1
|
Mycothiol Peroxidase Activity as a Part of the Self-Resistance Mechanisms against the Antitumor Antibiotic Cosmomycin D. Microbiol Spectr 2022; 10:e0049322. [PMID: 35510858 PMCID: PMC9241694 DOI: 10.1128/spectrum.00493-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Antibiotic-producing microorganisms usually require one or more self-resistance determinants to survive antibiotic production. The effectors of these mechanisms are proteins that inactivate the antibiotic, facilitate its transport, or modify the target to render it insensitive to the molecule. Streptomyces bacteria biosynthesize various bioactive natural products and possess resistance systems for most metabolites, which are coregulated with antibiotic biosynthesis genes. Streptomyces olindensis strain DAUFPE 5622 produces the antitumor antibiotic cosmomycin D (COSD), a member of the anthracycline family. In this study, we propose three self-resistance mechanisms, anchored or based in the COSD biosynthetic gene cluster. These include cosIJ (an ABC transporter), cosU (a UvrA class IIa protein), and a new self-resistance mechanism encoded by cosP, which shows response against peroxides by the enzyme mycothiol peroxidase (MPx). Activity-based investigations of MPx and its mutant enzyme confirmed peroxidation during the production of COSD. Overexpression of the ABC transporter, the UvrA class IIa protein, and the MPx led to an effective response against toxic anthracyclines, such as cosmomycins. Our findings help to understand how thiol peroxidases play an antioxidant role in the anthracycline producer S. olindensis DAUFPE 5622, a mechanism which has been reported for neoplastic cells that are resistant to doxorubicin (DOX). IMPORTANCE Anthracycline compounds are DNA intercalating agents widely used in cancer chemotherapeutic protocols. This work focused on the self-resistance mechanisms developed by the cosmomycin-producing bacterium Streptomyces olindensis. Our findings showed that cysteine peroxidases, such as mycothiol peroxidase, encoded by the gene cosP, protected S. olindensis against peroxidation during cosmomycin production. This observation can contribute to much better understanding of resistance both in the producers, eventually enhancing production, and in some tumoral cell lines.
Collapse
|
2
|
Remm S, Earp JC, Dick T, Dartois V, Seeger MA. Critical discussion on drug efflux in Mycobacterium tuberculosis. FEMS Microbiol Rev 2021; 46:6391500. [PMID: 34637511 PMCID: PMC8829022 DOI: 10.1093/femsre/fuab050] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) can withstand months of antibiotic treatment. An important goal of tuberculosis research is to shorten the treatment to reduce the burden on patients, increase adherence to the drug regimen and thereby slow down the spread of drug resistance. Inhibition of drug efflux pumps by small molecules has been advocated as a promising strategy to attack persistent Mtb and shorten therapy. Although mycobacterial drug efflux pumps have been broadly investigated, mechanistic studies are scarce. In this critical review, we shed light on drug efflux in its larger mechanistic context by considering the intricate interplay between membrane transporters annotated as drug efflux pumps, membrane energetics, efflux inhibitors and cell wall biosynthesis processes. We conclude that a great wealth of data on mycobacterial transporters is insufficient to distinguish by what mechanism they contribute to drug resistance. Recent studies suggest that some drug efflux pumps transport structural lipids of the mycobacterial cell wall and that the action of certain drug efflux inhibitors involves dissipation of the proton motive force, thereby draining the energy source of all active membrane transporters. We propose recommendations on the generation and interpretation of drug efflux data to reduce ambiguities and promote assigning novel roles to mycobacterial membrane transporters.
Collapse
Affiliation(s)
- Sille Remm
- Institute of Medical Microbiology, University of Zürich, Switzerland
| | - Jennifer C Earp
- Institute of Medical Microbiology, University of Zürich, Switzerland
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA.,Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA.,Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zürich, Switzerland
| |
Collapse
|
3
|
Combination of atmospheric and room temperature plasma (ARTP) mutagenesis, genome shuffling and dimethyl sulfoxide (DMSO) feeding to improve FK506 production in Streptomyces tsukubaensis. Biotechnol Lett 2021; 43:1809-1820. [PMID: 34160747 DOI: 10.1007/s10529-021-03154-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/08/2021] [Indexed: 12/30/2022]
Abstract
FK506 is a clinically important macrocyclic polyketide with immunosuppressive activity produced by Streptomyces tsukubaensis. However, the production capacity of the strain is very low. To improve production, atmospheric and room temperature plasma (ARTP) mutagenesis was adopted to get the initial strains used in genome shuffling (GS). After three rounds of GS, S. tsukubaensis R3-C4 was the most productive strain, resulting in a FK506 concentration of 335 μg/mL, 2.6 times than that of the original wild-type strain. Moreover, exogenous DMSO 4% (v/v) addition could induce efflux of FK506 and increased FK506 production by 27.9% to 429 μg/mL. Finally, analyses of the differences in morphology, fermentation characteristics and specific gene expression levels between S. tsukubaensis R3-C4 and the wild-type strain revealed that R3-C4 strain: has hampered spore differentiation, thicker mycelia and more red pigment, which are likely related to the downregulation of bldD and cdgB expression. In addition, the expression levels of fkbO, fkbP, dahp, pccB and prpE all showed up-regulation at diverse degrees compared to the wild-type S. tsukubaensis. Overall, these results show that a combined approach involving classical random mutation and exogenous feeding can be applied to increase FK506 biosynthesis and may be applied also to the improvement of other important secondary metabolites.
Collapse
|
4
|
Wang X, Wei J, Xiao Y, Luan S, Ning X, Bai L. Efflux identification and engineering for ansamitocin P-3 production in Actinosynnema pretiosum. Appl Microbiol Biotechnol 2021; 105:695-706. [PMID: 33394151 DOI: 10.1007/s00253-020-11044-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/25/2020] [Accepted: 12/06/2020] [Indexed: 12/31/2022]
Abstract
Ansamitocin P-3 (AP-3) exhibits potent biological activities against various tumor cells. As an important drug precursor, reliable supply of AP-3 is limited by low fermentation yield. Although different strategies have been implemented to improve AP-3 yield, few have investigated the impact of efflux on AP-3 production. In this study, AP-3 efflux genes were identified through combined analysis of two sets of transcriptomes. The production-based transcriptome was implemented to search for efflux genes highly expressed in response to AP-3 accumulation during the fermentation process, while the resistance-based transcriptome was designed to screen for genes actively expressed in response to the exogenous supplementation of AP-3. After comprehensive analysis of two transcriptomes, six efflux genes outside the ansamitocin BGC were identified. Among the six genes, individual deletion of APASM_2704, APASM_6861, APASM_3193, and APASM_2805 resulted in decreased AP-3 production, and alternative overexpression led to AP-3 yield increase from 264.6 to 302.4, 320.4, 330.6, and 320.6 mg/L, respectively. Surprisingly, APASM_2704 was found to be responsible for exportation of AP-3 and another macro-lactam antibiotic pretilactam. Furthermore, growth of APASM_2704, APASM_3193, or APASM_2805 overexpression mutants was obviously improved under 300 mg/L AP-3 supplementation. In summary, our study has identified AP-3 efflux genes outside the ansamitocin BGC by comparative transcriptomic analysis, and has shown that enhancing the transcription of transporter genes can improve AP-3 production, shedding light on strategies used for exporter screening and antibiotic production improvement. KEY POINTS: • AP-3-related efflux genes were identified by transcriptomic analysis. • Deletion of the identified efflux genes led in AP-3 yield decrease. • Overexpression of the efflux genes resulted in increased AP-3 production.
