1
|
Fertala A. Three Decades of Research on Recombinant Collagens: Reinventing the Wheel or Developing New Biomedical Products? Bioengineering (Basel) 2020; 7:E155. [PMID: 33276472 PMCID: PMC7712652 DOI: 10.3390/bioengineering7040155] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Collagens provide the building blocks for diverse tissues and organs. Furthermore, these proteins act as signaling molecules that control cell behavior during organ development, growth, and repair. Their long half-life, mechanical strength, ability to assemble into fibrils and networks, biocompatibility, and abundance from readily available discarded animal tissues make collagens an attractive material in biomedicine, drug and food industries, and cosmetic products. About three decades ago, pioneering experiments led to recombinant human collagens' expression, thereby initiating studies on the potential use of these proteins as substitutes for the animal-derived collagens. Since then, scientists have utilized various systems to produce native-like recombinant collagens and their fragments. They also tested these collagens as materials to repair tissues, deliver drugs, and serve as therapeutics. Although many tests demonstrated that recombinant collagens perform as well as their native counterparts, the recombinant collagen technology has not yet been adopted by the biomedical, pharmaceutical, or food industry. This paper highlights recent technologies to produce and utilize recombinant collagens, and it contemplates their prospects and limitations.
Collapse
Affiliation(s)
- Andrzej Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Curtis Building, Room 501, 1015 Walnut Street, Philadelphia, PA 19107, USA
| |
Collapse
|
2
|
Chakkalakal SA, Heilig J, Baumann U, Paulsson M, Zaucke F. Impact of Arginine to Cysteine Mutations in Collagen II on Protein Secretion and Cell Survival. Int J Mol Sci 2018; 19:ijms19020541. [PMID: 29439465 PMCID: PMC5855763 DOI: 10.3390/ijms19020541] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/04/2018] [Accepted: 02/06/2018] [Indexed: 12/27/2022] Open
Abstract
Inherited point mutations in collagen II in humans affecting mainly cartilage are broadly classified as chondrodysplasias. Most mutations occur in the glycine (Gly) of the Gly-X-Y repeats leading to destabilization of the triple helix. Arginine to cysteine substitutions that occur at either the X or Y position within the Gly-X-Y cause different phenotypes like Stickler syndrome and congenital spondyloepiphyseal dysplasia (SEDC). We investigated the consequences of arginine to cysteine substitutions (X or Y position within the Gly-X-Y) towards the N and C terminus of the triple helix. Protein expression and its secretion trafficking were analyzed. Substitutions R75C, R134C and R704C did not alter the thermal stability with respect to wild type; R740C and R789C proteins displayed significantly reduced melting temperatures (Tm) affecting thermal stability. Additionally, R740C and R789C were susceptible to proteases; in cell culture, R789C protein was further cleaved by matrix metalloproteinases (MMPs) resulting in expression of only a truncated fragment affecting its secretion and intracellular retention. Retention of misfolded R740C and R789C proteins triggered an ER stress response leading to apoptosis of the expressing cells. Arginine to cysteine mutations towards the C-terminus of the triple helix had a deleterious effect, whereas mutations towards the N-terminus of the triple helix (R75C and R134C) and R704C had less impact.
Collapse
Affiliation(s)
- Salin A Chakkalakal
- Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Juliane Heilig
- Center for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany.
- Cologne Center for Musculoskeletal Biomechanics (CCMB), 50931 Cologne, Germany.
| | - Ulrich Baumann
- Institute of Biochemistry, University of Cologne, 50931 Cologne, Germany.
| | - Mats Paulsson
- Center for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany.
- Cologne Center for Musculoskeletal Biomechanics (CCMB), 50931 Cologne, Germany.
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.
| | - Frank Zaucke
- Center for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany.
- Cologne Center for Musculoskeletal Biomechanics (CCMB), 50931 Cologne, Germany.
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim, 60528 Frankfurt/Main, Germany.
| |
Collapse
|
3
|
Molecular assembly of recombinant chicken type II collagen in the yeast Pichia pastoris. SCIENCE CHINA-LIFE SCIENCES 2018; 61:815-825. [PMID: 29388039 DOI: 10.1007/s11427-017-9219-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/16/2017] [Indexed: 10/18/2022]
Abstract
Effective treatment of rheumatoid arthritis can be mediated by native chicken type II collagen (nCCII), recombinant peptide containing nCCII tolerogenic epitopes (CTEs), or a therapeutic DNA vaccine encoding the full-length CCOL2A1 cDNA. As recombinant CCII (rCCII) might avoid potential pathogenic virus contamination during nCCII preparation or chromosomal integration and oncogene activation associated with DNA vaccines, here we evaluated the importance of propeptide and telopeptide domains on rCCII triple helix molecular assembly. We constructed pC- and pN-procollagen (without N- or C-propeptides, respectively) as well as CTEs located in the triple helical domain lacking both propeptides and telopeptides, and expressed these in yeast Pichia pastoris host strain GS115 (his4, Mut+) simultaneously with recombinant chicken prolyl-4-hydroxylase α and β subunits. Both pC- and pN-procollagen monomers accumulated inside P. pastoris cells, whereas CTE was assembled into homotrimers with stable conformation and secreted into the supernatants, suggesting that the large molecular weight pC-or pN-procollagens were retained within the endoplasmic reticulum whereas the smaller CTEs proceeded through the secretory pathway. Furthermore, resulting recombinant chicken type II collagen pCα1(II) can induced collagen-induced arthritis (CIA) rat model, which seems to be as effective as the current standard nCCII. Notably, protease digestion assays showed that rCCII could assemble in the absence of C- and N-propeptides or telopeptides. These findings provide new insights into the minimal structural requirements for rCCII expression and folding.
Collapse
|
4
|
Abstract
There is a great deal of interest in obtaining recombinant collagen as an alternative source of material for biomedical applications and as an approach for obtaining basic structural and biological information. However, application of recombinant technology to collagen presents challenges, most notably the need for post-translational hydroxylation of prolines for triple-helix stability. Full length recombinant human collagens have been successfully expressed in cell lines, yeast, and several plant systems, while collagen fragments have been expressed in E. coli. In addition, bacterial collagen-like proteins can be expressed in high yields in E. coli and easily manipulated to incorporate biologically active sequences from human collagens. These expression systems allow manipulation of biologically active sequences within collagen, which has furthered our understanding of the relationships between collagen sequences, structure and function. Here, recombinant studies on collagen interactions with cell receptors, extracellular matrix proteins, and matrix metalloproteinases are reviewed, and discussed in terms of their potential biomaterial and biomedical applications.
