1
|
Transcriptomic and enzymatic analysis reveals the roles of glutamate dehydrogenase in Corynebacterium glutamicum. AMB Express 2022; 12:161. [PMID: 36576637 PMCID: PMC9797636 DOI: 10.1186/s13568-022-01506-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Glutamate dehydrogenase (Gdh), catalyzing the reversible conversion between 2-oxoglutarate and glutamate, plays an important role in the connection of nitrogen and carbon metabolism. Yet little is known about these enzymes in the amino acid-manufacturing Corynebacterium glutamicum. In the present study, we firstly identified the enzymatic characteristics of two Gdhs (GdhA and GdhB). The results showed that both GdhA and GdhB prefers NADPH as a coenzyme and have higher affinity for 2-OG than glutamate. The growth characteristics of gdhAΔ mutant and gdhBΔ mutant, gdhABΔ mutant showed GdhA serves as the main conduit for ammonium assimilation, and GdhB is the main glutamate- metabolizing enzyme in C. glutamicum. The full-genome transcriptomic analysis was used to investigate physiological response of C. glutamicum to the glutamate as nitrogen source, and gdh deletion. The results showed that the nitrogen starvation response was elicited when glutamine served as the sole nitrogen source. gdhAΔBΔ double deletion trigger a partially deregulated nitrogen starvation response, in which genes involved in nitrogen assimilation showed obviously upregulated in a certain extent. On the other hand, the genes of phosphotransferase system (PTS) and glycolysis pathway, most genes in pentose phosphate pathway were significantly upregulated, indicating that gdh deficiency initiated the enhancement of the absorption and metabolism of carbon sources. We believed that our results in this study will give new insights on the molecular mechanism of Gdh activity cross-talks with carbon and nitrogen metabolism, also setting a new background for further flux redistribution applied research of biotechnological interest.
Collapse
|
2
|
Del Caño-Ochoa F, Ramón-Maiques S. The multienzymatic protein CAD leading the de novo biosynthesis of pyrimidines localizes exclusively in the cytoplasm and does not translocate to the nucleus. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2020; 39:1320-1334. [PMID: 31997698 DOI: 10.1080/15257770.2019.1706743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
CAD, the multienzymatic protein that initiates and controls the de novo biosynthesis of pyrimidines, plays a major role in nucleotide homeostasis, cell growth and proliferation. Despite its interest as a potential antitumoral target, there is a lack of understanding on CAD's structure and functioning mechanisms. Although mainly identified as a cytosolic complex, different studies support the translocation of CAD into the nucleus, where it could have a yet undefined function. Here, we track the subcellular localization of CAD by using fluorescent chimeras, cell fractionation and immunoblotting with specific antibodies. Contradicting previous studies, we demonstrate that CAD is exclusively localized at the cytosol and discard a possible translocation to the nucleus.
Collapse
Affiliation(s)
- Francisco Del Caño-Ochoa
- Genome Dynamics and Function Program, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Santiago Ramón-Maiques
- Genome Dynamics and Function Program, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| |
Collapse
|
3
|
Villa E, Ali ES, Sahu U, Ben-Sahra I. Cancer Cells Tune the Signaling Pathways to Empower de Novo Synthesis of Nucleotides. Cancers (Basel) 2019; 11:E688. [PMID: 31108873 PMCID: PMC6562601 DOI: 10.3390/cancers11050688] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 12/13/2022] Open
Abstract
Cancer cells exhibit a dynamic metabolic landscape and require a sufficient supply of nucleotides and other macromolecules to grow and proliferate. To meet the metabolic requirements for cell growth, cancer cells must stimulate de novo nucleotide synthesis to obtain adequate nucleotide pools to support nucleic acid and protein synthesis along with energy preservation, signaling activity, glycosylation mechanisms, and cytoskeletal function. Both oncogenes and tumor suppressors have recently been identified as key molecular determinants for de novo nucleotide synthesis that contribute to the maintenance of homeostasis and the proliferation of cancer cells. Inactivation of tumor suppressors such as TP53 and LKB1 and hyperactivation of the mTOR pathway and of oncogenes such as MYC, RAS, and AKT have been shown to fuel nucleotide synthesis in tumor cells. The molecular mechanisms by which these signaling hubs influence metabolism, especially the metabolic pathways for nucleotide synthesis, continue to emerge. Here, we focus on the current understanding of the molecular mechanisms by which oncogenes and tumor suppressors modulate nucleotide synthesis in cancer cells and, based on these insights, discuss potential strategies to target cancer cell proliferation.
