1
|
Hamrangsekachaee M, Chen Y, Tressler ER, McCauley L, O'Hare NR, Okorafor CC, Bencherif SA, Ebong EE. Engineering Mechanical Microenvironments: Integration of Substrate and Flow Mechanics Reveals the Impact on the Endothelial Glycocalyx. ACS Biomater Sci Eng 2025. [PMID: 40434411 DOI: 10.1021/acsbiomaterials.4c02401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
The glycocalyx (GCX), a multicomponent coating on endothelial cells (ECs), plays a critical role in various cellular behaviors, including barrier formation, vasodilation, and mechanotransduction. Mechanical perturbations in the vascular environment, such as blood vessel stiffness, are sensed and transduced by ECs via the GCX. Hypertension-induced stiffness disrupts GCX-mediated mechanotransduction, leading to EC dysfunction and atherosclerotic cardiovascular diseases. Understanding GCX-regulated mechanotransduction necessitates an in vitro model that closely mimics in vivo conditions. Existing models are insufficient, prompting the development of the system described in this manuscript. Here, we report on a new system to model varying EC substrate stiffness under sustained physiological fluid shear stress, providing a realistic environment for comprehensive examination of EC function. Gelatin methacrylate (GelMA) substrates with stiffnesses of 5 kPa (physiological) and 10 kPa (pathological) were seeded with human umbilical vein ECs (HUVECs) and subjected to constant physiological shear stress (12 dyn/cm2) for 6 h. Analysis focused on heparan sulfate (HS), sialic acid (SA), hyaluronic acid (HA), syndecan-1 (SDC1), cluster of differentiation 44 (CD44), and Yes-associated protein (YAP). Compared to the 5 kPa conditions, HS coverage and thickness decreased at 10 kPa, indicating impaired barrier function and increased susceptibility to inflammatory agents. SA density increased despite decreased coverage, suggesting enhanced binding site availability for inflammatory recruitment. HA expression remained unchanged, but the amount of the HA core receptor, CD44, was found to be increased at 10 kPa. Consistent with previously published interactions between CD44 and YAP, we observed increased YAP activation at 10 kPa, as evidenced by increased nuclear translocation and decreased phosphorylation. These findings, bridging biomaterials and mechanobiology approaches, deepen our understanding of how mechanical stimuli influence the EC GCX function. The results underscore the potential of mechanotherapeutic strategies aimed at preserving vascular health by modulating the endothelial function.
Collapse
Affiliation(s)
- Mohammad Hamrangsekachaee
- Chemical Engineering Department, Northeastern University, Boston, Massachusetts 02115, United States
| | - Yu Chen
- Chemical Engineering Department, Northeastern University, Boston, Massachusetts 02115, United States
| | - Emily R Tressler
- Bioengineering Department, Northeastern University, Boston, Massachusetts 02115, United States
| | - Lucas McCauley
- Bioengineering Department, Northeastern University, Boston, Massachusetts 02115, United States
| | - Nicholas R O'Hare
- Chemical Engineering Department, Northeastern University, Boston, Massachusetts 02115, United States
| | - Chinedu C Okorafor
- Chemical Engineering Department, Northeastern University, Boston, Massachusetts 02115, United States
| | - Sidi A Bencherif
- Chemical Engineering Department, Northeastern University, Boston, Massachusetts 02115, United States
- Bioengineering Department, Northeastern University, Boston, Massachusetts 02115, United States
- Polymers, Biopolymers, Surfaces Laboratory (PBS, UMR CNRS 6270), University of Rouen Normandy, Rouen, F-76000 France
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Eno E Ebong
- Chemical Engineering Department, Northeastern University, Boston, Massachusetts 02115, United States
- Bioengineering Department, Northeastern University, Boston, Massachusetts 02115, United States
- Neuroscience Department, Albert Einstein College of Medicine, New York, New York 10461, United States
| |
Collapse
|
2
|
Yen H, Liao W, Chen C, Su Y, Huang Y, Hsiao C, Chou Y, Chu Y, Shih P, Liu C. Targeting chondroitin sulfate suppresses macropinocytosis of breast cancer cells by modulating syndecan-1 expression. Mol Oncol 2024; 18:2569-2585. [PMID: 38770553 PMCID: PMC11459036 DOI: 10.1002/1878-0261.13667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/02/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024] Open
Abstract
Accumulation of abnormal chondroitin sulfate (CS) chains in breast cancer tissue is correlated with poor prognosis. However, the biological functions of these CS chains in cancer progression remain largely unknown, impeding the development of targeted treatment focused on CS. Previous studies identified chondroitin polymerizing factor (CHPF; also known as chondroitin sulfate synthase 2) is the critical enzyme regulating CS accumulation in breast cancer tissue. We then assessed the association between CHPF-associated proteoglycans (PGs) and signaling pathways in breast cancer datasets. The regulation between CHPF and syndecan 1 (SDC1) was examined at both the protein and RNA levels. Confocal microscopy and image flow cytometry were employed to quantify macropinocytosis. The effects of the 6-O-sulfated CS-binding peptide (C6S-p) on blocking CS functions were tested in vitro and in vivo. Results indicated that the expression of CHPF and SDC1 was tightly associated within primary breast cancer tissue, and high expression of both genes exacerbated patient prognosis. Transforming growth factor beta (TGF-β) signaling was implicated in the regulation of CHPF and SDC1 in breast cancer cells. CHPF supported CS-SDC1 stabilization on the cell surface, modulating macropinocytotic activity in breast cancer cells under nutrient-deprived conditions. Furthermore, C6S-p demonstrated the ability to bind CS-SDC1, increase SDC1 degradation, suppress macropinocytosis of breast cancer cells, and inhibit tumor growth in vivo. Although other PGs may also be involved in CHPF-regulated breast cancer malignancy, this study provides the first evidence that a CS synthase participates in the regulation of macropinocytosis in cancer cells by supporting SDC1 expression on cancer cells.
Collapse
Affiliation(s)
- Hung‐Rong Yen
- Department of Chinese MedicineChina Medical University HospitalTaichungTaiwan
- Chinese Medicine Research Center, and School of Chinese Medicine, College of Chinese MedicineChina Medical UniversityTaichungTaiwan
| | - Wen‐Chieh Liao
- Doctoral Program in Tissue Engineering and Regenerative Medicine, College of MedicineNational Chung Hsing UniversityTaichungTaiwan
- Department of Post‐Baccalaureate Medicine, College of MedicineNational Chung Hsing UniversityTaichungTaiwan
| | - Chia‐Hua Chen
- Molecular Medicine Research CenterChang Gung UniversityTaoyuanTaiwan
| | - Ying‐Ai Su
- Doctoral Program in Tissue Engineering and Regenerative Medicine, College of MedicineNational Chung Hsing UniversityTaichungTaiwan
- College of MedicineChung Shan Medical UniversityTaichungTaiwan
| | - Ying‐Wei Huang
- Doctoral Program in Tissue Engineering and Regenerative Medicine, College of MedicineNational Chung Hsing UniversityTaichungTaiwan
- College of MedicineChung Shan Medical UniversityTaichungTaiwan
| | - Chi Hsiao
- Doctoral Program in Tissue Engineering and Regenerative Medicine, College of MedicineNational Chung Hsing UniversityTaichungTaiwan
- College of MedicineChung Shan Medical UniversityTaichungTaiwan
| | - Yu‐Lun Chou
- Doctoral Program in Tissue Engineering and Regenerative Medicine, College of MedicineNational Chung Hsing UniversityTaichungTaiwan
| | - Yin‐Hung Chu
- Doctoral Program in Tissue Engineering and Regenerative Medicine, College of MedicineNational Chung Hsing UniversityTaichungTaiwan
| | - Pin‐Keng Shih
- Doctoral Program in Tissue Engineering and Regenerative Medicine, College of MedicineNational Chung Hsing UniversityTaichungTaiwan
- Department of SurgeryChina Medical University HospitalTaichungTaiwan
- School of MedicineChina Medical UniversityTaichungTaiwan
| | - Chiung‐Hui Liu
- Doctoral Program in Tissue Engineering and Regenerative Medicine, College of MedicineNational Chung Hsing UniversityTaichungTaiwan
- Department of Post‐Baccalaureate Medicine, College of MedicineNational Chung Hsing UniversityTaichungTaiwan
| |
Collapse
|
3
|
Lu H, Zuo L, Roddick KM, Zhang P, Oku S, Garden J, Ge Y, Bellefontaine M, Delhaye M, Brown RE, Craig AM. Alternative splicing and heparan sulfation converge on neurexin-1 to control glutamatergic transmission and autism-related behaviors. Cell Rep 2023; 42:112714. [PMID: 37384525 DOI: 10.1016/j.celrep.2023.112714] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 04/16/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
Neurexin synaptic organizing proteins are central to a genetic risk pathway in neuropsychiatric disorders. Neurexins also exemplify molecular diversity in the brain, with over a thousand alternatively spliced forms and further structural heterogeneity contributed by heparan sulfate glycan modification. Yet, interactions between these modes of post-transcriptional and post-translational modification have not been studied. We reveal that these regulatory modes converge on neurexin-1 splice site 5 (S5): the S5 insert increases the number of heparan sulfate chains. This is associated with reduced neurexin-1 protein level and reduced glutamatergic neurotransmitter release. Exclusion of neurexin-1 S5 in mice boosts neurotransmission without altering the AMPA/NMDA ratio and shifts communication and repetitive behavior away from phenotypes associated with autism spectrum disorders. Thus, neurexin-1 S5 acts as a synaptic rheostat to impact behavior through the intersection of RNA processing and glycobiology. These findings position NRXN1 S5 as a potential therapeutic target to restore function in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Hong Lu
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Long Zuo
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Kyle M Roddick
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Peng Zhang
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Shinichiro Oku
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Jessica Garden
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Yuan Ge
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Michael Bellefontaine
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Mathias Delhaye
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Ann Marie Craig
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada.
| |
Collapse
|
4
|
Baert L, Manfroi B, Quintero M, Chavarria O, Barbon PV, Clement E, Zeller A, Van Kuppevelt T, Sturm N, Moreaux J, Tveita A, Bogen B, McKee T, Huard B. 3-O sulfation of syndecan-1 mediated by the sulfotransferase HS3ST3a1 enhances myeloma aggressiveness. Matrix Biol 2023; 120:60-75. [PMID: 37201729 DOI: 10.1016/j.matbio.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Multiple myeloma is a hematological neoplasm derived from plasma cells invariably developing in the bone marrow (BM). The persisting clinical challenge in MM resides in its high ability to resist drugs as shown by the frequent relapses observed in patients regardless of the treatment applied. In a mouse model of MM, we identified a subpopulation of cells harboring increased resistance to current MM drugs. These cells bound a proliferation inducing ligand (APRIL), a key MM promoting/survival factor. APRIL binding involved the heparan sulfate (HS) chain present on syndecan-1 (SDC-1), and correlated with reactivity to the anti-HS antibody 10e4. 10e4+cells had a high proliferation activity, and were able to form colonies in 3-D cultures. 10e4+ cells were the only cells able to develop in BM after intravenous injection. They also resisted drugs in vivo, since their number increased after treatment in BM. Notably, 10e4+ cells differentiated into 10e4- cells upon in vitro and in vivo expansion. Expression of one sulfotransferase, HS3ST3a1, allowed modification of syndecan-1 to confer reactivity to 10e4 and binding to APRIL. HS3ST3a1 deletion inhibited tumorigenesis in BM. Notably, the two populations coexisted at a variable frequency in the BM of MM patients at diagnosis. In total, our results indicate that 3-O-sulfation on SDC-1 carried out by HS3ST3a1 defines aggressive MM cells, and that targeting of this enzyme could possibly be used to better control drug resistance.
