1
|
Kondaka K, Gabriel I. Targeting DNA Topoisomerase II in Antifungal Chemotherapy. Molecules 2022; 27:molecules27227768. [PMID: 36431868 PMCID: PMC9698242 DOI: 10.3390/molecules27227768] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Topoisomerase inhibitors have been in use clinically for the treatment of several diseases for decades. Although those enzymes are significant molecular targets in antibacterial and anticancer chemotherapy very little is known about the possibilities to target fungal topoisomerase II (topo II). Raising concern for the fungal infections, lack of effective drugs and a phenomenon of multidrug resistance underlie a strong need to expand the range of therapeutic options. In this review paper, we discussed the usefulness of fungal topo II as a molecular target for new drug discovery. On the basis of previously published data, we described structural and biochemical differences between fungal and human enzymes as well as a molecular basis of differential sensitivity to known anticancer drugs targeting the latter. This review focuses especially on highlighting the differences that may underlie the selectivity of action of new inhibitors. Distinct sites within fungal topo II in comparison with human counterparts are observed and should be further studied to understand the significance of those sites and their possible usage in design of new drugs.
Collapse
Affiliation(s)
| | - Iwona Gabriel
- Correspondence: ; Tel.: +48-58-348-6078; Fax: +48-58-347-1144
| |
Collapse
|
2
|
Tan T, Tan Y, Wang Y, Yang X, Zhai B, Zhang S, Yang X, Nie H, Gao J, Zhou J, Zhang L, Wang S. Negative supercoils regulate meiotic crossover patterns in budding yeast. Nucleic Acids Res 2022; 50:10418-10435. [PMID: 36107772 PMCID: PMC9561271 DOI: 10.1093/nar/gkac786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/21/2022] [Accepted: 09/01/2022] [Indexed: 11/25/2022] Open
Abstract
Interference exists ubiquitously in many biological processes. Crossover interference patterns meiotic crossovers, which are required for faithful chromosome segregation and evolutionary adaption. However, what the interference signal is and how it is generated and regulated is unknown. We show that yeast top2 alleles which cannot bind or cleave DNA accumulate a higher level of negative supercoils and show weaker interference. However, top2 alleles which cannot religate the cleaved DNA or release the religated DNA accumulate less negative supercoils and show stronger interference. Moreover, the level of negative supercoils is negatively correlated with crossover interference strength. Furthermore, negative supercoils preferentially enrich at crossover-associated Zip3 regions before the formation of meiotic DNA double-strand breaks, and regions with more negative supercoils tend to have more Zip3. Additionally, the strength of crossover interference and homeostasis change coordinately in mutants. These findings suggest that the accumulation and relief of negative supercoils pattern meiotic crossovers.
Collapse
Affiliation(s)
- Taicong Tan
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University , China
| | - Yingjin Tan
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University , China
| | - Ying Wang
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University , China
| | - Xiao Yang
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University , China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University , Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education , Jinan, Shandong 250001, China
- Shandong Provincial Clinical Research Center for Reproductive Health , Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Medicine , Jinan, Shandong 250012, China
| | - Binyuan Zhai
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University , China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University , Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education , Jinan, Shandong 250001, China
- Shandong Provincial Clinical Research Center for Reproductive Health , Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Medicine , Jinan, Shandong 250012, China
| | - Shuxian Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University , China
- Advanced Medical Research Institute, Shandong University , Jinan, Shandong 250012, China
| | - Xuan Yang
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University , China
| | - Hui Nie
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University , Jinan 250014, Shandong, China
| | - Jinmin Gao
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University , Jinan 250014, Shandong, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University , Jinan 250014, Shandong, China
| | - Liangran Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University , China
- Advanced Medical Research Institute, Shandong University , Jinan, Shandong 250012, China
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University , Jinan 250014, Shandong, China
| | - Shunxin Wang
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University , China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University , Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education , Jinan, Shandong 250001, China
- Shandong Provincial Clinical Research Center for Reproductive Health , Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Medicine , Jinan, Shandong 250012, China
| |
Collapse
|
3
|
Kuriappan JA, Osheroff N, De Vivo M. Smoothed Potential MD Simulations for Dissociation Kinetics of Etoposide To Unravel Isoform Specificity in Targeting Human Topoisomerase II. J Chem Inf Model 2019; 59:4007-4017. [PMID: 31449404 PMCID: PMC6800198 DOI: 10.1021/acs.jcim.9b00605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Human
type II topoisomerases (TopoII) are essential for controlling
DNA topology within the cell. For this reason, there are a number
of TopoII-targeted anticancer drugs that act by inducing DNA cleavage
mediated by both TopoII isoforms (TopoIIα and TopoIIβ)
in cells. However, recent studies suggest that specific poisoning
of TopoIIα may be a safer strategy for treating cancer. This
is because poisoning of TopoIIβ appears to be linked to the
generation of secondary leukemia in patients. We recently reported
that enzyme-mediated DNA cleavage complexes (in which TopoII is covalently
linked to the cleaved DNA during catalysis) formed in the presence
of the anticancer drug etoposide persisted approximately 3-fold longer
with TopoIIα than TopoIIβ. Notably, enhanced drug-target
residence time may reduce the adverse effects of specific TopoIIα
poisons. However, it is still not clear how to design drugs that are
specific for the α isoform. In this study, we report the results
of classical molecular dynamics (MD) simulations to comparatively
analyze the molecular interactions formed within the TopoII/DNA/etoposide
complex with both isoforms. We also used smoothed potential MD to
estimate etoposide dissociation kinetics from the two isoform complexes.
These extensive classical and enhanced sampling simulations revealed
stabilizing interactions of etoposide with two serine residues (Ser763
and Ser800) in TopoIIα. These interactions are missing in TopoIIβ,
where both amino acids are alanine residues. This may explain the
greater persistence of etoposide-stabilized cleavage complexes formed
with Topo TopoIIα. These findings could be useful for the rational
design of specific TopoIIα poisons.
Collapse
Affiliation(s)
- Jissy A Kuriappan
- Laboratory of Molecular Modeling and Drug Discovery , Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
| | - Neil Osheroff
- Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , Tennessee 37232-0146 , United States.,Department of Medicine (Hematology/Oncology) , Vanderbilt University School of Medicine , Nashville , Tennessee 37232-6307 , United States.,VA Tennessee Valley Healthcare System , Nashville , Tennessee 37212 , United States
| | - Marco De Vivo
- Laboratory of Molecular Modeling and Drug Discovery , Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
| |
Collapse
|
4
|
Infante Lara L, Fenner S, Ratcliffe S, Isidro-Llobet A, Hann M, Bax B, Osheroff N. Coupling the core of the anticancer drug etoposide to an oligonucleotide induces topoisomerase II-mediated cleavage at specific DNA sequences. Nucleic Acids Res 2018; 46:2218-2233. [PMID: 29447373 PMCID: PMC5861436 DOI: 10.1093/nar/gky072] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/18/2018] [Accepted: 02/06/2018] [Indexed: 12/13/2022] Open
Abstract
Etoposide and other topoisomerase II-targeted drugs are important anticancer therapeutics. Unfortunately, the safe usage of these agents is limited by their indiscriminate induction of topoisomerase II-mediated DNA cleavage throughout the genome and by a lack of specificity toward cancer cells. Therefore, as a first step toward constraining the distribution of etoposide-induced DNA cleavage sites and developing sequence-specific topoisomerase II-targeted anticancer agents, we covalently coupled the core of etoposide to oligonucleotides centered on a topoisomerase II cleavage site in the PML gene. The initial sequence used for this 'oligonucleotide-linked topoisomerase inhibitor' (OTI) was identified as part of the translocation breakpoint of a patient with acute promyelocytic leukemia (APL). Subsequent OTI sequences were derived from the observed APL breakpoint between PML and RARA. Results indicate that OTIs can be used to direct the sites of etoposide-induced DNA cleavage mediated by topoisomerase IIα and topoisomerase IIβ. OTIs increased levels of enzyme-mediated cleavage by inhibiting DNA ligation, and cleavage complexes induced by OTIs were as stable as those induced by free etoposide. Finally, OTIs directed against the PML-RARA breakpoint displayed cleavage specificity for oligonucleotides with the translocation sequence over those with sequences matching either parental gene. These studies demonstrate the feasibility of using oligonucleotides to direct topoisomerase II-mediated DNA cleavage to specific sites in the genome.
