1
|
Kyaw T, Drummond G, Bobik A, Peter K. Myocarditis: causes, mechanisms, and evolving therapies. Expert Opin Ther Targets 2023; 27:225-238. [PMID: 36946552 DOI: 10.1080/14728222.2023.2193330] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Myocarditis is a severe lymphocyte-mediated inflammatory disorder of the heart, mostly caused by viruses and immune checkpoint inhibitors (ICIs). Recently, myocarditis as a rare adverse event of mRNA vaccines for SARS-CoV-2 has caused global attention. The clinical consequences of myocarditis can be very severe, but specific treatment options are lacking or not yet clinically proven. AREAS COVERED This paper offers a brief overview of the biology of viruses that frequently cause myocarditis, focusing on mechanisms important for viral entry and replication following host infection. Current and new potential therapeutic targets/strategies especially for viral myocarditis are reviewed systematically. In particular, the immune system in myocarditis is dissected with respect to infective viral and non-infective, ICI-induced myocarditis. EXPERT OPINION Vaccination is an excellent emerging preventative strategy for viral myocarditis, but most vaccines still require further development. Anti-viral treatments that inhibit viral replication need to be considered following viral infection in host myocardium, as lower viral load reduces inflammation severity. Understanding how the immune system continues to damage the heart even after viral clearance will define novel therapeutic targets/strategies. We propose that viral myocarditis can be best treated using a combination of antiviral agents and immunotherapies that control cytotoxic T cell activity.
Collapse
Affiliation(s)
- Tin Kyaw
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute
- Centre for Inflammatory Diseases, Monash Medical Centre, Monash University, Melbourne, Australia
- Department of Cardiometabolic Health, University of Melbourne Melbourne Australia
| | - Grant Drummond
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University Melbourne Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, Australia
| | - Alex Bobik
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute
- Centre for Inflammatory Diseases, Monash Medical Centre, Monash University, Melbourne, Australia
- Department of Cardiometabolic Health, University of Melbourne Melbourne Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, Australia
- Heart Centre, Alfred Hospital, Melbourne, Australia
| | - Karlheinz Peter
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute
- Department of Cardiometabolic Health, University of Melbourne Melbourne Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University Melbourne Australia
- Heart Centre, Alfred Hospital, Melbourne, Australia
- Department of Immunology, Monash University Melbourne Australia
| |
Collapse
|
2
|
Laurent S, Blondeau C, Belghazi M, Remy S, Esnault E, Rasschaert P, Rasschaert D. Sequential autoprocessing of Marek's disease herpesvirus protease differs from that of other herpesviruses. J Virol 2007; 81:6117-21. [PMID: 17376905 PMCID: PMC1900316 DOI: 10.1128/jvi.02679-06] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpesviruses encode a unique serine protease essential for viral capsid maturation. This protease undergoes autoprocessing at two sites, R and M, at the consensus sequence (V, L, I)(P3)-X(P2)-A(P1)/S(P1') (where X is a polar amino acid). We observed complete autoprocessing at the R and M sites of Marek's disease virus (MDV) protease following production of the polyprotein in Escherichia coli. Site-directed mutagenesis confirmed the predicted sequence of the R and M sites, with the M site sequence being nonconsensual: M(P3)-N(P2)-A(P1)/S(P1'). Mutagenesis and expression kinetics studies suggested that the atypical MDV M site was cleaved exclusively by the processed short protease, a feature making MDV unique among herpesviruses.
Collapse
Affiliation(s)
- S Laurent
- Equipe Télomérase et Lymphome Viro-induit, UPR INRA 1282 IASP-213, INRA de Tours, 37380 Nouzilly, France.
