1
|
Abstract
First discovered as a structure-specific endonuclease that evolved to cut at the base of single-stranded flaps, flap endonuclease (FEN1) is now recognized as a central component of cellular DNA metabolism. Substrate specificity allows FEN1 to process intermediates of Okazaki fragment maturation, long-patch base excision repair, telomere maintenance, and stalled replication fork rescue. For Okazaki fragments, the RNA primer is displaced into a 5' flap and then cleaved off. FEN1 binds to the flap base and then threads the 5' end of the flap through its helical arch and active site to create a configuration for cleavage. The threading requirement prevents this active nuclease from cutting the single-stranded template between Okazaki fragments. FEN1 efficiency and specificity are critical to the maintenance of genome fidelity. Overall, recent advances in our knowledge of FEN1 suggest that it was an ancient protein that has been fine-tuned over eons to coordinate many essential DNA transactions.
Collapse
Affiliation(s)
- Lata Balakrishnan
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA.
| | | |
Collapse
|
2
|
Loveland AB, Habuchi S, Walter JC, van Oijen AM. A general approach to break the concentration barrier in single-molecule imaging. Nat Methods 2012; 9:987-92. [PMID: 22961247 PMCID: PMC3610324 DOI: 10.1038/nmeth.2174] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 08/09/2012] [Indexed: 02/04/2023]
Abstract
Single-molecule fluorescence imaging is often incompatible with physiological protein concentrations, as fluorescence background overwhelms an individual molecule's signal. We solve this problem with a new imaging approach called PhADE (PhotoActivation, Diffusion and Excitation). A protein of interest is fused to a photoactivatable protein (mKikGR) and introduced to its surface-immobilized substrate. After photoactivation of mKikGR near the surface, rapid diffusion of the unbound mKikGR fusion out of the detection volume eliminates background fluorescence, whereupon the bound molecules are imaged. We labeled the eukaryotic DNA replication protein flap endonuclease 1 with mKikGR and added it to replication-competent Xenopus laevis egg extracts. PhADE imaging of high concentrations of the fusion construct revealed its dynamics and micrometer-scale movements on individual, replicating DNA molecules. Because PhADE imaging is in principle compatible with any photoactivatable fluorophore, it should have broad applicability in revealing single-molecule dynamics and stoichiometry of macromolecular protein complexes at previously inaccessible fluorophore concentrations.
Collapse
Affiliation(s)
- Anna B. Loveland
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA
| | - Satoshi Habuchi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Johannes C. Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Antoine M. van Oijen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Ruymgaart AP, Heater SJ, Oehlers LP, Rains JD, Walter RB. Characterization and purification of flap endonuclease-1 (xiFEN-1) from Xiphophorus maculatus. Zebrafish 2008; 1:273-85. [PMID: 18248237 DOI: 10.1089/zeb.2004.1.273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cloning, gene structure, and expression of flap endonuclease-1 (xiFEN1) from Xiphophorus maculates are presented. The xiFEN1 gene structure was found to include 8 exons and 7 introns. The Xiphophorus FEN1 cDNA sequence contained an open reading frame that encoded a 380 amino acid protein with a predicted mass of 43 kDa. The intact FEN1 cDNA was subcloned into a bacterial expression vector (pET101-xiFEN1ct) and recombinant xiFEN1 enzyme purified from E. colicell extracts. The pET101-xiFEN1ct translation product was a 3' fusion protein with a ~3 kDa vector-encoded carboxy terminal extension designed to facilitate protein recognition and purification. The xiFEN1 fusion protein was purified and its amino acid sequence verified by Western blot analysis and tryptic peptide mass fingerprinting. The purified recombinant protein was assessed for enzyme specificity using several different oligonucleotide substrates having select flap overhangs. Also reported are Michaelis steady state kinetic values of enzymatic activity for the xiFEN1 directly compared with human FEN1 activity. xiFEN1 displayed a five-fold greater Km and six-fold lower catalytic efficiency (kcat/Km) than observed for the hFEN1.