Collapse
Affiliation(s)
- Elodie Villa
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL 60611, USA; (E.V.); (E.S.A.); (U.S.)
| | - Eunus S. Ali
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL 60611, USA; (E.V.); (E.S.A.); (U.S.)
| | - Umakant Sahu
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL 60611, USA; (E.V.); (E.S.A.); (U.S.)
| | - Issam Ben-Sahra
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL 60611, USA; (E.V.); (E.S.A.); (U.S.)
- Robert H. Lurie Cancer Center, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
4
|
Madak JT, Bankhead A, Cuthbertson CR, Showalter HD, Neamati N. Revisiting the role of dihydroorotate dehydrogenase as a therapeutic target for cancer. Pharmacol Ther 2018; 195:111-131. [PMID: 30347213 DOI: 10.1016/j.pharmthera.2018.10.012] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Identified as a hallmark of cancer, metabolic reprogramming allows cancer cells to rapidly proliferate, resist chemotherapies, invade, metastasize, and survive a nutrient-deprived microenvironment. Rapidly growing cells depend on sufficient concentrations of nucleotides to sustain proliferation. One enzyme essential for the de novo biosynthesis of pyrimidine-based nucleotides is dihydroorotate dehydrogenase (DHODH), a known therapeutic target for multiple diseases. Brequinar, leflunomide, and teriflunomide, all of which are potent DHODH inhibitors, have been clinically evaluated but failed to receive FDA approval for the treatment of cancer. Inhibition of DHODH depletes intracellular pyrimidine nucleotide pools and results in cell cycle arrest in S-phase, sensitization to current chemotherapies, and differentiation in neural crest cells and acute myeloid leukemia (AML). Furthermore, DHODH is a synthetic lethal susceptibility in several oncogenic backgrounds. Therefore, DHODH-targeted therapy has potential value as part of a combination therapy for the treatment of cancer. In this review, we focus on the de novo pyrimidine biosynthesis pathway as a target for cancer therapy, and in particular, DHODH. In the first part, we provide a comprehensive overview of this pathway and its regulation in cancer. We further describe the relevance of DHODH as a target for cancer therapy using bioinformatic analyses. We then explore the preclinical and clinical results of pharmacological strategies to target the de novo pyrimidine biosynthesis pathway, with an emphasis on DHODH. Finally, we discuss potential strategies to harness DHODH as a target for the treatment of cancer.
Collapse
Affiliation(s)
- Joseph T Madak
- Department of Medicinal Chemistry, University of Michigan College of Pharmacy, Rogel Cancer Center, Ann Arbor, MI 48109, USA
| | - Armand Bankhead
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Christine R Cuthbertson
- Department of Medicinal Chemistry, University of Michigan College of Pharmacy, Rogel Cancer Center, Ann Arbor, MI 48109, USA
| | - Hollis D Showalter
- Department of Medicinal Chemistry, University of Michigan College of Pharmacy, Rogel Cancer Center, Ann Arbor, MI 48109, USA.
| | - Nouri Neamati
- Department of Medicinal Chemistry, University of Michigan College of Pharmacy, Rogel Cancer Center, Ann Arbor, MI 48109, USA.