Collapse
Affiliation(s)
- L Baert
- Institute for Advanced Biosciences, University Grenoble-Alpes, INSERM U1209, La Tronche, France
| | - B Manfroi
- Institute for Advanced Biosciences, University Grenoble-Alpes, INSERM U1209, La Tronche, France
| | - M Quintero
- translational innovation in medicine and complexity, University Grenoble-Alpes, CNRS UMR5525, La Tronche, France
| | - O Chavarria
- Institute for Advanced Biosciences, University Grenoble-Alpes, INSERM U1209, La Tronche, France
| | - P V Barbon
- Institute for Advanced Biosciences, University Grenoble-Alpes, INSERM U1209, La Tronche, France
| | - E Clement
- translational innovation in medicine and complexity, University Grenoble-Alpes, CNRS UMR5525, La Tronche, France
| | - A Zeller
- Department of Pathology and Immunology, university Hospitals, Geneva, Switzerland
| | - T Van Kuppevelt
- Rabdoud university medical center, Nijmegen, the Netherlands
| | - N Sturm
- translational innovation in medicine and complexity, University Grenoble-Alpes, CNRS UMR5525, La Tronche, France; Department of Pathology, university Hospital, Grenoble, France
| | - J Moreaux
- Department of Biological Hematology, University Hospital, Montpellier, France; Institute of Human Genetics, centre national de la recherche scientifique, University Montpellier, France
| | - A Tveita
- Department of Immunology and transfusion medicine, Institute for Immunology, university Hospital, Oslo, Norway
| | - B Bogen
- Department of Immunology and transfusion medicine, Institute for Immunology, university Hospital, Oslo, Norway; University of Oslo, Norway
| | - T McKee
- Department of clinical pathology, university Hospitals, Geneva, Switzerland
| | - B Huard
- translational innovation in medicine and complexity, University Grenoble-Alpes, CNRS UMR5525, La Tronche, France.
| |
Collapse
|
5
|
Noborn F, Nilsson J, Larson G. Site-specific glycosylation of proteoglycans: a revisited frontier in proteoglycan research. Matrix Biol 2022; 111:289-306. [PMID: 35840015 DOI: 10.1016/j.matbio.2022.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/11/2022] [Accepted: 07/11/2022] [Indexed: 11/29/2022]
Abstract
Proteoglycans (PGs), a class of carbohydrate-modified proteins, are present in essentially all metazoan organisms investigated to date. PGs are composed of glycosaminoglycan (GAG) chains attached to various core proteins and are important for embryogenesis and normal homeostasis. PGs exert many of their functions via their GAG chains and understanding the details of GAG-ligand interactions has been an essential part of PG research. Although PGs are also involved in many diseases, the number of GAG-related drugs used in the clinic is yet very limited, indicating a lack of detailed structure-function understanding. Structural analysis of PGs has traditionally been obtained by first separating the GAG chains from the core proteins, after which the two components are analyzed separately. While this strategy greatly facilitates the analysis, it precludes site-specific information and introduces either a "GAG" or a "core protein" perspective on the data interpretation. Mass-spectrometric (MS) glycoproteomic approaches have recently been introduced, providing site-specific information on PGs. Such methods have revealed a previously unknown structural complexity of the GAG linkage regions and resulted in identification of several novel CSPGs and HSPGs in humans and in model organisms, thereby expanding our view on PG complexity. In light of these findings, we discuss here if the use of such MS-based techniques, in combination with various functional assays, can also be used to expand our functional understanding of PGs. We have also summarized the site-specific information of all human PGs known to date, providing a theoretical framework for future studies on site-specific functional analysis of PGs in human pathophysiology.
Collapse
Affiliation(s)
- Fredrik Noborn
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Department of Laboratory Medicine, Sundsvall County Hospital, Sweden.
| | - Jonas Nilsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Proteomics Core Facility, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Göran Larson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
6
|
Yang Z, Chen S, Ying H, Yao W. Targeting syndecan-1: new opportunities in cancer therapy. Am J Physiol Cell Physiol 2022; 323:C29-C45. [PMID: 35584326 PMCID: PMC9236862 DOI: 10.1152/ajpcell.00024.2022] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 12/02/2022]
Abstract
Syndecan-1 (SDC1, CD138) is one of the heparan sulfate proteoglycans and is essential for maintaining normal cell morphology, interacting with the extracellular and intracellular protein repertoire, as well as mediating signaling transduction upon environmental stimuli. The critical role of SDC1 in promoting tumorigenesis and metastasis has been increasingly recognized in various cancer types, implying a promising potential of utilizing SDC1 as a novel target for cancer therapy. This review summarizes the current knowledge on SDC1 structure and functions, including its role in tumor biology. We also discuss the highlights and limitations of current SDC1-targeted therapies as well as the obstacles in developing new therapeutic methods, offering our perspective on the future directions to target SDC1 for cancer treatment.
Collapse
Affiliation(s)
- Zecheng Yang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shuaitong Chen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wantong Yao
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
7
|
O'Leary TR, Critcher M, Stephenson TN, Yang X, Hassan AA, Bartfield NM, Hawkins R, Huang ML. Chemical editing of proteoglycan architecture. Nat Chem Biol 2022; 18:634-642. [PMID: 35551261 PMCID: PMC9205196 DOI: 10.1038/s41589-022-01023-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 03/29/2022] [Indexed: 12/21/2022]
Abstract
Proteoglycans are heterogeneous macromolecular glycoconjugates that orchestrate many important cellular processes. While much attention has focused on the poly-sulfated glycosaminoglycan chains that decorate proteoglycans, other important elements of their architecture, such as core proteins and membrane localization, have garnered less emphasis. Hence, comprehensive structure-function relationships that consider the replete proteoglycan architecture as glycoconjugates are limited. Here we present an extensive approach to study proteoglycan structure and biology by fabricating defined semisynthetic modular proteoglycans that can be tailored for cell surface display. The expression of proteoglycan core proteins with unnatural amino acids permits bioorthogonal click chemistry with functionalized glycosaminoglycans for methodical dissection of the parameters required for optimal binding and function of various proteoglycan-binding proteins. We demonstrate that these sophisticated materials can recapitulate the functions of native proteoglycan ectodomains in mouse embryonic stem cell differentiation and cancer cell spreading while permitting the analysis of the contributing architectural elements toward function.
Collapse
Affiliation(s)
- Timothy R O'Leary
- Department of Molecular Medicine, Scripps Research, Jupiter, FL, USA
| | - Meg Critcher
- Department of Molecular Medicine, Scripps Research, Jupiter, FL, USA
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, La Jolla, CA, USA
| | | | - Xueyi Yang
- Department of Molecular Medicine, Scripps Research, Jupiter, FL, USA
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, La Jolla, CA, USA
| | - Abdullah A Hassan
- Department of Molecular Medicine, Scripps Research, Jupiter, FL, USA
| | - Noah M Bartfield
- Department of Molecular Medicine, Scripps Research, Jupiter, FL, USA
| | - Richard Hawkins
- Department of Molecular Medicine, Scripps Research, Jupiter, FL, USA
| | - Mia L Huang
- Department of Molecular Medicine, Scripps Research, Jupiter, FL, USA.
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, La Jolla, CA, USA.
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
8
|
Bajaj R, Warner AN, Fradette JF, Gibbons DL. Dance of The Golgi: Understanding Golgi Dynamics in Cancer Metastasis. Cells 2022; 11:1484. [PMID: 35563790 PMCID: PMC9102947 DOI: 10.3390/cells11091484] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 12/17/2022] Open
Abstract
The Golgi apparatus is at the center of protein processing and trafficking in normal cells. Under pathological conditions, such as in cancer, aberrant Golgi dynamics alter the tumor microenvironment and the immune landscape, which enhances the invasive and metastatic potential of cancer cells. Among these changes in the Golgi in cancer include altered Golgi orientation and morphology that contribute to atypical Golgi function in protein trafficking, post-translational modification, and exocytosis. Golgi-associated gene mutations are ubiquitous across most cancers and are responsible for modifying Golgi function to become pro-metastatic. The pharmacological targeting of the Golgi or its associated genes has been difficult in the clinic; thus, studying the Golgi and its role in cancer is critical to developing novel therapeutic agents that limit cancer progression and metastasis. In this review, we aim to discuss how disrupted Golgi function in cancer cells promotes invasion and metastasis.
Collapse
Affiliation(s)
- Rakhee Bajaj
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (R.B.); (A.N.W.); (J.F.F.)
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Amanda N. Warner
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (R.B.); (A.N.W.); (J.F.F.)
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Jared F. Fradette
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (R.B.); (A.N.W.); (J.F.F.)
| | - Don L. Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (R.B.); (A.N.W.); (J.F.F.)
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| |
Collapse
|
9
|
Le V, Mei L, Voyvodic PL, Zhao C, Busch DJ, Stachowiak JC, Baker AB. Molecular tension in syndecan-1 is regulated by extracellular mechanical cues and fluidic shear stress. Biomaterials 2021; 275:120947. [PMID: 34139507 DOI: 10.1016/j.biomaterials.2021.120947] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 05/21/2021] [Accepted: 05/29/2021] [Indexed: 12/01/2022]
Abstract
The endothelium plays a central role in regulating vascular homeostasis and is key in determining the response to materials implanted in the vascular system. Endothelial cells are uniquely sensitive to biophysical cues from applied forces and their local cellular microenvironment. The glycocalyx is a layer of proteoglycans, glycoproteins and glycosaminoglycans that lines the luminal surface of the vascular endothelium, interacting directly with the components of the blood and the forces of blood flow. In this work, we examined the changes in mechanical tension of syndecan-1, a cell surface proteoglycan that is an integral part of the glycocalyx, in response to substrate stiffness and fluidic shear stress. Our studies demonstrate that syndecan-1 has higher mechanical tension in regions of cell adhesion, on and in response to nanotopographical cues. In addition, we found that substrate stiffness also regulated the mechanical tension of syndecan-1 and altered its binding to actin, myosin iiB and signaling intermediates including Src, PKA and FAK. Application of fluidic shear stress created a gradient in tension in syndecan-1 and led to enhanced association with actin, Src, myosin IIb and other cytoskeleton related molecules. Overall, our studies support that syndecan-1 is responsive to the mechanical environment of the cells and alters its association with actin and signaling intermediates in response to mechanical stimuli.