Collapse
MESH Headings
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Base Sequence
- DNA Cleavage/drug effects
- DNA Topoisomerases, Type II/metabolism
- Etoposide/chemistry
- Etoposide/pharmacology
- Feasibility Studies
- Humans
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Oligonucleotides/chemistry
- Oligonucleotides/pharmacology
- Oncogene Proteins, Fusion/antagonists & inhibitors
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Topoisomerase II Inhibitors/chemistry
- Topoisomerase II Inhibitors/pharmacology
Collapse
Affiliation(s)
- Lorena Infante Lara
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | - Sabine Fenner
- Platform Technology and Science, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| | - Steven Ratcliffe
- Platform Technology and Science, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| | - Albert Isidro-Llobet
- Platform Technology and Science, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| | - Michael Hann
- Platform Technology and Science, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| | - Ben Bax
- Platform Technology and Science, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Neil Osheroff
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
- Department of Medicine (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- VA Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| |
Collapse
|
5
|
Edgerton H, Johansson M, Keifenheim D, Mukherjee S, Chacón JM, Bachant J, Gardner MK, Clarke DJ. A noncatalytic function of the topoisomerase II CTD in Aurora B recruitment to inner centromeres during mitosis. J Cell Biol 2017; 213:651-64. [PMID: 27325791 PMCID: PMC4915189 DOI: 10.1083/jcb.201511080] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/25/2016] [Indexed: 11/22/2022] Open
Abstract
The C-terminal domain (CTD) of Topo II is dispensable for its catalytic activity yet essential for Topo II function in chromosome segregation during mitosis. Here, Edgerton et al. resolve the role of the Topo II CTD during mitosis in yeast, showing that it functions noncatalytically via the Haspin-H3 T3-Phos pathway to recruit Ipl1/Aurora B to mitotic inner centromeres. Faithful chromosome segregation depends on the precise timing of chromatid separation, which is enforced by checkpoint signals generated at kinetochores. Here, we provide evidence that the C-terminal domain (CTD) of DNA topoisomerase IIα (Topo II) provides a novel function at inner centromeres of kinetochores in mitosis. We find that the yeast CTD is required for recruitment of the tension checkpoint kinase Ipl1/Aurora B to inner centromeres in metaphase but is not required in interphase. Conserved CTD SUMOylation sites are required for Ipl1 recruitment. This inner-centromere CTD function is distinct from the catalytic activity of Topo II. Genetic and biochemical evidence suggests that Topo II recruits Ipl1 via the Haspin–histone H3 threonine 3 phosphorylation pathway. Finally, Topo II and Sgo1 are equally important for Ipl1 recruitment to inner centromeres. This indicates H3 T3-Phos/H2A T120-Phos is a universal epigenetic signature that defines the eukaryotic inner centromere and provides the binding site for Ipl1/Aurora B.
Collapse
Affiliation(s)
- Heather Edgerton
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Marnie Johansson
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Daniel Keifenheim
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Soumya Mukherjee
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Jeremy M Chacón
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Jeff Bachant
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, CA 92521
| | - Melissa K Gardner
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Duncan J Clarke
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
6
|
Furniss KL, Tsai HJ, Byl JAW, Lane AB, Vas AC, Hsu WS, Osheroff N, Clarke DJ. Direct monitoring of the strand passage reaction of DNA topoisomerase II triggers checkpoint activation. PLoS Genet 2013; 9:e1003832. [PMID: 24098144 PMCID: PMC3789831 DOI: 10.1371/journal.pgen.1003832] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 08/10/2013] [Indexed: 02/04/2023] Open
Abstract
By necessity, the ancient activity of type II topoisomerases co-evolved with the double-helical structure of DNA, at least in organisms with circular genomes. In humans, the strand passage reaction of DNA topoisomerase II (Topo II) is the target of several major classes of cancer drugs which both poison Topo II and activate cell cycle checkpoint controls. It is important to know the cellular effects of molecules that target Topo II, but the mechanisms of checkpoint activation that respond to Topo II dysfunction are not well understood. Here, we provide evidence that a checkpoint mechanism monitors the strand passage reaction of Topo II. In contrast, cells do not become checkpoint arrested in the presence of the aberrant DNA topologies, such as hyper-catenation, that arise in the absence of Topo II activity. An overall reduction in Topo II activity (i.e. slow strand passage cycles) does not activate the checkpoint, but specific defects in the T-segment transit step of the strand passage reaction do induce a cell cycle delay. Furthermore, the cell cycle delay depends on the divergent and catalytically inert C-terminal region of Topo II, indicating that transmission of a checkpoint signal may occur via the C-terminus. Other, well characterized, mitotic checkpoints detect DNA lesions or monitor unattached kinetochores; these defects arise via failures in a variety of cell processes. In contrast, we have described the first example of a distinct category of checkpoint mechanism that monitors the catalytic cycle of a single specific enzyme in order to determine when chromosome segregation can proceed faithfully.
Collapse
Affiliation(s)
- Katherine L. Furniss
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Hung-Ji Tsai
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jo Ann W. Byl
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Andrew B. Lane
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Amit C. Vas
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Wei-Shan Hsu
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Neil Osheroff
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Duncan J. Clarke
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
7
|
Hanaoka K, Shoji M, Kondo D, Sato A, Yang MY, Kamiya K, Shiraishi K. Substrate-mediated proton relay mechanism for the religation reaction in topoisomerase II. J Biomol Struct Dyn 2013; 32:1759-65. [PMID: 24047515 DOI: 10.1080/07391102.2013.834848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The DNA religation reaction of yeast type II topoisomerase (topo II) was investigated to elucidate its metal-dependent general acid/base catalysis. Quantum mechanical/molecular mechanical calculations were performed for the topo II religation reaction, and the proton transfer pathway was examined. We found a substrate-mediated proton transfer of the topo II religation reaction, which involves the 3' OH nucleophile, the reactive phosphate, water, Arg781, and Tyr782. Metal A stabilizes the transition states, which is consistent with a two-metal mechanism in topo II. This pathway may be required for the cleavage/religation reaction of topo IA and II and will provide a general explanation for the catalytic mechanism in the topo IA and II.
Collapse
Affiliation(s)
- Kyohei Hanaoka
- a Graduate School of Pure and Applied Sciences, University of Tsukuba , Tennodai 1-1-1, Tsukuba , 305-8571 , Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
Palermo G, Stenta M, Cavalli A, Dal Peraro M, De Vivo M. Molecular Simulations Highlight the Role of Metals in Catalysis and Inhibition of Type II Topoisomerase. J Chem Theory Comput 2013; 9:857-62. [DOI: 10.1021/ct300691u] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Giulia Palermo
- Department of Drug Discovery
and Development, Italian Institute of Technology, via Morego 30, 16163
Genova, Italy
| | - Marco Stenta
- Institute
of Bioengineering,
School of Life Sciences, Ecole Polytechnique Fédérale
de Lausanne - EPFL, Lausanne, CH-1015, Switzerland
| | - Andrea Cavalli
- Department of Drug Discovery
and Development, Italian Institute of Technology, via Morego 30, 16163
Genova, Italy
- Department of Pharmaceutical Sciences,
University of Bologna, via Belmeloro 6, I-40126 Bologna, Italy
| | - Matteo Dal Peraro
- Institute
of Bioengineering,
School of Life Sciences, Ecole Polytechnique Fédérale
de Lausanne - EPFL, Lausanne, CH-1015, Switzerland
| | - Marco De Vivo
- Department of Drug Discovery
and Development, Italian Institute of Technology, via Morego 30, 16163
Genova, Italy
| |
Collapse
|
9
|
Joshi RS, Piña B, Roca J. Topoisomerase II is required for the production of long Pol II gene transcripts in yeast. Nucleic Acids Res 2012; 40:7907-15. [PMID: 22718977 PMCID: PMC3439932 DOI: 10.1093/nar/gks626] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The extent to which the DNA relaxation activities of eukaryotic topoisomerases (topo I and topo II) are redundant during gene transcription is unclear. Although both enzymes can often substitute for each other in vivo, studies in vitro had revealed that the DNA cross-inversion mechanism of topo II relaxes chromatin more efficiently than the DNA strand-rotation mechanism of topo I. Here, we show that the inactivation of topo II in budding yeast produces an abrupt decrease of virtually all polyA+ RNA transcripts of length above ∼3 kb, irrespective of their function. This reduction is not related to transcription initiation but to the stall of RNA polymerase II (Pol II) during elongation. This reduction does not occur in topo I mutants; and it is not avoided by overproducing yeast topo I or bacterial topo I, which relaxes (−) DNA supercoils. It is rescued by catalytically active topo II or a GyrBA enzyme, which relaxes (+) DNA supercoils. These findings demonstrate that DNA relaxation activities of topo I and topo II are not interchangeable in vivo. Apparently, only topo II relaxes efficiently the (+) DNA supercoils that stall the advancement of Pol II in long genes. A mechanistic model is proposed.