Collapse
Affiliation(s)
- Arnold P Ruymgaart
- Molecular Biosciences Research Group, Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas 78666, USA
| | | | | | | | | |
Collapse
|
4
|
Kanai Y, Ishikawa G, Takeuchi R, Ruike T, Nakamura RI, Ihara A, Ohashi T, Takata KI, Kimura S, Sakaguchi K. DmGEN shows a flap endonuclease activity, cleaving the blocked-flap structure and model replication fork. FEBS J 2007; 274:3914-27. [PMID: 17614965 DOI: 10.1111/j.1742-4658.2007.05924.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Drosophila melanogaster XPG-like endonuclease (DmGEN) is a new category of nuclease belonging to the RAD2/XPG family. The DmGEN protein has two nuclease domains (N and I domains) similar to XPG/class I nucleases; however, unlike class I nucleases, in DmGEN these two nuclease domains are positioned close to each other as in FEN-1/class II and EXO-1/class III nucleases. To confirm the properties of DmGEN, we characterized the active-site mutant protein (E143A E145A) and found that DmGEN had flap endonuclease activity. DmGEN possessed weak nick-dependent 5'-3' exonuclease activity. Unlike XPG, DmGEN could not incise the bubble structure. Interestingly, based on characterization of flap endonuclease activity, DmGEN preferred the blocked-flap structure as a substrate. This feature is distinctly different from FEN-1. Furthermore, DmGEN cleaved the lagging strand of the model replication fork. Immunostaining revealed that DmGEN was present in the nucleus of actively proliferating Drosophila embryos. Thus, our studies revealed that DmGEN belongs to a new class (class IV) of the RAD2/XPG nuclease family. The biochemical properties of DmGEN and its possible role are also discussed.
Collapse
Affiliation(s)
- Yoshihiro Kanai
- Department of Applied Biological Science, Tokyo University of Science, Chiba, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
One strand of cellular DNA is generated as RNA-initiated discontinuous segments called Okazaki fragments that later are joined. The RNA terminated region is displaced into a 5' single-stranded flap, which is removed by the structure-specific flap endonuclease 1 (FEN1), leaving a nick for ligation. Similarly, in long-patch base excision repair, a damaged nucleotide is displaced into a flap and removed by FEN1. FEN1 is a genome stabilization factor that prevents flaps from equilibrating into structures that lead to duplications and deletions. As an endonuclease, FEN1 enters the flap from the 5' end and then tracks to cleave the flap base. Cleavage is oriented by the formation of a double flap. Analyses of FEN1 crystal structures suggest mechanisms for tracking and cleavage. Some flaps can form self-annealed and template bubble structures that interfere with FEN1. FEN1 interacts with other nucleases and helicases that allow it to act efficiently on structured flaps. Genetic and biochemical analyses continue to reveal many roles of FEN1.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA.
| | | | | |
Collapse
|
6
|
Storici F, Henneke G, Ferrari E, Gordenin DA, Hübscher U, Resnick MA. The flexible loop of human FEN1 endonuclease is required for flap cleavage during DNA replication and repair. EMBO J 2002; 21:5930-42. [PMID: 12411510 PMCID: PMC131084 DOI: 10.1093/emboj/cdf587] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2002] [Revised: 09/09/2002] [Accepted: 09/16/2002] [Indexed: 11/12/2022] Open
Abstract
The conserved, structure-specific flap endonuclease FEN1 cleaves 5' DNA flaps that arise during replication or repair. To address in vivo mechanisms of flap cleavage, we developed a screen for human FEN1 mutants that are toxic when expressed in yeast. Two targets were revealed: the flexible loop domain and the catalytic site. Toxic mutants caused G(2) arrest and cell death and were unable to repair methyl methanesulfonate lesions. All the mutant proteins retained flap binding. Unlike the catalytic site mutants, which lacked cleavage of any 5' flaps, the loop mutants exhibited partial ability to cut 5' flaps when an adjacent single nucleotide 3' flap was present. We suggest that the flexible loop is important for efficient cleavage through positioning the 5' flap and the catalytic site.
