
|