Collapse
Affiliation(s)
- Ricky S Joshi
- Molecular Biology Institute of Barcelona, CSIC, 08028 Barcelona, Spain
| | | | | |
Collapse
|
10
|
Fluoroquinolone and quinazolinedione activities against wild-type and gyrase mutant strains of Mycobacterium smegmatis. Antimicrob Agents Chemother 2011; 55:2335-43. [PMID: 21383100 DOI: 10.1128/aac.00033-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Quinazolinediones (diones) are fluoroquinolone-like inhibitors of bacterial gyrase and DNA topoisomerase IV. To assess activity against mycobacteria, C-8-methoxy dione derivatives were compared with cognate fluoroquinolones by using cultured Mycobacterium smegmatis. Diones exhibited higher MIC values than fluoroquinolones; however, MICs for fluoroquinolone-resistant gyrA mutants, normalized to the MIC for wild-type cells, were lower. Addition of a 3-amino group to the 2,4-dione core increased relative activity against mutants, while alteration of the 8-methoxy group to a methyl or of the 2,4-dione core to a 1,3-dione core lowered activity against mutants. A GyrA G89C bacterial variant was strikingly susceptible to most of the diones tested; in contrast, low susceptibility to fluoroquinolones was observed. Many of the bacteriostatic differences between diones and fluoroquinolones were explained by interactions at the N terminus of GyrA helix IV revealed by recently published X-ray structures of drug-topoisomerase-DNA complexes. When lethal activity was normalized to the MIC in order to minimize the effects of drug uptake, efflux, and ternary complex formation, a 3-amino-2,4-dione exhibited killing activity comparable to that of a cognate fluoroquinolone. Surprisingly, the lethal activity of the dione was inhibited less by chloramphenicol than that of the cognate fluoroquinolone. This observation adds the 2,4-dione structural motif to the list of structural features known to impart lethality to fluoroquinolone-like compounds in the absence of protein synthesis, a phenomenon that is not explained by X-ray structures of drug-enzyme-DNA complexes.
Collapse
|
11
|
Pitts SL, Liou GF, Mitchenall LA, Burgin AB, Maxwell A, Neuman KC, Osheroff N. Use of divalent metal ions in the DNA cleavage reaction of topoisomerase IV. Nucleic Acids Res 2011; 39:4808-17. [PMID: 21300644 PMCID: PMC3113566 DOI: 10.1093/nar/gkr018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It has long been known that type II topoisomerases require divalent metal ions in order to cleave DNA. Kinetic, mutagenesis and structural studies indicate that the eukaryotic enzymes utilize a novel variant of the canonical two-metal-ion mechanism to promote DNA scission. However, the role of metal ions in the cleavage reaction mediated by bacterial type II enzymes has been controversial. Therefore, to resolve this critical issue, this study characterized the DNA cleavage reaction of Escherichia coli topoisomerase IV. We utilized a series of divalent metal ions with varying thiophilicities in conjunction with oligonucleotides that replaced bridging and non-bridging oxygen atoms at (and near) the scissile bond with sulfur atoms. DNA scission was enhanced when thiophilic metal ions were used with substrates that contained bridging sulfur atoms. In addition, the metal-ion dependence of DNA cleavage was sigmoidal in nature, and rates and levels of DNA cleavage increased when metal ion mixtures were used in reactions. Based on these findings, we propose that topoisomerase IV cleaves DNA using a two-metal-ion mechanism in which one of the metal ions makes a critical interaction with the 3′-bridging atom of the scissile phosphate and facilitates DNA scission by the bacterial type II enzyme.
Collapse
Affiliation(s)
- Steven L Pitts
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature 2010; 466:935-40. [DOI: 10.1038/nature09197] [Citation(s) in RCA: 514] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2009] [Accepted: 05/20/2010] [Indexed: 11/08/2022]
|
13
|
Schmidt BH, Burgin AB, Deweese JE, Osheroff N, Berger JM. A novel and unified two-metal mechanism for DNA cleavage by type II and IA topoisomerases. Nature 2010; 465:641-4. [PMID: 20485342 PMCID: PMC2882514 DOI: 10.1038/nature08974] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 06/03/2010] [Accepted: 03/01/2010] [Indexed: 11/09/2022]
Abstract
Type II topoisomerases are required for the management of DNA tangles and supercoils, and are targets of clinical antibiotics and anti-cancer agents. These enzymes catalyse the ATP-dependent passage of one DNA duplex (the transport or T-segment) through a transient, double-stranded break in another (the gate or G-segment), navigating DNA through the protein using a set of dissociable internal interfaces, or 'gates'. For more than 20 years, it has been established that a pair of dimer-related tyrosines, together with divalent cations, catalyse G-segment cleavage. Recent efforts have proposed that strand scission relies on a 'two-metal mechanism', a ubiquitous biochemical strategy that supports vital cellular processes ranging from DNA synthesis to RNA self-splicing. Here we present the structure of the DNA-binding and cleavage core of Saccharomyces cerevisiae topoisomerase II covalently linked to DNA through its active-site tyrosine at 2.5A resolution, revealing for the first time the organization of a cleavage-competent type II topoisomerase configuration. Unexpectedly, metal-soaking experiments indicate that cleavage is catalysed by a novel variation of the classic two-metal approach. Comparative analyses extend this scheme to explain how distantly-related type IA topoisomerases cleave single-stranded DNA, unifying the cleavage mechanisms for these two essential enzyme families. The structure also highlights a hitherto undiscovered allosteric relay that actuates a molecular 'trapdoor' to prevent subunit dissociation during cleavage. This connection illustrates how an indispensable chromosome-disentangling machine auto-regulates DNA breakage to prevent the aberrant formation of mutagenic and cytotoxic genomic lesions.
Collapse
Affiliation(s)
- Bryan H Schmidt
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
14
|
Fu G, Wu J, Liu W, Zhu D, Hu Y, Deng J, Zhang XE, Bi L, Wang DC. Crystal structure of DNA gyrase B' domain sheds lights on the mechanism for T-segment navigation. Nucleic Acids Res 2009; 37:5908-16. [PMID: 19596812 PMCID: PMC2761264 DOI: 10.1093/nar/gkp586] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
DNA gyrase is an indispensible marvelous molecular machine in manipulating the DNA topology for the prokaryotes. In the ‘two-gate’ mechanism of DNA topoisomerase, T-segment navigation from N- to DNA-gate is a critical step, but the structural basis supporting this scheme is unclear. The crystal structure of DNA gyrase B′ subfragment from Mycobacterium tuberculosis reveals an intrinsic homodimer. The two subunits, each consisting of a Tail and a Toprim domain, are tightly packed one another to form a ‘crab-like’ organization never observed previously from yeast topo II. Structural comparisons show two orientational alterations of the Tail domain, which may be dominated by a 43-residue peptide at the B′ module C-terminus. A highly conserved pentapeptide mediates large-scale intrasubunit conformational change as a hinge point. Mutational studies highlight the significant roles of a negatively charge cluster on a groove at dimer interface. On the basis of structural analysis and mutation experiments, a sluice-like model for T-segment transport is proposed.