Collapse
Affiliation(s)
- Xinran Wang
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes for Advanced Technology, Chinese Academy of Sciences, Shenzhen, China. .,State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Jianhua Wei
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yifan Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuhui Luan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinjuan Ning
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
5
|
Feng Z, Liu D, Wang L, Wang Y, Zang Z, Liu Z, Song B, Gu L, Fan Z, Yang S, Chen J, Cui Y. A Putative Efflux Transporter of the ABC Family, YbhFSR, in Escherichia coli Functions in Tetracycline Efflux and Na +(Li +)/H + Transport. Front Microbiol 2020; 11:556. [PMID: 32390957 PMCID: PMC7190983 DOI: 10.3389/fmicb.2020.00556] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/16/2020] [Indexed: 12/20/2022] Open
Abstract
ATP-binding cassette transporters are ubiquitous in almost all organisms. The Escherichia coli genome is predicted to encode 69 ABC transporters. Eleven of the ABC transporters are presumed to be exporters, of which seven are possible drug export transporters. There has been minimal research on the function of YbhFSR, which is one of the putative drug resistance exporters. In this study, the ybhF gene of this transporter was characterized. Overexpression and knockout strains of ybhF were constructed. The ATPase activity of YbhF was studied using the malachite green assay, and the efflux abilities of knockout strains were demonstrated by using ethidium bromide (EB) as a substrate. The substrates of YbhFSR efflux, examined with the minimum inhibitory concentration (MIC), were determined to be tetracycline, oxytetracycline, chlortetracycline, doxycycline, EB, and Hoechst33342. Furthermore, tetracycline and EB efflux and accumulation experiments confirmed that the substrates of YbhFSR were tetracyclines and EB. The MIC assay and the fluorescence test results showed that tetracyclines are likely to be the major antibiotic substrate of YbhFSR. The existence of the signature NatA motif suggested that YbhFSR may also function as a Na+/H+ transporter. Overexpression of YbhF in E. coli KNabc lacking crucial Na+/H+ transporters conferred tolerance to NaCl, LiCl, and an alkaline pH. Together, the results showed that YbhFSR exhibited dual functions as a drug efflux pump and a Na+ (Li+)/H+ antiporter.
Collapse
Affiliation(s)
- Zhenyue Feng
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Defu Liu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Lizi Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yanhong Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhongjing Zang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhenhua Liu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Baifen Song
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Liwei Gu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhaowei Fan
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Siyu Yang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jing Chen
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yudong Cui
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
6
|
Multidrug ABC transporters in bacteria. Res Microbiol 2019; 170:381-391. [DOI: 10.1016/j.resmic.2019.06.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 12/23/2022]
|
7
|
Rahman SJ, Kaur P. Conformational changes in a multidrug resistance ABC transporter DrrAB: Fluorescence-based approaches to study substrate binding. Arch Biochem Biophys 2018; 658:31-45. [PMID: 30243711 DOI: 10.1016/j.abb.2018.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/30/2018] [Accepted: 09/19/2018] [Indexed: 01/12/2023]
Abstract
Bacterial multidrug transporter DrrAB exhibits overlapping substrate specificity with mammalian P-glycoprotein. DrrA hydrolyzes ATP, and the energy is transduced to carrier DrrB resulting in export of drugs. Previous studies suggested that DrrB contains a large and flexible drug-binding pocket made of aromatic residues contributed by several transmembrane helices with different drugs binding to both specific and shared residues in this pocket. However, direct binding of drugs to DrrAB or the mechanism of substrate-induced conformational changes between DrrA and DrrB has so far not been investigated. We used two fluorescence-based approaches to determine substrate binding to purified DrrAB. Our analysis shows that DrrB binds drugs with variable affinities and contains multiple drug binding sites. This work also provides evidence for two asymmetric nucleotide binding sites in DrrA with strikingly different binding affinities. Using targeted fluorescence labeling, we provide clear evidence of long-range conformational changes occurring between DrrA and DrrB. It is proposed that the transduction pathway from the nucleotide-binding DrrA subunit to the substrate binding DrrB subunit includes Q-loop and CREEM motifs in DrrA and EAA-like motif in DrrB. This study lays a solid groundwork for examining roles of various conserved regions of DrrA and DrrB in transduction of conformational changes.
Collapse
Affiliation(s)
- Sadia J Rahman
- Department of Biology, Georgia State University, Atlanta, GA, 30303, United States
| | - Parjit Kaur
- Department of Biology, Georgia State University, Atlanta, GA, 30303, United States.
| |
Collapse
|
8
|
Prija F, Srinivasan P, Das S, Kattusamy K, Prasad R. DnrI of Streptomyces peucetius binds to the resistance genes, drrAB and drrC but is activated by daunorubicin. J Basic Microbiol 2017; 57:862-872. [PMID: 28745822 DOI: 10.1002/jobm.201700162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/31/2017] [Accepted: 06/10/2017] [Indexed: 02/02/2023]
Abstract
The master regulator, DnrI of Streptomyces peucetius is a member of the family of transcriptional activator, Streptomyces antibiotic regulatory proteins (SARP), which controls the biosynthesis of antitumor anthracycline, daunorubicin (DNR) and doxorubicin (DXR). The binding of DnrI to the heptameric repeat sequence found within the -35 promoter region of biosynthetic gene, dpsE activates it. To combat the increased level of intracellular DNR, the cell has developed self resistance mechanism mediated by drrAB and drrC genes which are regulated by regulatory genes. We find that a drug non-producing mutant, ΔdpsA, showed sensitive phenotype in plate assay along with an increased level of dnrI transcript. Whereas the mutant grown in the presence of DNR showed a resistant phenotype with a six and eight folds increase in drrAB and drrC transcripts respectively. Computational studies followed by molecular docking showed that DnrI bound as a monomer to a slightly modified heptameric DNA motif, 5'-ACACGCA in drrA and 5'-ACAACCT in drrC which was also proved by electrophoretic mobility shift assay. These findings confirm that DnrI belongs to winged helix-turn-helix DNA-binding protein with Tetratricopeptide Repeat domain. The transcriptional regulator DnrI binds to the resistance genes at specific sites but they are activated only when an increased load of intracellular DNR is sensed.
Collapse
Affiliation(s)
- Francis Prija
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Padmanabhan Srinivasan
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India.,Departments of Medicine, Physiology and Biophysics, University of California, Irvine, California, USA
| | - Subhadeep Das
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India.,IITB Monash Research Academy, IIT Bombay, Powai, Mumbai, Maharashtra, India
| | - Karuppasamy Kattusamy
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Ranjan Prasad
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| |
Collapse
|
9
|
Prija F, Prasad R. DrrC protein of Streptomyces peucetius removes daunorubicin from intercalated dnrI promoter. Microbiol Res 2017. [PMID: 28647120 DOI: 10.1016/j.micres.2017.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
DrrC is a DNA-binding protein of Streptomyces peucetius that provides self-resistance against daunorubicin, the antibiotic produced by the organism. DrrC was expressed in E.coli and purified by using N-terminal MBP-tag which retained DNA-binding property in spite of the tag. Mobility shift assay confirmed the interaction of 313bp DNA that has the dnrI promoter, daunorubicin and MBP-DrrC in the presence of ATP. Biotinylated and immobilized 313bp DNA was intercalated with daunorubicin to observe the release of the drug when MBP-DrrC is allowed to act on the DNA. The release of daunorubicin was recorded by absorption and fluorescence spectroscopy. The experiments proved that daunorubicin was released from DNA in the presence of MBP-DrrC. Fluorescence emission of daunorubicin had a maximum peak at 591nm. However, emission spectrum of released daunorubicin showed hypochromism with a maximum peak at 584nm that is possibly because it is in complex with MBP-DrrC. We propose that DrrC naturally binds at intercalated sites to eject daunorubicin; in the process both drug and protein are dislodged from DNA. Like UvrA, DrrC possibly scans the DNA for intercalated daunorubicin. When it encounters daunorubicin, DrrC dislodges it, thereby allowing DNA replication and transcription to go on unhindered. Thus a novel self resistance mechanism by DNA repair is mediated by DrrC.
