1
|
Gorelik A, Illes K, Nagar B. Crystal Structure of the Mannose-6-Phosphate Uncovering Enzyme. Structure 2020; 28:426-436.e3. [DOI: 10.1016/j.str.2020.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/02/2020] [Accepted: 02/11/2020] [Indexed: 11/30/2022]
|
2
|
Zeng Y, He X, Danyukova T, Pohl S, Kermode AR. Toward Engineering the Mannose 6-Phosphate Elaboration Pathway in Plants for Enzyme Replacement Therapy of Lysosomal Storage Disorders. J Clin Med 2019; 8:jcm8122190. [PMID: 31842258 PMCID: PMC6947217 DOI: 10.3390/jcm8122190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 12/22/2022] Open
Abstract
Mucopolysaccharidosis (MPS) I is a severe lysosomal storage disease caused by α-L-iduronidase (IDUA) deficiency, which results in accumulation of non-degraded glycosaminoglycans in lysosomes. Costly enzyme replacement therapy (ERT) is the conventional treatment for MPS I. Toward producing a more cost-effective and safe alternative to the commercial mammalian cell-based production systems, we have produced recombinant human IDUA in seeds of an Arabidopsis mutant to generate the enzyme in a biologically active and non-immunogenic form containing predominantly high mannose N-linked glycans. Recombinant enzyme in ERT is generally thought to require a mannose 6-phosphate (M6P) targeting signal for endocytosis into patient cells and for intracellular delivery to the lysosome. Toward effecting in planta phosphorylation, the human M6P elaboration machinery was successfully co-expressed along with the recombinant human IDUA using a single multi-gene construct. Uptake studies using purified putative M6P-IDUA generated in planta on cultured MPS I primary fibroblasts indicated that the endocytosed recombinant lysosomal enzyme led to substantial reduction of glycosaminoglycans. However, the efficiency of the putative M6P-IDUA in reducing glycosaminoglycan storage was comparable with the efficiency of the purified plant mannose-terminated IDUA, suggesting a poor in planta M6P-elaboration by the expressed machinery. Although the in planta M6P-tagging process efficiency would need to be improved, an exciting outcome of our work was that the plant-derived mannose-terminated IDUA yielded results comparable to those obtained with the commercial IDUA (Aldurazyme® (Sanofi, Paris, France)), and a significant amount of the plant-IDUA is trafficked by a M6P receptor-independent pathway. Thus, a plant-based platform for generating lysosomal hydrolases may represent an alternative and cost-effective strategy to the conventional ERT, without the requirement for additional processing to create the M6P motif.
Collapse
Affiliation(s)
- Ying Zeng
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A1S6, Canada; (Y.Z.); (X.H.)
| | - Xu He
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A1S6, Canada; (Y.Z.); (X.H.)
| | - Tatyana Danyukova
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (T.D.); (S.P.)
| | - Sandra Pohl
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (T.D.); (S.P.)
| | - Allison R. Kermode
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A1S6, Canada; (Y.Z.); (X.H.)
- Correspondence: ; Tel.: +778-782-3982
| |
Collapse
|
3
|
Le HT, Lee JW, Park SC, Jeong JW, Jung W, Lim CW, Kim KP, Kim TW. Triazolium cyclodextrin click cluster-resin conjugate: an enrichment material for phosphatidylinositol (3,4,5)-triphosphate. Chem Commun (Camb) 2017; 53:10459-10462. [PMID: 28890969 DOI: 10.1039/c7cc06151j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
UltraLink was functionalized with a triazolium cyclodextrin click cluster (CCC) which provides a well-oriented, multivalent, positively charged binding site for PtdIns(3,4,5)P3. MALDI TOF MS and LC ESI MS/MS MRM analysis of spiked PtdIns(3,4,5)P3 in lipid extract suggest that triazolium CCC-UltraLink conjugate can be used as an enrichment material for PtdIns(3,4,5)P3.