Collapse
Affiliation(s)
- Guangsen Fu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Rogojina AT, Nitiss JL. Isolation and characterization of mAMSA-hypersensitive mutants. Cytotoxicity of Top2 covalent complexes containing DNA single strand breaks. J Biol Chem 2008; 283:29239-50. [PMID: 18723844 DOI: 10.1074/jbc.m804058200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Topoisomerase II (Top2) is the primary target for active anti-cancer agents. We developed an efficient approach for identifying hypersensitive Top2 mutants and isolated a panel of mutants in yeast Top2 conferring hypersensitivity to the intercalator N-[4-(9-acridinylamino)-3-methoxyphenyl]methanesulphonanilide (mAMSA). Some mutants conferred hypersensitivity to etoposide as well as mAMSA, whereas other mutants exhibited hypersensitivity only to mAMSA. Two mutants in Top2, changing Pro(473) to Leu and Gly(737) to Val, conferred extraordinary hypersensitivity to mAMSA and were chosen for further characterization. The mutant proteins were purified, and their biochemical activities were assessed. Both mutants encode enzymes that are hypersensitive to inhibition by mAMSA and other intercalating agents and exhibited elevated levels of mAMSA-induced Top2:DNA covalent complexes. While Gly(737) --> Val Top2p generated elevated levels of Top2-mediated double strand breaks in vitro, the Pro(473) --> Leu mutant protein showed only a modest increase in Top2-mediated double strand breaks but much higher levels of Top2-mediated single strand breaks. In addition, the Pro(473) --> Leu mutant protein also generated high levels of mAMSA-stabilized covalent complexes in the absence of ATP. We tested the role of single strand cleavage in cell killing with alleles of Top2 that could generate single strand breaks, but not double strand breaks. Expression in yeast of a Pro(473) --> Leu mutant that could only generate single strand breaks conferred hypersensitivity to mAMSA. These results indicate that generation of single strand breaks by Top2-targeting agents can be an important component of cell killing by Top2-targeting drugs.
Collapse
Affiliation(s)
- Anna T Rogojina
- Molecular Pharmacology Department, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | |
Collapse
|
16
|
Baxter J, Diffley JFX. Topoisomerase II inactivation prevents the completion of DNA replication in budding yeast. Mol Cell 2008; 30:790-802. [PMID: 18570880 DOI: 10.1016/j.molcel.2008.04.019] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 03/12/2008] [Accepted: 04/07/2008] [Indexed: 11/29/2022]
Abstract
Type II topoisomerases are essential for resolving topologically entwined double-stranded DNA. Although anti-topoisomerase 2 (Top2) drugs are clinically important antibiotics and chemotherapies, to our knowledge, the mechanisms of cell killing by Top2 depletion and inactivation have never been directly compared. We show that depletion of Top2 protein from budding yeast cells prevents DNA decatenation during S phase. Cells complete DNA replication and enter the ensuing mitosis on schedule, suffering extensive chromosome missegregation. Cytokinesis through incompletely segregated chromosomes causes lethal DNA damage. By contrast, expression of catalytically inactive Top2 causes a stable G2 arrest requiring an intact DNA damage checkpoint. Checkpoint activation correlates with an inability to complete DNA replication, resulting in hypercatenated, gapped daughter DNA molecules. Thus, Top2 depletion and inactivation kill cells by different mechanisms, which has implications for understanding the nature of the catenation checkpoint, how DNA replication terminates, how anti-Top2 drugs work, and how new drugs might be designed.
Collapse
Affiliation(s)
- Jonathan Baxter
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, UK
| | | |
Collapse
|
17
|
Dong KC, Berger JM. Structural basis for gate-DNA recognition and bending by type IIA topoisomerases. Nature 2008; 450:1201-5. [PMID: 18097402 DOI: 10.1038/nature06396] [Citation(s) in RCA: 229] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 10/15/2007] [Indexed: 11/09/2022]
Abstract
Type II topoisomerases disentangle DNA to facilitate chromosome segregation, and represent a major class of therapeutic targets. Although these enzymes have been studied extensively, a molecular understanding of DNA binding has been lacking. Here we present the structure of a complex between the DNA-binding and cleavage core of Saccharomyces cerevisiae Topo II (also known as Top2) and a gate-DNA segment. The structure reveals that the enzyme enforces a 150 degrees DNA bend through a mechanism similar to that of remodelling proteins such as integration host factor. Large protein conformational changes accompany DNA deformation, creating a bipartite catalytic site that positions the DNA backbone near a reactive tyrosine and a coordinated magnesium ion. This configuration closely resembles the catalytic site of type IA topoisomerases, reinforcing an evolutionary link between these structurally and functionally distinct enzymes. Binding of DNA facilitates opening of an enzyme dimerization interface, providing visual evidence for a key step in DNA transport.
Collapse
Affiliation(s)
- Ken C Dong
- Chemical Biology Graduate Program, Department of Chemistry, College of Chemistry, University of California, Berkeley, California 94720-3220, USA
| | | |
Collapse
|
18
|
Sasanuma H, Murakami H, Fukuda T, Shibata T, Nicolas A, Ohta K. Meiotic association between Spo11 regulated by Rec102, Rec104 and Rec114. Nucleic Acids Res 2007; 35:1119-33. [PMID: 17264124 PMCID: PMC1851646 DOI: 10.1093/nar/gkl1162] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Meiotic recombination is initiated by DNA double-stranded break (DSB) formation catalyzed by Spo11, a type-II topoisomerase-like transesterificase, presumably via a dimerization-mediated mechanism. We demonstrate the existence of in vivo interactions between Spo11 proteins carrying distinct tags, and the chromatin-binding and DSB activity of tagged Spo11 at innate and targeted DSB sites upon fusion to the Gal4 DNA-binding domain. First we identified the interaction between Spo11-3FLAG and Gal4BD-Spo11 proteins, and established that this interaction specifically occurs at the time of DSB formation. We then observed that presence of the Gal4BD-spo11Y135F (nuclease-deficient) protein allows Spo11-3FLAG recruitment at the GAL2 locus, indicative of the formation of a hetero-complex near the GAL2 UAS sites, but no formation of double- or single-strand breaks. Spo11 self-interaction around the GAL2 DSB site depends on other proteins for DSB formation, in particular Rec102, Rec104 and Rec114. Together, these results suggest that in vivo self-association of Spo11 during meiosis is genetically regulated. The results are discussed in relation to possible roles of Spo11 self-interaction in the control of the cleavage activity.
Collapse
Affiliation(s)
- Hiroyuki Sasanuma
- Genetic System Regulation Laboratory, RIKEN Discovery Research Institute, Hirosawa 2-1, Wako, Saitama 351-0198, Japan, The Graduate School of Science and Engineering, Saitama University, Sakuraku, Saitama, Saitama 338-8570, Japan, Institut Curie, Centre de recherche, CNRS UMR7147, Université Piere et Marie Curie, 26 rue d’Ulm 75248, Paris Cedex 05, France and Shibata Distinguished Scientist Laboratory, RIKEN Discovery Research Institute, Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| | - Hajime Murakami
- Genetic System Regulation Laboratory, RIKEN Discovery Research Institute, Hirosawa 2-1, Wako, Saitama 351-0198, Japan, The Graduate School of Science and Engineering, Saitama University, Sakuraku, Saitama, Saitama 338-8570, Japan, Institut Curie, Centre de recherche, CNRS UMR7147, Université Piere et Marie Curie, 26 rue d’Ulm 75248, Paris Cedex 05, France and Shibata Distinguished Scientist Laboratory, RIKEN Discovery Research Institute, Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| | - Tomoyuki Fukuda
- Genetic System Regulation Laboratory, RIKEN Discovery Research Institute, Hirosawa 2-1, Wako, Saitama 351-0198, Japan, The Graduate School of Science and Engineering, Saitama University, Sakuraku, Saitama, Saitama 338-8570, Japan, Institut Curie, Centre de recherche, CNRS UMR7147, Université Piere et Marie Curie, 26 rue d’Ulm 75248, Paris Cedex 05, France and Shibata Distinguished Scientist Laboratory, RIKEN Discovery Research Institute, Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| | - Takehiko Shibata
- Genetic System Regulation Laboratory, RIKEN Discovery Research Institute, Hirosawa 2-1, Wako, Saitama 351-0198, Japan, The Graduate School of Science and Engineering, Saitama University, Sakuraku, Saitama, Saitama 338-8570, Japan, Institut Curie, Centre de recherche, CNRS UMR7147, Université Piere et Marie Curie, 26 rue d’Ulm 75248, Paris Cedex 05, France and Shibata Distinguished Scientist Laboratory, RIKEN Discovery Research Institute, Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| | - Alain Nicolas
- Genetic System Regulation Laboratory, RIKEN Discovery Research Institute, Hirosawa 2-1, Wako, Saitama 351-0198, Japan, The Graduate School of Science and Engineering, Saitama University, Sakuraku, Saitama, Saitama 338-8570, Japan, Institut Curie, Centre de recherche, CNRS UMR7147, Université Piere et Marie Curie, 26 rue d’Ulm 75248, Paris Cedex 05, France and Shibata Distinguished Scientist Laboratory, RIKEN Discovery Research Institute, Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| | - Kunihiro Ohta
- Genetic System Regulation Laboratory, RIKEN Discovery Research Institute, Hirosawa 2-1, Wako, Saitama 351-0198, Japan, The Graduate School of Science and Engineering, Saitama University, Sakuraku, Saitama, Saitama 338-8570, Japan, Institut Curie, Centre de recherche, CNRS UMR7147, Université Piere et Marie Curie, 26 rue d’Ulm 75248, Paris Cedex 05, France and Shibata Distinguished Scientist Laboratory, RIKEN Discovery Research Institute, Hirosawa 2-1, Wako, Saitama 351-0198, Japan
- *To whom correspondence should be addressed. Tel: +81 48 467 9277; Fax: +81 48 462 4691;
| |
Collapse
|
19
|
Mueller-Planitz F, Herschlag D. Interdomain communication in DNA topoisomerase II. DNA binding and enzyme activation. J Biol Chem 2006; 281:23395-404. [PMID: 16782968 DOI: 10.1074/jbc.m604119200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Topoisomerase II catalyzes the ATP-dependent transport of a DNA segment (T-DNA) through a transient double strand break in another DNA segment (G-DNA). A fundamental mechanistic question is how the individual steps in this process are coordinated. We probed communication between the DNA binding sites and the individual enzymatic activities, ATP hydrolysis, and DNA cleavage. We employed short DNA duplexes to control occupancy at the two binding sites of wild-type enzyme and a variant with a G-DNA site mutation. The DNA concentration dependence of ATP hydrolysis and a fluorescence anisotropy assay provided thermodynamic information about DNA binding. The results suggest that G-DNA binds with higher affinity than T-DNA. Enzyme with only G-DNA bound is competent to cleave DNA, indicating that T-DNA is dispensable for DNA cleavage. The ATPase activity of enzyme bound solely to G-DNA is partially stimulated. Full stimulation requires binding of T-DNA. Both DNA binding sites therefore signal to the ATPase domains. The results support and extend current mechanistic models for topoisomerase II-catalyzed DNA transport and provide a framework for future mechanistic dissection.