Collapse
Affiliation(s)
- Victoria Le
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Lei Mei
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Peter L Voyvodic
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Chi Zhao
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - David J Busch
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA
| | - Aaron B Baker
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA; The Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
10
|
Hahn RG, Patel V, Dull RO. Human glycocalyx shedding: Systematic review and critical appraisal. Acta Anaesthesiol Scand 2021; 65:590-606. [PMID: 33595101 DOI: 10.1111/aas.13797] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND The number of studies measuring breakdown products of the glycocalyx in plasma has increased rapidly during the past decade. The purpose of the present systematic review was to assess the current knowledge concerning the association between plasma concentrations of glycocalyx components and structural assessment of the endothelium. METHODS We performed a literature review of Pubmed to determine which glycocalyx components change in a wide variety of human diseases and conditions. We also searched for evidence of a relationship between plasma concentrations and the thickness of the endothelial glycocalyx layer as obtained by imaging methods. RESULTS Out of 3,454 publications, we identified 228 that met our inclusion criteria. The vast majority demonstrate an increase in plasma glycocalyx products. Sepsis and trauma are most frequently studied, and comprise approximately 40 publications. They usually report 3-4-foldt increased levels of glycocalyx degradation products, most commonly of syndecan-1. Surgery shows a variable picture. Cardiac surgery and transplantations are most likely to involve elevations of glycocalyx degradation products. Structural assessment using imaging methods show thinning of the endothelial glycocalyx layer in cardiovascular conditions and during major surgery, but thinning does not always correlate with the plasma concentrations of glycocalyx products. The few structural assessments performed do not currently support that capillary permeability is increased when the plasma levels of glycocalyx fragments in plasma are increased. CONCLUSIONS Shedding of glycocalyx components is a ubiquitous process that occurs during both acute and chronic inflammation with no sensitivity or specificity for a specific disease or condition.
Collapse
Affiliation(s)
- Robert G. Hahn
- Research UnitSödertälje Hospital Södertälje Sweden
- Karolinska Institute at Danderyds Hospital (KIDS) Stockholm Sweden
| | - Vasu Patel
- Department of Internal Medicine Northwestern Medicine McHenry Hospital McHenry IL USA
| | - Randal O. Dull
- Department of Anesthesiology, Pathology, Physiology, Surgery University of ArizonaCollege of Medicine Tucson AZ USA
| |
Collapse
|
11
|
Hassan N, Greve B, Espinoza-Sánchez NA, Götte M. Cell-surface heparan sulfate proteoglycans as multifunctional integrators of signaling in cancer. Cell Signal 2020; 77:109822. [PMID: 33152440 DOI: 10.1016/j.cellsig.2020.109822] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022]
Abstract
Proteoglycans (PGs) represent a large proportion of the components that constitute the extracellular matrix (ECM). They are a diverse group of glycoproteins characterized by a covalent link to a specific glycosaminoglycan type. As part of the ECM, heparan sulfate (HS)PGs participate in both physiological and pathological processes including cell recruitment during inflammation and the promotion of cell proliferation, adhesion and motility during development, angiogenesis, wound repair and tumor progression. A key function of HSPGs is their ability to modulate the expression and function of cytokines, chemokines, growth factors, morphogens, and adhesion molecules. This is due to their capacity to act as ligands or co-receptors for various signal-transducing receptors, affecting pathways such as FGF, VEGF, chemokines, integrins, Wnt, notch, IL-6/JAK-STAT3, and NF-κB. The activation of those pathways has been implicated in the induction, progression, and malignancy of a tumor. For many years, the study of signaling has allowed for designing specific drugs targeting these pathways for cancer treatment, with very positive results. Likewise, HSPGs have become the subject of cancer research and are increasingly recognized as important therapeutic targets. Although they have been studied in a variety of preclinical and experimental models, their mechanism of action in malignancy still needs to be more clearly defined. In this review, we discuss the role of cell-surface HSPGs as pleiotropic modulators of signaling in cancer and identify them as promising markers and targets for cancer treatment.
Collapse
Affiliation(s)
- Nourhan Hassan
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany; Biotechnology Program, Department of Chemistry, Faculty of Science, Cairo University, Egypt
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, Münster University Hospital, Albert-Schweitzer-Campus 1, A1, 48149 Münster, Germany
| | - Nancy A Espinoza-Sánchez
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany; Department of Radiotherapy-Radiooncology, Münster University Hospital, Albert-Schweitzer-Campus 1, A1, 48149 Münster, Germany.
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany.
| |
Collapse
|
12
|
Puri S, Coulson-Thomas YM, Gesteira TF, Coulson-Thomas VJ. Distribution and Function of Glycosaminoglycans and Proteoglycans in the Development, Homeostasis and Pathology of the Ocular Surface. Front Cell Dev Biol 2020; 8:731. [PMID: 32903857 PMCID: PMC7438910 DOI: 10.3389/fcell.2020.00731] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/15/2020] [Indexed: 12/20/2022] Open
Abstract
The ocular surface, which forms the interface between the eye and the external environment, includes the cornea, corneoscleral limbus, the conjunctiva and the accessory glands that produce the tear film. Glycosaminoglycans (GAGs) and proteoglycans (PGs) have been shown to play important roles in the development, hemostasis and pathology of the ocular surface. Herein we review the current literature related to the distribution and function of GAGs and PGs within the ocular surface, with focus on the cornea. The unique organization of ECM components within the cornea is essential for the maintenance of corneal transparency and function. Many studies have described the importance of GAGs within the epithelial and stromal compartment, while very few studies have analyzed the ECM of the endothelial layer. Importantly, GAGs have been shown to be essential for maintaining corneal homeostasis, epithelial cell differentiation and wound healing, and, more recently, a role has been suggested for the ECM in regulating limbal stem cells, corneal innervation, corneal inflammation, corneal angiogenesis and lymphangiogenesis. Reports have also associated genetic defects of the ECM to corneal pathologies. Thus, we also highlight the role of different GAGs and PGs in ocular surface homeostasis, as well as in pathology.
Collapse
Affiliation(s)
- Sudan Puri
- College of Optometry, University of Houston, Houston, TX, United States
| | - Yvette M Coulson-Thomas
- Molecular Biology Section, Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Tarsis F Gesteira
- College of Optometry, University of Houston, Houston, TX, United States.,Optimvia, LLC, Batavia, OH, United States
| | | |
Collapse
|
13
|
Teixeira FCOB, Götte M. Involvement of Syndecan-1 and Heparanase in Cancer and Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:97-135. [PMID: 32274708 DOI: 10.1007/978-3-030-34521-1_4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cell surface heparan sulfate proteoglycan Syndecan-1 acts as an important co-receptor for receptor tyrosine kinases and chemokine receptors, and as an adhesion receptor for structural glycoproteins of the extracellular matrix. It serves as a substrate for heparanase, an endo-β-glucuronidase that degrades specific domains of heparan sulfate carbohydrate chains and thereby alters the functional status of the proteoglycan and of Syndecan-1-bound ligands. Syndecan-1 and heparanase show multiple levels of functional interactions, resulting in mutual regulation of their expression, processing, and activity. These interactions are of particular relevance in the context of inflammation and malignant disease. Studies in animal models have revealed a mechanistic role of Syndecan-1 and heparanase in the regulation of contact allergies, kidney inflammation, multiple sclerosis, inflammatory bowel disease, and inflammation-associated tumorigenesis. Moreover, functional interactions between Syndecan-1 and heparanase modulate virtually all steps of tumor progression as defined in the Hallmarks of Cancer. Due to their prognostic value in cancer, and their mechanistic involvement in tumor progression, Syndecan-1 and heparanase have emerged as important drug targets. Data in preclinical models and preclinical phase I/II studies have already yielded promising results that provide a translational perspective.
Collapse
Affiliation(s)
- Felipe C O B Teixeira
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany.
| |
Collapse
|
14
|
Fibrinogen Protects Against Barrier Dysfunction Through Maintaining Cell Surface Syndecan-1 In Vitro. Shock 2020; 51:740-744. [PMID: 29905671 DOI: 10.1097/shk.0000000000001207] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND We have shown that fresh frozen plasma's (FFP) protection of pulmonary endothelial barrier integrity following hemorrhagic shock is due in part to restoration of endothelial syndecan-1. In the present study, we investigated the role of fibrinogen, a major component of FFP, as an endothelial protector and hypothesize that fibrinogen stabilizes cell surface syndecan-1 to restore endothelial barrier integrity. METHODS Pulmonary endothelial cells were incubated in FFP, fibrinogen, or lactated Ringers (LR) then immunostained with anti-syndecan-1 or fibrinogen and barrier integrity assessed. In some experiments, cells were exposed to fibrinogen depleted plasma. RESULTS Cell surface syndecan-1 was increased by FFP and fibrinogen compared with LR-treated cells while barrier integrity was augmented by FFP and fibrinogen compared with LR. The physiological concentration of 2.5 mg/mL fibrinogen was sufficient to increase cell surface syndecan-1. Colocalization and co-immunoprecipitation experiments demonstrated that fibrinogen associates with syndecan-1. Fibrinogen-deficient plasma was unable to augment sydnecan-1 immunostaining and lost its endothelial protective effect on barrier integrity. CONCLUSION These data suggest that in vitro, fibrinogen associated with cell surface syndecan-1 and enhanced endothelial barrier integrity.
Collapse
|
15
|
Heparanase-Regulated Syndecan-1 Shedding Facilitates Herpes Simplex Virus 1 Egress. J Virol 2020; 94:JVI.01672-19. [PMID: 31827001 DOI: 10.1128/jvi.01672-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/26/2019] [Indexed: 12/31/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) can infect virtually all cell types in vitro An important reason lies in its ability to exploit heparan sulfate (HS) for attachment to cells. HS is a ubiquitous glycosaminoglycan located on the cell surface and tethered to proteoglycans such as syndecan-1. Previously, we have shown that heparanase (HPSE) facilitates the release of viral particles by cleaving HS. Here, we demonstrate that HPSE is a master regulator where, in addition to directly enabling viral release via HS removal, it also facilitates cleavage of HS-containing ectodomains of syndecan-1, thereby further enhancing HSV-1 egress from infected cells. Syndecan-1 cleavage is mediated by upregulation of matrix metalloproteases (MMPs) that accompanies higher HPSE expression in infected cells. By overexpressing HPSE, we have identified MMP-3 and MMP-7 as important sheddases of syndecan-1 shedding in corneal epithelial cells, which are natural targets of HSV-1 infection. MMP-3 and MMP-7 were also naturally upregulated during HSV-1 infection. Altogether, this paper shows a new connection between HSV-1 release and syndecan-1 shedding, a phenomenon that is regulated by HPSE and executed by the MMPs. Our results also identify new molecular markers for HSV-1 infection and new targets for future interventions.IMPORTANCE HSV-1 is a common cause of recurrent viral infections in humans. The virus can cause a range of mucosal pathologies. Efficient viral egress from infected cells is an important step for HSV-1 transmission and virus-associated pathologies. Host mechanisms that contribute to HSV-1 egress from infected cells are poorly understood. Syndecan-1 is a common heparan sulfate proteoglycan expressed by many natural target cells. Despite its known connection with heparanase, a recently identified mediator of HSV-1 release, syndecan-1 has not been previously investigated in HSV-1 release. In this study, we demonstrate that the shedding of syndecan-1 by MMP-3 and MMP-7 supports viral egress. We show that the mechanism behind the activation of these MMPs is mediated by heparanase, which is upregulated upon HSV-1 infection. Our study elucidates a new connection between HSV-1 egress, heparanase, and matrix metallopeptidases; identifies new molecular markers of infection; and provides potential new targets for therapeutic interventions.