Collapse
Affiliation(s)
| | - Ghislaine Henneke
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA and
Institute of Veterinary Biochemistry and Molecular Biology, University of Zürich, Zürich, Switzerland Corresponding author e-mail: F.Storici and G.Henneke contributed equally to this work
| | - Elena Ferrari
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA and
Institute of Veterinary Biochemistry and Molecular Biology, University of Zürich, Zürich, Switzerland Corresponding author e-mail: F.Storici and G.Henneke contributed equally to this work
| | | | - Ulrich Hübscher
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA and
Institute of Veterinary Biochemistry and Molecular Biology, University of Zürich, Zürich, Switzerland Corresponding author e-mail: F.Storici and G.Henneke contributed equally to this work
| | - Michael A. Resnick
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA and
Institute of Veterinary Biochemistry and Molecular Biology, University of Zürich, Zürich, Switzerland Corresponding author e-mail: F.Storici and G.Henneke contributed equally to this work
| |
Collapse
|
7
|
Haldar D, Acharya S, Rao MRS. A Novel Structure-Specific Endonuclease Activity Associated with Polypyrimidine-Tract Binding (PTB) Related Protein from Rat Testis. Biochemistry 2002; 41:11628-41. [PMID: 12269805 DOI: 10.1021/bi0260942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nucleases are involved in the processing of various intermediates generated during crucial DNA metabolic processes such as replication, repair, and recombination and also during maturation of RNA precursors. An endonuclease, degrading specifically single-stranded circular DNA, was identified earlier in rat testis nuclear extract while purifying a strand-transfer activity. We are now reporting the purification of this endonuclease, which is a monomeric 42 kDa protein, from rat testis to near-homogeneity. In addition to degrading single-stranded circular DNA, it nicks supercoiled plasmid DNA to generate relaxed DNA and does not act on linear single-stranded or double-stranded DNA. It also makes specific incisions at the single-strand/duplex junction of pseudo-Y, 3'- and 5'-overhangs and 3'- and 5'-flap structures. Other structures such as mismatch, insertion loop, and Holliday junction are not substrates for the testis endonuclease. In contrast to FEN1, the testis endonuclease makes asymmetric incisions on both strands of the branched structures, and free single-stranded ends are not necessary for the structure-specific incisions. Neither 5'-3' nor 3'-5' exonuclease activity is associated with the testis endonuclease. The amino acid sequences of tryptic peptides of the 42 kDa endonuclease show near-identity to polypyrimidine-tract binding protein (PTB) that is involved in the regulation of splicing of eukaryotic mRNA. The significance of the results on the association of structure-specific endonucleae activities with PTB-related protein is discussed.
Collapse
Affiliation(s)
- Devyani Haldar
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | | | | |
Collapse
|
8
|
Shibata Y, Nakamura T. Defective flap endonuclease 1 activity in mammalian cells is associated with impaired DNA repair and prolonged S phase delay. J Biol Chem 2002; 277:746-54. [PMID: 11687589 DOI: 10.1074/jbc.m109461200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Flap endonuclease 1 (FEN-1) is a 5'-3' flap exo-/endonuclease that plays an important role in Okazaki fragment maturation, nonhomologous end joining of double-stranded DNA breaks, and long patch base excision repair. Here, we demonstrate that the wild type FEN-1 binds tightly to chromatin in conjunction with proliferating cell nuclear antigen (PCNA) recruitment after MMS treatment, and the nuclease-defective FEN-1 increased the sensitivity of the cells to methylmethane sulfonate (MMS) and to UV light but not to ionizing radiation. In contrast, the cells expressing the nuclease-defective and PCNA binding-defective double mutant FEN-1 exhibited sensitivities similar to those in the cells expressing the wild type FEN-1. MMS treatment caused a prolonged delay of S phase progression and impairment in colony-forming activity of cells expressing nuclease-defective FEN-1. A comet assay demonstrated that DNA repair after MMS or UV treatment was impaired in the cells expressing nuclease-deficient FEN-1 but not in the cells with double-mutated FEN-1. Taken together, these findings suggest that FEN-1 plays an essential role in the DNA repair processes in mammalian cells and that this activity of FEN-1 is PCNA-dependent.
Collapse
Affiliation(s)
- Yoshiyuki Shibata
- Department of Radiology and Cancer Biology, Nagasaki University School of Dentistry, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | | |
Collapse
|
9
|
Costanzo V, Robertson K, Bibikova M, Kim E, Grieco D, Gottesman M, Carroll D, Gautier J. Mre11 protein complex prevents double-strand break accumulation during chromosomal DNA replication. Mol Cell 2001; 8:137-47. [PMID: 11511367 DOI: 10.1016/s1097-2765(01)00294-5] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mre11 complex promotes repair of DNA double-strand breaks (DSBs). Xenopus Mre11 (X-Mre11) has been cloned, and its role in DNA replication and DNA damage checkpoint studied in cell-free extracts. DSBs stimulate the phosphorylation and 3'-5' exonuclease activity of X-Mre11 complex. This induced phosphorylation is ATM independent. Phosphorylated X-Mre11 is found associated with replicating nuclei. X-Mre11 complex is required to yield normal DNA replication products. Genomic DNA replicated in extracts immunodepleted of X-Mre11 complex accumulates DSBs as demonstrated by TUNEL assay and reactivity to phosphorylated histone H2AX antibodies. In contrast, the ATM-dependent DNA damage checkpoint that blocks DNA replication initiation is X-Mre11 independent. These results strongly suggest that the function of X-Mre11 complex is to repair DSBs that arise during normal DNA replication, thus unraveling a critical link between recombination-dependent repair and DNA replication.