Collapse
Affiliation(s)
- Felix Mueller-Planitz
- Department of Biochemistry, School of Medicine, Stanford University, Stanford, California 94305-5307, USA
| | | |
Collapse
|
20
|
Leontiou C, Lakey JH, Lightowlers R, Turnbull RM, Austin CA. Mutation P732L in human DNA topoisomerase IIbeta abolishes DNA cleavage in the presence of calcium and confers drug resistance. Mol Pharmacol 2005; 69:130-9. [PMID: 16239602 DOI: 10.1124/mol.105.015933] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The anti cancer drug methyl N-(4'-(9-acridinylamino)-3-methoxy-phenyl) methane sulfonamide (mAMSA) targets human DNA topoisomerase IIbeta. We report here the first selection with mAMSA of resistant human topoisomerase IIbeta. Random mutagenesis of human DNA topoisomerase IIbeta cDNA, followed by selection in yeast for resistance to mAMSA, identified betaP732L. This mutant was 10-fold less sensitive to mAMSA and cross-resistant to other chemotherapeutic agents such as etoposide, ellipticine, methyl N-(4'-(9-acridinylamino)-2-methoxy-phenyl) carbamate hydrochloride (mAMCA), methyl N-(4'-(9-acridinylamino)-phenyl) carbamate hydrochloride (AMCA), and doxorubicin. betaP732L is functional but has reduced strand passage activities and altered DNA binding compared with the wild-type protein. It has drastically altered cleavage properties compared with the wild-type enzyme. It cleaved a 40-base pair (bp) DNA substrate in the presence of magnesium but at positions different from that of the wild-type protein. More striking is that betaP732L was unable to cleave the 40-bp DNA substrate, a 500-bp linear substrate, or a 4.3-kilobase supercoiled substrate in the presence of calcium ions. This is the first report of a topoisomerase II mutation abolishing the ability of calcium to support DNA cleavage. This provides evidence for metal ion requirement for the phosphoryltransfer reaction of topoisomerase II and a possible mechanism for drug resistance.
Collapse
Affiliation(s)
- Chrysoula Leontiou
- Institute for Cell and Molecular Bioscience, The Medical School, University of Newcastle, Newcastle upon Tyne, NE2 4HH, UK
| | | | | | | | | |
Collapse
|
21
|
Tran JH, Jacoby GA, Hooper DC. Interaction of the plasmid-encoded quinolone resistance protein Qnr with Escherichia coli DNA gyrase. Antimicrob Agents Chemother 2005; 49:118-25. [PMID: 15616284 PMCID: PMC538914 DOI: 10.1128/aac.49.1.118-125.2005] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Revised: 08/16/2004] [Accepted: 09/07/2004] [Indexed: 11/20/2022] Open
Abstract
Quinolone resistance normally arises by mutations in the chromosomal genes for type II topoisomerases and by changes in the expression of proteins that control the accumulation of quinolones inside bacteria. A novel mechanism of plasmid-mediated quinolone resistance was recently reported that involves DNA gyrase protection by a pentapeptide repeat family member called Qnr. This family includes two other members, McbG and MfpA, that are also involved in resistance to gyrase inhibitors. Purified Qnr-His(6) was shown to protect Escherichia coli DNA gyrase directly from inhibition by ciprofloxacin. Here we have provided a biochemical basis for the mechanism of quinolone resistance. We have shown that Qnr can bind to the gyrase holoenzyme and its respective subunits, GyrA and GyrB. The binding of Qnr to gyrase does not require the presence of the complex of enzyme, DNA, and quinolone, since binding occurred in the absence of relaxed DNA, ciprofloxacin, or ATP. We hypothesize that the formation of Qnr-gyrase complex occurs before the formation of the cleavage complex. Furthermore, there was a decrease in DNA binding by gyrase when the enzyme interacted with Qnr. Therefore, it is possible that the reaction intermediate recognized by Qnr is one early in the gyrase catalytic cycle, in which gyrase has just begun to interact with DNA. Quinolones bind later in the catalytic cycle and stabilize a ternary complex consisting of the drug, gyrase, and DNA. By lowering gyrase binding to DNA, Qnr may reduce the amount of holoenzyme-DNA targets for quinolone inhibition.
Collapse
Affiliation(s)
- John H Tran
- Division of Infectious Diseases, Massachusetts General Hospital, 55 Fruit St., Boston, MA 02114-2696, USA
| | | | | |
Collapse
|
22
|
Suda N, Ito Y, Imai T, Kikumori T, Kikuchi A, Nishiyama Y, Yoshida S, Suzuki M. The alpha4 residues of human DNA topoisomerase IIalpha function in enzymatic activity and anticancer drug sensitivity. Nucleic Acids Res 2004; 32:1767-73. [PMID: 15026536 PMCID: PMC390336 DOI: 10.1093/nar/gkh339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2003] [Revised: 02/23/2004] [Accepted: 02/23/2004] [Indexed: 11/12/2022] Open
Abstract
We introduced a series of Pro substitutions within and near the alpha4 helix, a part of the breakage/rejoining region, in human DNA topoisomerase IIalpha, and analyzed if this region is involved in determination of anti-cancer drug sensitivity in a temperature- sensitive yeast strain (top2-4 allele). Among the 19 mutants generated, H759P and N770P showed resistance to etoposide and doxorubicin at the non-permissive temperature, where cell growth depends on activity of the human enzyme. For these residues, mutants with an Ala substitution were further created, in which H759A also showed resistance to etoposide. H759P, H759A and N770P were expressed, purified and subjected to in vitro measurement of drug sensitivity. They generated lower amounts of the etoposide-induced cleavable complexes, and were also found to have lower decatenation activity than the wild-type. In the crystal structure, the yeast equivalent of His759 is found in the vicinity of the Arg713, a putative anchoring residue of the 3'-side of cleaved DNA strands. These results suggest that His759 and the other alpha4 helix residues are involved in the enzymatic activity and drug sensitivity of human DNA topoisomerase IIalpha, via interaction with cleaved DNA.
