1
|
Old Proteins in Man: A Field in its Infancy. Trends Biochem Sci 2016; 41:654-664. [PMID: 27426990 DOI: 10.1016/j.tibs.2016.06.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/03/2016] [Accepted: 06/08/2016] [Indexed: 12/12/2022]
Abstract
It has only recently been appreciated that the human body contains many long-lived proteins (LLPs). Their gradual degradation over time contributes to human aging and probably also to a range of age-related disorders. Indeed, the role of progressive damage of proteins in aging may be indicated by the fact that many neurological diseases do not appear until after middle age. A major factor responsible for the deterioration of old proteins is the spontaneous breakdown of susceptible amino acid residues resulting in racemization, truncation, deamidation, and crosslinking. When proteins decompose in this way, their structures and functions may be altered and novel epitopes can be formed that can induce an autoimmune response.
Collapse
|
2
|
Abstract
Three theories of regeneration dominate neuroscience today, all purporting to explain why the adult central nervous system (CNS) cannot regenerate. One theory proposes that Nogo, a molecule expressed by myelin, prevents axonal growth. The second theory emphasizes the role of glial scars. The third theory proposes that chondroitin sulfate proteoglycans (CSPGs) prevent axon growth. Blockade of Nogo, CSPG, and their receptors indeed can stop axon growth in vitro and improve functional recovery in animal spinal cord injury (SCI) models. These therapies also increase sprouting of surviving axons and plasticity. However, many investigators have reported regenerating spinal tracts without eliminating Nogo, glial scar, or CSPG. For example, many motor and sensory axons grow spontaneously in contused spinal cords, crossing gliotic tissue and white matter surrounding the injury site. Sensory axons grow long distances in injured dorsal columns after peripheral nerve lesions. Cell transplants and treatments that increase cAMP and neurotrophins stimulate motor and sensory axons to cross glial scars and to grow long distances in white matter. Genetic studies deleting all members of the Nogo family and even the Nogo receptor do not always improve regeneration in mice. A recent study reported that suppressing the phosphatase and tensin homolog (PTEN) gene promotes prolific corticospinal tract regeneration. These findings cannot be explained by the current theories proposing that Nogo and glial scars prevent regeneration. Spinal axons clearly can and will grow through glial scars and Nogo-expressing tissue under some circumstances. The observation that deleting PTEN allows corticospinal tract regeneration indicates that the PTEN/AKT/mTOR pathway regulates axonal growth. Finally, many other factors stimulate spinal axonal growth, including conditioning lesions, cAMP, glycogen synthetase kinase inhibition, and neurotrophins. To explain these disparate regenerative phenomena, I propose that the spinal cord has evolved regenerative mechanisms that are normally suppressed by multiple extrinsic and intrinsic factors but can be activated by injury, mediated by the PTEN/AKT/mTOR, cAMP, and GSK3b pathways, to stimulate neural growth and proliferation.
Collapse
Affiliation(s)
- Wise Young
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
3
|
Bottegoni C, Muzzarelli RA, Giovannini F, Busilacchi A, Gigante A. Oral chondroprotection with nutraceuticals made of chondroitin sulphate plus glucosamine sulphate in osteoarthritis. Carbohydr Polym 2014; 109:126-38. [DOI: 10.1016/j.carbpol.2014.03.033] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 03/01/2014] [Accepted: 03/04/2014] [Indexed: 12/13/2022]
|
4
|
Inoue K, Hosaka D, Mochizuki N, Akatsu H, Tsutsumiuchi K, Hashizume Y, Matsukawa N, Yamamoto T, Toyo'oka T. Simultaneous determination of post-translational racemization and isomerization of N-terminal amyloid-β in Alzheimer's brain tissues by covalent chiral derivatized ultraperformance liquid chromatography tandem mass spectrometry. Anal Chem 2013; 86:797-804. [PMID: 24283798 DOI: 10.1021/ac403315h] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Typical markers of protein aging are spontaneous post-translational modifications such as amino acid racemization (AAR) and amino acid isomerization (AAI) during the degradation of peptides. The post-translational AAR and AAI could significantly induce the density and localization of plaque deposition in brain tissues. Alzheimer's disease (AD) is reliably related to the formation and aggregation of amyloid-β peptide (Aβ) plaques in the human brain. No current analytical methods can simultaneously determine AAR and AAI during the degradation of Aβ from AD patients. We now report a covalent chiral derivatized ultraperformance liquid chromatography tandem mass spectrometry (CCD-UPLC-MS/MS) method for the determination of post-translational AAR and AAI of N-terminal Aβ (N-Aβ1-5) in human brain tissues. When subjected to tryptic N-Aβ1-5 from post-translationally modified natural Aβ in focal brain tissues by the CCD procedure, it was monitored at m/z 989.6→637.0/678.9 during electrospray collision-induced dissociation. These N-Aβ1-5 fragments with l-aspartic acid (l-Asp), d-Asp, l-isoAsp, and d-isoAsp could be separated using the UPLC system with a conventional reversed-phase column and mobile phase. The quantification of these peptides was determined using a stable isotope [(15)N]-labeled Aβ1-40 internal standard. The CCD-UPLC-MS/MS assay of potential N-Aβ1-5 allowed for the discovery of the present and ratio levels of these N-Aβ1-5 sequences with l-Asp, d-Asp, l-isoAsp, and d-isoAsp.