| |
Collapse
|
5
|
Purcarea C, Fernando R, Evans HG, Evans DR. The sole serine/threonine protein kinase and its cognate phosphatase from Aquifex aeolicus targets pyrimidine biosynthesis. Mol Cell Biochem 2008; 311:199-213. [PMID: 18270660 DOI: 10.1007/s11010-008-9710-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2007] [Accepted: 01/10/2008] [Indexed: 10/22/2022]
Abstract
Serine/Threonine kinases participate in complex, interacting signaling pathways in eukaryotes, prokaryotes, and archae. While most organisms contain many different kinases, the extreme hyperthermophile, Aquifex aeolicus encodes a single hypothetical Ser/Thr kinase. A gene homologous to eukaryotic protein phosphatases overlaps the kinase gene by a single base pair. The putative kinase, AaSTPK and phosphatase, AaPPM, were cloned and expressed in E. coli, purified to homogeneity and found to be functional. AaSTPK is a 34-kDa monomer that can use MgATP, MnATP, or MnGTP as co-substrates, although MgATP appears to be the preferred substrate. AaSTPK was autophosphorylated on a threonine residue and was dephosphorylated by AaPPM. AaPPM phosphatase is homologous to the PPM sub-family of Ser/Thr phosphatases and was stimulated by MnCl2 and CoCl2 but not MgCl2. AaSTPK also phosphorylated one threonine residue on the carbamoyl phosphate synthetase, CPS.A subunit. Carbamoyl phosphate synthetase reconstituted with phosphorylated CPS.A had unaltered catalytic activity but allosteric inhibition by UMP and activation by the arginine intermediate, ornithine, were both appreciably attenuated. These changes in allosteric regulation would be expected to activate pyrimidine biosynthesis by releasing the constraints imposed on carbamoyl phosphate synthetase activity by UMP and uncoupling the regulation of pyrimidine and arginine biosynthesis. CPS.A was also dephosphorylated by AaPPM. Aquifex aeolicus occupies the lowest branch on the prokaryotic phylogenetic tree. The Thr/Ser kinase, its cognate phosphatase and a protein substrate may be elements of a simple signaling pathway, perhaps the most primitive example of this mode of regulation described thus far.
Collapse
Affiliation(s)
- Cristina Purcarea
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, 540 E. Canfield Street, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
6
|
Kotsis DH, Masko EM, Sigoillot FD, Di Gregorio R, Guy-Evans HI, Evans DR. Protein kinase A phosphorylation of the multifunctional protein CAD antagonizes activation by the MAP kinase cascade. Mol Cell Biochem 2007; 301:69-81. [PMID: 17206380 DOI: 10.1007/s11010-006-9398-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 12/06/2006] [Indexed: 11/29/2022]
Abstract
The flux through the de novo pyrimidine biosynthetic pathway is controlled by the multifunctional protein CAD, which catalyzes the first three steps. The cell cycle dependent regulation of pyrimidine biosynthesis is a consequence of sequential phosphorylation of CAD Thr456 and Ser1406 by the MAP kinase and PKA cascades, respectively. Coordinated regulation of the pathway requires precise timing of the two phosphorylation events. These studies show that phosphorylation of purified CAD by PKA antagonizes MAP kinase phosphorylation, and vice versa. Similar results were observed in vivo. Forskolin activation of PKA in BHK-21 cells resulted in a 8.5 fold increase in Ser1406 phosphorylation and severely curtailed the MAP kinase mediated phosphorylation of CAD Thr456. Moreover, the relative activity of MAP kinase and PKA was found to determine the extent of Thr456 phosphorylation. Transfectants expressing elevated levels of MAP kinase resulted in a 11-fold increase in Thr456 phosphorylation, whereas transfectants that overexpress PKA reduced Thr456 phosphorylation 5-fold. While phosphorylation of one site by one kinase may induce conformational changes that interfere with phosphorylation by the other, the observation that both MAP kinase and PKA form stable complexes with CAD suggest that the mutual antagonism is the result of steric interference by the bound kinases. The reciprocal antagonism of CAD phosphorylation by MAP kinase and PKA provides an elegant mechanism to coordinate the cell cycle-dependent regulation of pyrimidine biosynthesis ensuring that signals for up- and down-regulation of the pathway do not conflict.