Collapse
Affiliation(s)
- Namiko Suda
- Department of Endocrine Surgery, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Bromberg KD, Burgin AB, Osheroff N. A two-drug model for etoposide action against human topoisomerase IIalpha. J Biol Chem 2003; 278:7406-12. [PMID: 12473657 DOI: 10.1074/jbc.m212056200] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The widely used anticancer drug etoposide kills cells by increasing levels of topoisomerase II-mediated DNA breaks. While it is known that the drug acts by inhibiting the ability of topoisomerase II to ligate cleaved DNA molecules, the precise mechanism by which it accomplishes this action is not well understood. Because there are two scissile bonds per enzyme-mediated double-stranded DNA break, it has been assumed that there are two sites for etoposide in every cleavage complex. However, it is not known whether the action of etoposide at only one scissile bond is sufficient to stabilize a double-stranded DNA break or whether both drug sites need to be occupied. An oligonucleotide system was utilized to address this important issue. Results of DNA cleavage and ligation assays support a two-drug model for the action of etoposide against human topoisomerase IIalpha. This model postulates that drug interactions at both scissile bonds are required in order to increase enzyme-mediated double-stranded DNA breaks. Etoposide actions at either of the two scissile bonds appear to be independent of one another, with each individual drug molecule stabilizing a strand-specific nick rather than a double-stranded DNA break. This finding suggests (at least in the presence of drug) that there is little or no communication between the two promoter active sites of topoisomerase II. The two-drug model has implications for cancer chemotherapy, the cellular processing of etoposide-stabilized enzyme-DNA cleavage complexes, and the catalytic mechanism of eukaryotic topoisomerase II.
Collapse
Affiliation(s)
- Kenneth D Bromberg
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | |
Collapse
|
24
|
Hockings SC, Maxwell A. Identification of four GyrA residues involved in the DNA breakage-reunion reaction of DNA gyrase. J Mol Biol 2002; 318:351-9. [PMID: 12051842 DOI: 10.1016/s0022-2836(02)00048-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
DNA supercoiling by DNA gyrase involves the cleavage of a DNA helix, the passage of another helix through the break, and the religation of the first helix. The cleavage-religation reaction involves the formation of a 5'-phosphotyrosine intermediate with the GyrA subunit of the gyrase (A(2)B(2)) complex. We report the characterization of mutations near the active-site tyrosine residue in GyrA predicted to affect the cleavage-religation reaction of gyrase. We find that mutations at Arg32, Arg47, His78 and His80 inhibit DNA supercoiling and other reactions of gyrase. These effects are caused by the involvement of these residues in the DNA cleavage reaction; religation is largely unaffected by these mutations. We show that these residues cooperate with the active-site tyrosine residue on the opposite subunit of the GyrA dimer during the cleavage-religation reaction.
Collapse
Affiliation(s)
- Susan C Hockings
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH, UK
| | | |
Collapse
|
25
|
Noble CG, Maxwell A. The role of GyrB in the DNA cleavage-religation reaction of DNA gyrase: a proposed two metal-ion mechanism. J Mol Biol 2002; 318:361-71. [PMID: 12051843 DOI: 10.1016/s0022-2836(02)00049-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
We have examined the role of the DNA gyrase B protein in cleavage and religation of DNA using site-directed mutagenesis. Three aspartate residues and a glutamate residue: E424, D498, D500 and D502, thought to co-ordinate a magnesium ion, were mutated to alanine; in addition, the glutamate residue and one aspartate residue were mutated to glutamine and asparagine, respectively. We have shown that these residues are important for the cleavage-religation reaction and are likely to be involved in magnesium ion co-ordination. On separate mutation of two of these aspartate residues to cysteine or histidine, the metal ion preference for the DNA relaxation activity of gyrase changed from magnesium to manganese (II). We present evidence to support the idea that cleavage of each DNA strand involves two or more metal ions, and suggest a scheme for the DNA cleavage chemistry of DNA gyrase involving two metal ions.
Collapse
Affiliation(s)
- Christian G Noble
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | | |
Collapse
|
26
|
Abstract
Homologous recombination is essential during meiosis in most sexually reproducing organisms. In budding yeast, and most likely in other organisms as well, meiotic recombination proceeds via the formation and repair of DNA double-strand breaks (DSBs). These breaks appear to be formed by the Spo11 protein, with assistance from a large number of other gene products, by a topoisomerase-like transesterase mechanism. Recent studies in fission yeast, multicellular fungi, flies, worms, plants, and mammals indicate that the role of Spo11 in meiotic recombination initiation is highly conserved. This chapter reviews the properties of Spo11 and the other gene products required for meiotic DSB formation in a number of organisms and discusses ways in which recombination initiation is coordinated with other events occurring in the meiotic cell.
Collapse
Affiliation(s)
- S Keeney
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, and Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10021, USA
| |
Collapse
|
27
|
Diaz RL, Alcid AD, Berger JM, Keeney S. Identification of residues in yeast Spo11p critical for meiotic DNA double-strand break formation. Mol Cell Biol 2002; 22:1106-15. [PMID: 11809802 PMCID: PMC134631 DOI: 10.1128/mcb.22.4.1106-1115.2002] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae Spo11 protein (Spo11p) is thought to generate the DNA double-strand breaks (DSBs) that initiate homologous recombination during meiosis. Spo11p is related to a subunit of archaebacterial topoisomerase VI and appears to cleave DNA through a topoisomerase-like transesterase mechanism. In this work, we used the crystal structure of a fragment of topoisomerase VI to model the Spo11p structure and to identify amino acid residues in yeast Spo11p potentially involved in DSB catalysis and/or DNA binding. These residues were mutated to determine which are critical for Spo11p function in vivo. Mutation of Glu-233 or Asp-288, which lie in a conserved structural motif called the Toprim domain, abolished meiotic recombination. These Toprim domain residues have been implicated in binding a metal ion cofactor in topoisomerases and bacterial primases, supporting the idea that DNA cleavage by Spo11p is Mg(2+) dependent. Mutations at an invariant arginine (Arg-131) within a second conserved structural motif known as the 5Y-CAP domain, as well as three other mutations (E235A, F260R, and D290A), caused marked changes in the DSB pattern at a recombination hotspot, suggesting that Spo11p contributes directly to the choice of DNA cleavage site. Finally, certain DSB-defective mutant alleles generated in this study conferred a semidominant negative phenotype but only when Spo11p activity was partially compromised by the presence of an epitope tag. These results are consistent with a multimeric structure for Spo11p in vivo but may also indicate that the amount of Spo11 protein is not a limiting factor for DSB formation in normal cells.
Collapse
Affiliation(s)
- Robert L Diaz
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | |
Collapse
|
28
|
Wilstermann AM, Osheroff N. Positioning the 3'-DNA terminus for topoisomerase II-mediated religation. J Biol Chem 2001; 276:17727-31. [PMID: 11359787 DOI: 10.1074/jbc.m100197200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite the importance of the topoisomerase II DNA cleavage/rejoining cycle to genomic integrity, the mechanistic details of religation are poorly understood. Topoisomerase II utilizes covalent protein-DNA interactions to align the 5'-termini of cleaved DNA for religation. However, because the enzyme does not form covalent bonds with the 3'-DNA termini, the basis for the alignment of the 3'-ends is less clear. Three major possibilities exist. The 3'-termini may be positioned for religation (i) by base pairing to their complementary DNA strands, (ii) by base stacking to the adjacent residues, or (iii) by noncovalent interactions with topoisomerase II. To distinguish between these possibilities, the ability of human topoisomerase IIalpha to religate a series of oligonucleotides with altered base pairing or base stacking at their 3'-termini was determined. Substrates containing modifications that disrupted terminal base pairing or base stacking with-out affecting the 3'-terminal base were resealed at wild-type rates. In contrast, substrates that lacked the terminal base (or contained an altered base) displayed very low rates of religation. On the basis of these results, we propose that topoisomerase II positions the 3'-DNA termini for religation through noncovalent protein-DNA contacts.