Collapse
Affiliation(s)
- Koichi Inoue
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka , Shizuoka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Calabrese AN, Markulic K, Musgrave IF, Guo H, Zhang L, Bowie JH. Structural and activity changes in three bioactive anuran peptides when Asp is replaced by isoAsp. Peptides 2012; 38:427-36. [PMID: 23069634 DOI: 10.1016/j.peptides.2012.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 10/04/2012] [Accepted: 10/04/2012] [Indexed: 12/12/2022]
Abstract
The Asp and isoAsp isomers of three bioactive peptides, Crinia angiotensin 11 [APGDRIYHPF(OH)], uperin 1.1 [pEADPNAFYGLM(NH(2))] and citropin 1.1 [GLFDVIKKVASVIGGL(NH(2))] were tested for changes in (i) susceptibility towards proteolytic cleavage, (ii) activity (smooth muscle activity for Crinia angiotensin 11 and uperin 1.1 isomers, and antimicrobial activity for the two isomers of citropin 1.1), and (iii) 3D structures in water, trifluoroethanol-d(3)/water (1:1) and DPC micelles as determined by 2D nuclear magnetic resonance spectroscopy. Proteolytic cleavage with trypsin was identical for each pair of Asp/isoAsp isomers. Cleavage with chymotrypsin was the same for the Crinia angiotensin and uperin 1.1 isomeric pairs, but different for the two Asp/isoAsp citropin 1.1 isomers. Chymotrypsin cleaved at Phe3 (adjacent to Asp4) for citropin 1.1, but not at Phe3 (adjacent to isoAsp4) for isoAsp citropin 1.1. The smooth muscle activity of the isoAsp isomer of Crinia angiotensin 11 was less than that of the Asp isomer. The smooth muscle activity of isoAsp3-uperin 1.1 is greater than that of the Asp isomer at low concentration (<10(-9)M) but no different from the Asp isomer at concentrations>10(-9) M. Citropin 1.1 is a wide-spectrum antibiotic against Gram positive organisms, while the isoAsp isomer is inactive against the test pathogens Staphylococcus aureus and Bacillus subtilis. The observed changes in activity are accompanied by changes in the 3D structures of isomers as determined by 2D nuclear magnetic resonance spectroscopy.
Collapse
Affiliation(s)
- Antonio N Calabrese
- Department of Chemistry, School of Chemistry and Physics, The University of Adelaide, South Australia 5005, Australia
| | | | | | | | | | | |
Collapse
|
6
|
Hooi MYS, Raftery MJ, Truscott RJW. Racemization of two proteins over our lifespan: deamidation of asparagine 76 in γS crystallin is greater in cataract than in normal lenses across the age range. Invest Ophthalmol Vis Sci 2012; 53:3554-61. [PMID: 22531704 DOI: 10.1167/iovs.11-9085] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Long-lived proteins are widespread in man, yet little is known about the processes that affect their function over time, or their role in age-related diseases. METHODS Racemization of two proteins from normal and cataract human lenses were compared with age using tryptic digestion and LC/mass spectrometry. Asp 151 in αA crystallin and Asn 76 in γS crystallin were studied. RESULTS Age-dependent profiles for the two proteins from normal lenses were different. In neither protein did the modifications increase linearly with age. For αA crystallin, racemization occurred most rapidly during the first 15 years of life, with approximately half of L-Asp 151 converted to D-isoAsp, L-isoAsp, and D-Asp in a ratio of 3:1:0.5. Values then changed little. By contrast, racemization of Asn 76 in γS crystallin was slow until age 15, with isoAsp accounting for only 5%. Values remained relatively constant until age 40 when a linear increase (1%/year) took place. When cataract lenses were compared with age-matched normal lenses, there were marked differences in the time courses of the two crystallins. For αA crystallin, there was no significant difference in Asp 151 racemization between cataract and normal lenses. By contrast, in γS crystallin the degree of conversion of Asn 76 to isoAsp in cataract lenses was approximately double that of normals at every age. CONCLUSIONS Modification of Asn and Asp over time may contribute to denaturation of proteins in the human lens. An accelerated rate of deamidation/racemization at selected sites in proteins, such as γS crystallin, may contribute to cataract formation.