Collapse
|
16
|
Karamanos NK, Piperigkou Z, Theocharis AD, Watanabe H, Franchi M, Baud S, Brézillon S, Götte M, Passi A, Vigetti D, Ricard-Blum S, Sanderson RD, Neill T, Iozzo RV. Proteoglycan Chemical Diversity Drives Multifunctional Cell Regulation and Therapeutics. Chem Rev 2018; 118:9152-9232. [PMID: 30204432 DOI: 10.1021/acs.chemrev.8b00354] [Citation(s) in RCA: 260] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nikos K. Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras 26110, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras 26110, Greece
| | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Aichi 480-1195, Japan
| | - Marco Franchi
- Department for Life Quality Studies, University of Bologna, Rimini 47100, Italy
| | - Stéphanie Baud
- Université de Reims Champagne-Ardenne, Laboratoire SiRMa, CNRS UMR MEDyC 7369, Faculté de Médecine, 51 rue Cognacq Jay, Reims 51100, France
| | - Stéphane Brézillon
- Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, CNRS UMR MEDyC 7369, Faculté de Médecine, 51 rue Cognacq Jay, Reims 51100, France
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster 48149, Germany
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese 21100, Italy
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, Varese 21100, Italy
| | - Sylvie Ricard-Blum
- University Claude Bernard Lyon 1, CNRS, UMR 5246, Institute of Molecular and Supramolecular Chemistry and Biochemistry, Villeurbanne 69622, France
| | - Ralph D. Sanderson
- Department of Pathology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 10107, United States
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 10107, United States
| |
Collapse
|
17
|
Wang J, Chang Y, Dong X, Zhang R, Tang Y, Zhang M, Yu R, Jiang T, Zhang L. Cytotoxic and glycosaminoglycan priming activities of novel 4-anilinequinazoline β-D-xylosides. Carbohydr Res 2018; 463:6-13. [PMID: 29689449 DOI: 10.1016/j.carres.2018.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/12/2018] [Accepted: 04/12/2018] [Indexed: 01/26/2023]
Abstract
β-D-xylosides with cytotoxic aglycones have augmented cytotoxicity towards animal cells because β-D-xyloside-primed glycosaminoglycans further enhance the aglycone's cytotoxicity. In this study, we designed and synthesized different 4-anilinequinazoline β-D-xylosides and found that compounds 7-10 possessing 3-chloro-4-((3-fluorobenzyl)oxy)aniline group as in anticancer drug lapatinib also primed glycosaminoglycans and were highly cytotoxic to cancer cells.
Collapse
Affiliation(s)
- Jinpeng Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China
| | - Yajing Chang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China; Systems Biology & Medicine Center for Complex Diseases, Qingdao, 266071, PR China
| | - Xueyang Dong
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China
| | - Renshuai Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China
| | - Yang Tang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China; Systems Biology & Medicine Center for Complex Diseases, Qingdao, 266071, PR China
| | - Meng Zhang
- Systems Biology & Medicine Center for Complex Diseases, Qingdao, 266071, PR China
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China.
| | - Lijuan Zhang
- Systems Biology & Medicine Center for Complex Diseases, Qingdao, 266071, PR China.
| |
Collapse
|
18
|
Kim YH, Nijst P, Kiefer K, Tang WHW. Endothelial Glycocalyx as Biomarker for Cardiovascular Diseases: Mechanistic and Clinical Implications. Curr Heart Fail Rep 2017; 14:117-126. [PMID: 28233259 DOI: 10.1007/s11897-017-0320-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION The endothelial surface layer is covered with abundant proteoglycans, of which syndecans and glycosaminoglycans are major constituents. RECENT FINDINGS Among the endothelial glycocalyx (eGC) constituents, syndecan-1 (sdc1) is a main component, and an elevated serum level of sdc1 may indicate the degradation of eGC. In patients with ischemic heart disease or heart failure, elevation of serum sdc1 has been associated with worsening cardiac and renal function; however, the causal relationship between degradation of eGC and clinical outcomes is unclear. Herein, we review the previous literature on eGC in cardiovascular and noncardiovascular diseases and their clinical implications.
Collapse
Affiliation(s)
- Youn-Hyun Kim
- , 9500 Euclid Avenue, Desk J3-4, Cleveland, OH, 44195, USA.,Cardiovascular Division, Department of Internal Medicine, Korea University Ansan Hospital, Ansan-si, Republic of Korea
| | - Petra Nijst
- , 9500 Euclid Avenue, Desk J3-4, Cleveland, OH, 44195, USA
| | - Kathryn Kiefer
- , 9500 Euclid Avenue, Desk J3-4, Cleveland, OH, 44195, USA
| | | |
Collapse
|
19
|
Jenkins LM, Horst B, Lancaster CL, Mythreye K. Dually modified transmembrane proteoglycans in development and disease. Cytokine Growth Factor Rev 2017; 39:124-136. [PMID: 29291930 DOI: 10.1016/j.cytogfr.2017.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022]
Abstract
Aberrant cell signaling in response to secreted growth factors has been linked to the development of multiple diseases, including cancer. As such, understanding mechanisms that control growth factor availability and receptor-growth factor interaction is vital. Dually modified transmembrane proteoglycans (DMTPs), which are classified as cell surface macromolecules composed of a core protein decorated with covalently linked heparan sulfated (HS) and/or chondroitin sulfated (CS) glycosaminoglycan (GAG) chains, provide one type of regulatory mechanism. Specifically, DMTPs betaglycan and syndecan-1 (SDC1) play crucial roles in modulating key cell signaling pathways, such as Wnt, transforming growth factor-β and fibroblast growth factor signaling, to affect epithelial cell biology and cancer progression. This review outlines current and potential functions for betaglycan and SDC1, with an emphasis on comparing individual roles for HS and CS modified DMTPs. We highlight the mutual dependence of DMTPs' GAG chains and core proteins and provide comprehensive knowledge on how these DMTPs, through regulation of ligand availability and receptor internalization, control cell signaling pathways involved in development and disease.
Collapse
Affiliation(s)
- Laura M Jenkins
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| | - Ben Horst
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| | - Carly L Lancaster
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| | - Karthikeyan Mythreye
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA; Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
20
|
Oliveira-Ferrer L, Legler K, Milde-Langosch K. Role of protein glycosylation in cancer metastasis. Semin Cancer Biol 2017; 44:141-152. [PMID: 28315783 DOI: 10.1016/j.semcancer.2017.03.002] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/08/2017] [Accepted: 03/13/2017] [Indexed: 02/06/2023]
Abstract
Although altered glycosylation has been detected in human cancer cells decades ago, only investigations in the last years have enormously increased our knowledge about the details of protein glycosylation and its role in tumour progression. Many proteins, which are heavily glycosylated, i.e. adhesion proteins or proteases, play an important role in cancer metastasis that represents the crucial and frequently life-threatening step in progression of most tumour types. Compared to normal tissue, tumour cells often show altered glycosylation patters with appearance of new tumour-specific antigens. In this review, we give an overview about the role of glycosylation in tumour metastasis, describing recent results about O-glycans, N-glycans and glycosaminoglycans. We show that glycan structures, glycosylated proteins and glycosylation enzymes have influence on different steps of the metastatic process, including epithelial-mesenchymal transition (EMT), migration, invasion/intravasation and extravasation of tumour cells. Regarding the important role of cancer metastasis for patients survival, further knowledge about the consequences of altered glycosylation patterns in tumour cells is needed which might eventually lead to the development of novel therapeutic approaches.
Collapse
Affiliation(s)
| | - Karen Legler
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karin Milde-Langosch
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
21
|
Pasqualon T, Lue H, Groening S, Pruessmeyer J, Jahr H, Denecke B, Bernhagen J, Ludwig A. Cell surface syndecan-1 contributes to binding and function of macrophage migration inhibitory factor (MIF) on epithelial tumor cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:717-26. [DOI: 10.1016/j.bbamcr.2016.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 12/21/2022]
|
22
|
Syndecan-1-Induced ECM Fiber Alignment Requires Integrin αvβ3 and Syndecan-1 Ectodomain and Heparan Sulfate Chains. PLoS One 2016; 11:e0150132. [PMID: 26909794 PMCID: PMC4766302 DOI: 10.1371/journal.pone.0150132] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/09/2016] [Indexed: 12/16/2022] Open
Abstract
Expression of the cell surface proteoglycan syndecan-1 (Sdc1) is frequently induced in stromal fibroblasts of invasive breast carcinomas. We have recently identified a correlation between stromal Sdc1 expression and extracellular matrix (ECM) fiber alignment, both in vitro and in vivo. ECMs derived from Sdc1-positive human mammary fibroblasts (HMF) showed an aligned fiber architecture, which contrasted markedly with the more random fiber arrangement in the ECM produced by Sdc1-negative HMFs. We further demonstrated that aligned fiber architecture promotes the directional migration and invasion of breast carcinoma cells. To decipher the molecular mechanisms governing the formation of an aligned, invasion-permissive ECM, a series of Sdc1 mutants was introduced into HMF. We found that both the ectodomain and heparan sulfate chains of Sdc1 were required for full activity of Sdc1 in regulating ECM alignment, while transmembrane and cytoplasmic domains were dispensable. Sdc1 regulates the activities of several integrins via its ectodomain. Integrins are key players in the assembly of fibronectin-rich ECM. In addition, integrins are capable of regulating cell morphology and cell shape and orientation may affect ECM architecture. Therefore, we investigated the role of integrins in Sdc1-mediated ECM fiber alignment. Sdc1-overexpressing HMF gained an enhanced spindle-shaped morphology when cultured in an overconfluent state under conditions permissive for ECM production, which was partially reversed by siRNA-mediated silencing of β3 integrin expression. Moreover, suppression of αvβ3 integrin activity by a function-blocking antibody or β3 knockdown largely abolished the aligned ECM fiber architecture and consequently the invasion-permissive properties of the ECM induced by Sdc1. The results suggest that Sdc1 may modulate fibronectin fibrillogenesis and/or alter cell morphology during ECM production through αvβ3 integrin, thereby mediating ECM fiber alignment. Understanding the mechanisms governing ECM organization may lead to the development of novel stroma-targeted therapy for breast cancer, aiming at converting an invasion-permissive to an invasion-restrictive microenvironment.
Collapse
|
23
|
Stepp MA, Pal-Ghosh S, Tadvalkar G, Pajoohesh-Ganji A. Syndecan-1 and Its Expanding List of Contacts. Adv Wound Care (New Rochelle) 2015; 4:235-249. [PMID: 25945286 DOI: 10.1089/wound.2014.0555] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/01/2014] [Indexed: 12/13/2022] Open
Abstract
Significance: The binding of cytokines and growth factors to heparan sulfate (HS) chains on proteoglycans generates gradients that control development and regulate wound healing. Syndecan-1 (sdc1) is an integral membrane HS proteoglycan. Its structure allows it to bind with cytosolic, transmembrane, and extracellular matrix (ECM) proteins. It plays important roles in mediating key events during wound healing because it regulates a number of important processes, including cell adhesion, cell migration, endocytosis, exosome formation, and fibrosis. Recent Advances: Recent studies reveal that sdc1 regulates wound healing by altering integrin activation. Differences in integrin activation lead to cell-type-specific changes in the rate of cell migration and ECM assembly. Sdc1 also regulates endocytosis and the formation and release of exosomes. Critical Issues: Understanding how sdc1 facilitates wound healing and resolution will improve treatment options for elderly and diabetic patients with delayed wound healing. Studies showing that sdc1 function is altered in cancer are relevant to those interested in controlling fibrosis and scarring. Future Directions: The key to understanding the various functions ascribed to sdc1 is resolving how it interacts with its numerous binding partners. The role played by chondroitin sulfate glycosaminoglycan (GAG) chains on the ability of sdc1 to associate with its ligands needs further investigation. At wound sites heparanase can cleave the HS GAG chains of sdc1, alter its ability to bind cytokines, and induce shedding of the ectodomain. This review will discuss how the unique structure of sdc1 allows it to play key roles in cell signaling, ECM assembly, and wound healing.