Collapse
Affiliation(s)
- Francis Prija
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India.
| | - Ranjan Prasad
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India.
| |
Collapse
|
10
|
Brown K, Li W, Kaur P. Role of Aromatic and Negatively Charged Residues of DrrB in Multisubstrate Specificity Conferred by the DrrAB System of Streptomyces peucetius. Biochemistry 2017; 56:1921-1931. [PMID: 28272881 DOI: 10.1021/acs.biochem.6b01155] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Resistance to the anticancer antibiotics, doxorubicin and daunorubicin, in the producer organism Streptomyces peucetius is conferred by an ABC transporter made of two proteins, DrrA and DrrB, which together form a dedicated exporter for these two antibiotics. Surprisingly, however, the DrrAB system exhibits broad substrate specificity overlapping with well-studied multidrug resistance transporters, including P-glycoprotein. Therefore, it provides an excellent model for studying the molecular basis of multispecificity in a prototype efflux system with the potential to unravel the origin and evolution of multidrug resistance. It has been suggested that multispecificity in multidrug exporters may be generally determined by the number and location of aromatic residues. Strategically placed negatively charged residues may also be critical for binding of cationic lipophilic drugs. We selected 13 aromatic and four negatively charged residues on the basis of their location in and/or near the predicted drug-binding pocket of DrrB for analysis. Indeed, mutations of most tested residues drastically inhibited doxorubicin efflux. Interestingly, several mutants lost resistance to doxorubicin and verapamil simultaneously but retained resistance to Hoechst 33342 and/or ethidium bromide, suggesting the presence of overlapping as well as independent drug-binding sites in a common drug-binding pocket of DrrB. This study provides the first comprehensive analysis of residues involved in drug binding in a bacterial multidrug resistance protein of the ABC superfamily, and it shows strong similarity in the molecular mechanism of polyspecific drug recognition between DrrAB and Pgp. Altogether, we conclude that aromatic residue-based multidrug specificity is conserved across domains and over long evolutionary periods. The significance of these findings is discussed.
Collapse
Affiliation(s)
- Kenneth Brown
- Department of Biology, Georgia State University , Atlanta, Georgia 30303, United States
| | - Wen Li
- Department of Biology, Georgia State University , Atlanta, Georgia 30303, United States
| | - Parjit Kaur
- Department of Biology, Georgia State University , Atlanta, Georgia 30303, United States
| |
Collapse
|
11
|
Wang TJ, Shan YM, Li H, Dou WW, Jiang XH, Mao XM, Liu SP, Guan WJ, Li YQ. Multiple transporters are involved in natamycin efflux in Streptomyces chattanoogensis L10. Mol Microbiol 2017; 103:713-728. [PMID: 27874224 DOI: 10.1111/mmi.13583] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2016] [Indexed: 12/24/2022]
Abstract
Antibiotic-producing microorganisms have evolved several self-resistance mechanisms to prevent auto-toxicity. Overexpression of specific transporters to improve the efflux of toxic antibiotics has been found one of the most important and intrinsic resistance strategies used by many Streptomyces strains. In this work, two ATP-binding cassette (ABC) transporter-encoding genes located in the natamycin biosynthetic gene cluster, scnA and scnB, were identified as the primary exporter genes for natamycin efflux in Streptomyces chattanoogensis L10. Two other transporters located outside the cluster, a major facilitator superfamily transporter Mfs1 and an ABC transporter NepI/II were found to play a complementary role in natamycin efflux. ScnA/ScnB and Mfs1 also participate in exporting the immediate precursor of natamycin, 4,5-de-epoxynatamycin, which is more toxic to S. chattanoogensis L10 than natamycin. As the major complementary exporter for natamycin efflux, Mfs1 is up-regulated in response to intracellular accumulation of natamycin and 4,5-de-epoxynatamycin, suggesting a key role in the stress response for self-resistance. This article discusses a novel antibiotic-related efflux and response system in Streptomyces, as well as a self-resistance mechanism in antibiotic-producing strains.
Collapse
Affiliation(s)
- Tan-Jun Wang
- Institute of Pharmaceutical Biotechnology, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yi-Ming Shan
- Institute of Pharmaceutical Biotechnology, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Han Li
- Institute of Pharmaceutical Biotechnology, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Wei-Wang Dou
- Institute of Pharmaceutical Biotechnology, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xin-Hang Jiang
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xu-Ming Mao
- Institute of Pharmaceutical Biotechnology, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolism Engineering, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Shui-Ping Liu
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Wen-Jun Guan
- Institute of Pharmaceutical Biotechnology, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolism Engineering, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yong-Quan Li
- Institute of Pharmaceutical Biotechnology, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolism Engineering, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
12
|
Karuppasamy K, Srinivasan P, Ashokkumar B, Tiwari R, Kanagarajadurai K, Prasad R. Partial loss of self-resistance to daunorubicin in drrD mutant of Streptomyces peucetius. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.02.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Zhang H, Rahman S, Li W, Fu G, Kaur P. Characterization of a novel domain 'GATE' in the ABC protein DrrA and its role in drug efflux by the DrrAB complex. Biochem Biophys Res Commun 2015; 459:148-53. [PMID: 25721665 DOI: 10.1016/j.bbrc.2015.02.086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 02/13/2015] [Indexed: 12/27/2022]
Abstract
A novel domain, GATE (Glycine-loop And Transducer Element), is identified in the ABC protein DrrA. This domain shows sequence and structural conservation among close homologs of DrrA as well as distantly-related ABC proteins. Among the highly conserved residues in this domain are three glycines, G215, G221 and G231, of which G215 was found to be critical for stable expression of the DrrAB complex. Other conserved residues, including E201, G221, K227 and G231, were found to be critical for the catalytic and transport functions of the DrrAB transporter. Structural analysis of both the previously published crystal structure of the DrrA homolog MalK and the modeled structure of DrrA showed that G215 makes close contacts with residues in and around the Walker A motif, suggesting that these interactions may be critical for maintaining the integrity of the ATP binding pocket as well as the complex. It is also shown that G215A or K227R mutation diminishes some of the atomic interactions essential for ATP catalysis and overall transport function. Therefore, based on both the biochemical and structural analyses, it is proposed that the GATE domain, located outside of the previously identified ATP binding and hydrolysis motifs, is an additional element involved in ATP catalysis.