| | | | | | | | | | | | | |
Collapse
|
3
|
Winterburn TJ, Wyatt DM, Phylip LH, Bur D, Harrison RJ, Berry C, Kay J. Key Features Determining the Specificity of Aspartic Proteinase Inhibition by the Helix-forming IA3 Polypeptide. J Biol Chem 2007; 282:6508-16. [PMID: 17145748 DOI: 10.1074/jbc.m610503200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 68-residue IA(3) polypeptide from Saccharomyces cerevisiae is essentially unstructured. It inhibits its target aspartic proteinase through an unprecedented mechanism whereby residues 2-32 of the polypeptide adopt an amphipathic alpha-helical conformation upon contact with the active site of the enzyme. This potent inhibitor (K(i) < 0.1 nm) appears to be specific for a single target proteinase, saccharopepsin. Mutagenesis of IA(3) from S. cerevisiae and its ortholog from Saccharomyces castellii was coupled with quantitation of the interaction for each mutant polypeptide with saccharopepsin and closely related aspartic proteinases from Pichia pastoris and Aspergillus fumigatus. This identified the charged K18/D22 residues on the otherwise hydrophobic face of the amphipathic helix as key selectivity-determining residues within the inhibitor and implicated certain residues within saccharopepsin as being potentially crucial. Mutation of these amino acids established Ala-213 as the dominant specificity-governing feature in the proteinase. The side chain of Ala-213 in conjunction with valine 26 of the inhibitor marshals Tyr-189 of the enzyme precisely into a position in which its side-chain hydroxyl is interconnected via a series of water-mediated contacts to the key K18/D22 residues of the inhibitor. This extensive hydrogen bond network also connects K18/D22 directly to the catalytic Asp-32 and Tyr-75 residues of the enzyme, thus deadlocking the inhibitor in position. In most other aspartic proteinases, the amino acid at position 213 is a larger hydrophobic residue that prohibits this precise juxtaposition of residues and eliminates these enzymes as targets of IA(3). The exquisite specificity exhibited by this inhibitor in its interaction with its cognate folding partner proteinase can thus be readily explained.
Collapse
Affiliation(s)
- Tim J Winterburn
- School of Biosciences, Cardiff University, Cardiff CF10 3US, Wales, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
4
|
Winterburn TJ, Wyatt DM, Phylip LH, Berry C, Bur D, Kay J. Adaptation of the behaviour of an aspartic proteinase inhibitor by relocation of a lysine residue by one helical turn. Biol Chem 2006; 387:1139-42. [PMID: 16895485 DOI: 10.1515/bc.2006.140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In addition to self-inhibition of aspartic proteinase zymogens by their intrinsic proparts, the activity of certain members of this enzyme family can be modulated through active-site occupation by extrinsic polypeptides such as the small IA3 protein from Saccharomyces cerevisiae. The unprecedented mechanism by which IA3 helicates to inhibit its sole target aspartic proteinase locates an i, i+4 pair of charged residues (Lys18+Asp22) on an otherwise-hydrophobic face of the amphipathic helix. The nature of these residues is not crucial for effective inhibition, but re-location of the lysine residue by one turn (+4 residues) in the helical IA3 positions its side chain in the mutant IA3-proteinase complex in an orientation essentially identical to that of the key lysine residue in zymogen proparts. The binding of the extrinsic mutant IA3 shows pH dependence reminiscent of that required for the release of intrinsic zymogen proparts so that activation can occur.
Collapse
Affiliation(s)
- Tim J Winterburn
- School of Biosciences, Cardiff University, Cardiff CF10 3US, Wales, UK
| | | | | | | | | | | |
Collapse
|
5
|
Abstract
Human herpesvirus 6 (HHV-6) exists as distinct variants HHV-6A and HHV-6B. The complete genomes of HHV-6A and HHV-6B have been sequenced. HHV-6B contains 97 unique genes. CD46 is the cell receptor for HHV-6, explaining its broad tissue tropism but its restricted host-species range. HHV-6 utilizes a number of strategies to down-regulate the host immune response, including molecular mimicry by production of a functional chemokine and chemokine receptors. Immunosuppression is enhanced by depletion of CD4 T lymphocytes via direct infection of intra-thymic progenitors and by apoptosis induction. Infection is widespread in infants between 6 months and 2 years of age. A minority of infants develop roseola infantum, but undifferentiated febrile illness is more common. Reactivation from latency occurs in immunocompromised hosts. Organ-specific clinical syndromes occasionally result, but indirect effects including interactions with other viruses such as human immunodeficiency virus type 1 and human cytomegalovirus or graft dysfunction in transplant recipients may be more significant complications in this population. Recent advances in quantitative PCR are providing additional insights into the natural history of infection in paediatric populations and immunocompromised hosts.