Collapse
Affiliation(s)
- H T Le
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin, 17104, Republic of Korea.
| | - J W Lee
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin, 17104, Republic of Korea.
| | - S C Park
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin, 17104, Republic of Korea.
| | - J W Jeong
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin, 17104, Republic of Korea.
| | - W Jung
- Department of Emergency Medicine, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - C W Lim
- Department of Chemistry, College of Life Science and Nano-technology, Hannam University, Daejeon, 34430, Republic of Korea
| | - K P Kim
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin, 17104, Republic of Korea.
| | - T W Kim
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin, 17104, Republic of Korea.
| |
Collapse
|
4
|
Site-1 protease and lysosomal homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2162-2168. [PMID: 28693924 DOI: 10.1016/j.bbamcr.2017.06.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/29/2017] [Accepted: 06/30/2017] [Indexed: 11/22/2022]
Abstract
The Golgi-resident site-1 protease (S1P) is a key regulator of cholesterol homeostasis and ER stress responses by converting latent transcription factors sterol regulatory element binding proteins (SREPBs) and activating transcription factor 6 (ATF6), as well as viral glycoproteins to their active forms. S1P is also essential for lysosome biogenesis via proteolytic activation of the hexameric GlcNAc-1-phosphotransferase complex required for modification of newly synthesized lysosomal enzymes with the lysosomal targeting signal, mannose 6-phosphate. In the absence of S1P, the catalytically inactive α/β-subunit precursor of GlcNAc-1-phosphotransferase fails to be activated and results in missorting of newly synthesized lysosomal enzymes, and lysosomal accumulation of non-degraded material, which are biochemical features of defective GlcNAc-1-phosphotransferase subunits and the associated pediatric lysosomal diseases mucolipidosis type II and III. The early embryonic death of S1P-deficient mice and the importance of various S1P-regulated biological processes, including lysosomal homeostasis, cautioned for clinical inhibition of S1P. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.
Collapse
|
5
|
He X, Pierce O, Haselhorst T, von Itzstein M, Kolarich D, Packer NH, Gloster TM, Vocadlo DJ, Qian Y, Brooks D, Kermode AR. Characterization and downstream mannose phosphorylation of human recombinant α-L-iduronidase produced in Arabidopsis complex glycan-deficient (cgl) seeds. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:1034-1043. [PMID: 23898885 PMCID: PMC4030584 DOI: 10.1111/pbi.12096] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 05/24/2013] [Accepted: 06/09/2013] [Indexed: 05/29/2023]
Abstract
Mucopolysaccharidosis (MPS) I is a lysosomal storage disease caused by a deficiency of α-L-iduronidase (IDUA) (EC 3.2.1.76); enzyme replacement therapy is the conventional treatment for this genetic disease. Arabidopsis cgl mutants are characterized by a deficiency of the activity of N-acetylglucosaminyl transferase I (EC 2.4.1.101), the first enzyme in the pathway of hybrid and complex N-glycan biosynthesis. To develop a seed-based platform for the production of recombinant IDUA for potential treatment of MPS I, cgl mutant seeds were generated to express human IDUA at high yields and to avoid maturation of the N-linked glycans on the recombinant human enzyme. Enzyme kinetic data showed that cgl-IDUA has similar enzymatic properties to the commercial recombinant IDUA derived from cultured Chinese hamster ovary (CHO) cells (Aldurazyme™). The N-glycan profile showed that cgl-derived IDUA contained predominantly high-mannose-type N-glycans (94.5%), and the residual complex/hybrid N-glycan-containing enzyme was efficiently removed by an additional affinity chromatography step. Furthermore, purified cgl-IDUA was amenable to sequential in vitro processing by soluble recombinant forms of the two enzymes that mediate the addition of the mannose-6-phosphate (M6P) tag in mammalian cells-UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine (GlcNAc)-1-phosphotransferase-and GlcNAc-1-phosphodiester α-N-acetylglucosaminidase (the 'uncovering enzyme'). Arabidopsis seeds provide an alternative system for producing recombinant lysosomal enzymes for enzyme replacement therapy; the purified enzymes can be subjected to downstream processing to create the M6P, a recognition marker essential for efficient receptor-mediated uptake into lysosomes of human cells.