Collapse
Affiliation(s)
- Han Zhang
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Sadia Rahman
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Wen Li
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Guoxing Fu
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Parjit Kaur
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
14
|
Li W, Sharma M, Kaur P. The DrrAB efflux system of Streptomyces peucetius is a multidrug transporter of broad substrate specificity. J Biol Chem 2014; 289:12633-46. [PMID: 24634217 DOI: 10.1074/jbc.m113.536136] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The soil bacterium Streptomyces peucetius produces two widely used anticancer antibiotics, doxorubicin and daunorubicin. Present within the biosynthesis gene cluster in S. peucetius is the drrAB operon, which codes for a dedicated ABC (ATP binding cassette)-type transporter for the export of these two closely related antibiotics. Because of its dedicated nature, the DrrAB system is believed to belong to the category of single-drug transporters. However, whether it also contains specificity for other known substrates of multidrug transporters has never been tested. In this study we demonstrate under both in vivo and in vitro conditions that the DrrAB system can transport not only doxorubicin but is also able to export two most commonly studied MDR substrates, Hoechst 33342 and ethidium bromide. Moreover, we demonstrate that many other substrates (including verapamil, vinblastine, and rifampicin) of the well studied multidrug transporters inhibit DrrAB-mediated Dox transport with high efficiency, indicating that they are also substrates of the DrrAB pump. Kinetic studies show that inhibition of doxorubicin transport by Hoechst 33342 and rifampicin occurs by a competitive mechanism, whereas verapamil inhibits transport by a non-competitive mechanism, thus suggesting the possibility of more than one drug binding site in the DrrAB system. This is the first in-depth study of a drug resistance system from a producer organism, and it shows that a dedicated efflux system like DrrAB contains specificity for multiple drugs. The significance of these findings in evolution of poly-specificity in drug resistance systems is discussed.
Collapse
Affiliation(s)
- Wen Li
- From the Department of Biology, Georgia State University, Atlanta, Georgia 30303
| | | | | |
Collapse
|
15
|
Li W, Rao DK, Kaur P. Dual role of the metalloprotease FtsH in biogenesis of the DrrAB drug transporter. J Biol Chem 2013; 288:11854-64. [PMID: 23504316 DOI: 10.1074/jbc.m112.441915] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study provides the first direct evidence for the dual role of the metalloprotease FtsH in membrane protein biogenesis. Using the physiological substrate DrrAB, it is shown that FtsH is not only responsible for proteolysis of unassembled DrrB protein but also plays a much broader role in biogenesis of the DrrAB complex. Previous studies showed that the stable expression of DrrB in the membrane depends on simultaneous expression of DrrA. Here we show that DrrB is proteolyzed by FtsH when it is expressed alone. Moreover, DrrA and DrrB proteins expressed together in a temperature-sensitive ftsH mutant strain of Escherichia coli were found to be nonfunctional due to their incorrect assembly. Simultaneous expression of wild-type FtsH in trans resulted in normal doxorubicin efflux. Strikingly, doxorubicin efflux could be restored in mutant cells irrespective of whether FtsH was expressed simultaneously with DrrAB or expressed after these proteins had already accumulated in an inactive conformation, thus providing crucial evidence for the ability of FtsH to refold the misassembled proteins. Complementation experiments also showed that the catalytic AAA domain of FtsH contains a chaperone-like activity, however, unlike wild-type FtsH, it was unable to restore function. Our results therefore show for the first time that FtsH contains the protease as well as refolding functions, and both the AAA and the proteolytic domains of FtsH are required for each of these activities.
Collapse
Affiliation(s)
- Wen Li
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | |
Collapse
|
16
|
Improvement of antibiotic productivity by knock-out of dauW in Streptomyces coeruleobidus. Microbiol Res 2011; 166:539-47. [PMID: 21242069 DOI: 10.1016/j.micres.2010.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 10/26/2010] [Indexed: 11/23/2022]
Abstract
Daunorubicin (DNR) is an important anthracycline antibiotic. Its biosynthesis pathway has been well understood, however, the regulation of DNR biosynthesis needs further investigations. An ORF cloned between drrB and dnrX from the genome of a DNR producer, Streptomyces coeruleobidus DM, was named dauW and designated as an orthologous gene with dnrW and drrD. Several plasmids were constructed for over-expression and/or disruption of dauW in DM. Complete disruption of dauW can significantly increase the yield of DNR. We also found that the transcription level of dnrI, a major regulatory protein in the biosynthesis of DNR, and the self-resistance level were improved in dauW knock-out mutant. These results suggested that dauW may be a down-regulatory gene for DNR biosynthesis. Antibiotics productivity in S. coeruleobidus could be improved via regulation of the transcription of dnrI, a SARP regulator. The production of DNR in a high-producer and the yield of epi-DNR in an engineering strain were also increased by disruption of dauW.
Collapse
|
17
|
Zhang H, Pradhan P, Kaur P. The extreme C terminus of the ABC protein DrrA contains unique motifs involved in function and assembly of the DrrAB complex. J Biol Chem 2010; 285:38324-36. [PMID: 20876527 DOI: 10.1074/jbc.m110.131540] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Two novel regulatory motifs, LDEVFL and C-terminal regulatory Glu (E)-rich motif (CREEM), are identified in the extreme C terminus of the ABC protein DrrA, which is involved in direct interaction with the N-terminal cytoplasmic tail of the membrane protein DrrB and in homodimerization of DrrA. Disulfide cross-linking analysis showed that the CREEM and the region immediately upstream of CREEM participate directly in forming an interaction interface with the N terminus of DrrB. A series of mutations created in the LDEVFL and CREEM motifs drastically affected overall function of the DrrAB transporter. Mutations in the LDEVFL motif also significantly impaired interaction between the C terminus of DrrA and the N terminus of DrrB as well as the ability of DrrA and DrrB to co-purify, therefore suggesting that the LDEVFL motif regulates CREEM-mediated interaction between DrrA and DrrB and plays a key role in biogenesis of the DrrAB complex. Modeling analysis indicated that the LDEVFL motif is critical for conformational integrity of the C-terminal domain of DrrA and confirmed that the C terminus of DrrA forms an independent domain. This is the first report which describes the presence of an assembly domain in an ABC protein and uncovers a novel mechanism whereby the ABC component facilitates the assembly of the membrane component. Homology sequence comparisons showed the presence of the LDEVFL and CREEM motifs in close prokaryotic and eukaryotic homologs of DrrA, suggesting that these motifs may play a similar role in other homologous drug and lipid export systems.
Collapse
Affiliation(s)
- Han Zhang
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | |
Collapse
|
18
|
Cundliffe E, Demain AL. Avoidance of suicide in antibiotic-producing microbes. J Ind Microbiol Biotechnol 2010; 37:643-72. [PMID: 20446033 DOI: 10.1007/s10295-010-0721-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 03/30/2010] [Indexed: 11/29/2022]
Abstract
Many microbes synthesize potentially autotoxic antibiotics, mainly as secondary metabolites, against which they need to protect themselves. This is done in various ways, ranging from target-based strategies (i.e. modification of normal drug receptors or de novo synthesis of the latter in drug-resistant form) to the adoption of metabolic shielding and/or efflux strategies that prevent drug-target interactions. These self-defence mechanisms have been studied most intensively in antibiotic-producing prokaryotes, of which the most prolific are the actinomycetes. Only a few documented examples pertain to lower eukaryotes while higher organisms have hardly been addressed in this context. Thus, many plant alkaloids, variously described as herbivore repellents or nitrogen excretion devices, are truly antibiotics-even if toxic to humans. As just one example, bulbs of Narcissus spp. (including the King Alfred daffodil) accumulate narciclasine that binds to the larger subunit of the eukaryotic ribosome and inhibits peptide bond formation. However, ribosomes in the Amaryllidaceae have not been tested for possible resistance to narciclasine and other alkaloids. Clearly, the prevalence of suicide avoidance is likely to extend well beyond the remit of the present article.