Collapse
Affiliation(s)
- Barbara Brodsky
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA.
| | - John A M Ramshaw
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC, 3169, Australia
| |
Collapse
|
5
|
Matrix metalloproteinase interactions with collagen and elastin. Matrix Biol 2015; 44-46:224-31. [PMID: 25599938 PMCID: PMC4466143 DOI: 10.1016/j.matbio.2015.01.005] [Citation(s) in RCA: 251] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/10/2015] [Accepted: 01/10/2015] [Indexed: 12/18/2022]
Abstract
Most abundant in the extracellular matrix are collagens, joined by elastin that confers elastic recoil to the lung, aorta, and skin. These fibrils are highly resistant to proteolysis but can succumb to a minority of the matrix metalloproteinases (MMPs). Considerable inroads to understanding how such MMPs move to the susceptible sites in collagen and then unwind the triple helix of collagen monomers have been gained. The essential role in unwinding of the hemopexin-like domain of interstitial collagenases or the collagen binding domain of gelatinases is highlighted. Elastolysis is also facilitated by the collagen binding domain in the cases of MMP-2 and MMP-9, and remote exosites of the catalytic domain in the case of MMP-12.
Collapse
|
6
|
Yu Z, An B, Ramshaw JA, Brodsky B. Bacterial collagen-like proteins that form triple-helical structures. J Struct Biol 2014; 186:451-61. [DOI: 10.1016/j.jsb.2014.01.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 02/06/2023]
|
7
|
Lauer JL, Bhowmick M, Tokmina-Roszyk D, Lin Y, Van Doren SR, Fields GB. The role of collagen charge clusters in the modulation of matrix metalloproteinase activity. J Biol Chem 2014; 289:1981-92. [PMID: 24297171 PMCID: PMC3900948 DOI: 10.1074/jbc.m113.513408] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/28/2013] [Indexed: 12/22/2022] Open
Abstract
Members of the matrix metalloproteinase (MMP) family selectively cleave collagens in vivo. Several substrate structural features that direct MMP collagenolysis have been identified. The present study evaluated the role of charged residue clusters in the regulation of MMP collagenolysis. A series of 10 triple-helical peptide (THP) substrates were constructed in which either Lys-Gly-Asp or Gly-Asp-Lys motifs replaced Gly-Pro-Hyp (where Hyp is 4-hydroxy-L-proline) repeats. The stabilities of THPs containing the two different motifs were analyzed, and kinetic parameters for substrate hydrolysis by six MMPs were determined. A general trend for virtually all enzymes was that, as Gly-Asp-Lys motifs were moved from the extreme N and C termini to the interior next to the cleavage site sequence, kcat/Km values increased. Additionally, all Gly-Asp-Lys THPs were as good or better substrates than the parent THP in which Gly-Asp-Lys was not present. In turn, the Lys-Gly-Asp THPs were also always better substrates than the parent THP, but the magnitude of the difference was considerably less compared with the Gly-Asp-Lys series. Of the MMPs tested, MMP-2 and MMP-9 most greatly favored the presence of charged residues with preference for the Gly-Asp-Lys series. Lys-Gly-(Asp/Glu) motifs are more commonly found near potential MMP cleavage sites than Gly-(Asp/Glu)-Lys motifs. As Lys-Gly-Asp is not as favored by MMPs as Gly-Asp-Lys, the Lys-Gly-Asp motif appears advantageous over the Gly-Asp-Lys motif by preventing unwanted MMP hydrolysis. More specifically, the lack of Gly-Asp-Lys clusters may diminish potential MMP-2 and MMP-9 collagenolytic activity. The present study indicates that MMPs have interactions spanning the P23-P23' subsites of collagenous substrates.
Collapse
Affiliation(s)
- Janelle L. Lauer
- From the Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Manishabrata Bhowmick
- From the Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida 34987 and
| | - Dorota Tokmina-Roszyk
- From the Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida 34987 and
| | - Yan Lin
- From the Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Steven R. Van Doren
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211
| | - Gregg B. Fields
- From the Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida 34987 and
| |
Collapse
|
8
|
Pulawski W, Ghoshdastider U, Andrisano V, Filipek S. Ubiquitous amyloids. Appl Biochem Biotechnol 2012; 166:1626-43. [PMID: 22350870 PMCID: PMC3324686 DOI: 10.1007/s12010-012-9549-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Accepted: 01/05/2012] [Indexed: 01/04/2023]
Abstract
The common view of amyloids and prion proteins is that they are associated with many currently incurable diseases and present a great danger to an organism. This danger comes from the fact that not only prion proteins, but also the infectious form(s) of amyloids, as it has been shown recently, are able to transmit the disease. On the other hand, organisms take advantage of the strength and durability of specific forms of amyloids. Such forms do not spread any disease. Also, in nanotechnology there is a constantly growing need to employ amyloid fibrils in many industrial applications. With increasing knowledge about amyloids and prion proteins we are aware that the amyloidal state is inherent to any protein, making the problem of amyloid formation a central one in aging-related diseases. However, the “good” amyloids can be beneficial and even necessary for our health. Furthermore, because of their mechanical properties, the amyloids are of great interest to engineers.
Collapse
Affiliation(s)
- Wojciech Pulawski
- Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw, Poland
| | | | | | | |
Collapse
|
9
|
Chang SW, Shefelbine SJ, Buehler MJ. Structural and mechanical differences between collagen homo- and heterotrimers: relevance for the molecular origin of brittle bone disease. Biophys J 2012; 102:640-8. [PMID: 22325288 DOI: 10.1016/j.bpj.2011.11.3999] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 09/28/2011] [Accepted: 11/10/2011] [Indexed: 11/19/2022] Open
Abstract
Collagen constitutes one-third of the human proteome, providing mechanical stability, elasticity, and strength to organisms. Normal type I collagen is a heterotrimer triple-helical molecule consisting of two α-1 chains and one α-2 chain. The homotrimeric isoform of type I collagen, which consists of three α-1 chains, is only found in fetal tissues, fibrosis, and cancer in humans. A mouse model of the genetic brittle bone disease, osteogenesis imperfect, oim, is characterized by a replacement of the α-2 chain by an α-1 chain, resulting also in a homotrimer collagen molecule. Experimental studies of oim mice tendon and bone have shown reduced mechanical strength compared to normal mice. The relationship between the molecular content and the decrease in strength is, however, still unknown. Here, fully atomistic simulations of a section of mouse type I heterotrimer and homotrimer collagen molecules are developed to explore the effect of the substitution of the α-2 chain. We calculate the persistence length and carry out a detailed analysis of the structure to determine differences in structural and mechanical behavior between hetero- and homotrimers. The results show that homotrimer persistence length is half of that of the heterotrimer (96 Å vs. 215 Å), indicating it is more flexible and confirmed by direct mechanical testing. Our structural analyses reveal that in contrast to the heterotrimer, the homotrimer easily forms kinks and freely rotates with angles much larger than heterotrimer. These local kinks may explain the larger lateral distance between collagen molecules seen in the fibrils of oim mice tendon and could have implications for reducing the intermolecular cross-linking, which is known to reduce the mechanical strength.