Collapse
Affiliation(s)
- Damian H Kotsis
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
7
|
Simmons CQ, Simmons AJ, Haubner A, Ream A, Davidson JN. Substitutions in hamster CAD carbamoyl-phosphate synthetase alter allosteric response to 5-phosphoribosyl-alpha-pyrophosphate (PRPP) and UTP. Biochem J 2004; 378:991-8. [PMID: 14651476 PMCID: PMC1224011 DOI: 10.1042/bj20031228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2003] [Revised: 12/02/2003] [Accepted: 12/03/2003] [Indexed: 11/17/2022]
Abstract
CPSase (carbamoyl-phosphate synthetase II), a component of CAD protein (multienzymic protein with CPSase, aspartate transcarbamylase and dihydro-orotase activities), catalyses the regulated steps in the de novo synthesis of pyrimidines. Unlike the orthologous Escherichia coli enzyme that is regulated by UMP, inosine monophosphate and ornithine, the mammalian CPSase is allosterically inhibited by UTP, and activated by PRPP (5-phosphoribosyl-a-pyrophosphate) and phosphorylation. Four residues (Thr974, Lys993, Lys954 and Thr977) are critical to the E. coli inosine monophosphate/UMP-binding pocket. In the present study, three of the corresponding residues in the hamster CPSase were altered to determine if they affect either PRPP activation or UTP inhibition. Substitution of the hamster residue, positionally equivalent to Thr974 in the E. coli enzyme, with alanine residue led to an enzyme with 5-fold lower activity and a near loss of PRPP activation. Whereas replacement of the tryptophan residue at position 993 had no effect, an Asp992-->Asn substitution yielded a much-activated enzyme that behaved as if PRPP was present. The substitution Lys954-->Glu had no effect on PRPP stimulation. Only modest decreases in UTP inhibitions were observed with each of the altered CPSases. The results also show that while PRPP and UTP can act simultaneously, PRPP activation is dominant. Apparently, UTP and PRPP have distinctly different associations within the mammalian enzyme. The findings of the present study may prove relevant to the neuropathology of Lesch-Nyhan syndrome
Collapse
Affiliation(s)
- Christine Q Simmons
- Department of Microbiology, Immunology and Molecular Genetics, Albert B. Chandler Medical Center and Lucille P. Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0293, USA
| | | | | | | | | |
Collapse
|
8
|
Evans DR, Guy HI. Mammalian pyrimidine biosynthesis: fresh insights into an ancient pathway. J Biol Chem 2004; 279:33035-8. [PMID: 15096496 DOI: 10.1074/jbc.r400007200] [Citation(s) in RCA: 300] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- David R Evans
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | |
Collapse
|
9
|
Sigoillot FD, Sigoillot SM, Guy HI. Breakdown of the regulatory control of pyrimidine biosynthesis in human breast cancer cells. Int J Cancer 2004; 109:491-8. [PMID: 14991569 DOI: 10.1002/ijc.11717] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The activity of the de novo pyrimidine biosynthetic pathway in the MCF7 breast cancer cells was 4.4-fold higher than that in normal MCF10A breast cells. Moreover, while pyrimidine biosynthesis in MCF10A was tightly regulated, increasing as the culture matured and subsequently down-regulated in confluency, the biosynthetic rate in MCF7 cells remained elevated and invariant in all growth phases. The flux through the pathway is regulated by carbamoyl phosphate synthetase, a component of the multifunctional protein, CAD. The intracellular CAD concentration was 3.5- to 4-fold higher in MCF7 cells, an observation that explains the high rate of pyrimidine biosynthesis but cannot account for the lack of growth-dependent regulation. In MCF10A cells, up-regulation of the pathway in the exponential growth phase resulted from MAP kinase phosphorylation of CAD Thr456. The pathway was subsequently down-regulated by dephosphorylation of P approximately Thr456 and the phosphorylation of CAD by PKA. In contrast, the CAD P approximately Thr456 was persistently phosphorylated in MCF7 cells, while the PKA site remained unphosphorylated and consequently the activity of the pathway was elevated in all growth phases. In support of this interpretation, inhibition of MAP kinase in MCF7 cells decreased CAD P approximately Thr456, increased PKA phosphorylation and decreased pyrimidine biosynthesis. Conversely, transfection of MCF10A with constructs that elevated MAP kinase activity increased CAD P approximately Thr456 and the pyrimidine biosynthetic rate. The differences in the CAD phosphorylation state responsible for unregulated pyrimidine biosynthesis in MCF7 cells are likely to be a consequence of the elevated MAP kinase activity and the antagonism between MAP kinase- and PKA-mediated phosphorylations.