Collapse
Affiliation(s)
- Eric Cundliffe
- Department of Biochemistry, University of Leicester, Leicester, LE1 9HN, UK.
| | | |
Collapse
|
19
|
The actinomycin biosynthetic gene cluster of Streptomyces chrysomallus: a genetic hall of mirrors for synthesis of a molecule with mirror symmetry. J Bacteriol 2010; 192:2583-95. [PMID: 20304989 DOI: 10.1128/jb.01526-09] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A gene cluster was identified which contains genes involved in the biosynthesis of actinomycin encompassing 50 kb of contiguous DNA on the chromosome of Streptomyces chrysomallus. It contains 28 genes with biosynthetic functions and is bordered on both sides by IS elements. Unprecedentedly, the cluster consists of two large inverted repeats of 11 and 13 genes, respectively, with four nonribosomal peptide synthetase genes in the middle. Nine genes in each repeat have counterparts in the other, in the same arrangement but in the opposite orientation, suggesting an inverse duplication of one of the arms during the evolution of the gene cluster. All of the genes appear to be organized into operons, each corresponding to a functional section of actinomycin biosynthesis, such as peptide assembly, regulation, resistance, and biosynthesis of the precursor of the actinomycin chromophore 4-methyl-3-hydroxyanthranilic acid (4-MHA). For 4-MHA synthesis, functional analysis revealed genes that encode pathway-specific isoforms of tryptophan dioxygenase, kynurenine formamidase, and hydroxykynureninase, which are distinct from the corresponding enzyme activities of cellular tryptophan catabolism in their regulation and in part in their substrate specificity. Phylogenetic analysis indicates that the pathway-specific tryptophan metabolism in Streptomyces most probably evolved divergently from the normal pathway of tryptophan catabolism to provide an extra or independent supply of building blocks for the synthesis of tryptophan-derived secondary metabolites.
Collapse
|
20
|
Srinivasan P, Palani SN, Prasad R. Daunorubicin efflux in Streptomyces peucetius modulates biosynthesis by feedback regulation. FEMS Microbiol Lett 2010; 305:18-27. [PMID: 20158521 DOI: 10.1111/j.1574-6968.2010.01905.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Streptomyces peucetius self-resistance genes drrA and drrB encode membrane-associated proteins that function like an ABC transporter for the efflux of daunorubicin and to maintain a constant subinhibitory physiological concentration of the drug within the cell. In this study, the drrA and drrB operons were disrupted for investigating drug production, self-resistance and regulation. The drrA-drrB null mutant was highly sensitive to daunorubicin. A 10-fold decrease in drug production was observed in the null mutant compared with the wild-type strain. We propose that the absence of a drug-specific efflux pump increases the intracellular concentration of daunorubicin, which is sensed by the organism to turn down drug production. Quantitative real-time PCR analysis of the mutant showed a drastic reduction in the expression of the key regulator dnrI and polyketide synthase gene dpsA. However, the expression of regulatory genes dnrO and dnrN was increased. Feedback regulation based on the intracellular daunorubicin concentration is discussed.
Collapse
Affiliation(s)
- Padmanabhan Srinivasan
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | | | | |
Collapse
|
21
|
Noh JH, Kim SH, Lee HN, Lee SY, Kim ES. Isolation and genetic manipulation of the antibiotic down-regulatory gene, wblA ortholog for doxorubicin-producing Streptomyces strain improvement. Appl Microbiol Biotechnol 2009; 86:1145-53. [PMID: 20020285 DOI: 10.1007/s00253-009-2391-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 11/26/2009] [Accepted: 11/28/2009] [Indexed: 10/20/2022]
Abstract
Cross-genome comparative transcriptome analyses were previously conducted using the sequenced Streptomyces coelicolor genome microarrays to understand the genetic nature of doxorubicin (DXR) and daunorubicin (DNR) overproducing industrial mutant (OIM) of Streptomyces peucetius. In this previous work, a whiB-like putative transcription factor (wblA ( sco )) was identified as a global antibiotic down-regulator in S. coelicolor (Kang et al., J Bacteriol 189:4315-4319, 2007). In this study, a total genomic DNA library of a DXR/DNR-overproducing S. peucetius OIM was constructed and screened using wblA ( sco ) as a probe, resulting in the isolation of a wblA ortholog (wblA ( spe )) that had 95% amino acid identity to wblA ( sco ). Gene disruption of wblA ( spe ) from the S. peucetius OIM resulted in an approximately 70% increase in DXR/DNR productivity, implying that the DXR/DNR production in the S. peucetius OIM could be further improved via comparative transcriptomics-guided target gene manipulation. Furthermore, several putative wblA ( spe ) -dependent genes were also identified using S. coelicolor interspecies DNA microarray analysis between the S. peucetius OIM and wblA ( spe )-disrupted S. peucetius OIM. Among the genes whose expressions were significantly stimulated in the absence of wblA ( spe ), the overexpression of a conserved hypothetical protein (SCO4967) further stimulated the total production of DXR/DNR/akavinone by 1.3-fold in the wblA ( spe )-disrupted S. peucetius OIM, implying that the sequential genetic manipulation of target genes identified from interspecies comparative microarray analysis could provide an efficient and rational strategy for Streptomyces strain improvement.
Collapse
Affiliation(s)
- Jun-Hee Noh
- Department of Biological Engineering, Inha University, Incheon, Korea
| | | | | | | | | |
Collapse
|
22
|
Malla S, Niraula NP, Liou K, Sohng JK. Self-resistance mechanism in Streptomyces peucetius: overexpression of drrA, drrB and drrC for doxorubicin enhancement. Microbiol Res 2009; 165:259-67. [PMID: 19651502 DOI: 10.1016/j.micres.2009.04.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Accepted: 04/18/2009] [Indexed: 11/27/2022]
Abstract
The resistance genes drrABC from Streptomyces peucetius ATCC 27952 were cloned into the pIBR25 expression vector under a strong ermE* promoter to enhance doxorubicin (DXR) production. The recombinant expression plasmids, pDrrAB25, pDrrC25 and pDrrABC25, were constructed to overexpress drrAB, drrC and drrABC, respectively, in S. peucetius ATCC 27952. The recombinant strains produced more DXR than the parental strain: a 2.2-fold increase with pDrrAB25, a 5.1-fold increase with pDrrC25, and a 2.4-fold increase with pDrrABC25. We also studied the relative ratios of doxorubicin, daunorubicin and epsilon-rhodomycinone produced in these recombinant strains.