Collapse
Affiliation(s)
- Michelle Yu Sung Hooi
- Save Sight Institute, Sydney Eye Hospital, University of Sydney, Sydney, New South Wales, Australia
| | | | | |
Collapse
|
7
|
Alzheimer's disease and amyloid beta-peptide deposition in the brain: a matter of 'aging'? Biochem Soc Trans 2010; 38:539-44. [PMID: 20298218 DOI: 10.1042/bst0380539] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Biomolecules can experience aging processes that limit their long-term functionality in organisms. Typical markers of protein aging are spontaneous chemical modifications, such as AAR (amino acid racemization) and AAI (amino acid isomerization), mainly involving aspartate and asparagine residues. Since these modifications may affect folding and turnover, they reduce protein functionality over time and may be linked to pathological conditions. The present mini-review describes evidence of AAR and AAI involvement in the misfolding and brain accumulation of Abeta (amyloid beta-peptide), a central event in AD (Alzheimer's disease) synaptic dysfunctions. Structural alterations introduced by site-specific modifications linked to protein aging may affect Abeta production, polymerization and clearance, and therefore play a pivotal role in the pathogenesis of sporadic and genetic forms of AD. Early changes associated with molecular aging also have significant long-term consequences for Abeta folding and turnover. New fast, reproducible and accurate methods for the screening of protein aging markers in biological samples may contribute to improve diagnostic and therapeutic approaches in AD.
Collapse
|
8
|
Zanfardino A, Restaino OF, Notomista E, Cimini D, Schiraldi C, De Rosa M, De Felice M, Varcamonti M. Isolation of an Escherichia coli K4 kfoC mutant over-producing capsular chondroitin. Microb Cell Fact 2010; 9:34. [PMID: 20478023 PMCID: PMC2889854 DOI: 10.1186/1475-2859-9-34] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 05/17/2010] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Chondroitin sulphate is a complex polysaccharide having important structural and protective functions in animal tissues. Extracted from animals, this compound is used as a human anti-inflammatory drug. Among bacteria, Escherichia coli K4 produces a capsule containing a non-sulphate chondroitin and its development may provide an efficient and cheap fermentative production of the polysaccharide. RESULTS A random N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis was performed on E. coli K4 to isolate mutants showing an increased production of chondroitin. Several mutants were isolated, one of which, here named VZ15, produced about 80% more chondroitin than the wild type E. coli. We found that the mutant has a missense mutation in the codon 313 of kfoC, the gene encoding chondroitin polymerase (K4CP), with a change from arginine to glutamine. A docking analysis to explain the increased productivity of the K4CP enzyme is presented. CONCLUSION The enhanced chondroitin production by the E. coli K4 mutant reported here shows the validity of the strain improvement strategy for more cost-friendly fermentative processes in the production of this pharmaceutically important but so-far expensive polysaccharide.