Collapse
Affiliation(s)
- Xu He
- Department of Biological Sciences, Simon Fraser UniversityBurnaby, BC, Canada
| | - Owen Pierce
- Department of Biological Sciences, Simon Fraser UniversityBurnaby, BC, Canada
| | - Thomas Haselhorst
- Institute for Glycomics, Griffith UniversitySouthport, Qld, Australia
| | - Mark von Itzstein
- Institute for Glycomics, Griffith UniversitySouthport, Qld, Australia
| | - Daniel Kolarich
- Department of Chemistry and Biomolecular Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Nicolle H Packer
- Department of Chemistry and Biomolecular Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Tracey M Gloster
- Department of Chemistry, Simon Fraser UniversityBurnaby, BC, Canada
| | - David J Vocadlo
- Department of Chemistry, Simon Fraser UniversityBurnaby, BC, Canada
| | - Yi Qian
- Department of Internal Medicine, Washington University School of MedicineSt. Louis, MO, USA
| | - Doug Brooks
- Sansom Institute, School of Pharmacy and Medical Sciences, University of South AustraliaAdelaide, SA, Australia
| | - Allison R Kermode
- Department of Biological Sciences, Simon Fraser UniversityBurnaby, BC, Canada
| |
Collapse
|
6
|
Bones J, Mittermayr S, McLoughlin N, Hilliard M, Wynne K, Johnson GR, Grubb JH, Sly WS, Rudd PM. Identification of N-Glycans Displaying Mannose-6-Phosphate and their Site of Attachment on Therapeutic Enzymes for Lysosomal Storage Disorder Treatment. Anal Chem 2011; 83:5344-52. [DOI: 10.1021/ac2007784] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jonathan Bones
- NIBRT Dublin-Oxford Glycobiology Laboratory, NIBRT—The National Institute for Bioprocessing Research and Training, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Stefan Mittermayr
- NIBRT Dublin-Oxford Glycobiology Laboratory, NIBRT—The National Institute for Bioprocessing Research and Training, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Niaobh McLoughlin
- NIBRT Dublin-Oxford Glycobiology Laboratory, NIBRT—The National Institute for Bioprocessing Research and Training, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Mark Hilliard
- NIBRT Dublin-Oxford Glycobiology Laboratory, NIBRT—The National Institute for Bioprocessing Research and Training, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kieran Wynne
- Conway Institute Proteome Research Centre, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Gibbes R. Johnson
- Laboratory of Chemistry, Division of Therapeutic Proteins, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, United States
| | - Jeffrey H. Grubb
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 South Grand Boulevard, St. Louis, Missouri 63104, United States
| | - William S. Sly
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 South Grand Boulevard, St. Louis, Missouri 63104, United States
| | - Pauline M. Rudd
- NIBRT Dublin-Oxford Glycobiology Laboratory, NIBRT—The National Institute for Bioprocessing Research and Training, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
7
|
Pohl S, Tiede S, Marschner K, Encarnação M, Castrichini M, Kollmann K, Muschol N, Ullrich K, Müller-Loennies S, Braulke T. Proteolytic processing of the gamma-subunit is associated with the failure to form GlcNAc-1-phosphotransferase complexes and mannose 6-phosphate residues on lysosomal enzymes in human macrophages. J Biol Chem 2010; 285:23936-44. [PMID: 20489197 DOI: 10.1074/jbc.m110.129684] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GlcNAc-1-phosphotransferase is a Golgi-resident 540-kDa complex of three subunits, alpha(2)beta(2)gamma(2), that catalyze the first step in the formation of the mannose 6-phosphate (M6P) recognition marker on lysosomal enzymes. Anti-M6P antibody analysis shows that human primary macrophages fail to generate M6P residues. Here we have explored the sorting and intracellular targeting of cathepsin D as a model, and the expression of the GlcNAc-1-phosphotransferase complex in macrophages. Newly synthesized cathepsin D is transported to lysosomes in an M6P-independent manner in association with membranes whereas the majority is secreted. Realtime PCR analysis revealed a 3-10-fold higher GlcNAc-1-phosphotransferase subunit mRNA levels in macrophages than in fibroblasts or HeLa cells. At the protein level, the gamma-subunit but not the beta-subunit was found to be proteolytically cleaved into three fragments which form irregular 97-kDa disulfide-linked oligomers in macrophages. Size exclusion chromatography showed that the gamma-subunit fragments lost the capability to assemble with other GlcNAc-1-phosphotransferase subunits to higher molecular complexes. These findings demonstrate that proteolytic processing of the gamma-subunit represents a novel mechanism to regulate GlcNAc-1-phosphotransferase activity and the subsequent sorting of lysosomal enzymes.
Collapse
Affiliation(s)
- Sandra Pohl
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Flanagan-Steet H, Sias C, Steet R. Altered chondrocyte differentiation and extracellular matrix homeostasis in a zebrafish model for mucolipidosis II. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:2063-75. [PMID: 19834066 DOI: 10.2353/ajpath.2009.090210] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mucolipidosis II (ML-II) is a pediatric disorder caused by defects in the biosynthesis of mannose 6-phosphate, the carbohydrate recognition signal responsible for targeting certain acid hydrolases to lysosomes. The mechanisms underlying the developmental defects of ML-II are largely unknown due in part to the lack of suitable animal models. To overcome these limitations, we developed a model for ML-II in zebrafish by inhibiting the expression of N-acetylglucosamine-1-phosphotransferase, the enzyme that initiates mannose 6-phosphate biosynthesis. Morphant embryos manifest craniofacial defects, impaired motility, and abnormal otolith and pectoral fin development. Decreased mannose phosphorylation of several lysosomal glycosidases was observed in morphant lysates, consistent with the reduction in phosphotransferase activity. Investigation of the craniofacial defects in the morphants uncovered striking changes in the timing and localization of both type II collagen and Sox9 expression, suggestive of an accelerated chondrocyte differentiation program. Accumulation of type II collagen was also noted within misshapen cartilage elements at later stages of development. Furthermore, we observed abnormal matrix formation and calcium deposition in morphant otoliths. Collectively, these data provide new insight into the developmental pathology of ML-II and suggest that altered production and/or homeostasis of extracellular matrix proteins are integral to the disease process. These findings highlight the potential of the zebrafish system in studying lysosomal disease pathogenesis.