Collapse
Affiliation(s)
- D H Dockrell
- Division of Genomic Medicine, University of Sheffield School of Medicine and Biomedical Sciences, Beech Hill Road, Sheffield S10 2RX, UK
| |
Collapse
|
6
|
Buisson M, Valette E, Hernandez JF, Baudin F, Ebel C, Morand P, Seigneurin JM, Arlaud GJ, Ruigrok RW. Functional determinants of the Epstein-Barr virus protease. J Mol Biol 2001; 311:217-28. [PMID: 11469870 DOI: 10.1006/jmbi.2001.4854] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Herpesvirus proteases are essential for the production of progeny virus. They cleave the assembly protein that fills the immature capsid in order to make place for the viral DNA. The recombinant protease of the human gamma-herpesvirus Epstein-Barr virus (EBV) was expressed in Escherichia coli and purified. Circular dichroism indicated that the protein was properly folded with a secondary structure content similar to that of other herpesvirus proteases. Gel filtration and sedimentation analysis indicated a fast monomer-dimer equilibrium of the protease with a K(d) of about 60 microM. This value was not influenced by glycerol but was lowered to 1.7 microM in the presence of 0.5 M sodium citrate. We also developed an HPLC-based enzymatic assay using a 20 amino acid residue synthetic peptide substrate derived from one of the viral target sequences for the protease. We found that conditions that stabilised the dimer also led to a higher enzymatic activity. Through sequential deletion of amino acid residues from either side of the cleavage site, the minimal peptide substrate for the protease was determined as P5-P2'. This minimal sequence is shorter than that for other herpesvirus proteases. The implications of our findings are discussed with reference to the viral life-cycle. These results are the first ever published on the EBV protease and represent a first step towards the development of protease inhibitors.
Collapse
Affiliation(s)
- M Buisson
- Laboratoire de Virologie, Hôpital Michallon, Grenoble Cedex 9, 38043, France
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Phylip LH, Lees WE, Brownsey BG, Bur D, Dunn BM, Winther JR, Gustchina A, Li M, Copeland T, Wlodawer A, Kay J. The potency and specificity of the interaction between the IA3 inhibitor and its target aspartic proteinase from Saccharomyces cerevisiae. J Biol Chem 2001; 276:2023-30. [PMID: 11042188 DOI: 10.1074/jbc.m008520200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast IA3 polypeptide consists of only 68 residues, and the free inhibitor has little intrinsic secondary structure. IA3 showed subnanomolar potency toward its target, proteinase A from Saccharomyces cerevisiae, and did not inhibit any of a large number of aspartic proteinases with similar sequences/structures from a wide variety of other species. Systematic truncation and mutagenesis of the IA3 polypeptide revealed that the inhibitory activity is located in the N-terminal half of the sequence. Crystal structures of different forms of IA3 complexed with proteinase A showed that residues in the N-terminal half of the IA3 sequence became ordered and formed an almost perfect alpha-helix in the active site of the enzyme. This potent, specific interaction was directed primarily by hydrophobic interactions made by three key features in the inhibitory sequence. Whereas IA3 was cut as a substrate by the nontarget aspartic proteinases, it was not cleaved by proteinase A. The random coil IA3 polypeptide escapes cleavage by being stabilized in a helical conformation upon interaction with the active site of proteinase A. This results, paradoxically, in potent selective inhibition of the target enzyme.
Collapse
Affiliation(s)
- L H Phylip
- School of Biosciences, Cardiff University, P. O. Box 911, Cardiff CF10 3US, Wales, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Human herpesvirus 6 (HHV-6), a member of the beta-herpesvirinae subfamily, is highly seroprevalent, has a worldwide distribution, and infection usually occurs within the first two years of life. In this age group, HHV-6 causes febrile illness including exanthem subitum with seizures a recognised complication. The virus is predominantly T lymphotropic although it can infect a variety of cell types in vitro and CD46 has recently been identified as a cellular receptor. The virus persists in the host, with a latent state proposed in monocytes and bone marrow progenitor cells, and chronic infection in salivary glands. The virus is pathogenic in the post transplantation period and may be a cofactor in the progression of HIV disease. The virus has also been associated with multiple sclerosis (MS), with the virus detected in oligodendrocytes particularly in plaque regions. The role of HHV-6 in MS remains controversial and a more extensive understanding of its neurotropism and association with disease is required. Two variants of HHV-6 exist (A and B) and comparison of their complete nucleotide sequences shows the genomes to be colinear, with a high degree of homology. Variation in specific regions of the genome is more extensive and probably accounts for biological and pathological differences. Almost exclusively, variant B is associated with febrile illness in childhood and is the predominant variant detected in healthy individuals. The epidemiology of HHV-6A infection needs to be better defined, although it is significantly less prevalent. Biological, genetic, epidemiological and pathological findings suggest that the two variants are divergent.