Collapse
Affiliation(s)
- Frederic D Sigoillot
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
10
|
Sigoillot FD, Berkowski JA, Sigoillot SM, Kotsis DH, Guy HI. Cell cycle-dependent regulation of pyrimidine biosynthesis. J Biol Chem 2003; 278:3403-9. [PMID: 12438317 DOI: 10.1074/jbc.m211078200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
De novo pyrimidine biosynthesis is activated in proliferating cells in response to an increased demand for nucleotides needed for DNA synthesis. The pyrimidine biosynthetic pathway in baby hamster kidney cells, synchronized by serum deprivation, was found to be up-regulated 1.9-fold during S phase and subsequently down-regulated as the cells progressed through the cycle. The nucleotide pools were depleted by serum starvation and were not replenished during the first round of cell division, suggesting that the rate of utilization of the newly synthesized nucleotides closely matched their rate of formation. The activation and subsequent down-regulation of the pathway can be attributed to altered allosteric regulation of the carbamoyl-phosphate synthetase activity of CAD (carbamoyl-phosphate synthetase-aspartate carbamoyltransferase-dihydroorotase), a multifunctional protein that initiates mammalian pyrimidine biosynthesis. As the culture approached S-phase there was an increased sensitivity to the allosteric activator, 5-phosphoribosyl-1-pyrophosphate, and a loss of UTP inhibition, changes that were reversed when cells emerged from S phase. The allosteric regulation of CAD is known to be modulated by MAP kinase (MAPK) and protein kinase A (PKA)-mediated phosphorylations as well as by autophosphorylation. CAD was found to be fully autophosphorylated in the synchronized cells, but the level remained invariant throughout the cycle. Although the MAPK activity increased early in G(1), the phosphorylation of the CAD MAPK site was delayed until just before the onset of S phase, probably due to antagonistic phosphorylation by PKA that persisted until late G(1). Once activated, pyrimidine biosynthesis remained elevated until rephosphorylation of CAD by PKA and dephosphorylation of the CAD MAPK site late in S phase. Thus, the cell cycle-dependent regulation of pyrimidine biosynthesis results from the sequential phosphorylation and dephosphorylation of CAD under the control of two important signaling cascades.
Collapse
Affiliation(s)
- Frederic D Sigoillot
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan 48201,USA
| | | | | | | | | |
Collapse
|
11
|
Sigoillot FD, Evans DR, Guy HI. Autophosphorylation of the mammalian multifunctional protein that initiates de novo pyrimidine biosynthesis. J Biol Chem 2002; 277:24809-17. [PMID: 11986331 DOI: 10.1074/jbc.m203512200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CAD, a large multifunctional protein that carries carbamoyl phosphate synthetase (CPSase), aspartate transcarbamoylase, and dihydroorotase activities, catalyzes the first three steps of de novo pyrimidine biosynthesis in mammalian cells. The CPSase component, which catalyzes the initial, rate-limiting step, exhibits complex regulatory mechanisms involving allosteric effectors and phosphorylation that control the flux of metabolites through the pathway. Incubation of CAD with ATP in the absence of exogenous kinases resulted in the incorporation of 1 mol of P(i)/mol of CAD monomer. Mass spectrometry analysis of tryptic digests showed that Thr(1037) located within the CAD CPS.B subdomain was specifically modified. The reaction is specific for MgATP, ADP was a competitive inhibitor, and the native tertiary structure of the protein was required. Phosphorylation occurred after denaturation, further purification of CAD by SDS gel electrophoresis, and renaturation on a nitrocellulose membrane, strongly suggesting that phosphate incorporation resulted from an intrinsic kinase activity and was not the result of contaminating kinases. Chemical modification with the ATP analog, 5'-p-fluorosulfonylbenzoyladenosine, showed that one or both of the active sites that catalyze the ATP-dependent partial reactions are also involved in autophosphorylation. The rate of phosphorylation was dependent on the concentration of CAD, indicating that the reaction was, at least in part, intermolecular. Autophosphorylation resulted in a 2-fold increase in CPSase activity, an increased sensitivity to the feedback inhibitor UTP, and decreased allosteric activation by 5-phosphoribosyl-1-pyrophosphate, functional changes that were distinctly different from those resulting from phosphorylation by either the protein kinase A or mitogen-activated protein kinase cascades.