Collapse
|
9
|
Song X, Lasanajak Y, Olson LJ, Boonen M, Dahms NM, Kornfeld S, Cummings RD, Smith DF. Glycan microarray analysis of P-type lectins reveals distinct phosphomannose glycan recognition. J Biol Chem 2009; 284:35201-14. [PMID: 19801653 DOI: 10.1074/jbc.m109.056119] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The specificity of the cation-independent and -dependent mannose 6-phosphate receptors (CI-MPR and CD-MPR) for high mannose-type N-glycans of defined structure containing zero, one, or two Man-P-GlcNAc phosphodiester or Man-6-P phosphomonoester residues was determined by analysis on a phosphorylated glycan microarray. Amine-activated glycans were covalently printed on N-hydroxysuccinimide-activated glass slides and interrogated with different concentrations of recombinant CD-MPR or soluble CI-MPR. Neither receptor bound to non-phosphorylated glycans. The CD-MPR bound weakly or undetectably to the phosphodiester derivatives, but strongly to the phosphomonoester-containing glycans with the exception of a single Man7GlcNAc2-R isomer that contained a single Man-6-P residue. By contrast, the CI-MPR bound with high affinity to glycans containing either phospho-mono- or -diesters although, like the CD-MPR, it differentially recognized isomers of phosphorylated Man7GlcNAc2-R. This differential recognition of phosphorylated glycans by the CI- and CD-MPRs has implications for understanding the biosynthesis and targeting of lysosomal hydrolases.
Collapse
Affiliation(s)
- Xuezheng Song
- Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Zhu Y, Jiang JL, Gumlaw NK, Zhang J, Bercury SD, Ziegler RJ, Lee K, Kudo M, Canfield WM, Edmunds T, Jiang C, Mattaliano RJ, Cheng SH. Glycoengineered acid alpha-glucosidase with improved efficacy at correcting the metabolic aberrations and motor function deficits in a mouse model of Pompe disease. Mol Ther 2009; 17:954-63. [PMID: 19277015 PMCID: PMC2835178 DOI: 10.1038/mt.2009.37] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 02/05/2009] [Indexed: 12/22/2022] Open
Abstract
Improving the delivery of therapeutics to disease-affected tissues can increase their efficacy and safety. Here, we show that chemical conjugation of a synthetic oligosaccharide harboring mannose 6-phosphate (M6P) residues onto recombinant human acid alpha-glucosidase (rhGAA) via oxime chemistry significantly improved its affinity for the cation-independent mannose 6-phosphate receptor (CI-MPR) and subsequent uptake by muscle cells. Administration of the carbohydrate-remodeled enzyme (oxime-neo-rhGAA) into Pompe mice resulted in an approximately fivefold higher clearance of lysosomal glycogen in muscles when compared to the unmodified counterpart. Importantly, treatment of immunotolerized Pompe mice with oxime-neo-rhGAA translated to greater improvements in muscle function and strength. Treating older, symptomatic Pompe mice also reduced tissue glycogen levels but provided only modest improvements in motor function. Examination of the muscle pathology suggested that the poor response in the older animals might have been due to a reduced regenerative capacity of the skeletal muscles. These findings lend support to early therapeutic intervention with a targeted enzyme as important considerations in the management of Pompe disease.