Collapse
Affiliation(s)
- Shu-Wei Chang
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
10
|
Fernandes RJ, Farnand AW, Traeger GR, Weis MA, Eyre DR. A role for prolyl 3-hydroxylase 2 in post-translational modification of fibril-forming collagens. J Biol Chem 2011; 286:30662-30669. [PMID: 21757687 DOI: 10.1074/jbc.m111.267906] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The fibrillar collagen types I, II, and V/XI have recently been shown to have partially 3-hydroxylated proline (3Hyp) residues at sites other than the established primary Pro-986 site in the collagen triple helical domain. These sites showed tissue specificity in degree of hydroxylation and a pattern of D-periodic spacing. This suggested a contributory role in fibril supramolecular assembly. The sites in clade A fibrillar α1(II), α2(V), and α1(I) collagen chains share common features with known prolyl 3-hydroxylase 2 (P3H2) substrate sites in α1(IV) chains implying a role for this enzyme. We pursued this possibility using the Swarm rat chondrosarcoma cell line (RCS-LTC) found to express high levels of P3H2 mRNA. Mass spectrometry determined that all the additional candidate 3Hyp substrate sites in the pN type II collagen made by these cells were highly hydroxylated. In RNA interference experiments, P3H2 protein synthesis was suppressed coordinately with prolyl 3-hydroxylation at Pro-944, Pro-707, and the C-terminal GPP repeat of the pNα1(II) chain, but Pro-986 remained fully hydroxylated. Furthermore, when P3H2 expression was turned off, as seen naturally in cultured SAOS-2 osteosarcoma cells, full 3Hyp occupancy at Pro-986 in α1(I) chains was unaffected, whereas 3-hydroxylation of residue Pro-944 in the α2(V) chain was largely lost, and 3-hydroxylation of Pro-707 in α2(V) and α2(I) chains were sharply reduced. The results imply that P3H2 has preferred substrate sequences among the classes of 3Hyp sites in clade A collagen chains.
Collapse
Affiliation(s)
- Russell J Fernandes
- Orthopaedic Research Laboratories, Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington 98195-6500.
| | - Alex W Farnand
- Orthopaedic Research Laboratories, Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington 98195-6500
| | - Geoffrey R Traeger
- Orthopaedic Research Laboratories, Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington 98195-6500
| | - Mary Ann Weis
- Orthopaedic Research Laboratories, Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington 98195-6500
| | - David R Eyre
- Orthopaedic Research Laboratories, Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington 98195-6500
| |
Collapse
|
11
|
Yu Z, Brodsky B, Inouye M. Dissecting a bacterial collagen domain from Streptococcus pyogenes: sequence and length-dependent variations in triple helix stability and folding. J Biol Chem 2011; 286:18960-8. [PMID: 21454494 DOI: 10.1074/jbc.m110.217422] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To better investigate the relationship between sequence, stability, and folding, the Streptococcus pyogenes collagenous domain CL (Gly-Xaa-Yaa)(79) was divided to create three recombinant triple helix subdomains A, B, and C of almost equal size with distinctive amino acid features: an A domain high in polar residues, a B domain containing the highest concentration of Pro residues, and a very highly charged C domain. Each segment was expressed as a monomer, a linear dimer, and a linear trimer fused with the trimerization domain (V domain) in Escherichia coli. All recombinant proteins studied formed stable triple helical structures, but the stability varied depending on the amino acid sequence in the A, B, and C segments and increased as the triple helix got longer. V-AAA was found to melt at a much lower temperature (31.0 °C) than V-ABC (V-CL), whereas V-BBB melted at almost the same temperature (∼36-37 °C). When heat-denatured, the V domain enhanced refolding for all of the constructs; however, the folding rate was affected by their amino acid sequences and became reduced for longer constructs. The folding rates of all the other constructs were lower than that of the natural V-ABC protein. Amino acid substitution mutations at all Pro residues in the C fragment dramatically decreased stability but increased the folding rate. These results indicate that the thermostability of the bacterial collagen is dominated by the most stable domain in the same manner as found with eukaryotic collagens.
Collapse
Affiliation(s)
- Zhuoxin Yu
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
12
|
Tarnowski M, Szydło A, Anioł J, Koryciak-Komarska H, Lesiak M, Gutmajster E, Sieroń AL, Kusz D. Optimization of genetic engineering and homologous recombination of collagen type I genes in rat bone marrow mesenchymal stem cells (MSC). Cell Reprogram 2010; 12:275-82. [PMID: 20698769 DOI: 10.1089/cell.2009.0084] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mutations in COL1A1 or COL1A2 genes lead to osteogenesis Imperfecta (OI) in humans. There are three possiblities to successfully treat OI including (1) gene therapy, (2) mesenchymal stem cell (MSC) therapy, or (3) a combination of both. The aim of this study was to develop a model for combined gene/cell OI therapy by targeting Col1a1 and Col1a2 genes with isogenic sequences from corresponding human genes in rat bone marrow (BM)-derived MSCs. The recombination efficacy was tested for five different rat-human-rat hybrid DNAs with rat fragments that were 1 to 4 kb long. For selection of transfected clones a neomycine resistance gene was cotransfected, and clones resistant to G418 (G418(+)) were recovered and screened for integration of specific gene loci in the rat genome. Over 90% of G418(+) clones correctly integrated the rat-human-rat hybrid DNAs, and both OI loci in the rat genome were targeted to a similar degree. Longer homologous sequences integrated into rat collagen genes approximately 10 times more efficiently. Based on our data the nonviral gene targeting technology could be potentially employed to repair collagen genes in OI patients.