Collapse
Affiliation(s)
- Frederic D Sigoillot
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
12
|
Sigoillot FD, Evans DR, Guy HI. Growth-dependent regulation of mammalian pyrimidine biosynthesis by the protein kinase A and MAPK signaling cascades. J Biol Chem 2002; 277:15745-51. [PMID: 11872754 DOI: 10.1074/jbc.m201112200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The carbamoyl phosphate synthetase domain of the multifunctional protein CAD catalyzes the initial, rate-limiting step in mammalian de novo pyrimidine biosynthesis. In addition to allosteric regulation by the inhibitor UTP and the activator PRPP, the carbamoyl phosphate synthetase activity is controlled by mitogen-activated protein kinase (MAPK)- and protein kinase A (PKA)-mediated phosphorylation. MAPK phosphorylation, both in vivo and in vitro, increases sensitivity to PRPP and decreases sensitivity to the inhibitor UTP, whereas PKA phosphorylation reduces the response to both allosteric effectors. To elucidate the factors responsible for growth state-dependent regulation of pyrimidine biosynthesis, the activity of the de novo pyrimidine pathway, the MAPK and PKA activities, the phosphorylation state, and the allosteric regulation of CAD were measured as a function of growth state. As cells entered the exponential growth phase, there was an 8-fold increase in pyrimidine biosynthesis that was accompanied by a 40-fold increase in MAPK activity and a 4-fold increase in CAD threonine phosphorylation. PRPP activation increased to 21-fold, and UTP became a modest activator. These changes were reversed when the cultures approach confluence and growth ceases. Moreover, CAD phosphoserine, a measure of PKA phosphorylation, increased 2-fold in confluent cells. These results are consistent with the activation of CAD by MAPK during periods of rapid growth and its down-regulation in confluent cells associated with decreased MAPK phosphorylation and a concomitant increase in PKA phosphorylation. A scheme is proposed that could account for growth-dependent regulation of pyrimidine biosynthesis based on the sequential action of MAPK and PKA on the carbamoyl phosphate synthetase activity of CAD.
Collapse
Affiliation(s)
- Frederic D Sigoillot
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
13
|
Ahuja A, Purcarea C, Guy HI, Evans DR. A novel carbamoyl-phosphate synthetase from Aquifex aeolicus. J Biol Chem 2001; 276:45694-703. [PMID: 11574542 DOI: 10.1074/jbc.m106382200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aquifex aeolicus, an extreme hyperthermophile, has neither a full-length carbamoyl-phosphate synthetase (CPSase) resembling the enzyme found in all mesophilic organisms nor a carbamate kinase-like CPSase such as those present in several hyperthermophilic archaea. However, the genome has open reading frames encoding putative proteins that are homologous to the major CPSase domains. The glutaminase, CPS.A, and CPS.B homologs from A. aeolicus were cloned, overexpressed in Escherichia coli, and purified to homogeneity. The isolated proteins could catalyze several partial reactions but not the overall synthesis of carbamoyl phosphate. However, a stable 124-kDa complex could be reconstituted from stoichiometric amounts of CPS.A and CPS.B proteins that synthesized carbamoyl phosphate from ATP, bicarbonate, and ammonia. The inclusion of the glutaminase subunit resulted in the formation of a 171-kDa complex that could utilize glutamine as the nitrogen-donating substrate, although the catalytic efficiency was significantly compromised. Molecular modeling, using E. coli CPSase as a template, showed that the enzyme has a similar structural organization and interdomain interfaces and that all of the residues known to be essential for function are conserved and properly positioned. A steady state kinetic study at 78 degrees C indicated that although the substrate affinity was similar for bicarbonate, ammonia, and glutamine, the K(m) for ATP was appreciably higher than that of any known CPSase. The A. aeolicus complex, with a split gene encoding the major synthetase domains and relatively inefficient coupling of amidotransferase and synthetase functions, may be more closely related to the ancestral precursor of contemporary mesophilic CPSases.