Collapse
Affiliation(s)
- Anna Zanfardino
- Department of Structural and Functional Biology, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Sagert J, Waite JH. Hyperunstable matrix proteins in the byssus of Mytilus galloprovincialis. ACTA ACUST UNITED AC 2009; 212:2224-36. [PMID: 19561212 DOI: 10.1242/jeb.029686] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The marine mussel Mytilus galloprovincialis is tethered to rocks in the intertidal zone by a holdfast known as the byssus. Functioning as a shock absorber, the byssus is composed of threads, the primary molecular components of which are collagen-containing proteins (preCOLs) that largely dictate the higher order self-assembly and mechanical properties of byssal threads. The threads contain additional matrix components that separate and perhaps lubricate the collagenous microfibrils during deformation in tension. In this study, the thread matrix proteins (TMPs), a glycine-, tyrosine- and asparagine-rich protein family, were shown to possess unique repeated sequence motifs, significant transcriptional heterogeneity and were distributed throughout the byssal thread. Deamidation was shown to occur at a significant rate in a recombinant TMP and in the byssal thread as a function of time. Furthermore, charge heterogeneity presumably due to deamidation was observed in TMPs extracted from threads. The TMPs were localized to the preCOL-containing secretory granules in the collagen gland of the foot and are assumed to provide a viscoelastic matrix around the collagenous fibers in byssal threads.
Collapse
Affiliation(s)
- Jason Sagert
- Marine Science Institute, University of California, Santa Barbara, CA 93106, USA
| | | |
Collapse
|
10
|
Takahashi S, Leiss M, Moser M, Ohashi T, Kitao T, Heckmann D, Pfeifer A, Kessler H, Takagi J, Erickson HP, Fässler R. The RGD motif in fibronectin is essential for development but dispensable for fibril assembly. ACTA ACUST UNITED AC 2007; 178:167-78. [PMID: 17591922 PMCID: PMC2064432 DOI: 10.1083/jcb.200703021] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Fibronectin (FN) is secreted as a disulfide-bonded FN dimer. Each subunit contains three types of repeating modules: FN-I, FN-II, and FN-III. The interactions of α5β1 or αv integrins with the RGD motif of FN-III repeat 10 (FN-III10) are considered an essential step in the assembly of FN fibrils. To test this hypothesis in vivo, we replaced the RGD motif with the inactive RGE in mice. FN-RGE homozygous embryos die at embryonic day 10 with shortened posterior trunk, absent tail bud–derived somites, and severe vascular defects resembling the phenotype of α5 integrin–deficient mice. Surprisingly, the absence of a functional RGD motif in FN did not compromise assembly of an FN matrix in mutant embryos or on mutant cells. Matrix assembly assays and solid-phase binding assays reveal that αvβ3 integrin assembles FN-RGE by binding an isoDGR motif in FN-I5, which is generated by the nonenzymatic rearrangement of asparagines (N) into an iso-aspartate (iso-D). Our findings demonstrate that FN contains a novel motif for integrin binding and fibril formation whose activity is controlled by amino acid modification.
Collapse
Affiliation(s)
- Seiichiro Takahashi
- Max Planck Institute of Biochemistry, Department of Molecular Medicine, 82152 Martinsried, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
McCudden CR, Kraus VB. Biochemistry of amino acid racemization and clinical application to musculoskeletal disease. Clin Biochem 2006; 39:1112-30. [PMID: 17046734 DOI: 10.1016/j.clinbiochem.2006.07.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 06/27/2006] [Accepted: 07/13/2006] [Indexed: 11/30/2022]
Abstract
During aging, proteins are subject to numerous forms of damage. Several types of non-enzymatic post-translational modifications have been described in aging proteins, including oxidation, nitration, glycation, and racemization. Racemization of amino acids is the spontaneous conversion of L-enantiomers to the D-form, which is dependent on temperature, pH, and time. Because of the time-dependent nature of racemization, it can be used to determine the relative age and turnover rates of long-lived proteins. There are many such long-lived proteins within the body; they are found in the brain, eye, and heart, but are particularly abundant in proteins found in musculoskeletal tissues such as bone and cartilage. During disease, musculoskeletal tissues have pathologically altered turnover rates. Because turnover rates can be estimated from levels of racemization, racemized musculoskeletal protein fragments may serve as useful biomarkers of disease. This review discusses the biochemistry of amino acid racemization in proteins and its clinical application to musculoskeletal disease.