Collapse
Affiliation(s)
- Maciej Tarnowski
- Department of General and Molecular Biology and Genetics, Medical University of Silesia, Katowice, Poland
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Nikolaeva TI, Kuznetsova SM, Tiktopulo EI. Does collagen microunfolding stimulate fibril formation? Biophysics (Nagoya-shi) 2009. [DOI: 10.1134/s0006350909060049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
14
|
Chung HJ, Jensen DA, Gawron K, Steplewski A, Fertala A. R992C (p.R1192C) Substitution in collagen II alters the structure of mutant molecules and induces the unfolded protein response. J Mol Biol 2009; 390:306-18. [PMID: 19433093 PMCID: PMC2749300 DOI: 10.1016/j.jmb.2009.05.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 04/30/2009] [Accepted: 05/05/2009] [Indexed: 11/18/2022]
Abstract
We investigated the molecular bases of spondyloepiphyseal dysplasia (SED) associated with the R992C (p.R1192C) substitution in collagen II. At the protein level, we analyzed the structure and integrity of mutant molecules, and at the cellular level, we specifically studied the effects of the presence of the R992C collagen II on the biological processes taking place in host cells. Our studies demonstrated that mutant collagen II molecules were characterized by altered electrophoretic mobility, relatively low thermostability, the presence of atypical disulfide bonds, and slow rates of secretion into the extracellular space. Analyses of cellular responses to the presence of the mutant molecules showed that excessive accumulation of thermolabile collagen II was associated with the activation of an "unfolded protein response" and an increase in apoptosis of host cells. Collectively, these data suggest that molecular mechanisms of SED may be driven not only by structural changes in the architecture of extracellular collagenous matrices, but also by intracellular processes activated by the presence of mutant collagen II molecules.
Collapse
Affiliation(s)
- Hye Jin Chung
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
15
|
Gevorkian SG, Allahverdyan AE, Gevorgyan DS, Simonian AL. Thermal (in)stability of type I collagen fibrils. PHYSICAL REVIEW LETTERS 2009; 102:048101. [PMID: 19257477 DOI: 10.1103/physrevlett.102.048101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2008] [Indexed: 05/27/2023]
Abstract
We measured the Young's modulus at temperatures ranging from 20 to 100 degrees C for a collagen fibril that is taken from a rat's tendon. The hydration change under heating and the damping decrement were measured as well. At physiological temperatures 25 to 45 degrees C, the Young's modulus decreases, which can be interpreted as an instability of the collagen. For temperatures between 45 and 80 degrees C, the Young's modulus first stabilizes and then increases when the temperature is increased. The hydrated water content and the damping decrement have strong maximums in the interval 70 to 80 degrees C indicating complex intermolecular structural changes in the fibril. All these effects disappear after heat-denaturation of the sample at 120 degrees C. Our main achievement is a five-stage mechanism by which the instability of a single collagen at physiological temperatures is compensated by the interaction between collagen molecules.
Collapse
|
16
|
Peng YY, Werkmeister JA, Vaughan PR, Ramshaw JAM. Constructs for the expression of repeating triple-helical protein domains. Biomed Mater 2008. [DOI: 10.1088/1748-6041/4/1/015006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Witecka J, Auguściak-Duma AM, Kruczek A, Szydło A, Lesiak M, Krzak M, Pietrzyk JJ, Männikkö M, Sieroń AL. Two novel COL1A1 mutations in patients with osteogenesis imperfecta (OI) affect the stability of the collagen type I triple-helix. J Appl Genet 2008; 49:283-95. [PMID: 18670065 DOI: 10.1007/bf03195625] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Osteogenesis imperfecta (OI) is a bone dysplasia caused by mutations in the COL1A1 and COL1A2 genes. Although the condition has been intensely studied for over 25 years and recently over 800 novel mutations have been published, the relation between the location of mutations and clinical manifestation is poorly understood. Here we report missense mutations in COL1A1 of several OI patients. Two novel mutations were found in the D1 period. One caused a substitution of glycine 200 by valine at the N-terminus of D1 in OI type I/IV, lowering collagen stability by 50% at 34 degrees C. The other one was a substitution of valine 349 by phenylalanine at the C-terminus of D1 in OI type I, lowering collagen stability at 37.5 degrees C. Two other mutations, reported before, changed amino residues in D4. One was a lethal substitution changing glycine 866 to serine in genetically identical twins with OI type II. That mutated amino acid was near the border of D3 and D4. The second mutation changed glycine 1040 to serine located at the border of D4 and D0.4, in a proband manifesting OI type III, and lowered collagen stability at 39 degrees C (2 degrees C lower than normal). Our results confirm the hypothesis on a critical role of the D1 and D4 regions in stabilization of the collagen triple-helix. The defect in D1 seemed to produce a milder clinical type of OI, whereas the defect in the C-terminal end of collagen type caused the more severe or lethal types of OI.
Collapse
Affiliation(s)
- Joanna Witecka
- Department of General and Molecular Biology and Genetics, Medical University of Silesia, Katowice, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Application of topologically constrained mini-proteins as ligands, substrates, and inhibitors. Methods Mol Biol 2008; 386:125-66. [PMID: 18604945 DOI: 10.1007/978-1-59745-430-8_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Protein-protein interactions are governed by a variety of structural features. The sequence specificities of such interactions are usually easier to establish than the "topological specificities," whereby interactions may be classified based on recognition of distinct three-dimensional structural motifs. Approaches to explore topological specificities have been based primarily on assembly of mini-proteins with well defined secondary, tertiary, and/or quarternary structures. The present chapter focuses on three approaches for constructing topologically well defined mini-proteins: template-assembled synthetic proteins (TASPs), disulfide-stabilized structures, and peptide-amphiphiles (PAs). Specific examples are given for applying each approach to explore topologically-dependent protein-protein interactions. TASPs are utilized to identify a metastatic melanoma receptor that binds to the alpha1(IV)1263-1277 region of basement membrane (type IV) collagen. A disulfide-stabilized structure incorporating a sarafotoxin (SRT) 6b model was examined as a matrix metalloproteinase (MMP)-3 inhibitor. PAs were developed as (a) fluorogenic triple-helical or polyPro II substrates for MMPs and aggrecanase members of the a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) family and (b) glycosylated and nonglycosylated ligands for metastatic melanoma cells. Topologically constrained mini-proteins have proved to be quite versatile, helping to define critical primary, secondary, and tertiary structural elements that modulate enzyme and receptor functions.
Collapse
|
19
|
Hintze V, Steplewski A, Ito H, Jensen DA, Rodeck U, Fertala A. Cells expressing partially unfolded R789C/p.R989C type II procollagen mutant associated with spondyloepiphyseal dysplasia undergo apoptosis. Hum Mutat 2008; 29:841-51. [PMID: 18383211 DOI: 10.1002/humu.20736] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Vera Hintze
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | |
Collapse
|
20
|
Makareeva E, Mertz EL, Kuznetsova NV, Sutter MB, DeRidder AM, Cabral WA, Barnes AM, McBride DJ, Marini JC, Leikin S. Structural heterogeneity of type I collagen triple helix and its role in osteogenesis imperfecta. J Biol Chem 2007; 283:4787-98. [PMID: 18073209 DOI: 10.1074/jbc.m705773200] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We investigated regions of different helical stability within human type I collagen and discussed their role in intermolecular interactions and osteogenesis imperfecta (OI). By differential scanning calorimetry and circular dichroism, we measured and mapped changes in the collagen melting temperature (DeltaTm) for 41 different Gly substitutions from 47 OI patients. In contrast to peptides, we found no correlations of DeltaTm with the identity of the substituting residue. Instead, we observed regular variations in DeltaTm with the substitution location in different triple helix regions. To relate the DeltaTm map to peptide-based stability predictions, we extracted the activation energy of local helix unfolding (DeltaG) from the reported peptide data. We constructed the DeltaG map and tested it by measuring the H-D exchange rate for glycine NH residues involved in interchain hydrogen bonds. Based on the DeltaTm and DeltaG maps, we delineated regional variations in the collagen triple helix stability. Two large, flexible regions deduced from the DeltaTm map aligned with the regions important for collagen fibril assembly and ligand binding. One of these regions also aligned with a lethal region for Gly substitutions in the alpha1(I) chain.