Collapse
Affiliation(s)
- Mary Ann Stepp
- Department of Anatomy and Regenerative Biology, George Washington University Medical School, Washington, District of Columbia
- Department of Ophthalmology, George Washington University Medical School, Washington, District of Columbia
| | - Sonali Pal-Ghosh
- Department of Anatomy and Regenerative Biology, George Washington University Medical School, Washington, District of Columbia
| | - Gauri Tadvalkar
- Department of Anatomy and Regenerative Biology, George Washington University Medical School, Washington, District of Columbia
| | - Ahdeah Pajoohesh-Ganji
- Department of Anatomy and Regenerative Biology, George Washington University Medical School, Washington, District of Columbia
| |
Collapse
|
24
|
Tatara Y, Kakizaki I, Suto S, Ishioka H, Negishi M, Endo M. Chondroitin sulfate cluster of epiphycan from salmon nasal cartilage defines binding specificity to collagens. Glycobiology 2014; 25:557-69. [PMID: 25533443 DOI: 10.1093/glycob/cwu186] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epiphycan (EPY) from salmon nasal cartilage has a glycosaminoglycan (GAG) domain that is heavily modified by chondroitin 4-sulfate and chondroitin 6-sulfate. The functional role of the GAG domain has not been investigated. The interaction of EPY with collagen was examined in vitro using surface plasmon resonance analysis. EPY was found to bind to type I collagen via clustered chondroitin sulfate (CS), while a single chain of CS was unable to bind. Types I, III, VII, VIII and X collagen showed high binding affinity with EPY, whereas types II, IV, V, VI and IX showed low binding affinities. Chemical modification of lysine residues in collagen decreased the affinity with the clustered CS. These results suggest that lysine residues of collagen are involved in the interaction with the clustered CS, and the difference in lysine modification defines the binding affinity to EPY. The clustered CS was also involved in an inter-saccharide interaction, and formed self-associated EPY. CS of EPY promoted fibril formation of type I collagen.
Collapse
Affiliation(s)
- Yota Tatara
- Department of Glycotechnology, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan Department of Glycobiomedicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Ikuko Kakizaki
- Department of Glycotechnology, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan Department of Glycobiomedicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Shinichiro Suto
- Department of Glycotechnology, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan Department of Glycobiomedicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Haruna Ishioka
- Department of Glycotechnology, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan Department of Glycobiomedicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Mika Negishi
- Department of Glycotechnology, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan Department of Glycobiomedicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Masahiko Endo
- Department of Glycobiomedicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| |
Collapse
|
25
|
Katagiri F, Hara T, Yamada Y, Urushibata S, Hozumi K, Kikkawa Y, Nomizu M. Biological activities of the homologous loop regions in the laminin α chain LG modules. Biochemistry 2014; 53:3699-708. [PMID: 24850085 DOI: 10.1021/bi5003822] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Each laminin α chain (α1-α5 chains) has chain-specific diverse biological functions. The C-terminal globular domain of the α chain consists of five laminin-like globular (LG1-5) modules and plays a critical role in biological activities. The LG modules consist of a 14-stranded β-sheet (A-N) sandwich structure. Previously, we described the chain-specific biological activities of the loop regions between the E and F strands in the LG4 modules using five homologous peptides (G4EF1-G4EF5). Here, we further analyze the biological activities of the E-F strands loop regions in the rest of LG modules. We designed 20 homologous peptides (approximately 20 amino acid length), and 17 soluble peptides were used for the cell attachment assay. Thirteen peptides promoted cell attachment activity with different cell morphologies. Cell attachment to peptides G1EF1, G1EF2, G2EF1, G3EF4, and G5EF4 was inhibited by heparin, and peptides G1EF1, G1EF2, and G2EF1 specifically bound to syndecan-overexpressing cells. Cell attachment to peptides G2EF3, G3EF1, G3EF3, G5EF1, G5EF3, and G5EF5 was inhibited EDTA. Further, cell attachment to peptides G3EF3, G5EF1, and G5EF5 was inhibited by both anti-integrin α2 and β1 antibodies, whereas cell attachment to peptide G5EF3 was inhibited by only anti-integrin β1 antibody. Cell attachment to peptides G1EF4, G3EF4, and G5EF4 was inhibited by both heparin and EDTA and was not inhibited by anti-integrin antibodies. The active peptide sequence alignments suggest that the syndecan-binding peptides contain a "basic amino acid (BAA)-Gly-BAA" motif in the middle of the molecule and that the integrin-binding peptides contain an "acidic amino acid (AAA)"-Gly-BAA motif. Core-switched peptide analyses suggested that the "BAA-Gly-BAA" motif is critical for binding to syndecans and that the "AAA-Gly-BAA" motif has potential to recognize integrins. These findings are useful for understanding chain-specific biological activities of laminins and to evaluate receptor-specific binding mechanisms.
Collapse
Affiliation(s)
- Fumihiko Katagiri
- Laboratory of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences , Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Nguyen TKN, Tran VM, Sorna V, Eriksson I, Kojima A, Koketsu M, Loganathan D, Kjellén L, Dorsky RI, Chien CB, Kuberan B. Dimerized glycosaminoglycan chains increase FGF signaling during zebrafish development. ACS Chem Biol 2013; 8:939-48. [PMID: 23614643 DOI: 10.1021/cb400132r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteoglycans (PGs) modulate numerous signaling pathways during development through binding of their glycosaminoglycan (GAG) side chains to various signaling molecules, including fibroblast growth factors (FGFs). A majority of PGs possess two or more GAG side chains, suggesting that GAG multivalency is imperative for biological functions in vivo. However, only a few studies have examined the biological significance of GAG multivalency. In this report, we utilized a library of bis- and tris-xylosides that produce two and three GAG chains on the same scaffold, respectively, thus mimicking PGs, to examine the importance of GAG valency and chain type in regulating FGF/FGFR interactions in vivo in zebrafish. A number of bis- and tris-xylosides, but not mono-xylosides, caused an elongation phenotype upon their injection into embryos. In situ hybridization showed that elongated embryos have elevated expression of the FGF target gene mkp3 but unchanged expression of reporters for other pathways, indicating that FGF/FGFR signaling was specifically hyperactivated. In support of this observation, elongation can be reversed by the tyrosine kinase inhibitor SU5402, mRNA for the FGFR antagonist sprouty4, or FGF8 morpholino. Endogenous GAGs seem to be unaffected after xyloside treatment, suggesting that this is a gain-of-function phenotype. Furthermore, expression of a multivalent but not a monovalent GAG containing syndecan-1 proteoglycan recapitulates the elongation phenotype observed with the bivalent xylosides. On the basis of these in vivo findings, we propose a new model for GAG/FGF/FGFR interactions in which dimerized GAG chains can activate FGF-mediated signal transduction pathways.
Collapse
Affiliation(s)
- Thao K. N. Nguyen
- Departments of Medicinal Chemistry
and Bioengineering, University of Utah,
Salt Lake City, Utah, United States
| | - Vy M. Tran
- Departments of Medicinal Chemistry
and Bioengineering, University of Utah,
Salt Lake City, Utah, United States
| | - Venkataswamy Sorna
- Department of Chemistry, Indian Institute of Technology, Madras, Chennai 600
036, India
| | - Inger Eriksson
- Department of
Medical Biochemistry
and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Akinori Kojima
- Department
of Materials Science
and Technology, Gifu University, Gifu,
Japan
| | - Mamoru Koketsu
- Department
of Materials Science
and Technology, Gifu University, Gifu,
Japan
| | | | - Lena Kjellén
- Department of
Medical Biochemistry
and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | | | | | - Balagurunathan Kuberan
- Departments of Medicinal Chemistry
and Bioengineering, University of Utah,
Salt Lake City, Utah, United States
| |
Collapse
|
27
|
Tran VM, Nguyen TKN, Sorna V, Loganathan D, Kuberan B. Synthesis and assessment of glycosaminoglycan priming activity of cluster-xylosides for potential use as proteoglycan mimetics. ACS Chem Biol 2013; 8:949-57. [PMID: 23402705 DOI: 10.1021/cb300665u] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One of the distinct structural features of many proteoglycans (PGs) is the presence of two or more glycosaminoglycan (GAG) side chains covalently linked to a core protein. Previous studies have shown that the synergistic biological activity of multiple GAG chains, as found in the majority of PGs, cannot be accomplished by the sum of the activities of individual GAG chains. To delineate the biological significance of GAG valency, a number of cluster-xylosides carrying two, three, or four xylose residues on the same scaffold were synthesized using click chemistry. Assessment of cluster-xylosides for their GAG chain priming activity in a cellular system revealed that these cluster-xylosides prime multiple GAG chains per scaffold. Multivalent GAG chains, produced by cluster-xylosides, can better mimic PGs as they carry two or more GAG chains attached to a core protein and therefore can be used as molecular probes to examine the biological significance of GAG multivalency in model organisms.
Collapse
Affiliation(s)
| | | | - Venkataswamy Sorna
- Department of Chemistry, Indian Institute of Technology, Madras, Chennai 600
036, India
| | | | | |
Collapse
|
28
|
Syndecan-1 serves as the major receptor for attachment of hepatitis C virus to the surfaces of hepatocytes. J Virol 2013; 87:6866-75. [PMID: 23576506 DOI: 10.1128/jvi.03475-12] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Our recent studies demonstrated that apolipoprotein E mediates cell attachment of hepatitis C virus (HCV) through interactions with the cell surface heparan sulfate (HS). HS is known to covalently attach to core proteins to form heparan sulfate proteoglycans (HSPGs) on the cell surface. The HSPG core proteins include the membrane-spanning syndecans (SDCs), the lycosylphosphatidylinositol-linked glypicans (GPCs), the basement membrane proteoglycan perlecan (HSPG2), and agrin. In the present study, we have profiled each of the HSPG core proteins in HCV attachment. Substantial evidence derived from our studies demonstrates that SDC1 is the major receptor protein for HCV attachment. The knockdown of SDC1 expression by small interfering RNA (siRNA)-induced gene silence resulted in a significant reduction of HCV attachment to Huh-7.5 cells and stem cell-differentiated human hepatocytes. The silence of SDC2 expression also caused a modest decrease of HCV attachment. In contrast, the siRNA-mediated knockdown of other SDCs, GPCs, HSPG2, and agrin had no effect on HCV attachment. More importantly, ectopic expression of SDC1 was able to completely restore HCV attachment to Huh-7.5 cells in which the endogenous SDC1 expression was silenced by specific siRNAs. Interestingly, mouse SDC1 is also fully functional in mediating HCV attachment when expressed in the SDC1-deficient cells, consistent with recent reports that mouse hepatocytes are also susceptible to HCV infection when expressing other key HCV receptors. Collectively, our findings demonstrate that SDC1 serves as the major receptor protein for HCV attachment to cells, providing another potential target for discovery and development of antiviral drugs against HCV.