Collapse
Affiliation(s)
- Yunxiang Zhu
- Genzyme Corporation, Framingham, Massachusetts 01701-9322, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Dierks T, Schlotawa L, Frese MA, Radhakrishnan K, von Figura K, Schmidt B. Molecular basis of multiple sulfatase deficiency, mucolipidosis II/III and Niemann–Pick C1 disease — Lysosomal storage disorders caused by defects of non-lysosomal proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:710-25. [DOI: 10.1016/j.bbamcr.2008.11.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 11/11/2008] [Accepted: 11/24/2008] [Indexed: 12/11/2022]
|
12
|
Sorting of lysosomal proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:605-14. [PMID: 19046998 DOI: 10.1016/j.bbamcr.2008.10.016] [Citation(s) in RCA: 597] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 10/07/2008] [Accepted: 10/30/2008] [Indexed: 11/24/2022]
Abstract
Lysosomes are composed of soluble and transmembrane proteins that are targeted to lysosomes in a signal-dependent manner. The majority of soluble acid hydrolases are modified with mannose 6-phosphate (M6P) residues, allowing their recognition by M6P receptors in the Golgi complex and ensuing transport to the endosomal/lysosomal system. Other soluble enzymes and non-enzymatic proteins are transported to lysosomes in an M6P-independent manner mediated by alternative receptors such as the lysosomal integral membrane protein LIMP-2 or sortilin. Sorting of cargo receptors and lysosomal transmembrane proteins requires sorting signals present in their cytosolic domains. These signals include dileucine-based motifs, DXXLL or [DE]XXXL[LI], and tyrosine-based motifs, YXXØ, which interact with components of clathrin coats such as GGAs or adaptor protein complexes. In addition, phosphorylation and lipid modifications regulate signal recognition and trafficking of lysosomal membrane proteins. The complex interaction of both luminal and cytosolic signals with recognition proteins guarantees the specific and directed transport of proteins to lysosomes.
Collapse
|
13
|
Wei Y, Yen TY, Cai J, Trent JO, Pierce WM, Young WW. Structural features of the lysosomal hydrolase mannose 6-phosphate uncovering enzyme. Glycoconj J 2005; 22:13-9. [PMID: 15864430 DOI: 10.1007/s10719-005-0846-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Revised: 07/19/2004] [Accepted: 07/23/2004] [Indexed: 10/25/2022]
Abstract
The uncovering enzyme (UCE) removes N-acetylglucosamine from lysosomal enzymes to uncover the mannose 6-phosphate (Man-6-P) determinant necessary for targeting these enzymes to lysosomes. Failure to create the Man-6-P determinant is one cause of lysosomal storage diseases. Despite its medical importance, little structural information about UCE is available. In this report we have developed a model for the membrane proximal portion of the lumenal domain of UCE based on the structure of the EFG-3 and -4 domains of the extracellular segment of the beta chain of integrin alpha Vbeta 3. In this model the EGF-like domains of UCE (residues 285-345) are predicted to form a rod-shaped stalk region, similar to the stem region in Golgi glycosyltransferases. This stalk causes the proposed catalytic domain (residues 1-277) to be extended away from the Golgi membrane. A portion of the proposed catalytic domain (residues 85-256) resides in Cluster of Orthologous Group (COG) 4632 with four bacterial proteins but is not homologous to any known eukaryotic proteins. Thus, UCE may have evolved from the fusion of a unique catalytic domain with a common EGF-like stalk domain. We have determined by mass spectrometry that the four disulfide bonds of the proposed catalytic domain are located between Cys(2)-Cys(172), Cys(66)-Cys(99), Cys(83)-Cys(274), and Cys(258)-Cys(265). Finally, we determined that four of the six potential N-linked glycosylation sites are glycosylated (Asn 159, Asn 165, Asn 247, and Asn 317) in COS cells.
Collapse
Affiliation(s)
- Yuqiang Wei
- Department of Molecular, Cellular & Craniofacial Biology, School of Dentistry, University of Louisville, KY 40292, USA
| | | | | | | | | | | |
Collapse
|
14
|
Stöckli J, Höning S, Rohrer J. The Acidic Cluster of the CK2 Site of the Cation-dependent Mannose 6-Phosphate Receptor (CD-MPR) but Not Its Phosphorylation Is Required for GGA1 and AP-1 Binding. J Biol Chem 2004; 279:23542-9. [PMID: 15044437 DOI: 10.1074/jbc.m313525200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lysosomal biogenesis depends on proper transport of lysosomal enzymes by the cation-dependent mannose 6-phosphate receptor (CD-MPR) from the trans-Golgi network (TGN) to endosomes. Trafficking of the CDMPR is mediated by sorting signals in its cytoplasmic tail. GGA1 (Golgi-localizing, gamma-ear-containing, ARF-binding protein-1) binds to CD-MPR in the TGN and targets the receptor to clathrin-coated pits for transport from the TGN to endosomes. The motif of the CD-MPR that interacts with GGA1 was shown to be 61DXXLL65. Reports on increased affinity of cargo, when phosphorylated by casein kinase 2 (CK2), to GGAs focused our interest on the effect of the CD-MPR CK2 site on binding to GGA1. Here we demonstrate that Glu58 and Glu59 of the CK2 site are essential for high affinity GGA1 binding in vitro, whereas the phosphorylation of Ser57 of the CD-MPR has no influence on receptor binding to GGA1. Furthermore, the in vivo interaction between GGA1 and CD-MPR was abolished only when all residues involved in GGA1 binding were mutated, namely, Glu58, Glu59, Asp61, Leu64, and Leu65. In contrast, the binding of adaptor protein-1 (AP-1) to CD-MPR required all the glutamates surrounding the phosphorylation site, namely, Glu55, Glu56, Glu58, and Glu59, but like GGA1 binding, was independent of the phosphorylation of Ser57. The binding affinity of GGA1 to the CD-MPR was found to be 2.4-fold higher than that of AP-1. This could regulate the binding of the two proteins to the partly overlapping sorting signals, allowing AP-1 binding to the CD-MPR only when GGA1 is released upon autoinhibition by phosphorylation.