Collapse
Affiliation(s)
- Elena Makareeva
- Section on Physical Biochemistry, Bone and Extracellular Matrix Branch, NICHD, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Huang J, Wong Po Foo C, Kaplan DL. Biosynthesis and Applications of Silk‐like and Collagen‐like Proteins. POLYM REV 2007. [DOI: 10.1080/15583720601109560] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Baronas‐Lowell D, Lauer‐Fields JL, Fields GB. Defining the Roles of Collagen and Collagen‐Like Proteins Within the Proteome. J LIQ CHROMATOGR R T 2007. [DOI: 10.1081/jlc-120023245] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Diane Baronas‐Lowell
- a Department of Chemistry and Biochemistry , Florida Atlantic University , 777 Glades Road, Boca Raton , Florida , 33431‐0991 , USA
| | - Janelle L. Lauer‐Fields
- a Department of Chemistry and Biochemistry , Florida Atlantic University , 777 Glades Road, Boca Raton , Florida , 33431‐0991 , USA
| | - Gregg B. Fields
- a Department of Chemistry and Biochemistry , Florida Atlantic University , 777 Glades Road, Boca Raton , Florida , 33431‐0991 , USA
| |
Collapse
|
23
|
Lauer-Fields JL, Minond D, Sritharan T, Kashiwagi M, Nagase H, Fields GB. Substrate Conformation Modulates Aggrecanase (ADAMTS-4) Affinity and Sequence Specificity. J Biol Chem 2007; 282:142-50. [PMID: 17095512 DOI: 10.1074/jbc.m605236200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protease-substrate interactions are governed by a variety of structural features. Although the substrate sequence specificities of numerous proteases have been established, "topological specificities," whereby proteases may be classified based on recognition of distinct three-dimensional structural motifs, have not. The aggrecanase members of the ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family cleave a variety of proteins but do not seem to possess distinct sequence specificities. In the present study, the topological substrate specificity of ADAMTS-4 (aggrecanase-1) was examined using triple-helical or single-stranded poly(Pro) II helical peptides. Substrate topology modulated the affinity and sequence specificity of ADAMTS-4 with K(m) values indicating a preference for triple-helical structure. In turn, non-catalytic ADAMTS-4 domains were critical for hydrolysis of triple-helical and poly(Pro) II helical substrates. Comparison of ADAMTS-4 with MMP-1 (collagenase 1), MMP-13 (collagenase 3), trypsin, and thermolysin using triple-helical peptide (THP) and single-stranded peptide (SSP) substrates demonstrated that all five proteases possessed efficient "triple-helical peptidase" activity and fell into one of two categories: (k(cat)/K(m))(SSP) > (k(cat)/K(m))(THP) (thermolysin, trypsin, and MMP-13) or (k(cat)/K(m))(THP) > or = (k(cat)/K(m))(SSP) and (K(m))(SSP) > (K(m))(THP) (MMP-1 and ADAMTS-4). Overall these results suggest that topological specificity may be a guiding principle for protease behavior and can be utilized to design specific substrates and inhibitors. The triple-helical and single-stranded poly(Pro) II helical peptides represent the first synthetic substrates successfully designed for aggrecanases.
Collapse
Affiliation(s)
- Janelle L Lauer-Fields
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431-0991, USA
| | | | | | | | | | | |
Collapse
|
24
|
Steplewski A, Hintze V, Fertala A. Molecular basis of organization of collagen fibrils. J Struct Biol 2006; 157:297-307. [PMID: 17126032 DOI: 10.1016/j.jsb.2006.10.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 09/25/2006] [Accepted: 10/05/2006] [Indexed: 11/29/2022]
Abstract
The collagen fibrils are formed by self-assembly of individual collagen molecules, but the mechanism that drives their orderly packing during fibril formation is not clearly defined. To identify structural determinants critical for the D-periodic alignment of collagen molecules we employed three sets of genetically engineered collagen II variants: (i) a set in which domains corresponding to the specific D periods have been purposely deleted, (ii) a set of collagen variants consisting of tandem repeats of a specific D period, and (iii) a set lacking definite fragments of the D4 period. All collagen variants were analyzed for their ability to assemble into D-periodic fibrils. Even though all genetically engineered collagen variants differ significantly from the wild-type collagen II, most of them were able to form filamentous structures. The D-periodic banding pattern, an indication of the staggered arrangement of collagen monomers, however, occurred only when the D1, D4, and D0.4 domains of interacting collagen monomers could potentially cluster together to form a triad through telopeptide-mediated binding. Our results identify a critical step in the formation of collagenous matrices and provide experimental evidence for the active involvement of the N-terminal and C-terminal regions of fibrillar collagens in this process.
Collapse
Affiliation(s)
- Andrzej Steplewski
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, and Jefferson Institute of Molecular Medicine, Thomas Jefferson University, BLSB, Room 424, 233 S. 10th Street, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
25
|
Ito H, Steplewski A, Alabyeva T, Fertala A. Testing the utility of rationally engineered recombinant collagen-like proteins for applications in tissue engineering. J Biomed Mater Res A 2006; 76:551-60. [PMID: 16278869 DOI: 10.1002/jbm.a.30551] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Collagens are attractive proteins as materials for tissue engineering. Over the last decade, significant progress has been made in developing technologies for large-scale production of native-like human recombinant collagens. Yet, the rational design of customized collagen-like proteins for smart biomaterials to enhance the quality of engineered tissues has not been explored. We mapped the D4 domain of human collagen II as most critical for supporting migration of chondrocytes and used this information to genetically engineer a collagen-like protein consisting of tandem repeats of the D4 domain (mD4 collagen). This novel collagen has been utilized to fabricate a scaffold for support of chondrocytes. We determined superior qualities of cartilaginous constructs created by chondrocytes cultured in scaffolds containing the mD4 collagen in comparison to those formed by chondrocytes cultured in bare scaffolds or those coated with wild-type collagen II. Our results are a first attempt to rationally engineer collagen-like proteins with characteristics tailored for specific needs of cartilage engineering and provide a basis for rational engineering of similar proteins for a variety of biomedical applications.