Collapse
Affiliation(s)
- A M Wilstermann
- Departments of Biochemistry and Medicine (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | |
Collapse
|
29
|
Byl JA, Cline SD, Utsugi T, Kobunai T, Yamada Y, Osheroff N. DNA topoisomerase II as the target for the anticancer drug TOP-53: mechanistic basis for drug action. Biochemistry 2001; 40:712-8. [PMID: 11170388 DOI: 10.1021/bi0021838] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
TOP-53 is a promising anticancer agent that displays high activity against non-small cell lung cancer in animal tumor models [Utsugi, T., et al. (1996) Cancer Res. 56, 2809-2814]. Compared to its parent compound, etoposide, TOP-53 is considerably more toxic to non-small cell lung cancer cells, is more active at generating chromosomal breaks, and displays improved cellular uptake and pharmacokinetics in animal lung tissues. Despite the preclinical success of TOP-53, several questions remain regarding its cytotoxic mechanism. Therefore, this study characterized the basis for drug action. Results indicate that topoisomerase II is the primary cytotoxic target for TOP-53. Furthermore, the drug kills cells by acting as a topoisomerase II poison. TOP-53 exhibits a DNA cleavage site specificity that is identical to that of etoposide. Like its parent compound, the drug increases the number of enzyme-mediated DNA breaks by interfering with the DNA religation activity of the enzyme. TOP-53 is considerably more efficient than etoposide at enhancing topoisomerase II-mediated DNA cleavage and exhibits high activity against human topoisomerase IIalpha and IIbeta in vitro and in cultured cells. Therefore, at least in part, the enhanced cytotoxic activity of TOP-53 can be attributed to an enhanced activity against topoisomerase II. Finally, TOP-53 displays nearly wild-type activity against a mutant yeast type II enzyme that is highly resistant to etoposide. This finding suggests that TOP-53 can retain activity against systems that have developed resistance to etoposide, and indicates that substituents on the etoposide C-ring are important for topoisomerase II-drug interactions.
Collapse
Affiliation(s)
- J A Byl
- Department of Biochemistry and Medicine (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | | | | | | | |
Collapse
|
30
|
Ince D, Hooper DC. Mechanisms and frequency of resistance to premafloxacin in Staphylococcus aureus: novel mutations suggest novel drug-target interactions. Antimicrob Agents Chemother 2000; 44:3344-50. [PMID: 11083638 PMCID: PMC90203 DOI: 10.1128/aac.44.12.3344-3350.2000] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Premafloxacin is a novel 8-methoxy fluoroquinolone with enhanced activity against Staphylococcus aureus. We found premafloxacin to be 32-fold more active than ciprofloxacin against wild-type S. aureus. Single mutations in either subunit of topoisomerase IV caused a four- to eightfold increase in the MICs of both quinolones. A double mutation (gyrA and either grlA or grlB) caused a 32-fold increase in the MIC of premafloxacin, while the MIC of ciprofloxacin increased 128-fold. Premafloxacin appeared to be a poor substrate for NorA, with NorA overexpression causing an increase of twofold or less in the MIC of premafloxacin in comparison to a fourfold increase in the MIC of ciprofloxacin. The frequency of selection of resistant mutants was 6.4 x 10(-10) to 4.0 x 10(-7) at twofold the MIC of premafloxacin, 2 to 4 log(10) less than that with ciprofloxacin. Single-step mutants could not be selected at higher concentrations of premafloxacin. In five single-step mutants, only one previously described uncommon mutation (Ala116Glu), and four novel mutations (Arg43Cys, Asp69Tyr, Ala176Thr, and Pro157Leu), three of which were outside the quinolone resistance-determining region (QRDR) were found. Genetic linkage studies, in which incross of grlA(+) and outcross of mutations were performed, showed a high correlation between the mutations and the resistance phenotypes, and allelic exchange experiments confirmed the role of the novel mutations in grlA in resistance. Our results suggest that although topoisomerase IV is the primary target of premafloxacin, premafloxacin appears to interact with topoisomerase IV in a manner different from that of other quinolones and that the range of the QRDR of grlA should be expanded.
Collapse
Affiliation(s)
- D Ince
- Infectious Disease Division and Medical Services, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114-2696, USA
| | | |
Collapse
|
31
|
|
32
|
Okada Y, Ito Y, Kikuchi A, Nimura Y, Yoshida S, Suzuki M. Assignment of functional amino acids around the active site of human DNA topoisomerase IIalpha. J Biol Chem 2000; 275:24630-8. [PMID: 10807924 DOI: 10.1074/jbc.m003243200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An expression library for active site mutants of human topoisomerase IIalpha (TOP2alpha) was constructed by replacing the sequence encoding residues 793-808 with a randomized oligonucleotide cassette. This plasmid library was transformed into a temperature-sensitive yeast strain (top2-1), and viable transformants were selected at the restrictive temperature. Among the active TOP2alpha mutants, no substitution was allowed at Tyr(805), the 5' anchor of the cleaved DNA, and only conservative substitutions were allowed at Leu(794), Asp(797), Ala(801), and Arg(804). Thus, these 5 residues are critical for human TOP2alpha activity, and the remaining mutagenized residues are less critical for function. Using the x-ray crystal structure of yeast TOP2 as a structural model, it can be deduced that these 5 functionally important residues lie in a plane. One of the possible functions of this plane may be that it interacts with the DNA substrate upon catalysis. The side chains of Ser(803) and Lys(798), which confer drug resistance, lie adjacent to this plane.
Collapse
Affiliation(s)
- Y Okada
- First Department of Surgery and the Laboratories of Cancer Cell Biology and Medical Mycology, Research Institute for Disease Mechanism and Control, Nagoya University School of Medicine, Nagoya, 466-8550, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Hammonds TR, Foster SR, Maxwell A. Increased sensitivity to quinolone antibacterials can be engineered in human topoisomerase IIalpha by selective mutagenesis. J Mol Biol 2000; 300:481-91. [PMID: 10884345 DOI: 10.1006/jmbi.2000.3892] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A potential region of drug-DNA interaction in the A subunit of DNA gyrase has previously been identified from crystallographic studies. The local amino acid sequence has been compared with similar regions in yeast topoisomerase II and human topoisomerase IIalpha. Three non- conserved, potentially solvent-accessible residues at positions 762, 763 and 766 in human topoisomerase IIalpha lie between well-conserved regions. The corresponding residues in GyrA (83, 84 and 87) have a high frequency of mutation in quinolone-resistant bacteria. Mutations in human topoisomerase IIalpha have been generated in an attempt to engineer ciprofloxacin sensitivity into this enzyme: M762S, S763A and M766D (each mutated to the identical amino acid present in gyrase), along with an M762S/S763A double mutant and a triple mutant. These enzymes were introduced into a temperature-sensitive yeast strain, deficient in topoisomerase II, for in vivo studies, and were overproduced for in vitro studies. The M766D mutation renders the enzyme incapable of supporting the temperature-sensitive strain at a non-permissive temperature. However, both M766D and the triple mutant enzymes can be overproduced and are fully active in vitro. The double mutant was impaired in its ability to cleave DNA and had reduced catalytic activity. The triple mutation confers a three-fold increase in sensitivity to ciprofloxacin in vitro and similar sensitivities to a range of other quinolones. The activity of the quinolone CP-115,953, a bacterial and eukaryotic topoisomerase II poison, was unaffected by any of these mutations. Mutations in this region were found to increase the sensitivity of the enzyme to the DNA intercalating anti-tumour agents m-AMSA and ellipticine, but confer resistance to the non-intercalating agents etoposide, teniposide and merbarone, an effect that was maximal in the triple mutant. We have therefore shown the importance of this region in determining the sensitivity of topoisomerase II to drugs and have engineered increased sensitivity to quinolones.
Collapse
Affiliation(s)
- T R Hammonds
- Department of Biochemistry, University of Leicester, Leicester, LE1 7RH, UK.
| | | | | |
Collapse
|
34
|
Dong J, Walker J, Nitiss JL. A mutation in yeast topoisomerase II that confers hypersensitivity to multiple classes of topoisomerase II poisons. J Biol Chem 2000; 275:7980-7. [PMID: 10713116 DOI: 10.1074/jbc.275.11.7980] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A mutation was constructed in the CAP homology domain of yeast topoisomerase II that resulted in hypersensitivity to the intercalating agent N-[4-(9-acridinylamino)-3-methoxy-phenyl]methanesulfonamide and the fluoroquinolone 6, 8-difluoro-7-(4'-hydroxyphenyl)-1-cyclopropyl-4-quinolone-3-carboxyli c acid, but not to etoposide. This mutation, which changes threonine at position 744 to proline, also confers hypersensitivity to anti-bacterial fluoroquinolones. The purified T744P mutant protein had wild type enzymatic activity in the absence of drugs, and no alteration in drug-independent DNA cleavage. Enhanced DNA cleavage in the presence of N-[4-(9-acridinylamino)-3-methoxy-phenyl]methanesulfonamide and fluoroquinolones was observed, in agreement with the results observed in vivo. DNA cleavage was also seen in the presence of norfloxacin and oxolinic acid, two quinolones that are inactive against eukaryotic topoisomerase II. The hypersensitivity was not associated with heat-stable covalent complexes, as was seen in another drug-hypersensitive mutant. Molecular modeling suggests that the mutation in the CAP homology domain may displace amino acids that play important roles in catalysis by topoisomerase II and may explain the drug-hypersensitive phenotype.