Collapse
Affiliation(s)
- Sailesh Malla
- Institute of Biomolecule Reconstruction (IBR), Department of Pharmaceutical Engineering, SunMoon University, # 100 Kalsan-ri, Asansi, Chungnam 336-708, Republic of Korea
| | | | | | | |
Collapse
|
23
|
Pradhan P, Li W, Kaur P. Translational coupling controls expression and function of the DrrAB drug efflux pump. J Mol Biol 2008; 385:831-42. [PMID: 19063901 DOI: 10.1016/j.jmb.2008.11.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 11/17/2008] [Accepted: 11/18/2008] [Indexed: 11/26/2022]
Abstract
This study investigates the role of translational coupling in the expression and function of DrrA and DrrB proteins, which form an efflux pump for the export of anticancer drugs doxorubicin and daunorubicin in the producer organism Streptomyces peucetius. Interest in studying the role of translational coupling came from the initial observation that DrrA and DrrB proteins confer doxorubicin resistance only when they are expressed in cis. Because of the presence of overlapping stop and start codons in the intergenic region between drrA and drrB, it has been assumed that the translation of drrB is coupled to the translation of the upstream gene drrA even though direct evidence for coupling has been lacking. In this study, we show that the expression of drrB is indeed coupled to translation of drrA. We also show that the introduction of non-coding sequences between the stop codon of drrA and the start of drrB prevents formation of a functional complex, although both proteins are still produced at normal levels, thus suggesting that translational coupling also plays a crucial role in proper assembly. Interestingly, replacement of drrA with an unrelated gene was found to result in very high drrB expression, which becomes severely growth inhibitory. This indicates that an additional mechanism within drrA may optimize expression of drrB. Based on the observations reported here, it is proposed that the production and assembly of DrrA and DrrB are tightly linked. Furthermore, we propose that the key to assembly of the DrrAB complex lies in co-folding of the two proteins, which requires that the genes be maintained in cis in a translationally coupled manner.
Collapse
Affiliation(s)
- Prajakta Pradhan
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | | | | |
Collapse
|
24
|
Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 2008; 72:317-64, table of contents. [PMID: 18535149 DOI: 10.1128/mmbr.00031-07] [Citation(s) in RCA: 938] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
SUMMARY ATP-binding cassette (ABC) systems are universally distributed among living organisms and function in many different aspects of bacterial physiology. ABC transporters are best known for their role in the import of essential nutrients and the export of toxic molecules, but they can also mediate the transport of many other physiological substrates. In a classical transport reaction, two highly conserved ATP-binding domains or subunits couple the binding/hydrolysis of ATP to the translocation of particular substrates across the membrane, through interactions with membrane-spanning domains of the transporter. Variations on this basic theme involve soluble ABC ATP-binding proteins that couple ATP hydrolysis to nontransport processes, such as DNA repair and gene expression regulation. Insights into the structure, function, and mechanism of action of bacterial ABC proteins are reported, based on phylogenetic comparisons as well as classic biochemical and genetic approaches. The availability of an increasing number of high-resolution structures has provided a valuable framework for interpretation of recent studies, and realistic models have been proposed to explain how these fascinating molecular machines use complex dynamic processes to fulfill their numerous biological functions. These advances are also important for elucidating the mechanism of action of eukaryotic ABC proteins, because functional defects in many of them are responsible for severe human inherited diseases.
Collapse
|
25
|
Rao DK, Kaur P. The Q-loop of DrrA is involved in producing the closed conformation of the nucleotide binding domains and in transduction of conformational changes between DrrA and DrrB. Biochemistry 2008; 47:3038-50. [PMID: 18237140 DOI: 10.1021/bi701699a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DrrA and DrrB proteins form an ATP-dependent efflux pump for doxorubicin and daunorubicin in Streptomyces peucetius. DrrA, the catalytic subunit, forms a complex with the integral membrane protein DrrB. Previous studies have provided evidence for strong interaction between these two proteins, which was found to be critical for binding of ATP to DrrA and for stability of DrrB. Chemical cross-linking experiments carried out previously showed that in the resting state of the complex DrrA and DrrB are in contact with each other. Use of a cysteine-to-amine cross-linker then allowed identification of the N-terminal cytoplasmic tail of DrrB (residues 1-53) as the primary region of contact with DrrA. In this study, single-cysteine substitutions were introduced into different domains of DrrA in a strain already containing the S23C substitution in the N-terminal tail of DrrB. By using different arm-length disulfide cross-linkers, we found that a cysteine placed in the Q-loop region of DrrA traps DrrA in the dimeric state, thus indicating that in the closed conformation the Q-loops from opposing subunits are in the proximity of each other. Furthermore, the same region of DrrA was also found to interact with the N-terminus of DrrB, although the A-A interaction was much more prominent than the A-B interaction under these conditions. On the basis of additional data shown here, we propose that the interaction of the Q-loop with the N-terminal cytoplasmic tail of DrrB identifies an important step in the communication of conformational changes between DrrA and DrrB. The significance of these findings in the mechanism of the DrrAB complex is discussed, and a model based on analyses of different conformations of DrrA and DrrB is presented.
Collapse
Affiliation(s)
- Divya K Rao
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | | |
Collapse
|
26
|
Kaur P, Rao DK, Gandlur SM. Biochemical Characterization of Domains in the Membrane Subunit DrrB That Interact with the ABC Subunit DrrA: Identification of a Conserved Motif†. Biochemistry 2005; 44:2661-70. [PMID: 15709779 DOI: 10.1021/bi048959c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DrrA and DrrB proteins confer resistance to the commonly used anticancer agents daunorubicin and doxorubicin in the producer organism Streptomyces peucetius. The drrAB locus has previously been cloned in Escherichia coli, and the proteins have been found to be functional in this host. DrrA, a soluble protein, belongs to the ABC family of proteins. It forms a complex with the integral membrane protein DrrB. Previous studies suggest that the function and stability of DrrA and DrrB are biochemically coupled. Thus, DrrA binds ATP only when it is in a complex with DrrB in the membrane. Further, DrrB is completely degraded if DrrA is absent. In the present study, we have characterized domains in DrrB that may be directly involved in interaction with DrrA. Several single-cysteine substitutions in DrrB were made. Interaction between DrrA and DrrB was studied by using a cysteine to amine chemical cross-linker that specifically cross-links a free sulfhydryl group in one protein (DrrB) to an amine in another (DrrA). We show here that DrrA cross-links with both the N- and the C-terminal ends of the DrrB protein, implying that they may be involved in interaction. Furthermore, this study identifies a motif within the N-terminal cytoplasmic tail of DrrB, which is similar to a motif recently shown by crystal structure analysis in BtuC and previously shown by sequence analysis to be also present in exporters, including MDR1. We propose that the motif present in DrrB and other exporters is actually a modified version of the EAA motif, which was originally believed to be present only in the importers of the ABC family. The present work is the first report where domains of interaction in the membrane component of an ABC drug exporter have been biochemically characterized.
Collapse
Affiliation(s)
- Parjit Kaur
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | |
Collapse
|
27
|
Polgar O, Robey RW, Morisaki K, Dean M, Michejda C, Sauna ZE, Ambudkar SV, Tarasova N, Bates SE. Mutational Analysis of ABCG2: Role of the GXXXG Motif. Biochemistry 2004; 43:9448-56. [PMID: 15260487 DOI: 10.1021/bi0497953] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
ABCG2 (BCRP/MXR/ABCP) is a half-transporter associated with multidrug resistance that presumably homodimerizes for function. It has a conserved GXXXG motif in its first transmembrane segment, a motif that has been linked with dimerization in other proteins, e.g., glycophorin A. We substituted either or both glycines of this GXXXG motif with leucines to evaluate the impact on drug transport, ATP hydrolysis, cross-linking, and susceptibility to degradation. All mutants also carried the R482G gain-of-function mutation, and all migrated to the cell surface. The mutations resulted in lost transport for rhodamine 123 and impaired mitoxantrone, pheophorbide a, and BODIPY-prazosin transport, particularly in the double leucine mutant (G406L/G410L). Basal ATPase activity of the G406L/G410L mutant was comparable to the empty vector transfected cells with no substrate induction. Despite impaired function, the mutants retained susceptibility to cross-linking using either disuccinimidyl suberate (DSS) or the reducible dithiobis(succinimidyl propionate) (DSP) and demonstrated a high molecular weight complex under nonreducing conditions. Mutations to alanine at the same positions yielded fully functional transporters. Finally, we exposed cells to mitoxantrone to promote folding and processing of the mutant proteins, which in the leucine mutants resulted in increased amounts detected on immunoblot and by immunofluorescence. These studies support a hypothesis that the GXXXG motif promotes proper packing of the transmembrane segments in the functional ABCG2 homodimer, although it does not solely arbitrate dimerization.