Collapse
Affiliation(s)
- Christopher R McCudden
- Division of Rheumatology, Department of Medicine, Box 3416, Duke University, Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
12
|
Zhu JX, Doyle HA, Mamula MJ, Aswad DW. Protein repair in the brain, proteomic analysis of endogenous substrates for protein L-isoaspartyl methyltransferase in mouse brain. J Biol Chem 2006; 281:33802-13. [PMID: 16959769 DOI: 10.1074/jbc.m606958200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein L-isoaspartyl methyltransferase (PIMT) catalyzes repair of L-isoaspartyl peptide bonds, a major source of protein damage under physiological conditions. PIMT knock-out (KO) mice exhibit brain enlargement and fatal epileptic seizures. All organs accumulate isoaspartyl proteins, but only the brain manifests an overt pathology. To further explore the role of PIMT in brain function, we undertook a global analysis of endogenous substrates for PIMT in mouse brain. Extracts from PIMT-KO mice were subjected to two-dimensional gel electrophoresis and blotted onto membranes. Isoaspartyl proteins were radiolabeled on-blot using [methyl-(3)H]S-adenosyl-L-methionine and recombinant PIMT. Fluorography of the blot revealed 30-35 (3)H-labeled proteins, 22 of which were identified by peptide mass fingerprinting. These isoaspartate-prone proteins represent a wide range of cellular functions, including neuronal development, synaptic transmission, cytoskeletal structure and dynamics, energy metabolism, nitrogen metabolism, pH homeostasis, and protein folding. The following five proteins, all of which are rich in neurons, accumulated exceptional levels of isoaspartate: collapsin response mediator protein 2 (CRMP2/ULIP2/DRP-2), dynamin 1, synapsin I, synapsin II, and tubulin. Several of the proteins identified here are prone to age-dependent oxidation in vivo, and many have been identified as autoimmune antigens, of particular interest because isoaspartate can greatly enhance the antigenicity of self-peptides. We propose that the PIMT-KO phenotype results from the cumulative effect of isoaspartate-related damage to a number of the neuron-rich proteins detected in this study. Further study of the isoaspartate-prone proteins identified here may help elucidate the molecular basis of one or more developmental and/or age-related neurological diseases.
Collapse
Affiliation(s)
- Jeff X Zhu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA
| | | | | | | |
Collapse
|
13
|
Reissner KJ, Paranandi MV, Luc TM, Doyle HA, Mamula MJ, Lowenson JD, Aswad DW. Synapsin I is a major endogenous substrate for protein L-isoaspartyl methyltransferase in mammalian brain. J Biol Chem 2006; 281:8389-98. [PMID: 16443604 DOI: 10.1074/jbc.m510716200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The accumulation of potentially deleterious L-isoaspartyl linkages in proteins is prevented by the action of protein L-isoaspartyl O-methyltransferase, a widely distributed enzyme that is particularly active in mammalian brain. Methyltransferase-deficient (knock-out) mice exhibit greatly increased levels of isoaspartate and typically succumb to fatal epileptic seizures at 4-10 weeks of age. The link between isoaspartate accumulation and the neurological abnormalities of these mice is poorly understood. Here, we demonstrate that synapsin I from knock-out mice contains 0.9 +/- 0.3 mol of isoaspartate/mol of synapsin, whereas the levels in wild-type and heterozygous mice are undetectable. Transgenic mice that selectively express methyltransferase only in neurons show reduced levels of synapsin damage, and the degree of reduction correlates with the phenotype of these mice. Isoaspartate levels in synapsin from the knock-out mice are five to seven times greater than those in the average protein from brain cytosol or from a synaptic vesicle-enriched fraction. The isoaspartyl sites in synapsin from knock-out mice are efficiently repaired in vitro by incubation with purified methyltransferase and S-adenosyl-L-methionine. These findings demonstrate that synapsin I is a major substrate for the isoaspartyl methyltransferase in neurons and suggest that isoaspartate-related alterations in the function of presynaptic proteins may contribute to the neurological abnormalities of mice deficient in this enzyme.