Collapse
Affiliation(s)
- J Dong
- Molecular Pharmacology Department, St. Jude Children's Research Hospital, Memphis, Tennessee 38018, USA
| | | | | |
Collapse
|
35
|
Strumberg D, Nitiss JL, Dong J, Kohn KW, Pommier Y. Molecular analysis of yeast and human type II topoisomerases. Enzyme-DNA and drug interactions. J Biol Chem 1999; 274:28246-55. [PMID: 10497180 DOI: 10.1074/jbc.274.40.28246] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The DNA sequence selectivity of topoisomerase II (top2)-DNA cleavage complexes was examined for the human (top2alpha), yeast, and Escherichia coli (i.e. gyrase) enzymes in the absence or presence of anticancer or antibacterial drugs. Species-specific differences were observed for calcium-promoted DNA cleavage. Similarities and differences in DNA cleavage patterns and nucleic acid sequence preferences were also observed between the human, yeast, and E. coli top2 enzymes in the presence of the non-intercalators fluoroquinolone CP-115,953, etoposide, and azatoxin and the intercalators amsacrine and mitoxantrone. Additional base preferences were generally observed for the yeast when compared with the human top2alpha enzyme. Preferences in the immediate flanks of the top2-mediated DNA cleavage sites are, however, consistent with the drug stacking model for both enzymes. We also analyzed and compared homologous mutations in yeast and human top2, i.e. Ser(740) --> Trp and Ser(763) --> Trp, respectively. Both mutations decreased the reversibility of the etoposide-stabilized cleavage sites and produced consistent base sequence preference changes. These data demonstrate similarities and differences between human and yeast top2 enzymes. They also indicate that the structure of the enzyme/DNA interface plays a key role in determining the specificity of top2 poisons and cleavage sites for both the intercalating and non-intercalating drugs.
Collapse
Affiliation(s)
- D Strumberg
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, NCI, National Institutes of Health, Bethesda, Maryland 20892-4255, USA
| | | | | | | | | |
Collapse
|
36
|
Tu BP, Wang JC. Protein footprinting at cysteines: probing ATP-modulated contacts in cysteine-substitution mutants of yeast DNA topoisomerase II. Proc Natl Acad Sci U S A 1999; 96:4862-7. [PMID: 10220384 PMCID: PMC21782 DOI: 10.1073/pnas.96.9.4862] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cysteine-substitution mutants of yeast DNA topoisomerase II were used to test footprinting of the enzyme by 2-nitro-5-thiocyanobenzoate, which cyanylates exposed cysteines in a native protein for peptide cleavage at the cyanylated sites upon unfolding and incubating the protein at pH 9. For a mutant enzyme containing a single cysteine, the extent of peptide cleavage was found to reflect the accessibility of the residue in the native protein. For proteins with multiple cysteines, however, such a correlation was obscured by the transfer of cyano groups from modified to unmodified cysteines during incubation of the unfolded protein at pH 9; accessibilities of the cysteinyl residues in a native protein could be assessed only if cyano shuffling was prevented by blocking uncyanylated sulfhydryls with a second thiol reagent. The successive use of two reagents in cysteine footprinting was applied in probing the ATP-modulated formation of contacts in yeast DNA topoisomerase II.
Collapse
Affiliation(s)
- B P Tu
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | | |
Collapse
|
37
|
Strumberg D, Nitiss JL, Rose A, Nicklaus MC, Pommier Y. Mutation of a conserved serine residue in a quinolone-resistant type II topoisomerase alters the enzyme-DNA and drug interactions. J Biol Chem 1999; 274:7292-301. [PMID: 10066792 DOI: 10.1074/jbc.274.11.7292] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A Ser740 --> Trp mutation in yeast topoisomerase II (top2) and of the equivalent Ser83 in gyrase results in resistance to quinolones and confers hypersensitivity to etoposide (VP-16). We characterized the cleavage complexes induced by the top2(S740W) in the human c-myc gene. In addition to resistance to the fluoroquinolone CP-115,953, top2(S740W) induced novel DNA cleavage sites in the presence of VP-16, azatoxin, amsacrine, and mitoxantrone. Analysis of the VP-16 sites indicated that the changes in the cleavage pattern were reflected by alterations in base preference. C at position -2 and G at position +6 were observed for the top2(S740W) in addition to the previously reported C-1 and G+5 for the wild-type top2. The VP-16-induced top2(S740W) cleavage complexes were also more stable. The most stable sites had strong preference for C-1, whereas the most reversible sites showed no base preference at positions -1 or -2. Different patterns of DNA cleavage were also observed in the absence of drug and in the presence of calcium. These results indicate that the Ser740 --> Trp mutation alters the DNA recognition of top2, enhances its DNA binding, and markedly affects its interactions with inhibitors. Thus, residue 740 of top2 appears critical for both DNA and drug interactions.
Collapse
Affiliation(s)
- D Strumberg
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, NCI, National Institutes of Health, Bethesda, Maryland 20892-4255, USA
| | | | | | | | | |
Collapse
|
38
|
Morris SK, Harkins TT, Tennyson RB, Lindsley JE. Kinetic and thermodynamic analysis of mutant type II DNA topoisomerases that cannot covalently cleave DNA. J Biol Chem 1999; 274:3446-52. [PMID: 9920889 DOI: 10.1074/jbc.274.6.3446] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA topoisomerase II catalyzes two different chemical reactions as part of its DNA transport cycle: ATP hydrolysis and DNA breakage/religation. The coordination between these reactions was studied using mutants of yeast topoisomerase II that are unable to covalently cleave DNA. In the absence of DNA, the ATPase activities of these mutant enzymes are identical to the wild type activity. DNA binding stimulates the ATPase activity of the mutant enzymes, but with steady-state parameters different from those of the wild type enzyme. These differences were examined through DNA binding experiments and pre-steady-state ATPase assays. One mutant protein, Y782F, binds DNA with the same affinity as wild type protein. This mutant topologically traps one DNA circle in the presence of a nonhydrolyzable ATP analog under the same conditions that the wild type protein catenates two circles. Rapid chemical quench and pulse-chase ATPase experiments reveal that the mutant proteins bound to DNA have the same sequential hydrolysis reaction cycle as the wild type enzyme. Binding of ATP to the mutants is not notably impaired, but hydrolysis of the first ATP is slower than for the wild type enzyme. Models to explain these results in the context of the entire DNA topoisomerase II reaction cycle are discussed.
Collapse
Affiliation(s)
- S K Morris
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84132, USA
| | | | | | | |
Collapse
|
39
|
Liu Q, Wang JC. Similarity in the catalysis of DNA breakage and rejoining by type IA and IIA DNA topoisomerases. Proc Natl Acad Sci U S A 1999; 96:881-6. [PMID: 9927662 PMCID: PMC15319 DOI: 10.1073/pnas.96.3.881] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Studies of yeast DNA topoisomerase II with various alanine-substitution mutations provide strong biochemical support of a recent hypothesis that the type IA and IIA DNA topoisomerases act similarly in their cleavage and rejoining of DNA. DNA breakage and rejoining by either a type IA or a type IIA enzyme are shown to involve cooperation between a DNA-binding domain containing the active-site tyrosine and a Rossmann fold containing several highly conserved acidic residues. For a homodimeric type IIA enzyme, cooperation occurs in trans: the active-site tyrosine in the DNA-binding domain of one protomer cooperates with several residues in the Rossmann fold as well as other regions of the other protomer.
Collapse
Affiliation(s)
- Q Liu
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|