Collapse
|
15
|
Nair P, Schaub BE, Rohrer J. Characterization of the endosomal sorting signal of the cation-dependent mannose 6-phosphate receptor. J Biol Chem 2003; 278:24753-8. [PMID: 12697764 DOI: 10.1074/jbc.m300174200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intracellular cycling of the cation-dependent mannose 6-phosphate receptor (CD-MPR) between different compartments is directed by signals localized in its cytoplasmic tail. A di-aromatic motif (Phe18-Trp19 with Trp19 as the key residue) in its cytoplasmic tail is required for the sorting of the receptor from late endosomes back to the Golgi apparatus. However, the cation-independent mannose 6-phosphate receptor (CI-MPR) lacks such a di-aromatic motif. Therefore the ability of amino acids other than aromatic residues to replace Trp19 in the CD-MPR cytoplasmic tail was tested. Mutant constructs with bulky hydrophobic residues (valine, isoleucine, or leucine) instead of Trp19 exhibited 30-60% decreases in binding to the tail interacting protein of 47 kDa (Tip47), a protein mediating this transport step, and partially prevented receptor delivery to lysosomes. Decreasing hydrophobicity of residues at position 19 resulted in further impairment of Tip47 binding and an increase of receptor accumulation in lysosomes. Intriguingly, mutants mislocalized to lysosomes did not completely co-localize with a lysosomal membrane protein, which might suggest the presence of subdomains within lysosomes. These data indicate that sorting of the CD-MPR in late endosomes requires a distinct di-aromatic motif with only limited possibilities for variations, in contrast to the CI-MPR, which seems to require a putative loop (Pro49-Pro-Ala-Pro-Arg-Pro-Gly55) along with additional hydrophobic residues in the cytoplasmic tail. This raises the possibility of two separate binding sites on Tip47 because both receptors require binding to Tip47 for endosomal sorting.
Collapse
Affiliation(s)
- Prashant Nair
- Institute of Physiology, University of Zurich, Switzerland
| | | | | |
Collapse
|
16
|
Do H, Lee WS, Ghosh P, Hollowell T, Canfield W, Kornfeld S. Human mannose 6-phosphate-uncovering enzyme is synthesized as a proenzyme that is activated by the endoprotease furin. J Biol Chem 2002; 277:29737-44. [PMID: 12058031 DOI: 10.1074/jbc.m202369200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
N-Acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase, also known as "uncovering" enzyme (UCE), is localized in the trans-Golgi network, where it removes a covering N-acetylglucosamine from the mannose 6-phosphate recognition marker on lysosomal acid hydrolases. Here we show that UCE is synthesized as an inactive proenzyme that is activated by the endoprotease furin, which cleaves an RARLPR/D sequence to release a 24-amino acid propiece. As furin is localized in the trans-Golgi network, newly synthesized UCE is inactive until it reaches this terminal Golgi compartment. LoVo cells (derived from a human colon adenocarcinoma) lack furin activity and have extremely low UCE activity. Addition of furin to LoVo cell extracts restores UCE activity to normal levels, demonstrating that the UCE proenzyme is stable in this cell type. LoVo cells secrete acid hydrolases with phosphomannose diesters as a consequence of the deficient UCE activity. This demonstrates for the first time that UCE is the only enzyme in these cells capable of efficiently uncovering phosphomannose diesters. UCE also hydrolyzes UDP-GlcNAc, a sugar donor for Golgi N-acetylglucosaminyltransferases. The fact that UCE is not activated until it reaches the trans-Golgi network may ensure that the pool of UDP-GlcNAc in the Golgi stack is not depleted, thereby maintaining proper oligosaccharide assembly.