Collapse
Affiliation(s)
- A Ahuja
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
14
|
Javid-Majd F, Mullins LS, Raushel FM, Stapleton MA. The differentially conserved residues of carbamoyl-phosphate synthetase. J Biol Chem 2000; 275:5073-80. [PMID: 10671550 DOI: 10.1074/jbc.275.7.5073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Carbamoyl-phosphate synthetase (CPS) from Escherichia coli is a heterodimeric protein. The larger of the two subunits (M(r) approximately 118,000) contains a pair of homologous domains of approximately 400 residues each that are approximately 40% identical in amino acid sequence. The carboxy phosphate (residues 1-400) and carbamoyl phosphate domains (residues 553-933) also contain approximately 79 differentially conserved residues. These are residues that are conserved throughout the bacterial evolution of CPS in one of these homologous domains but not the other. The role of these differentially conserved residues in the structural and catalytic properties of CPS was addressed by swapping segments of these residues from one domain to the other. Nine of these chimeric mutant enzymes were constructed, expressed, purified, and characterized. A majority of the mutants were unable to synthesize any carbamoyl phosphate and the rest were severely crippled. True tandem repeat chimeric proteins were constructed by the complete substitution of one homologous domain sequence for the other. Neither of the two possible chimeric proteins was structurally stable. These results have been interpreted to demonstrate that the two homologous domains in the large subunit of CPS are functionally and structurally nonequivalent. This nonequivalence is a direct result of the specific functions each of these domains must perform during the overall synthesis of carbamoyl phosphate in the wild type enzyme and the specific structural alterations imposed by the differentially conserved residues.
Collapse
Affiliation(s)
- F Javid-Majd
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | |
Collapse
|
15
|
Graves LM, Guy HI, Kozlowski P, Huang M, Lazarowski E, Pope RM, Collins MA, Dahlstrand EN, Earp HS, Evans DR. Regulation of carbamoyl phosphate synthetase by MAP kinase. Nature 2000; 403:328-32. [PMID: 10659854 DOI: 10.1038/35002111] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The de novo synthesis of pyrimidine nucleotides is required for mammalian cells to proliferate. The rate-limiting step in this pathway is catalysed by carbamoyl phosphate synthetase (CPS II), part of the multifunctional enzyme CAD. Here we describe the regulation of CAD by the mitogen-activated protein (MAP) kinase cascade. When phosphorylated by MAP kinase in vitro or activated by epidermal growth factor in vivo, CAD lost its feedback inhibition (which is dependent on uridine triphosphate) and became more sensitive to activation (which depends upon phosphoribosyl pyrophosphate). Both these allosteric regulatory changes favour biosynthesis of pyrimidines for growth. They were accompanied by increased epidermal growth factor-dependent phosphorylation of CAD in vivo and were prevented by inhibition of MAP kinase. Mutation of a consensus MAP kinase phosphorylation site abolished the changes in CAD allosteric regulation that were stimulated by growth factors. Finally, consistent with an effect of MAP kinase signalling on CPS II activity, epidermal growth factor increased cellular uridine triphosphate and this increase was reversed by inhibition of MAP kinase. Hence these studies may indicate a direct link between activation of the MAP kinase cascade and de novo biosynthesis of pyrimidine nucleotides.
Collapse
Affiliation(s)
- L M Graves
- Department of Pharmacology, Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 27599-7365, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|