Collapse
Affiliation(s)
- D A Clark
- Department of Virology, Royal Free and University College Medical School, London, UK
| |
Collapse
|
9
|
Abstract
Viruses of the family Herpesviridae are responsible for a diverse set of human diseases. The available treatments are largely ineffective, with the exception of a few drugs for treatment of herpes simplex virus (HSV) infections. For several members of this DNA virus family, advances have been made recently in the biochemistry and structural biology of the essential viral protease, revealing common features that may be possible to exploit in the development of a new class of anti-herpesvirus agents. The herpesvirus proteases have been identified as belonging to a unique class of serine protease, with a Ser-His-His catalytic triad. A new, single domain protein fold has been determined by X-ray crystallography for the proteases of at least three different herpesviruses. Also unique for serine proteases, dimerization has been shown to be required for activity of the cytomegalovirus and HSV proteases. The dimerization requirement seriously impacts methods needed for productive, functional analysis and inhibitor discovery. The conserved functional and catalytic properties of the herpesvirus proteases lead to common considerations for this group of proteases in the early phases of inhibitor discovery. In general, classical serine protease inhibitors that react with active site residues do not readily inactivate the herpesvirus proteases. There has been progress however, with activated carbonyls that exploit the selective nucleophilicity of the active site serine. In addition, screening of chemical libraries has yielded novel structures as starting points for drug development. Recent crystal structures of the herpesvirus proteases now allow more direct interpretation of ligand structure-activity relationships. This review first describes basic functional aspects of herpesvirus protease biology and enzymology. Then we discuss inhibitors identified to date and the prospects for their future development.
Collapse
Affiliation(s)
- L Waxman
- Department of Antiviral Research, Merck Research Laboratories, West Point, PA 19486, USA
| | | |
Collapse
|
10
|
White PC, Cordeiro MC, Arnold D, Brodelius PE, Kay J. Processing, activity, and inhibition of recombinant cyprosin, an aspartic proteinase from cardoon (Cynara cardunculus). J Biol Chem 1999; 274:16685-93. [PMID: 10358007 DOI: 10.1074/jbc.274.24.16685] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cDNA encoding the precursor of an aspartic proteinase from the flowers of the cardoon, Cynara cardunculus, was expressed in Pichia pastoris, and the recombinant, mature cyprosin that accumulated in the culture medium was purified and characterized. The resultant mixture of microheterogeneous forms was shown to consist of glycosylated heavy chains (34 or 32 kDa) plus associated light chains with molecular weights in the region of 14,000-18,000, resulting from excision of most, but not all, of the 104 residues contributed by the unique region known as the plant specific insert. SDS-polyacrylamide gel electrophoresis under non-reducing conditions indicated that disulfide bonding held the heavy and light chains together in the heterodimeric enzyme forms. In contrast, when a construct was expressed in which the nucleotides encoding the 104 residues of the plant specific insert were deleted, the inactive, unprocessed precursor form (procyprosin) accumulated, indicating that the plant-specific insert has a role in ensuring that the nascent polypeptide is folded properly and rendered capable of being activated to generate mature, active proteinase. Kinetic parameters were derived for the hydrolysis of a synthetic peptide substrate by wild-type, recombinant cyprosin at a variety of pH and temperature values and the subsite requirements of the enzyme were mapped using a systematic series of synthetic inhibitors. The significance is discussed of the susceptibility of cyprosin to inhibitors of human immunodeficiency virus proteinase and particularly of renin, some of which were found to have subnanomolar potencies against the plant enzyme.
Collapse
Affiliation(s)
- P C White
- School of Biosciences, Cardiff University, P. O. Box 911, Cardiff CF1 3US, Wales, United Kingdom
| | | | | | | | | |
Collapse
|
11
|
Abstract
Amino acid residues thought to comprise the catalytic triad of HHV-6 proteinase were changed by site-directed mutagenesis in the precursor form of the proteinase. By monitoring the ability of each mutant proteinase precursor to undergo autoprocessing, Ser116, His46 and His135 were identified as catalytically crucial. An attempt was made to mimic the catalytic triad arrangement of archetypal serine proteinases by replacement of the second histidine, His135, by an Asp. Instead of increasing the autoprocessing ability of the His135Asp mutant HHV-6 proteinase precursor, this mutation had a detrimental effect since the precursor persisted predominantly in its unprocessed form.
Collapse
Affiliation(s)
- N J Tigue
- School of Biosciences, Cardiff University, UK
| | | |
Collapse
|