Collapse
|
29
|
Zhang Y, Wang N, Raab RW, McKown RL, Irwin JA, Kwon I, van Kuppevelt TH, Laurie GW. Targeting of heparanase-modified syndecan-1 by prosecretory mitogen lacritin requires conserved core GAGAL plus heparan and chondroitin sulfate as a novel hybrid binding site that enhances selectivity. J Biol Chem 2013; 288:12090-101. [PMID: 23504321 DOI: 10.1074/jbc.m112.422717] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cell surface heparan sulfate (HS) proteoglycans shape organogenesis and homeostasis by capture and release of morphogens through mechanisms largely thought to exclude the core protein domain. Nevertheless, heparanase deglycanation of the N-terminal HS-rich domain of syndecan-1 (SDC1), but not SDC2 or -4, is a prerequisite for binding of the prosecretory mitogen lacritin (Ma, P., Beck, S. L., Raab, R. W., McKown, R. L., Coffman, G. L., Utani, A., Chirico, W. J., Rapraeger, A. C., and Laurie, G. W. (2006) Heparanase deglycanation of syndecan-1 is required for binding of the epithelial-restricted prosecretory mitogen lacritin. J. Cell Biol. 174, 1097-1106). We now report that the conserved and hydrophobic GAGAL domain in SDC1, adjacent to predicted HS substitution sites, is necessary to ligate and substantially enhance the α-helicity of the amphipathic C terminus of lacritin. Swapping out GAGAL for GADED in SDC2 or for GDLDD in SDC4 (both less hydrophobic) abrogated binding. HS and chondroitin sulfate are also essential. Both are detected in the N terminus, and when incubated with antibodies HS4C3 (anti-HS) or IO3H10 (anti-chondroitin sulfate), binding was absent, as occurred when all three N-terminal glycosaminoglycan substitution sites were mutated to alanine or when cells were treated with 4-methylumbelliferyl-β-d-xylopyranoside or chlorate to suppress glycosaminoglycan substitution or sulfation, respectively. SDC1 interacts with the hydrophobic face of lacritin via Leu-108/Leu-109/Phe-112 as well as with Glu-103/Lys-107 and Lys-111 of the largely cationic face. Carving a hybrid hydrophobic/electrostatic docking site out of SDC1 in a manner dependent on endogenous heparanase is a dynamic process appropriate for subtle or broad epithelial regulation in morphogenesis, health, and disease.
Collapse
Affiliation(s)
- Yinghui Zhang
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Katagiri F, Takeyama K, Hozumi K, Kikkawa Y, Nomizu M. Structural requirement of fibrogenic laminin-derived peptide A119 (LSNIDYILIKAS) for amyloid-like fibril formation and cellular activity. Biochemistry 2012; 51:8218-25. [PMID: 23013455 DOI: 10.1021/bi300822d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A119 peptide (LSNIDYILIKAS), derived from the mouse laminin α1 chain sequence (residues 1321-1332), promotes cell attachment, neurite outgrowth, and amyloid-like fibril formation. In this study, we evaluated the structural requirements of A119 for biological activities and amyloid-like fibril formation. The attachment of the cell to A119 was inhibited by heparin, and using syndecan- and glypican-overexpressed cells, it was determined that A119 specifically binds to syndecans. We also evaluated the critical residues for A119 activities using a set of alanine-substituted peptides. Cell attachment activity was significantly reduced in the Leu(1)-, Ser(2)-, Asn(3)-, Ile(4)-, Ile(7)-, Ile(9)-, and Lys(10)-substituted alanine peptides. Residues Ile(4), Ile(7), Ile(9), and Lys(10) were important for neurite outgrowth activity. Congo red staining and electron microscopic examination revealed that the Ile(4), Ile(7), Ile(9), and Ser(12) residues of A119 were required for amyloid-like fibril formation. These data suggest that the Ile residues are critical for the amyloid-like fibril formation, cell attachment, and neurite outgrowth activity of A119. Furthermore, an enantiomer of A119 showed similar amyloid-like fibril formation and increased levels of cell attachment and FAK signal transduction. These findings shed light on the mechanism of amyloid-like fibril formation and demonstrate a relationship between the ability to form amyloid-like fibrils and cell behavior.
Collapse
Affiliation(s)
- Fumihiko Katagiri
- Laboratory of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | |
Collapse
|
31
|
Eriksson AS, Spillmann D. The mutual impact of syndecan-1 and its glycosaminoglycan chains--a multivariable puzzle. J Histochem Cytochem 2012; 60:936-42. [PMID: 22899864 DOI: 10.1369/0022155412460242] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Proteoglycans, with their core proteins and attached glycosaminoglycan chains, are recognized as important partners in many biological processes, yet often experimental analysis of their molecular action is considered for only part of these molecules: either the protein or the carbohydrate unit. In this article, we have tried to summarize, with an example of the syndecan family in general and more specifically with syndecan-1, what is known considering the mutual influence of these different components, and we follow whether the nature of the glycosaminoglycan chains matters for these effects.
Collapse
Affiliation(s)
- Anna S Eriksson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
32
|
Nasimuzzaman M, Persons DA. Cell Membrane-associated heparan sulfate is a receptor for prototype foamy virus in human, monkey, and rodent cells. Mol Ther 2012; 20:1158-66. [PMID: 22434139 PMCID: PMC3369305 DOI: 10.1038/mt.2012.41] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 02/10/2012] [Indexed: 12/21/2022] Open
Abstract
Foamy viruses (FVs) (spumaretroviruses) are good alternative to retroviruses as gene therapy vector. Despite four decades since the discovery of FV, its receptor molecule is still unknown. FV vector transduction of human CD34(+) cells was inhibited by culture with fibronectin. Because fibronectin contains heparin-binding domain, the interactions of fibronectin with heparan sulfate (HS) on cells might be inhibitory to FV transduction. These observations led us to investigate whether HS is a receptor for FV. Two mutant CHO cell lines (but not parental wild type) lacking cell surface HS but not chondroitin sulfate (CS) were largely resistant to FV attachment and transduction. Inhibition of HS expression using enzymes or chemicals greatly reduced FV transduction in human, monkey, and rodent cells. Raji cells, which lack HS and were largely resistant to FV, were rendered more permissive through ectopic expression of syndecan-1, which contains HS. In contrast, mutant syndecan-1-expressing cells were largely resistant to FV. Our findings indicate that cellular HS is a receptor for FV. Identifying FV receptor will enable better understanding of its entry process and optimal use as gene therapy vector to treat inherited and pathogenic diseases.
Collapse
Affiliation(s)
- Md Nasimuzzaman
- Division of Experimental Hematology, Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Derek A Persons
- Division of Experimental Hematology, Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
33
|
Ramani VC, Pruett PS, Thompson CA, DeLucas LD, Sanderson RD. Heparan sulfate chains of syndecan-1 regulate ectodomain shedding. J Biol Chem 2012; 287:9952-9961. [PMID: 22298773 DOI: 10.1074/jbc.m111.330803] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Matrix metalloproteinases release intact syndecan-1 ectodomains from the cell surface giving rise to a soluble, shed form of the proteoglycan. Although it is known that shed syndecan-1 controls diverse pathophysiological responses in cancer, wound healing, inflammation, infection, and immunity, the mechanisms regulating shedding remain unclear. We have discovered that the heparan sulfate chains present on syndecan core proteins suppress shedding of the proteoglycan. Syndecan shedding is dramatically enhanced when the heparan sulfate chains are enzymatically degraded or absent from the core protein. Exogenous heparan sulfate or heparin does not inhibit shedding, indicating that heparan sulfate must be attached to the core protein to suppress shedding. Regulation of shedding by heparan sulfate occurs in multiple cell types, for both syndecan-1 and syndecan-4 and in murine and human syndecans. Mechanistically, the loss of heparan sulfate enhances the susceptibility of the core protein to proteolytic cleavage by matrix metalloproteinases. Enhanced shedding of syndecan-1 following loss of heparan sulfate is accompanied by a dramatic increase in core protein synthesis. This suggests that in response to an increase in the rate of shedding, cells attempt to maintain a significant level of syndecan-1 on the cell surface. Together these data indicate that the amount of heparan sulfate present on syndecan core proteins regulates both the rate of syndecan shedding and core protein synthesis. These findings assign new functions to heparan sulfate chains, thereby broadening our understanding of their physiological importance and implying that therapeutic inhibition of heparan sulfate degradation could impact the progression of some diseases.
Collapse
Affiliation(s)
- Vishnu C Ramani
- Department of Pathology, University of Alabama, Birmingham, Alabama 35294
| | - Pamela S Pruett
- Center for Biophysical Sciences and Engineering, University of Alabama, Birmingham, Alabama 35294
| | - Camilla A Thompson
- Department of Pathology, University of Alabama, Birmingham, Alabama 35294
| | - Lawrence D DeLucas
- Center for Biophysical Sciences and Engineering, University of Alabama, Birmingham, Alabama 35294; Comprehensive Cancer Center, University of Alabama, Birmingham, Alabama 35294
| | - Ralph D Sanderson
- Department of Pathology, University of Alabama, Birmingham, Alabama 35294; Comprehensive Cancer Center, University of Alabama, Birmingham, Alabama 35294; Center for Metabolic Bone Disease, University of Alabama, Birmingham, Alabama 35294.
| |
Collapse
|
34
|
Entry of human T-cell leukemia virus type 1 is augmented by heparin sulfate proteoglycans bearing short heparin-like structures. J Virol 2012; 86:2959-69. [PMID: 22238310 DOI: 10.1128/jvi.05783-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Three molecules have been identified as the main cellular factors required for binding and entry of human T-cell leukemia virus type 1 (HTLV-1): glucose transporter 1 (GLUT1), heparan sulfate (HS), and neuropilin 1 (NRP-1). However, the precise mechanism of HTLV-1 cell tropism has yet to be elucidated. Here, we examined the susceptibilities of various human cell lines to HTLV-1 by using vesicular stomatitis virus pseudotypes bearing HTLV-1 envelope proteins. We found that the cellular susceptibility to HTLV-1 infection did not correlate with the expression of GLUT1, HS, or NRP-1 alone. To investigate whether other cellular factors were responsible for HTLV-1 susceptibility, we conducted expression cloning. We identified two HS proteoglycan core proteins, syndecan 1 and syndecan 2, as molecules responsible for susceptibility to HTLV-1. We found that treatment of syndecan 1-transduced cells (expressing increased HS) with heparinase, a heparin-degradative enzyme, reduced HTLV-1 susceptibility without affecting the expression levels of HS chains. To further elucidate these results, we characterized the expression of HS chains in terms of the mass, number, and length of HS in several syndecan 1-transduced cell clones as well as human cell lines. We found a significant correlation between HTLV-1 susceptibility and the number of HS chains with short chain lengths. Our findings suggest that a combination of the number and the length of HS chains containing heparin-like regions is a critical factor which affects the cell tropism of HTLV-1.