Collapse
Affiliation(s)
- Orsolya Polgar
- Cancer Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Gandlur SM, Wei L, Levine J, Russell J, Kaur P. Membrane Topology of the DrrB Protein of the Doxorubicin Transporter of Streptomyces peucetius. J Biol Chem 2004; 279:27799-806. [PMID: 15090538 DOI: 10.1074/jbc.m402898200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Daunorubicin and doxorubicin, two commonly used anticancer agents, are produced by the soil bacterium Streptomyces peucetius. Self-resistance to these antibiotics in S. peucetius is conferred by the drrAB locus that codes for two proteins, DrrA and DrrB. DrrA is an ATP-binding protein. It belongs to the ABC family of transporters and shares sequence and functional similarities with P-glycoprotein of cancer cells. DrrB is an integral membrane protein that might function as a transporter for the efflux of daunorubicin and doxorubicin. Together, DrrA and DrrB are believed to form an ATP-driven pump for the efflux of these drugs. The drrAB locus has been cloned, and the two proteins have been expressed in a functional form in Escherichia coli. A topological analysis of the DrrB protein was performed using gene fusion methodology. Random and site-directed fusions of the drrB gene to lacZ, phoA, or gfp reporter genes were created. Based on the fusion data, a topological model of the DrrB protein is proposed in which the protein has eight membrane-spanning domains with both the N terminus and the C terminus in the cytoplasm.
Collapse
Affiliation(s)
- Suvarna M Gandlur
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | | | | | |
Collapse
|
29
|
Abstract
Drug resistance in bacteria, and especially resistance to multiple antibacterials, has attracted much attention in recent years. In addition to the well known mechanisms, such as inactivation of drugs and alteration of targets, active efflux is now known to play a major role in the resistance of many species to antibacterials. Drug-specific efflux (e.g. that of tetracycline) has been recognised as the major mechanism of resistance to this drug in Gram-negative bacteria. In addition, we now recognise that multidrug efflux pumps are becoming increasingly important. Such pumps play major roles in the antiseptic resistance of Staphylococcus aureus, and fluoroquinolone resistance of S. aureus and Streptococcus pneumoniae. Multidrug pumps, often with very wide substrate specificity, are not only essential for the intrinsic resistance of many Gram-negative bacteria but also produce elevated levels of resistance when overexpressed. Paradoxically, 'advanced' agents for which resistance is unlikely to be caused by traditional mechanisms, such as fluoroquinolones and beta-lactams of the latest generations, are likely to select for overproduction mutants of these pumps and make the bacteria resistant in one step to practically all classes of antibacterial agents. Such overproduction mutants are also selected for by the use of antiseptics and biocides, increasingly incorporated into consumer products, and this is also of major concern. We can consider efflux pumps as potentially effective antibacterial targets. Inhibition of efflux pumps by an efflux pump inhibitor would restore the activity of an agent subject to efflux. An alternative approach is to develop antibacterials that would bypass the action of efflux pumps.
Collapse
Affiliation(s)
- Xian-Zhi Li
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202, USA
| | | |
Collapse
|
30
|
Abstract
Our understanding of the exact mechanisms used by the transmembrane protein pumps that confer cellular resistance to cytotoxic drugs has improved enormously with the recent determination of the structures of three Escherichia coli transporters, two belonging to the ATP-binding cassette (ABC) superfamily and one to the resistance-nodulation-cell division (RND) family. Although these studies do not provide an insight into how drug pumps can recognize several structurally unrelated drugs, important advances have been also made in this area. Information on the molecular basis of multidrug recognition has been provided by determining the structure of transcriptional regulators that can bind, often structurally unrelated, cytotoxic drugs and control the expression of drug pumps.
Collapse
Affiliation(s)
- Kenneth S McKeegan
- Centre for Infectious Diseases, Wolfson Research Institute, Queen's Campus, University of Durham, Stockton-on-Tees, UK
| | | | | |
Collapse
|
31
|
Grkovic S, Brown MH, Skurray RA. Regulation of bacterial drug export systems. Microbiol Mol Biol Rev 2002; 66:671-701, table of contents. [PMID: 12456787 PMCID: PMC134658 DOI: 10.1128/mmbr.66.4.671-701.2002] [Citation(s) in RCA: 281] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The active transport of toxic compounds by membrane-bound efflux proteins is becoming an increasingly frequent mechanism by which cells exhibit resistance to therapeutic drugs. This review examines the regulation of bacterial drug efflux systems, which occurs primarily at the level of transcription. Investigations into these regulatory networks have yielded a substantial volume of information that has either not been forthcoming from or complements that obtained by analysis of the transport proteins themselves. Several local regulatory proteins, including the activator BmrR from Bacillus subtilis and the repressors QacR from Staphylococcus aureus and TetR and EmrR from Escherichia coli, have been shown to mediate increases in the expression of drug efflux genes by directly sensing the presence of the toxic substrates exported by their cognate pump. This ability to bind transporter substrates has permitted detailed structural information to be gathered on protein-antimicrobial agent-ligand interactions. In addition, bacterial multidrug efflux determinants are frequently controlled at a global level and may belong to stress response regulons such as E. coli mar, expression of which is controlled by the MarA and MarR proteins. However, many regulatory systems are ill-adapted for detecting the presence of toxic pump substrates and instead are likely to respond to alternative signals related to unidentified physiological roles of the transporter. Hence, in a number of important pathogens, regulatory mutations that result in drug transporter overexpression and concomitant elevated antimicrobial resistance are often observed.
Collapse
Affiliation(s)
- Steve Grkovic
- School of Biological Sciences, University of Sydney, New South Wales 2006, Australia
| | | | | |
Collapse
|
32
|
Choudhuri BS, Bhakta S, Barik R, Basu J, Kundu M, Chakrabarti P. Overexpression and functional characterization of an ABC (ATP-binding cassette) transporter encoded by the genes drrA and drrB of Mycobacterium tuberculosis. Biochem J 2002; 367:279-85. [PMID: 12057006 PMCID: PMC1222852 DOI: 10.1042/bj20020615] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2002] [Revised: 05/21/2002] [Accepted: 06/11/2002] [Indexed: 11/17/2022]
Abstract
The genes encoding ATP-binding cassette (ABC) transporters occupy 2.5% of the genome of Mycobacterium tuberculosis. However, none of these putative ABC transporters has been characterized so far. We describe the development of expression systems for simultaneous expression of the ATP-binding protein DrrA and the membrane integral protein DrrB which together behave as a functional doxorubicin efflux pump. Doxorubicin uptake in Escherichia coli or Mycobacterium smegmatis expressing DrrAB was inhibited by reserpine, an inhibitor of ABC transporters. The localization of DrrA to the membrane depended on the simultaneous expression of DrrB. ATP binding was positively regulated by doxorubicin and daunorubicin. At the same time, DrrB appeared to be sensitive to proteolysis when expressed alone in the absence of DrrA. Simultaneous expression of the two polypeptides was essential to obtain a functional doxorubicin efflux pump. Expression of DrrAB in E. coli conferred 8-fold increased resistance to ethidium bromide, a cationic compound. 2',7'-bis-(2-Carboxyethyl)-5(6)-carboxyfluorescein (BCECF), a neutral compound, also behaved as a substrate of the reconstituted efflux pump. When expressed in M. smegmatis, DrrAB conferred resistance to a number of clinically relevant, structurally unrelated antibiotics. The resistant phenotype could be reversed by verapamil and reserpine, two potent inhibitors of ABC transporters.