Collapse
Affiliation(s)
- Hung Do
- Novazyme Pharmaceuticals, Incorporated, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | |
Collapse
|
17
|
Lee WS, Rohrer J, Kornfeld R, Kornfeld S. Multiple signals regulate trafficking of the mannose 6-phosphate-uncovering enzyme. J Biol Chem 2002; 277:3544-51. [PMID: 11723124 DOI: 10.1074/jbc.m108531200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The "uncovering enzyme," which catalyzes the second step in the formation of the mannose 6-phosphate recognition marker on lysosomal enzyme oligosaccharides, resides primarily in the trans-Golgi network and cycles between this compartment and the plasma membrane. An analysis of green fluorescent protein-uncovering enzyme chimeras revealed that the transmembrane segment and the first 11 residues of the 41-residue-cytoplasmic tail are sufficient for retention in the trans-Golgi network. The next eight residues ((486)YAYHPLQE(493)) facilitate exit from this compartment. Kinetic studies demonstrated that the (488)YHPL(491) sequence also mediates rapid internalization at the plasma membrane. This motif binds adaptor protein-2 in glutathione S-transferase-uncovering enzyme-cytoplasmic tail pull-down assays, indicating that the uncovering enzyme is endocytosed via clathrin-coated vesicles. Consistent with this finding, endogenous uncovering enzyme was detected in purified clathrin-coated vesicles. The enzyme with a Y486A mutation is internalized normally but accumulates on the cell surface because of increased recycling to the plasma membrane. This residue is required for efficient return of the enzyme from endosomes to the trans-Golgi network. These findings indicate that the YAYHPLQE motif is recognized at several sorting sites, including the trans-Golgi network, the plasma membrane, and the endosome.
Collapse
Affiliation(s)
- Wang-Sik Lee
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
18
|
Ferlinz K, Kopal G, Bernardo K, Linke T, Bar J, Breiden B, Neumann U, Lang F, Schuchman EH, Sandhoff K. Human acid ceramidase: processing, glycosylation, and lysosomal targeting. J Biol Chem 2001; 276:35352-60. [PMID: 11451951 DOI: 10.1074/jbc.m103066200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The biosynthesis of human acid ceramidase (hAC) starts with the expression of a single precursor polypeptide of approximately 53-55 kDa, which is subsequently processed to the mature, heterodimeric enzyme (40 + 13 kDa) in the endosomes/lysosomes. Secretion of hAC by either fibroblasts or acid ceramidase cDNA-transfected COS cells is extraordinarily low. Both lysosomal targeting and endocytosis critically depend on a functional mannose 6-phosphate receptor as judged by the following criteria: (i) hAC-precursor secretion by NH(4)Cl-treated fibroblasts and I-cell disease fibroblasts, (ii) inhibition of the formation of mature heterodimeric hAC in NH(4)Cl-treated fibroblasts or in I-cell disease fibroblasts, and (iii) blocked endocytosis of hAC precursor by mannose 6-phosphate receptor-deficient fibroblasts or the addition of mannose 6-phosphate. The influence of the six individual potential N-glycosylation sites of human acid ceramidase on targeting, processing, and catalytic activity was determined by site-directed mutagenesis. Five glycosylation sites (sites 1-5 from the N terminus) are used. The elimination of sites 2, 4, and 6 has no influence on lysosomal processing or enzymatic activity of recombinant ceramidase. The removal of sites 1, 3, and 5 inhibits the formation of the heterodimeric enzyme form. None of the mutant ceramidases gave rise to an increased rate of secretion, suggesting that lysosomal targeting does not depend on one single carbohydrate chain.
Collapse
Affiliation(s)
- K Ferlinz
- Institute of Physiology 1, University of Tübingen, 72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Rohrer J, Kornfeld R. Lysosomal hydrolase mannose 6-phosphate uncovering enzyme resides in the trans-Golgi network. Mol Biol Cell 2001; 12:1623-31. [PMID: 11408573 PMCID: PMC37329 DOI: 10.1091/mbc.12.6.1623] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A crucial step in lysosomal biogenesis is catalyzed by "uncovering" enzyme (UCE), which removes a covering N-acetylglucosamine from the mannose 6-phosphate (Man-6-P) recognition marker on lysosomal hydrolases. This study shows that UCE resides in the trans-Golgi network (TGN) and cycles between the TGN and plasma membrane. The cytosolic domain of UCE contains two potential endocytosis motifs: (488)YHPL and C-terminal (511)NPFKD. YHPL is shown to be the more potent of the two in retrieval of UCE from the plasma membrane. A green-fluorescent protein-UCE transmembrane-cytosolic domain fusion protein colocalizes with TGN 46, as does endogenous UCE in HeLa cells, showing that the transmembrane and cytosolic domains determine intracellular location. These data imply that the Man-6-P recognition marker is formed in the TGN, the compartment where Man-6-P receptors bind cargo and are packaged into clathrin-coated vesicles.