Collapse
Affiliation(s)
- Kathryn J Reissner
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Kindrachuk J, Parent J, Davies GF, Dinsmore M, Attah-Poku S, Napper S. Overexpression of l-Isoaspartate O-Methyltransferase in Escherichia coli Increases Heat Shock Survival by a Mechanism Independent of Methyltransferase Activity. J Biol Chem 2003; 278:50880-6. [PMID: 14527954 DOI: 10.1074/jbc.m308423200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Over time and under stressing conditions proteins are susceptible to a variety of spontaneous covalent modifications. One of the more commonly occurring types of protein damage is deamidation; the conversion of asparagines into aspartyls and isoaspartyls. The physiological significance of isoaspartyl formation is emphasized by the presence of the conserved enzyme L-isoaspartyl O-methyltransferase (PIMT), whose physiological function appears to be in preventing the accumulation of deamidated proteins. Seemingly consistent with a repair function, overexpression of PIMT in Drosophila melanogaster extends lifespan under conditions expected to contribute to protein damage. Based on structural information and sequence homology we have created mutants of residues proposed to be involved in co-factor binding in Escherichia coli PIMT. Both mutants retain S-adenosyl L-methionine binding capabilities but demonstrate dramatically reduced kinetic capabilities, perhaps suggestive of catalytic roles beyond co-factor binding. As anticipated, overexpression of the wild type enzyme in E. coli results in bacteria with increased tolerance to thermal stress. Surprisingly, even greater levels of heat tolerance were observed with overexpression of the inactive PIMT mutants. The increased survival capabilities observed with overexpression of PIMT in E. coli, and possibly in Drosophila, are not due to increased isoaspartyl repair capabilities but rather a temperature-independent induction of the heat shock system as a result of overexpression of a misfolding-prone protein. An alternate hypothesis as to the physiological substrate and function of L-isoaspartyl methyltransferase is proposed.
Collapse
Affiliation(s)
- Jason Kindrachuk
- Department of Biochemistryand Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | | | | | | | | | |
Collapse
|
15
|
Clarke S. Aging as war between chemical and biochemical processes: protein methylation and the recognition of age-damaged proteins for repair. Ageing Res Rev 2003; 2:263-85. [PMID: 12726775 DOI: 10.1016/s1568-1637(03)00011-4] [Citation(s) in RCA: 214] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Deamidated, isomerized, and racemized aspartyl and asparaginyl residues represent a significant part of the spontaneous damage to proteins that results from the aging process. The accumulation of these altered residues can lead to the loss of protein function and the consequent loss of cellular function. However, almost all cells in nature contain a methyltransferase that can recognize the major damaged form of the L-isoaspartyl residue, and some of these enzymes can also recognize the racemized D-aspartyl residue. The methyl esterification reaction can initiate the conversion of these altered residues to the normal L-aspartyl form, although there is no evidence yet that the L-asparaginyl form can be regenerated. This enzyme, the protein L-isoaspartate (D-aspartate) O-methyltransferase (EC 2.1.1.77), thus functions as a protein repair enzyme. The importance of this enzyme in attenuating age-related protein damage can be seen by the phenotypes of organisms where the gene encoding has been disrupted, or where its expression has been augmented.
Collapse
Affiliation(s)
- Steven Clarke
- Department of Chemistry and Biochemistry, the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA.
| |
Collapse
|
16
|
Ninomiya T, Sugiura N, Tawada A, Sugimoto K, Watanabe H, Kimata K. Molecular cloning and characterization of chondroitin polymerase from Escherichia coli strain K4. J Biol Chem 2002; 277:21567-75. [PMID: 11943778 DOI: 10.1074/jbc.m201719200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli strain K4 produces the K4 antigen, a capsule polysaccharide consisting of a chondroitin backbone (GlcUA beta(1-3)-GalNAc beta(1-4))(n) to which beta-fructose is linked at position C-3 of the GlcUA residue. We molecularly cloned region 2 of the K4 capsular gene cluster essential for biosynthesis of the polysaccharide, and we further identified a gene encoding a bifunctional glycosyltransferase that polymerizes the chondroitin backbone. The enzyme, containing two conserved glycosyltransferase sites, showed 59 and 61% identity at the amino acid level to class 2 hyaluronan synthase and chondroitin synthase from Pasteurella multocida, respectively. The soluble enzyme expressed in a bacterial expression system transferred GalNAc and GlcUA residues alternately, and polymerized the chondroitin chain up to a molecular mass of 20 kDa when chondroitin sulfate hexasaccharide was used as an acceptor. The enzyme exhibited apparent K(m) values for UDP-GlcUA and UDP-GalNAc of 3.44 and 31.6 microm, respectively, and absolutely required acceptors of chondroitin sulfate polymers and oligosaccharides at least longer than a tetrasaccharide. In addition, chondroitin polymers and oligosaccharides and hyaluronan polymers and oligosaccharides served as acceptors for chondroitin polymerization, but dermatan sulfate and heparin did not. These results may lead to elucidation of the mechanism for chondroitin chain synthesis in both microorganisms and mammals.