Collapse
Affiliation(s)
- Hidetoshi Ito
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
26
|
Makareeva E, Cabral WA, Marini JC, Leikin S. Molecular Mechanism of α1(I)-Osteogenesis Imperfecta/Ehlers-Danlos Syndrome. J Biol Chem 2006; 281:6463-70. [PMID: 16407265 DOI: 10.1074/jbc.m511830200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We demonstrate that 85 N-terminal amino acids of the alpha1(I) chain participate in a highly stable folding domain, acting as the stabilizing anchor for the amino end of the type I collagen triple helix. This anchor region is bordered by a microunfolding region, 15 amino acids in each chain, which include no proline or hydroxyproline residues and contain a chymotrypsin cleavage site. Glycine substitutions and amino acid deletions within the N-anchor domain induce its reversible unfolding above 34 degrees C. The overall triple helix denaturation temperature is reduced by 5-6 degrees C, similar to complete N-anchor removal. N-propeptide partially restores the stability of mutant procollagen but not sufficiently to prevent N-anchor unfolding and a conformational change at the N-propeptide cleavage site. The ensuing failure of N-proteinase to cleave at the misfolded site leads to incorporation of pN-collagen into fibrils. Similar, but weaker, effects are caused by G88E substitution in the adjacent triplet, which appears to alter N-anchor structure as well. As in Ehlers-Danlos syndrome (EDS) VIIA/B, fibrils containing pN-collagen are thinner and weaker causing EDS-like laxity of large and small joints and paraspinal ligaments. However, distinct structural consequences of N-anchor destabilization result in a distinct alpha1(I)-osteogenesis imperfecta (OI)/EDS phenotype.
Collapse
Affiliation(s)
- Elena Makareeva
- Section on Physical Biochemistry, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
27
|
Ito H, Rucker E, Steplewski A, McAdams E, Brittingham RJ, Alabyeva T, Fertala A. Guilty by association: some collagen II mutants alter the formation of ECM as a result of atypical interaction with fibronectin. J Mol Biol 2005; 352:382-95. [PMID: 16083907 DOI: 10.1016/j.jmb.2005.07.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Revised: 06/30/2005] [Accepted: 07/11/2005] [Indexed: 11/16/2022]
Abstract
Among the structural components of extracellular matrices (ECM) fibrillar collagens play a critical role, and single amino acid substitutions in these proteins lead to pathological changes in tissues in which they are expressed. Employing a biologically relevant experimental model consisting of cells expressing R75C, R519C, R789C, and G853E procollagen II mutants, we found that the R789C mutation causing a decrease in the thermostability of collagen not only alters individual collagen molecules and collagen fibrils, but also has a negative impact on fibronectin. We propose that thermolabile collagen molecules are able to bind to fibronectin, thereby altering intracellular and extracellular processes in which fibronectin takes part, and we postulate that such an atypical interaction could change the architecture of the ECM of affected tissues in patients harboring mutations in genes encoding fibrillar collagens.
Collapse
Affiliation(s)
- Hidetoshi Ito
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Leitinger B, Steplewski A, Fertala A. The D2 period of collagen II contains a specific binding site for the human discoidin domain receptor, DDR2. J Mol Biol 2005; 344:993-1003. [PMID: 15544808 DOI: 10.1016/j.jmb.2004.09.089] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 09/28/2004] [Accepted: 09/28/2004] [Indexed: 11/23/2022]
Abstract
The human discoidin domain receptors (DDRs), DDR1 and DDR2, are expressed widely and, uniquely among receptor tyrosine kinases, activated by the extracellular matrix protein collagen. This activation is due to a direct interaction of collagen with the DDR discoidin domain. Here, we localised a specific DDR2 binding site on the triple-helical region of collagen II. Collagen II was found to be a much better ligand for DDR2 than for DDR1. As expected, DDR2 binding to collagen II was dependent on triple-helical collagen and was mediated by the DDR2 discoidin domain. Collagen II served as a potent stimulator of DDR2 autophosphorylation, the first step in transmembrane signalling. To map the DDR2 binding site(s) on collagen II, we used recombinant collagen II variants with specific deletions of one of the four repeating D periods. We found that the D2 period of collagen II was essential for DDR2 binding and receptor autophosphorylation, whereas the D3 and D4 periods were dispensable. The DDR2 binding site on collagen II was further defined by recombinant collagen II-like proteins consisting predominantly of tandem repeats of the D2 or D4 period. The D2 construct, but not the D4 construct, mediated DDR2 binding and receptor autophosphorylation, demonstrating that the D2 period of collagen II harbours a specific DDR2 recognition site. The discovery of a site-specific interaction of DDR2 with collagen II gives novel insight into the nature of the interaction of collagen II with matrix receptors.
Collapse
Affiliation(s)
- Birgit Leitinger
- Department of Medicine, The Sackler Institute for Muscular Skeletal Research, University College London, 5 University Street, London WC1E 6JJ, UK.
| | | | | |
Collapse
|
29
|
Abstract
Collagens are the most abundant proteins of vertebrates and they provide mechanical and supportive functions in a wide range of connective tissues. Knowledge of the mechanical properties of single collagen molecules is essential in studying the self-assembly of collagen, the interaction between cells and extracellular matrix, the etiology of tissue degeneration and mechanism of regeneration, and the relationship between the structures and mechanical properties of tissues. Here we stretched single type II collagen molecules in neutral pH solution using optical tweezers. The molecular parameters of collagen were obtained by fitting force-extension curves into worm-like chain elasticity model. The molecule length of type II collagen monomer was 295.8 nm. The persistence length of type II collagen monomer was 11.2 nm. These observations indicate that collagen molecules are flexible rather than rigid rod molecules at neutral pH solution.
Collapse
Affiliation(s)
- Yu-Long Sun
- Department of Orthopedic Surgery, Biomechanics Laboratory, Mayo Clinic Rochester, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
30
|
Steplewski A, Majsterek I, McAdams E, Rucker E, Brittingham RJ, Ito H, Hirai K, Adachi E, Jimenez SA, Fertala A. Thermostability Gradient in the Collagen Triple Helix Reveals its Multi-domain Structure. J Mol Biol 2004; 338:989-98. [PMID: 15111062 DOI: 10.1016/j.jmb.2004.03.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 03/04/2004] [Accepted: 03/08/2004] [Indexed: 11/25/2022]
Abstract
A triple-helical conformation and stability at physiological temperature are critical for the mechanical and biological functions of the fibril-forming collagens. Here, we characterized the role of consecutive domains of collagen II in stabilizing the triple helix. Analysis of melting temperatures of genetically engineered collagen-like proteins consisting of tandem repeats of the D1, D2, D3 or D4 collagen II periods revealed the presence of a gradient of thermostability along the collagen molecule with thermolabile N-terminal domains and thermostable C-terminal domains. These results imply a multi-domain character of the collagen triple helix. Assays of thermostabilities of the Arg75Cys and Arg789Cys collagen II mutants suggest that, in contrast to the thermostable domains, the thermolabile domains are able to accommodate amino acid substitutions without altering the thermostability of the entire collagen molecule.