Collapse
Affiliation(s)
- V Costanzo
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Fiorenza MT, Bevilacqua A, Bevilacqua S, Mangia F. Growing dictyate oocytes, but not early preimplantation embryos, of the mouse display high levels of DNA homologous recombination by single-strand annealing and lack DNA nonhomologous end joining. Dev Biol 2001; 233:214-24. [PMID: 11319870 DOI: 10.1006/dbio.2001.0199] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have investigated the ability of growing dictyate oocytes and early preimplantation embryos of the mouse to process extrachromosomal DNA molecules with free ends by intranuclearly microinjecting DNA fragments containing a region of homology of various extent at either the 5' or 3' terminus. Homologous recombination of these fragments by single-strand annealing (SSA), but not other DNA recombination/joining mechanisms, resulted in the formation of a full-length hsp-lacZ-pA fusion gene that was transcriptionally activated by heat shock in growing oocytes and spontaneously at the early two-cell stage in the embryos, making it possible to quantitatively evaluate SSA activities of these cells by the beta-galactosidase produced. SSA activities of oocytes and embryos were similar in their general properties and in the activity levels observed with saturating amounts of DNA. However, embryo SSA was almost one order of magnitude less effective than that of oocytes. Oocyte and embryo 5' --> 3' exonuclease (a key function of the SSA pathway) and DNA nonhomologous end joining (NHEJ) activities were also investigated using an asymmetric PCR assay. Results showed that NHEJ is lacking in oocytes and is very prominent in the embryos, where it competes with SSA for the injected DNA.
Collapse
Affiliation(s)
- M T Fiorenza
- Department of Psychology, Department of Histology and Medical Embryology, La Sapienza University of Rome, Via Borelli 50, Rome, 00161, Italy
| | | | | | | |
Collapse
|
11
|
Henricksen LA, Tom S, Liu Y, Bambara RA. Inhibition of flap endonuclease 1 by flap secondary structure and relevance to repeat sequence expansion. J Biol Chem 2000; 275:16420-7. [PMID: 10748145 DOI: 10.1074/jbc.m909635199] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent genetic evidence indicates that null mutants of the 5'-flap endonuclease (FEN1) result in an expansion of repetitive sequences. The substrate for FEN1 is a flap formed by natural 5'-end displacement of the short intermediates of lagging strand replication. FEN1 binds the 5'-end of the flap, tracks to the point of annealing at the base of the flap, and then cleaves. Here we examine mechanisms by which foldback structures within the flap could contribute to repeat expansions. Cleavage by FEN1 was reduced with increased length of the foldback. However, even the longest foldbacks were cleaved at a low rate. Substrates containing the repetitive sequence CTG also were cleaved at a reduced rate. Bubble substrates, likely intermediates in repeat expansions, were inhibitory. Neither replication protein A nor proliferating cell nuclear antigen were able to assist in the removal of secondary structure within a flap. We propose that FEN1 cleaves natural foldbacks at a reduced rate. However, although the cleavage delay is not likely to influence the overall process of chromosomal replication, specific foldbacks could inhibit cleavage sufficiently to result in duplication of the foldback sequence.
Collapse
Affiliation(s)
- L A Henricksen
- Department of Biochemistry and Biophysics and the Cancer Center, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
12
|
Greene AL, Snipe JR, Gordenin DA, Resnick MA. Functional analysis of human FEN1 in Saccharomyces cerevisiae and its role in genome stability. Hum Mol Genet 1999; 8:2263-73. [PMID: 10545607 DOI: 10.1093/hmg/8.12.2263] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The flap endonuclease, FEN1, is an evolutionarily conserved component of DNA replication from archaebacteria to humans. Based on in vitro results, it processes Okazaki fragments during replication and is involved in base excision repair. FEN1 removes the last primer ribonucleotide on the lagging strand and it cleaves a 5' flap that may result from strand displacement during replication or during base excision repair. Its biological importance has been revealed largely through studies in the yeast Saccharomyces cerevisiae where deletion of the homologous gene RAD27 results in genome instability and mutagen sensitivity. While the in vivo function of Rad27 has been well characterized through genetic and biochemical approaches, little is understood about the in vivo functions of human FEN1. Guided by our recent results with yeast RAD27, we explored the function of human FEN1 in yeast. We found that the human FEN1 protein complements a yeast rad27 null mutant for a variety of defects including mutagen sensitivity, genetic instability and the synthetic lethal interactions of a rad27 rad51 and a rad27 pol3-01 mutant. Furthermore, a mutant form of FEN1 lacking nuclease function exhibits dominant-negative effects on cell growth and genome instability similar to those seen with the homologous yeast rad27 mutation. This genetic impact is stronger when the human and yeast PCNA-binding domains are exchanged. These data indicate that the human FEN1 and yeast Rad27 proteins act on the same substrate in vivo. Our study defines a sensitive yeast system for the identification and characterization of mutations in FEN1.
Collapse
Affiliation(s)
- A L Greene
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, PO Box 12233, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|