Collapse
|
35
|
Duchez S, Pascal V, Cogné N, Jayat-Vignoles C, Julien R, Cogné M. Glycotranscriptome study reveals an enzymatic switch modulating glycosaminoglycan synthesis during B-cell development and activation. Eur J Immunol 2011; 41:3632-44. [DOI: 10.1002/eji.201140865] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 07/20/2011] [Accepted: 09/23/2011] [Indexed: 01/07/2023]
|
36
|
Choi Y, Chung H, Jung H, Couchman JR, Oh ES. Syndecans as cell surface receptors: Unique structure equates with functional diversity. Matrix Biol 2010; 30:93-9. [PMID: 21062643 DOI: 10.1016/j.matbio.2010.10.006] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 10/19/2010] [Accepted: 10/20/2010] [Indexed: 12/28/2022]
Abstract
An increasing number of functions for syndecan cell surface heparan sulfate proteoglycans have been proposed over the last decade. Moreover, aberrant syndecan regulation has been found to play a critical role in multiple pathologies, including cancers, as well as wound healing and inflammation. As receptors, they have much in common with other molecules on the cell surface. Syndecans are type I transmembrane molecules with cytoplasmic domains that link to the actin cytoskeleton and can interact with a number of regulators. However, they are also highly complex by virtue of their external glycosaminoglycan chains, especially heparan sulfate. This heterodisperse polysaccharide has the potential to interact with many ligands from diverse protein families. Here, we relate the structural features of syndecans to some of their known functions.
Collapse
Affiliation(s)
- Youngsil Choi
- Department of Life Sciences, Division of Life and Pharmaceutical Sciences, Center for Cell Signaling and Drug Discovery Research, Ewha Womans University, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
37
|
Wang Z, Collighan RJ, Gross SR, Danen EHJ, Orend G, Telci D, Griffin M. RGD-independent cell adhesion via a tissue transglutaminase-fibronectin matrix promotes fibronectin fibril deposition and requires syndecan-4/2 α5β1 integrin co-signaling. J Biol Chem 2010; 285:40212-29. [PMID: 20929862 DOI: 10.1074/jbc.m110.123703] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fibronectin (FN) deposition mediated by fibroblasts is an important process in matrix remodeling and wound healing. By monitoring the deposition of soluble biotinylated FN, we show that the stress-induced TG-FN matrix, a matrix complex of tissue transglutaminase (TG2) with its high affinity binding partner FN, can increase both exogenous and cellular FN deposition and also restore it when cell adhesion is interrupted via the presence of RGD-containing peptides. This mechanism does not require the transamidase activity of TG2 but is activated through an RGD-independent adhesion process requiring a heterocomplex of TG2 and FN and is mediated by a syndecan-4 and β1 integrin co-signaling pathway. By using α5 null cells, β1 integrin functional blocking antibody, and a α5β1 integrin targeting peptide A5-1, we demonstrate that the α5 and β1 integrins are essential for TG-FN to compensate RGD-induced loss of cell adhesion and FN deposition. The importance of syndecan-2 in this process was shown using targeting siRNAs, which abolished the compensation effect of TG-FN on the RGD-induced loss of cell adhesion, resulting in disruption of actin skeleton formation and FN deposition. Unlike syndecan-4, syndecan-2 does not interact directly with TG2 but acts as a downstream effector in regulating actin cytoskeleton organization through the ROCK pathway. We demonstrate that PKCα is likely to be the important link between syndecan-4 and syndecan-2 signaling and that TG2 is the functional component of the TG-FN heterocomplex in mediating cell adhesion via its direct interaction with heparan sulfate chains.
Collapse
Affiliation(s)
- Zhuo Wang
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
38
|
Katagiri F, Takeyama K, Ohga Y, Hozumi K, Kikkawa Y, Kadoya Y, Nomizu M. Amino acid sequence requirements of laminin beta1 chain peptide B133 (DISTKYFQMSLE) for amyloid-like fibril formation, syndecan binding, and neurite outgrowth promotion. Biochemistry 2010; 49:5909-18. [PMID: 20550135 DOI: 10.1021/bi100748s] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peptide B133 (DSITKYFQMSLE), derived from mouse laminin beta1 chain (residues 1298-1309), promotes cell attachment, neurite outgrowth, and amyloid-like fibril formation. Previously, we showed that the N-terminal Asp-deleted peptide B133a (SITKYFQMSLE) promotes integrin alpha2beta1-mediated cell attachment and spreading but does not form amyloid-like fibrils, and that the C-terminal Glu-deleted peptide B133g (DSITKYFQMSL) attaches cells without cell spreading and forms amyloid-like fibrils. In this study, we further investigated the amino acid sequence requirements of B133 for biological function using a set of truncated and Ala-substituted peptides. Attachment of cells to B133g was inhibited by only heparin, and Congo Red analysis indicated that the amyloid-like fibril formation activity of B133g was stronger than that of B133. Alanine scan analysis for the B133g peptide indicated that Asp and Ile residues are essential for cell attachment. Additionally, the N-terminal Asp residue was required for neurite outgrowth. Further, amyloid-like fibril formation required Asp and Ile residues. These data suggest that the amyloid-like fibril formation of B133g is required for cell attachment activity. We also evaluated the attachment of cells to the peptides using syndecan- and glypican-overexpressing cells. B133g attached to syndecan-overexpressing cells but not to glypican-overexpressing cells, suggesting that the amyloidogenic peptides promote syndecan-mediated cell attachment. These findings were useful for clarifying the mechanism of amyloid-like fibril formation and biological functions. The B133 peptide promotes amyloid-like fibril formation, syndecan-mediated cell attachment, and neurite outgrowth and has the potential for use as a biomaterial for tissue engineering.
Collapse
Affiliation(s)
- Fumihiko Katagiri
- Laboratory of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Keller-Pinter A, Bottka S, Timar J, Kulka J, Katona R, Dux L, Deak F, Szilak L. Syndecan-4 promotes cytokinesis in a phosphorylation-dependent manner. Cell Mol Life Sci 2010; 67:1881-94. [PMID: 20229236 PMCID: PMC11115501 DOI: 10.1007/s00018-010-0298-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 01/18/2010] [Accepted: 02/01/2010] [Indexed: 01/01/2023]
Abstract
During mitosis, cells detach, and the cell-matrix interactions become restricted. At the completion of cytokinesis, the two daughter cells are still connected transiently by an intercellular bridge (ICB), which is subjected to abscission, as the terminal step of cytokinesis. Cell adhesion to the matrix is mediated by syndecan-4 (SDC4) transmembrane heparan sulfate proteoglycan. Our present work demonstrated that SDC4 promotes cytokinesis in a phosphorylation-dependent manner in MCF-7 breast adenocarcinoma cells. The serine179-phosphorylation and the ectodomain shedding of SDC4 changed periodically in a cell cycle-dependent way reaching the maximum at G2/M phases. On the contrary, the phospho-resistant Ser179Ala mutant abrogated the shedding. The phosphorylated full-length and shed remnants enriched along the mitotic spindles, and subsequently in the ICBs, however, proper membrane insertion was necessary for midbody localization. Expression of phosphomimicking Ser179Glu SDC4 resulted in incomplete abscission, whereas expression of the phospho-resistant SDC4 led to giant, multinucleated cells.
Collapse
Affiliation(s)
- Aniko Keller-Pinter
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
- Department of Biochemistry, Faculty of General Medicine, University of Szeged, Szeged, Hungary
| | - Sandor Bottka
- Institute of Plant Biology, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Jozsef Timar
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Janina Kulka
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Robert Katona
- Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Laszlo Dux
- Department of Biochemistry, Faculty of General Medicine, University of Szeged, Szeged, Hungary
| | - Ferenc Deak
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Laszlo Szilak
- Szilak Laboratories Bioinformatics and Molecule-Design Ltd., Szeged, Hungary
- Savaria University Center, Institute of Biology, Western Hungarian University, Szombathely, Hungary
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| |
Collapse
|
40
|
Smits NC, Shworak NW, Dekhuijzen PR, van Kuppevelt TH. Heparan Sulfates in the Lung: Structure, Diversity, and Role in Pulmonary Emphysema. Anat Rec (Hoboken) 2010; 293:955-67. [DOI: 10.1002/ar.20895] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
41
|
Nakagawa K, Nakamura K, Haishima Y, Yamagami M, Saito K, Sakagami H, Ogawa H. Pseudoproteoglycan (pseudoPG) probes that simulate PG macromolecular structure for screening and isolation of PG-binding proteins. Glycoconj J 2010; 26:1007-17. [PMID: 19234786 DOI: 10.1007/s10719-008-9220-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 09/30/2008] [Accepted: 12/08/2008] [Indexed: 12/26/2022]
Abstract
A proteoglycan (PG) monomer is a macromolecule consisting of one or more glycosaminoglycan (GAG) chains attached to a core protein. PGs have signaling roles and modulatory functions in the extracellular matrix and at the cell surface. To elucidate the functions of higher-order PG structures, pseudoPGs that imitate the PG structure were prepared to develop probes and affinity adsorbents. Poly-L: -lysine (PLL) or polyacrylamide (PAA) was coupled with various GAGs, then biotinylated, and the remaining amino groups were blocked to obtain the pseudoPG probes, biotinyl PLL (BPL)- or PAA (BPA)-GAGs. Lactoferrin exhibited 30-times higher affinity toward BPL-heparin than the conventional single-strand probe, biotin-hydrazide-heparin. Heparin-PLL was immobilized on a formyl-Sepharose and compared with the Hep-Sepharose in which heparin was directly immobilized to amino-Sepharose. Screening for ligands in normal rat brain revealed several proteins that specifically bound to either of the two adsorbents, indicating that the heparin-binding proteins exhibit specific recognition depending on the higher-order structure of the PG.
Collapse
Affiliation(s)
- Keiko Nakagawa
- Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Okamoto O, Hozumi K, Katagiri F, Takahashi N, Sumiyoshi H, Matsuo N, Yoshioka H, Nomizu M, Fujiwara S. Dermatopontin promotes epidermal keratinocyte adhesion via alpha3beta1 integrin and a proteoglycan receptor. Biochemistry 2010; 49:147-55. [PMID: 19928997 DOI: 10.1021/bi901066f] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dermatopontin, an extracellular matrix component initially purified from bovine dermis, promoted cell adhesion of the human epidermal keratinocyte cell line (HaCaT cells). HaCaT cells spread on dermatopontin and formed actin fibers. Adhesion of HaCaT cells to dermatopontin was inhibited by both EDTA and heparin and was mediated in part by alpha3beta1 integrin. A synthetic peptide (DP-4, PHGQVVVAVRS; bovine dermatopontin residues 33-43) specifically inhibited adhesion of cells to dermatopontin, and when the DP-4 peptide was coated on the well, it promoted cell adhesion in a dose-dependent manner. An active core sequence of the DP-4 peptide was localized to an eight-amino acid sequence (GQVVVAVR). These results indicate that dermatopontin is a novel epidermal cell adhesion molecule and suggest that the DP-4 sequence is critical for the cell adhesive activity of dermatopontin. Adhesion of cells to DP-4 was strongly inhibited by heparin. When HaCaT cells were treated with heparitinase I, the cells failed to adhere to DP-4 but chondroitinase ABC treatment did not influence the adhesion activity. DP-4 specifically interacted with biotinylated heparin, and this interaction was inhibited by unlabeled heparin. DP-4 peptide significantly promoted the adhesion of cells overexpressing syndecans, and syndecan bound to a DP-4 peptide affinity column. These results suggest that HaCaT cells adhere to dermatopontin through alpha3beta1 integrin and a heparan sulfate proteoglycan-type receptor, which is likely a syndecan. We conclude that dermatopontin plays a role as a multifunctional adhesion molecule for epidermal cells.