Collapse
Affiliation(s)
- Andrzej Steplewski
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Majsterek I, McAdams E, Adachi E, Dhume ST, Fertala A. Prospects and limitations of the rational engineering of fibrillar collagens. Protein Sci 2003; 12:2063-72. [PMID: 12931004 PMCID: PMC2324002 DOI: 10.1110/ps.0385103] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Recombinant collagens are attractive proteins for a number of biomedical applications. To date, significant progress was made in the large-scale production of nonmodified recombinant collagens; however, engineering of novel collagen-like proteins according to customized specifications has not been addressed. Herein we investigated the possibility of rational engineering of collagen-like proteins with specifically assigned characteristics. We have genetically engineered two DNA constructs encoding multi-D4 collagens defined as collagen-like proteins, consisting primarily of a tandem of the collagen II D4 periods that correspond to the biologically active region. We have also attempted to decrease enzymatic degradation of novel collagen by mutating a matrix metalloproteinase 1 cleavage site present in the D4 period. We demonstrated that the recombinant collagen alpha-chains consisting predominantly of the D4 period but lacking most of the other D periods found in native collagen fold into a typical collagen triple helix, and the novel procollagens are correctly processed by procollagen N-proteinase and procollagen C-proteinase. The nonmutated multi-D4 collagen had a normal melting point of 41 degrees C and a similar carbohydrate content as that of control. In contrast, the mutant multi-D4 collagen had a markedly lower thermostability of 36 degrees C and a significantly higher carbohydrate content. Both collagens were cleaved at multiple sites by matrix metalloproteinase 1, but the rate of hydrolysis of the mutant multi-D4 collagen was lower. These results provide a basis for the rational engineering of collagenous proteins and identifying any undesirable consequences of altering the collagenous amino acid sequences.
Collapse
Affiliation(s)
- Ireneusz Majsterek
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
32
|
Sun YL, Luo ZP, Fertala A, An KN. Direct quantification of the flexibility of type I collagen monomer. Biochem Biophys Res Commun 2002; 295:382-6. [PMID: 12150960 DOI: 10.1016/s0006-291x(02)00685-x] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Collagens are the most abundant structural proteins found in the extracellular matrix of vertebrates. Knowledge of the mechanical behavior of collagen monomers is essential for understanding the mechanical properties of collagen fibrils that constitute the main architectural framework of skin, bone, cartilage, and other connective tissues. In this study, the flexibility of type I collagen monomer was studied by stretching type I collagen monomers directly. The force-extension relationship was measured and analyzed by fitting the data into a worm-like chain elasticity model. The persistence length of collagen I monomer was determined to be 14.5 nm and the contour length was 309 nm. The results confirm that type I collagen monomer is flexible rather than rigid, rod-like molecule. Such flexibility may possibly be a consequence of the micro-unfolding of discrete domains of single collagen molecule.
Collapse
Affiliation(s)
- Yu-Long Sun
- Biomechanics Laboratory, Department of Orthopedic Surgery, Mayo Clinic/Mayo Foundation, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
33
|
Sieron AL, Louneva N, Fertala A. Site-specific interaction of bone morphogenetic protein 2 with procollagen II. Cytokine 2002; 18:214-21. [PMID: 12126644 DOI: 10.1006/cyto.2002.1035] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bone morphogenetic proteins (BMPs) play a critical role in embryo development, organogenesis, and regeneration of damaged tissues. Biological activity of BMPs depends on their local concentration, which is regulated by intracellular enzymatic processing of pro-BMPs, and then the binding of secreted BMPs to antagonizing extracellular proteins. It has been suggested that BMPs interact with structural proteins of the extracellular matrix, but this process is poorly understood. To study interactions of BMPs with fibrillar collagens in detail we expressed recombinant procollagen II variants in which specific domains that correspond to the D-periods were deleted. Subsequently, the procollagen II variants were used in biosensor and immuno-precipitation binding assays to map the regions of procollagen II with a high affinity for the BMP-2. Our data suggest that interaction of BMP-2 with procollagen II is site-specific, and that the high-affinity binding site is located in the D4-period of the collagen triple helix. We hypothesize that the binding of BMP-2 to collagen II reflects a general mechanism of interaction between the fibrillar collagens and morphogens that belong to the transforming growth factor (TGF)-beta superfamily.