Collapse
Affiliation(s)
- Baisakhee Saha Choudhuri
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Calcutta 700 009, India
| | | | | | | | | | | |
Collapse
|
33
|
Teo JWP, Tan TMC, Poh CL. Genetic determinants of tetracycline resistance in Vibrio harveyi. Antimicrob Agents Chemother 2002; 46:1038-45. [PMID: 11897587 PMCID: PMC127092 DOI: 10.1128/aac.46.4.1038-1045.2002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Isolates of Vibrio harveyi, a prawn pathogen, have demonstrated multiple antibiotic resistance to commonly used antimicrobial agents, such as oxytetracycline. In this paper, we describe the cloning and characterization of two tetracycline resistance determinants from V. harveyi strain M3.4L. The first resistance determinant, cloned as a 4,590-bp fragment, was identical to tetA and flanking sequences encoded on transposon Tn10 from Shigella flexneri. The second determinant, cloned as a 3,358-bp fragment in pATJ1, contains two open reading frames, designated tet35 and txr. tet35 encodes a 369-amino-acid protein that was predicted to have nine transmembrane regions. It is a novel protein which has no homology to any other drug resistance protein but has low levels of homology (28%) to Na(+)/H(+) antiporters. Transposon mutagenesis showed that tet35 and txr were required for tetracycline resistance in a heterologous Escherichia coli host. Tetracycline accumulation studies indicate that E. coli carrying tet35 and txr can function as an energy-dependent tetracycline efflux pump but is less efficient than TetA.
Collapse
Affiliation(s)
- Jeanette W P Teo
- Programme in Environmental Microbiology, Department of Microbiology, Faculty of Medicine, National University of Singapore, Singapore
| | | | | |
Collapse
|
34
|
Méndez C, Salas JA. The role of ABC transporters in antibiotic-producing organisms: drug secretion and resistance mechanisms. Res Microbiol 2001; 152:341-50. [PMID: 11421281 DOI: 10.1016/s0923-2508(01)01205-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Knowledge about biosynthetic gene clusters from antibiotic-producing actinomycetes is continuously increasing and the presence of an ABC transporter system is a fairly general phenomenon in most of these clusters. These transporters are involved in the secretion of the antibiotic through the cell membrane and also contribute to self resistance to the produced antibiotic.
Collapse
Affiliation(s)
- C Méndez
- Departamento de Biologiá Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Spain
| | | |
Collapse
|
35
|
Abstract
Resistance to drugs has emerged in biological systems as diverse as cancer cells undergoing chemotherapy and microbial pathogens undergoing treatment with antimicrobials. This medical problem is escalating and there is an urgent need for the development of new classes of drugs. In the case of pathogenic bacteria, we are rapidly approaching a scenario where there will be no effective antibiotics in the armoury of drugs available for treating the infectious diseases that these bacteria cause, returning us to the pre-antibiotic era when infectious diseases were rife because they were untreatable. One of the most frequently employed resistance strategies in both prokaryotes and eukaryotes is the transmembrane-protein-catalysed extrusion of drugs from the cell, with these proteins acting like bilge pumps, reducing the intracellular drug concentration to subtoxic levels. There is currently much scientific interest in understanding how these pumps operate, so that we might design transport inhibitors that would block them, allowing a renaissance for drugs that are no longer effective owing to their efflux.
Collapse
Affiliation(s)
- M I Borges-Walmsley
- Division of Infection and Immunity, Institute of Biomedical & Life Sciences, Robertson Building, University of Glasgow, G11 6NU, Glasgow, UK.
| | | |
Collapse
|
36
|
Borst P, Zelcer N, van Helvoort A. ABC transporters in lipid transport. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1486:128-44. [PMID: 10856718 DOI: 10.1016/s1388-1981(00)00053-6] [Citation(s) in RCA: 220] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Since it was found that the P-glycoproteins encoded by the MDR3 (MDR2) gene in humans and the Mdr2 gene in mice are primarily phosphatidylcholine translocators, there has been increasing interest in the possibility that other ATP binding cassette (ABC) transporters are involved in lipid transport. The evidence reviewed here shows that the MDR1 P-glycoprotein and the multidrug resistance (-associated) transporter 1 (MRP1) are able to transport lipid analogues, but probably not major natural membrane lipids. Both transporters can transport a wide range of hydrophobic drugs and may see lipid analogues as just another drug. The MDR3 gene probably arose in evolution from a drug-transporting P-glycoprotein gene. Recent work has shown that the phosphatidylcholine translocator has retained significant drug transport activity and that this transport is inhibited by inhibitors of drug-transporting P-glycoproteins. Whether the phosphatidylcholine translocator also functions as a transporter of some drugs in vivo remains to be seen. Three other ABC transporters were recently shown to be involved in lipid transport: ABCR, also called Rim protein, was shown to be defective in Stargardt's macular dystrophy; this protein probably transports a complex of retinaldehyde and phosphatidylethanolamine in the retina of the eye. ABC1 was shown to be essential for the exit of cholesterol from cells and is probably a cholesterol transporter. A third example, the ABC transporter involved in the import of long-chain fatty acids into peroxisomes, is discussed in the chapter by Hettema and Tabak in this volume.
Collapse
Affiliation(s)
- P Borst
- Division of Molecular Biology and Centre for Biomedical Genetics, The Netherlands Cancer Institute, Amsterdam.
| | | | | |
Collapse
|
37
|
Furuya K, Hutchinson CR. The DrrC protein of Streptomyces peucetius, a UvrA-like protein, is a DNA-binding protein whose gene is induced by daunorubicin. FEMS Microbiol Lett 1998; 168:243-9. [PMID: 9835035 DOI: 10.1111/j.1574-6968.1998.tb13280.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
DrrC, a daunorubicin resistance protein with a strong sequence similarity to the UvrA protein involved in excision repair of DNA, is induced by daunorubicin in Streptomyces peucetius and behaves like an ATP-dependent, DNA binding protein in vitro. The refolded protein obtained from expression of the drrC gene in Escherichia coli was used to conduct gel retardation assays. DrrC bound a DNA segment containing the promoter region of a daunorubicin production gene only in the presence of ATP and daunorubicin. This result suggests that DrrC is a novel type of drug self-resistance protein with DNA binding properties like those of UvrA. Western blotting analysis with a polyclonal antiserum generated against His-tagged DrrC showed that the appearance of DrrC in S. peucetius is coincident with the onset of daunorubicin production and that the drrC gene is induced by daunorubicin. These data also showed that the DnrN and DnrI regulatory proteins are required for drrC expression. The level of DrrA, another daunorubicin resistance protein that resembles ATP-dependent bacterial antiporters, was regulated in the same way as that of DrrC.
Collapse
Affiliation(s)
- K Furuya
- School of Pharmacy, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|