Collapse
Affiliation(s)
- J Rohrer
- Friedrich Miescher Institut, 4059 Basel, Switzerland
| | | |
Collapse
|
20
|
Affiliation(s)
- W S Sly
- Department of Biochemistry, St. Louis University School of Medicine, 1402 South Grand Boulevard, St. Louis, Missouri 63104, USA.
| |
Collapse
|
21
|
Kornfeld R, Bao M, Brewer K, Noll C, Canfield W. Molecular cloning and functional expression of two splice forms of human N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase. J Biol Chem 1999; 274:32778-85. [PMID: 10551838 DOI: 10.1074/jbc.274.46.32778] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have isolated and sequenced human cDNA and mouse genomic DNA clones encoding N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase (phosphodiester alpha-GlcNAcase) which catalyzes the second step in the synthesis of the mannose 6-phosphate recognition signal on lysosomal enzymes. The gene is organized into 10 exons. The protein sequence encoded by the clones shows 80% identity between human and mouse phosphodiester alpha-GlcNAcase and no homology to other known proteins. It predicts a type I membrane-spanning glycoprotein of 514 amino acids containing a 24-amino acid signal sequence, a luminal domain of 422 residues with six potential N-linked glycosylation sites, a single 27-residue transmembrane region, and a 41-residue cytoplasmic tail that contains both a tyrosine-based and an NPF internalization motif. Human brain expressed sequence tags lack a 102-base pair region present in human liver cDNA that corresponds to exon 8 in the genomic DNA and probably arises via alternative splicing. COS cells transfected with the human cDNA expressed 50-100-fold increases in phosphodiester alpha-GlcNAcase activity proving that the cDNA encodes the subunits of the tetrameric enzyme. Transfection with cDNA lacking the 102-base pair region also gave active enzyme. The complete genomic sequence of human phosphodiester alpha-GlcNAcase was recently deposited in the data base. It showed that our cDNA clone was missing only the 5'-untranslated region and initiator methionine and revealed that the human genomic DNA has the same exon organization as the mouse gene.
Collapse
Affiliation(s)
- R Kornfeld
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
22
|
Schachter H, Jaeken J. Carbohydrate-deficient glycoprotein syndrome type II. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1455:179-92. [PMID: 10571011 DOI: 10.1016/s0925-4439(99)00054-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The carbohydrate-deficient glycoprotein syndromes (CDGS) are a group of autosomal recessive multisystemic diseases characterized by defective glycosylation of N-glycans. This review describes recent findings on two patients with CDGS type II. In contrast to CDGS type I, the type II patients show a more severe psychomotor retardation, no peripheral neuropathy and a normal cerebellum. The CDGS type II serum transferrin isoelectric focusing pattern shows a large amount (95%) of disialotransferrin in which each of the two glycosylation sites is occupied by a truncated monosialo-monoantennary N-glycan. Fine structure analysis of this glycan suggested a defect in the Golgi enzyme UDP-GlcNAc:alpha-6-D-mannoside beta-1,2-N-acetylglucosaminyltransferase II (GnT II; EC 2.4.1.143) which catalyzes an essential step in the biosynthetic pathway leading from hybrid to complex N-glycans. GnT II activity is reduced by over 98% in fibroblast and mononuclear cell extracts from the CDGS type II patients. Direct sequencing of the GnT II coding region from the two patients identified two point mutations in the catalytic domain of GnT II, S290F (TCC to TTC) and H262R (CAC to CGC). Either of these mutations inactivates the enzyme and probably also causes reduced expression. The CDG syndromes and other congenital defects in glycan synthesis as well as studies of null mutations in the mouse provide strong evidence that the glycan moieties of glycoproteins play essential roles in the normal development and physiology of mammals and probably of all multicellular organisms.
Collapse
Affiliation(s)
- H Schachter
- Department of Biochemistry, University of Toronto Medical School, and Department of Structural Biology and Biochemistry, Hospital for Sick Children, Ont, Canada
| | | |
Collapse
|