Collapse
Affiliation(s)
- Aleksander L Sieron
- Department of General and Molecular Biology and Genetics, Medical University of Silesia, 40-752 Katowice, Poland
| | | | | |
Collapse
|
34
|
Cabral WA, Fertala A, Green LK, Korkko J, Forlino A, Marini JC. Procollagen with skipping of alpha 1(I) exon 41 has lower binding affinity for alpha 1(I) C-telopeptide, impaired in vitro fibrillogenesis, and altered fibril morphology. J Biol Chem 2002; 277:4215-22. [PMID: 11706004 DOI: 10.1074/jbc.m109048200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous in vitro data on type I collagen self-assembly into fibrils suggested that the amino acid 776-796 region of the alpha1(I) chain is crucial for fibril formation because it serves as the recognition site for the telopeptide of a docking collagen monomer. We used a natural collagen mutation with a deletion of amino acids 766-801 to confirm the importance of this region for collagen fibril formation. The proband has type III osteogenesis imperfecta and is heterozygous for a COL1A1 IVS 41 A(+4) --> C substitution. The intronic mutation causes splicing of exon 41, confirmed by sequencing of normal and shorter reverse transcriptase-PCR products. Reverse transcriptase-PCR using RNA from proband dermal fibroblasts and clonal cell lines showed the mutant cDNA was about 15% of total alpha1(I) cDNA. The mutant transcript is translated; structurally abnormal alpha chains are demonstrated in the cell layer of proband fibroblasts by SDS-urea-PAGE. The proportion of mutant chains in the secreted procollagen was determined to be 10% by resistance to digestion with MMP-1, since chains lacking exon 41 are missing the vertebral collagenase cleavage site. Secreted proband collagen was used for analysis of kinetics of binding of alpha1(I) C-telopeptide using an optical biosensor. Telopeptide had slower association and faster dissociation from proband than from normal collagen. Purified proband pC-collagen was used to study fibril formation. The presence of the mutant molecules decreases the rate of fibril formation. The fibrils formed in the presence of 10-15% mutant molecules have strikingly increased length compared with normal collagen, but are well organized, as demonstrated by D-periodicity. These results suggest that some collagen molecules containing the mutant chain are incorporated into fibrils and that the absence of the telopeptide binding region from even a small portion of the monomers interferes with fibril growth. Both abnormal fibrils and slower remodeling may contribute to the severe phenotype.in
Collapse
Affiliation(s)
- Wayne A Cabral
- Section on Connective Tissue Disorders, Heritable Disorders Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
35
|
Leikina E, Mertts MV, Kuznetsova N, Leikin S. Type I collagen is thermally unstable at body temperature. Proc Natl Acad Sci U S A 2002; 99:1314-8. [PMID: 11805290 PMCID: PMC122187 DOI: 10.1073/pnas.032307099] [Citation(s) in RCA: 373] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2001] [Indexed: 11/18/2022] Open
Abstract
Measured by ultra-slow scanning calorimetry and isothermal circular dichroism, human lung collagen monomers denature at 37 degrees C within a couple of days. Their unfolding rate decreases exponentially at lower temperature, but complete unfolding is observed even below 36 degrees C. Refolding of full-length, native collagen triple helices does occur, but only below 30 degrees C. Thus, contrary to the widely held belief, the energetically preferred conformation of the main protein of bone and skin in physiological solution is a random coil rather than a triple helix. These observations suggest that once secreted from cells collagen helices would begin to unfold. We argue that initial microunfolding of their least stable domains would trigger self-assembly of fibers where the helices are protected from complete unfolding. Our data support an earlier hypothesis that in fibers collagen helices may melt and refold locally when needed, giving fibers their strength and elasticity. Apparently, Nature adjusts collagen hydroxyproline content to ensure that the melting temperature of triple helical monomers is several degrees below rather than above body temperature.
Collapse
Affiliation(s)
- E Leikina
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
36
|
Badciong JC, Otto JM, Waring GL. The functions of the multiproduct and rapidly evolving dec-1 eggshell gene are conserved between evolutionarily distant species of Drosophila. Genetics 2001; 159:1089-102. [PMID: 11729155 PMCID: PMC1461859 DOI: 10.1093/genetics/159.3.1089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Drosophila dec-1 gene encodes multiple proteins that are required for female fertility and proper eggshell morphogenesis. Genetic and immunolocalization data suggest that the different DEC-1 proteins are functionally distinct. To identify regions within the proteins with potential biological significance, we cloned and sequenced the D. yakuba and D. virilis dec-1 homologs. Interspecies comparisons of the predicted translation products revealed rapidly evolving sequences punctuated by blocks of conserved amino acids. Despite extensive amino acid variability, the proteins produced by the different dec-1 homologs were functionally interchangeable. The introduction of transgenes containing either the D. yakuba or the D. virilis dec-1 open reading frames into a D. melanogaster DEC-1 protein null mutant was sufficient to restore female fertility and wild-type eggshell morphology. Normal expression and extracellular processing of the DEC-1 proteins was correlated with the phenotypic rescue. The nature of the conserved features highlighted by the evolutionary comparison and the molecular resemblance of some of these features to those found in other extracellular proteins suggests functional correlates for some of the multiple DEC-1 derivatives.
Collapse
Affiliation(s)
- J C Badciong
- Department of Biology, Marquette University, Milwaukee, Wisconsin 53233, USA
| | | | | |
Collapse
|
37
|
Fertala A, Han WB, Ko FK. Mapping critical sites in collagen II for rational design of gene-engineered proteins for cell-supporting materials. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2001; 57:48-58. [PMID: 11416848 DOI: 10.1002/1097-4636(200110)57:1<48::aid-jbm1140>3.0.co;2-s] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Collagen II is the most abundant protein of cartilage and forms a network of fibrils extended by proteoglycans that enables cartilage to resist pressure. The surface of the collagen fibril serves as a platform for the attachment of collagen IX, growth factors, and cells. In this study we examined the mechanism of the interaction of chondrocytes with recombinant versions of procollagen II, in which one of the four blocks of 234 amino acids that define repeating D periods of the collagen triple helix has been deleted. Analysis of the attachment of chondrocytes to collagen II variants with deleted D periods indicated that the collagen II monomer contains randomly distributed sites critical for cell binding. However, as was shown by spreading and migration assays, the D4 period, which is between residues 703 to 936, contains amino acids critical for cell motility. We also showed that binding, spreading, and migration of chondrocytes through three-dimensional nanofibrillar collagenous matrices are controlled by an interaction of the collagen triple helix with beta1 integrins. The results of this study provide a basis for the rational design of a scaffold containing genetically engineered collagen with a high density of specific sites of interaction.
Collapse
Affiliation(s)
- A Fertala
- Center for Gene Therapy, MCP Hahnemann University, Philadelphia, Pennsylvania 19102, USA.
| | | | | |
Collapse
|
38
|
Tasanen K, Eble JA, Aumailley M, Schumann H, Baetge J, Tu H, Bruckner P, Bruckner-Tuderman L. Collagen XVII is destabilized by a glycine substitution mutation in the cell adhesion domain Col15. J Biol Chem 2000; 275:3093-9. [PMID: 10652291 DOI: 10.1074/jbc.275.5.3093] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Collagen XVII is a hemidesmosomal transmembrane molecule important for epithelial adhesion in the skin. It exists in two forms, as a full-length protein and as a soluble ectodomain that is shed from the keratinocyte surface by furin-mediated proteolysis. To obtain information on the conformation and the functions of this unusual collagen, its largest collagenous domain, Col15, was expressed in a eukaryotic episomal expression system and purified by DEAE and fast protein liquid- Mono S chromatography. The protein was triple-helical (T(m) of 26.5 degrees C) when produced in cultures containing ascorbic acid. When the vitamin supply was limited, the 4-hydroxyproline content was reduced from 74 to 9%, which, in turn, resulted in a drastic reduction of the stability of the triple helix. The glycine substitution mutation G627V associated with junctional epidermolysis bullosa, a human blistering skin disease, also had a striking effect on thermal stability of rCol15 causing partial unfolding already at 4 degrees C. Col15 promoted cell adhesion of epithelial and fibroblastic cell lines with a beta1 integrin-mediated mechanism. In concert with this, in acquired autoimmune blistering skin diseases, circulating IgG and IgA autoantibodies were found to target rCol15r.
Collapse
Affiliation(s)
- K Tasanen
- Department of Dermatology, University of Münster, 48149 Münster, Germany
| | | | | | | | | | | | | | | |
Collapse
|