Collapse
Affiliation(s)
- Toshio Ninomiya
- Institute for Molecular Science of Medicine, Aichi Medical University, Yazako, Nagakute, Aichi 480-1195, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Metzler DE, Metzler CM, Sauke DJ. Some Pathways of Carbohydrate Metabolism. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50023-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Schurter BT, Aswad DW. Analysis of isoaspartate in peptides and proteins without the use of radioisotopes. Anal Biochem 2000; 282:227-31. [PMID: 10873277 DOI: 10.1006/abio.2000.4601] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A rapid and sensitive HPLC-based method for quantitating isoaspartate levels in peptides and proteins is described. The analyte is incubated for 40 min with S-adenosyl-l-methionine and the commercially available enzyme protein l-isoaspartyl methyltransferase. Methylation of isoaspartyl sites results in stoichiometric production of S-adenosyl-l-homocysteine that is separated from the other components of the reaction by reversed-phase HPLC and quantitated online by absorbance at 260 nm. This method can accurately detect 5 pmol or less of isoaspartate and works with tryptic digests as well as intact proteins. Using a commercially available isoaspartyl peptide, the relationship between isoaspartate levels and S-adenosyl-l-homocysteine production was found to be linear and stoichiometric over a range of 5-250 pmol. Compared to methods that measure [(3)H]methanol production after methylation with S-adenosyl-l-[methyl-(3)H]methionine, the HPLC method is safer, faster, less expensive, and equally sensitive.
Collapse
Affiliation(s)
- B T Schurter
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA
| | | |
Collapse
|
19
|
Orpiszewski J, Schormann N, Kluve-Beckerman B, Liepnieks JJ, Benson MD. Protein aging hypothesis of Alzheimer disease. FASEB J 2000; 14:1255-63. [PMID: 10834947 DOI: 10.1096/fasebj.14.9.1255] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Alzheimer disease (AD), the most common form of aging-related neurodegenerative disorders, is associated with formation of fibrillar deposits of amyloid beta-protein (Abeta). While the direct involvement of Abeta in AD has been well documented, the relations between Abeta production, amyloid formation, and neurodegeneration remain unknown. We propose that AD is initiated by a protein aging-related structural transformation in soluble Abeta. We hypothesize that spontaneous chemical modification of aspartyl residues in Abeta to transient succinimide induces a non-native conformation in a fraction of soluble Abeta, rendering it amyloidogenic and neurotoxic. Conformationally altered Abeta is characterized by increased stability in solution and the presence of a non-native beta-turn that determines folding of Abeta in solution and the structure of Abeta subunits incorporated into amyloid fibrils. While the soluble 'non-native' Abeta is both the factor triggering the neurodegenerative cascade and the precursor of amyloid plaques, these two events result from interaction of Abeta with different sets of cellular components and need not coincide in space and time. Extensive literature data and experimental evidence are provided in support of this hypothesis.
Collapse
|
20
|
Orpiszewski J, Benson MD. Induction of beta-sheet structure in amyloidogenic peptides by neutralization of aspartate: a model for amyloid nucleation. J Mol Biol 1999; 289:413-28. [PMID: 10366514 DOI: 10.1006/jmbi.1999.2768] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Amyloid fibril formation is widely accepted as a critical step in all types of amyloidosis. Amyloid fibrils derived from different amyloidogenic proteins share structural elements including beta-sheet secondary structure and similar tertiary structure. While some amyloidogenic proteins are rich in beta-sheet in their soluble form, others, like Alzheimer beta-amyloid peptide (Abeta) or serum amyloid A, must undergo significant structural transition to acquire a high beta-sheet content. We postulate that Abeta and other amyloidogenic proteins undergo a transition to beta-sheet as a result of aging-related chemical modifications of aspartyl residues to the form of succinimide or isoaspartyl methyl ester. We hypothesize that spontaneous cyclization of aspartate residues in amyloidogenic proteins can serve as a nucleation event in amyloidogenesis. To test this hypothesis, we synthesized a series of designed peptides having the sequence VTVKVXAVKVTV, where X represents aspartic acid or its derivatives. Studies using circular dichroism showed that neutralization of the aspartate residue through the formation of a methyl ester or an amide, or replacement of aspartate with glutamate led to an increased beta-sheet content at neutral and basic pH. A higher content of beta-sheet structure correlated with increased propensity for fibril formation and decreased solubility at neutral pH.
Collapse
Affiliation(s)
- J Orpiszewski
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | | |
Collapse
|