Collapse
Affiliation(s)
- Osamu Okamoto
- Department of Dermatology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu-shi, Oita 879-5593, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Foley EM, Esko JD. Hepatic heparan sulfate proteoglycans and endocytic clearance of triglyceride-rich lipoproteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 93:213-33. [PMID: 20807647 DOI: 10.1016/s1877-1173(10)93010-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hypertriglyceridemia, characterized by the accumulation of triglyceride-rich lipoproteins in the blood, affects 10-20% of the population in western countries and increases the risk of atherosclerosis, coronary artery disease, and pancreatitis. The etiology of hypertriglyceridemia is complex, and much interest exists in identifying and characterizing the biological and environmental factors that affect the synthesis and turnover of plasma triglycerides. Genetic studies in mice have recently identified that heparan sulfate proteoglycans are a class of receptors that mediate the clearance of triglyceride-rich lipoproteins in the liver. Heparan sulfate proteoglycans are expressed by endothelial cells that line the hepatic sinusoids and the underlying hepatocytes, and are present in the perisinusoidal space (space of Disse). This chapter discusses the dependence of lipoprotein binding on heparan sulfate structure and the identification of hepatocyte syndecan-1 as the primary proteoglycan that mediates triglyceride-rich lipoprotein clearance.
Collapse
Affiliation(s)
- Erin M Foley
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA
| | | |
Collapse
|
44
|
Chan SCH, Leung VOY, Ip MSM, Shum DKY. Shed Syndecan-1 Restricts Neutrophil Elastase from α1-Antitrypsin in Neutrophilic Airway Inflammation. Am J Respir Cell Mol Biol 2009; 41:620-8. [DOI: 10.1165/rcmb.2008-0185oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
45
|
Yang Y, MacLeod V, Dai Y, Khotskaya-Sample Y, Shriver Z, Venkataraman G, Sasisekharan R, Naggi A, Torri G, Casu B, Vlodavsky I, Suva LJ, Epstein J, Yaccoby S, Shaughnessy JD, Barlogie B, Sanderson RD. The syndecan-1 heparan sulfate proteoglycan is a viable target for myeloma therapy. Blood 2007; 110:2041-8. [PMID: 17536013 PMCID: PMC1976367 DOI: 10.1182/blood-2007-04-082495] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The heparan sulfate proteoglycan syndecan-1 is expressed by myeloma cells and shed into the myeloma microenvironment. High levels of shed syndecan-1 in myeloma patient sera correlate with poor prognosis and studies in animal models indicate that shed syndecan-1 is a potent stimulator of myeloma tumor growth and metastasis. Overexpression of extracellular endosulfatases, enzymes which remove 6-O sulfate groups from heparan sulfate chains, diminishes myeloma tumor growth in vivo. Together, these findings identify syndecan-1 as a potential target for myeloma therapy. Here, 3 different strategies were tested in animal models of myeloma with the following results: (1) treatment with bacterial heparinase III, an enzyme that degrades heparan sulfate chains, dramatically inhibited the growth of primary tumors in the human severe combined immunodeficient (SCID-hu) model of myeloma; (2) treatment with an inhibitor of human heparanase, an enzyme that synergizes with syndecan-1 in promoting myeloma progression, blocked the growth of myeloma in vivo; and (3) knockdown of syndecan-1 expression by RNAi diminished and delayed myeloma tumor development in vivo. These results confirm the importance of syndecan-1 in myeloma pathobiology and provide strong evidence that disruption of the normal function or amount of syndecan-1 or its heparan sulfate chains is a valid therapeutic approach for this cancer.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Su G, Blaine SA, Qiao D, Friedl A. Shedding of Syndecan-1 by Stromal Fibroblasts Stimulates Human Breast Cancer Cell Proliferation via FGF2 Activation. J Biol Chem 2007; 282:14906-15. [PMID: 17344212 DOI: 10.1074/jbc.m611739200] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The cell surface heparan sulfate proteoglycan syndecan-1 is induced in stromal fibroblasts of breast carcinomas and participates in a reciprocal feedback loop, which stimulates carcinoma cell growth in vitro and in vivo. To define the molecular mechanism of carcinoma growth stimulation, a three-dimensional co-culture model was developed that combines T47D breast carcinoma cells with immortalized human mammary fibroblasts in collagen gels. By silencing endogenous syndecan-1 induction with short interfering RNA and expressing mutant murine syndecan-1 constructs, it was determined that carcinoma cell mitogenesis required proteolytic shedding of syndecan-1 from the fibroblast surface. The paracrine growth signal was mediated by the syndecan-1 heparan lfate chains rather than the ectodomain of the core protein and required fibroblast growth factor 2 and stroma-derived factor 1. This paracrine pathway may provide an opportunity for the therapeutic disruption of stromaepithelial signaling.
Collapse
Affiliation(s)
- Gui Su
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | | | | | | |
Collapse
|
47
|
Mochizuki M, Philp D, Hozumi K, Suzuki N, Yamada Y, Kleinman HK, Nomizu M. Angiogenic activitiy of syndecan-binding laminin peptide AG73 (RKRLQVQLSIRT). Arch Biochem Biophys 2007; 459:249-55. [PMID: 17286955 DOI: 10.1016/j.abb.2006.12.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 12/11/2006] [Accepted: 12/12/2006] [Indexed: 11/18/2022]
Abstract
The AG73 peptide (RKRLQVQLSIRT, mouse laminin alpha 1 chain 2719-2730) promotes cell adhesion and tumor metastasis, and interacts with transmembrane syndecan proteoglycans. Here, we demonstrate AG73 peptide angiogenic activity using in vitro, ex vivo, and in vivo models. AG73 induced murine endothelial cell (SVEC4-10) tube formation on Cultrex Basement Membrane Extract (Cultrex BME) and stimulated sprouting of aortic rings. None of the homologous sequences from the laminin alpha2, alpha3, alpha4, or alpha5 chains was as active as AG73 in promoting sprouting formation. AG73 also mediated angiogenesis in the chick chorioallantonic membrane (CAM) assay. Using subcutaneously injected Cultrex BME supplemented with AG73, we observed a large angiogenic response. Furthermore, AG73-conjugated to a chitosan membrane promoted a strong angiogenic response in the CAM assay. These results indicate that the AG73 peptide is a potent syndecan-binding angiogenesis stimulator and may be useful for therapeutic application to treat ischemic injuries.
Collapse
Affiliation(s)
- Mayumi Mochizuki
- Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Hozumi K, Suzuki N, Nielsen PK, Nomizu M, Yamada Y. Laminin alpha1 chain LG4 module promotes cell attachment through syndecans and cell spreading through integrin alpha2beta1. J Biol Chem 2006; 281:32929-40. [PMID: 16945929 DOI: 10.1074/jbc.m605708200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The laminin alpha1 chain is a subunit of laminin-1, a heterotrimeric basement membrane protein. The LG4-5 module at the C terminus of laminin alpha1 contains major binding sites for heparin, sulfatide, and alpha-dystroglycan and plays a critical role in early embryonic development. We previously identified active synthetic peptides AG73 and EF-1 from the sequence of laminin alpha1 LG4 for binding to syndecan and integrin alpha2beta1, respectively. However, their activity and functional relationship within the laminin-1 and LG4 as well as the functional relation between these sites and alpha-dystroglycan binding sites in LG4 are not clear. To address these questions, we created mutant recombinant LG4 proteins containing alanine substitutions within the AG73 (M1), EF-1 (M2, M3), and alpha-dystroglycan binding sites (M4, M5) and analyzed their activities. We found that recombinant proteins rec-M1 and rec-M5, containing mutations within M1 and M5, respectively, did not bind heparin or lymphoid cell lines expressing syndecans. These results suggest that LG4 binds to heparin and syndecans through M1 and M5. Rec-M1 and rec-M5 reduced fibroblast attachment, whereas mutant rec-M2 and rec-M3 retained cell attachment activity but did not promote cell spreading. Fibroblast attachment to rec-LG4 was inhibited by heparin but not by integrin antibodies. Spreading of fibroblasts on rec-LG4 was inhibited by anti-integrin alpha2 and beta1 but not by anti-integrin alpha1 and alpha6. These results suggest that the M1 and M5 sites are necessary for cell attachment on LG4 through syndecans and that the EF-1 site is for cell spreading activity through integrin alpha2beta1. In contrast, laminin-1-mediated fibroblast attachment and spreading were not inhibited by heparin or anti-integrin alpha2. Our findings indicate that LG4 has a unique function distinct from laminin-1 and suggest that laminin alpha1 LG4-5 may also be produced by a proteolytic cleavage in certain tissues where it exerts its activity.
Collapse
Affiliation(s)
- Kentaro Hozumi
- Molecular Biology Section, Craniofacial Developmental Biology and Regeneration Branch, NIDCR, National Institutes of Health, Bethesda, MD 20892-4370, USA
| | | | | | | | | |
Collapse
|
49
|
Reiland J, Kempf D, Roy M, Denkins Y, Marchetti D. FGF2 binding, signaling, and angiogenesis are modulated by heparanase in metastatic melanoma cells. Neoplasia 2006; 8:596-606. [PMID: 16867222 PMCID: PMC1601937 DOI: 10.1593/neo.06244] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Heparanase (HPSE) and fibroblast growth factor-2 (FGF2) are critical regulators of melanoma angiogenesis and metastasis. Elevated HPSE expression contributes to melanoma progression; however, further augmentation of HPSE presence can inhibit tumorigenicity. HPSE enzymatically cleaves heparan sulfate glycosaminoglycan chains (HS) from proteoglycans. HS act as both low-affinity FGF2 receptors and coreceptors in the formation of high-affinity FGF2 receptors. We have investigated HPSE's ability to modulate FGF2 activity through HS remodeling. Extensive HPSE degradation of human metastatic melanoma cells (70W) inhibited FGF2 binding. Unexpectedly, treatment of 70W cells with low HPSE concentrations enhanced FGF2 binding. In addition, HPSE-unexposed cells did not phosphorylate extracellular signal-related kinase (ERK) or focal adhesion kinase (FAK) in response to FGF2. Conversely, in cells treated with HPSE, FGF2 stimulated ERK and FAK phosphorylation. Secondly, the presence of soluble HPSE-degraded HS enhanced FGF2 binding and ERK phosphorylation at low HS concentrations. Higher concentrations of soluble HS inhibited FGF2 binding, but FGF2 signaling through ERK remained enhanced. Soluble HS were unable to support FGF2-stimulated FAK phosphorylation irrespective of HPSE treatment. Finally, cell exposure to HPSE or to HPSE-degraded HS modulated FGF2-induced angiogenesis in melanoma. In conclusion, these effects suggest relevant mechanisms for the HPSE modulation of melanoma growth factor responsiveness and tumorigenicity.
Collapse
Affiliation(s)
- Jane Reiland
- Department of Comparative Biomedical Sciences-SVM, Louisiana State University-Baton Rouge, Baton Rouge, LA 70803, USA
| | | | | | | | | |
Collapse
|
50
|
Beiting DP, Park PW, Appleton JA. Synthesis of syndecan-1 by skeletal muscle cells is an early response to infection with Trichinella spiralis but is not essential for nurse cell development. Infect Immun 2006; 74:1941-3. [PMID: 16495570 PMCID: PMC1418630 DOI: 10.1128/iai.74.3.1941-1943.2006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Trichinella spiralis creates a unique intracellular habitat in striated muscle. We report that a proteoglycan, syndecan-1, is induced early in infection yet is not essential for habitat development and exerts a modest influence on the immune response. This report is the first to address the requirement for a specific muscle protein in trichinellosis by using mice deficient in the relevant gene.
Collapse
Affiliation(s)
- Daniel P Beiting
- James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|