1
|
Li Q, Chen N, Liu C, Zhao Z, Huang M, Li J, Yang G. Staphylococcus aureus β-hemolysin impairs oxygen transport without causing hemolysis. Virulence 2025; 16:2490208. [PMID: 40202859 PMCID: PMC11988224 DOI: 10.1080/21505594.2025.2490208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/27/2025] [Accepted: 04/02/2025] [Indexed: 04/11/2025] Open
Abstract
Staphylococcus aureus (S. aureus) infection can lead to the occurrence of hypoxia, however, the underlying mechanisms have not been fully elucidated. β-hemolysin (Hlb) induced hemolysis of red blood cells (RBCs) requires a temperature transition from "hot" to "cold," a phenomenon not observed under physiological conditions. In this study, we discovered that RBCs treated with Hlb exhibited a high level of intracellular Ca2+ and underwent a shape transformation from biconcave discoid to spherical, which was contingent upon the degradation of sphingomyelin of the cell membrane and led to impaired oxygen transport. The increase in intracellular Ca2+ levels induced by Hlb was dependent on the activation of the ion channel N-methyl-D-aspartate receptor. Furthermore, we found that Hlb-induced Ca2+ influx increased the cytoplasmic pH and subsequently attenuated the oxygen release from RBCs, which were also observed in both hlb transgenic mice and a murine model with S. aureus challenge. Our findings reveal a novel role for Hlb as sphingomyelinase in impairing RBC function under non-lytic conditions, shedding light on the mechanism behind hypoxia associated with S. aureus infection.
Collapse
Affiliation(s)
- Qi Li
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Nan Chen
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chenghua Liu
- Beijing Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Science of the Chinese People’s Liberation Army, Beijing, China
| | - Zhen Zhao
- Department of Emergency, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Minjun Huang
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jingjing Li
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Guang Yang
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Kirmpaki MA, Saied EM, Schumacher F, Prause K, Kleuser B, Arenz C. Live-Cell Identification of Inhibitors of the Lipid Transfer Protein CERT Using Nanoluciferase Bioluminescence Resonance Energy Transfer (NanoBRET). Angew Chem Int Ed Engl 2024; 63:e202413562. [PMID: 39450584 DOI: 10.1002/anie.202413562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
A BRET system is described, in which Nanoluciferase was fused to the lipid transfer protein CERT for efficient energy transfer to a Nile red-labeled ceramide, which is either directly bound to CERT or transported to the adjacent Golgi membrane. Bulk formation of sphingomyelin, a major plasma membrane component in mammals, is dependent on CERT-mediated transfer of its predecessor ceramide. CERT is considered a promising drug target but no direct cell-based methods exist to efficiently identify inhibitors. The utility of the method was demonstrated by a library of 140 derivatives of the CERT inhibitor HPA-12. These were obtained in a combinatorial synthesis using solid-phase transacylation. Screening of the library led to six compounds that were picked and confirmed to be superior to HPA-12 in a subsequent dose-response study and also in an orthogonal lipidomics analysis.
Collapse
Affiliation(s)
- Maria-Anna Kirmpaki
- Institute for Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Essa M Saied
- Institute for Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Fabian Schumacher
- Freie Universität Berlin, Institute of Pharmacy, Königin-Luise-Str. 2+4, Berlin, Germany
| | - Kevin Prause
- Institute for Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Burkhard Kleuser
- Freie Universität Berlin, Institute of Pharmacy, Königin-Luise-Str. 2+4, Berlin, Germany
| | - Christoph Arenz
- Institute for Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| |
Collapse
|
3
|
Bocu R. Dynamic Monitoring of Time-Dependent Evolution of Biomolecules Using Quantum Dots-Based Biosensors Assemblies. BIOSENSORS 2024; 14:380. [PMID: 39194609 DOI: 10.3390/bios14080380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
The dynamic monitoring of biomolecules that are part of cell membranes generally constitutes a challenge. Electrochemiluminescence (ECL) biosensor assemblies provide clear advantages concerning microscopic imaging. Therefore, this paper proposes and analyzes a quantum dots-based biosensor assembly. Thus, particular attention is granted to biomolecules that are part of cell membranes. Additionally, this paper describes and analyzes a quantum dots-based biosensor assembly, which is used to implement a fully functional color ECL visualization system that allows for cellular and biomolecular structures to be accurately visualized. The related nano-emitter allows the implementation of real-time bioimaging scenarios. Consequently, the proposed approach is thoroughly evaluated relative to the time-dependent evolution of biomolecules. It has been demonstrated that traditionally problematic structures, like the biomolecules that are part of cell membranes, can be studied and monitored relative to their time-dependent dynamic evolution using the proposed solution. The reported research process has been conducted in the realm of cooperation with a specialized biomedical engineering company, and the described results are expected to substantially support a better understanding of the biomolecules' time-dependent dynamic evolution.
Collapse
Affiliation(s)
- Razvan Bocu
- Department of Mathematics and Computer Science, Transilvania University of Brasov, 500036 Brașov, Romania
| |
Collapse
|
4
|
Mori T, Niki T, Uchida Y, Mukai K, Kuchitsu Y, Kishimoto T, Sakai S, Makino A, Kobayashi T, Arai H, Yokota Y, Taguchi T, Suzuki KGN. A non-toxic equinatoxin-II reveals the dynamics and distribution of sphingomyelin in the cytosolic leaflet of the plasma membrane. Sci Rep 2024; 14:16872. [PMID: 39043900 PMCID: PMC11266560 DOI: 10.1038/s41598-024-67803-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
Sphingomyelin (SM) is a major sphingolipid in mammalian cells. SM is enriched in the extracellular leaflet of the plasma membrane (PM). Besides this localization, recent electron microscopic and biochemical studies suggest the presence of SM in the cytosolic leaflet of the PM. In the present study, we generated a non-toxic SM-binding variant (NT-EqtII) based on equinatoxin-II (EqtII) from the sea anemone Actinia equina, and examined the dynamics of SM in the cytosolic leaflet of living cell PMs. NT-EqtII with two point mutations (Leu26Ala and Pro81Ala) had essentially the same specificity and affinity to SM as wild-type EqtII. NT-EqtII expressed in the cytosol was recruited to the PM in various cell lines. Super-resolution microscopic observation revealed that NT-EqtII formed tiny domains that were significantly colocalized with cholesterol and N-terminal Lyn. Meanwhile, single molecule observation at high resolutions down to 1 ms revealed that all the examined lipid probes including NT-EqtII underwent apparent fast simple Brownian diffusion, exhibiting that SM and other lipids in the cytosolic leaflet rapidly moved in and out of domains. Thus, the novel SM-binding probe demonstrated the presence of the raft-like domain in the cytosolic leaflet of living cell PMs.
Collapse
Affiliation(s)
- Toshiki Mori
- United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
| | - Takahiro Niki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Yasunori Uchida
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Kojiro Mukai
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yoshihiko Kuchitsu
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Takuma Kishimoto
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo, Hokkaido, Japan
| | - Shota Sakai
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Asami Makino
- Lipid Biology Laboratory, RIKEN, Wako, Saitama, Japan
| | | | - Hiroyuki Arai
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Yasunari Yokota
- Department of EECE, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Tomohiko Taguchi
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.
| | - Kenichi G N Suzuki
- United Graduate School of Agricultural Science, Gifu University, Gifu, Japan.
- Institute for Glyco-Core Research (iGCORE), Gifu University, Gifu, Japan.
- Division of Advanced Bioimaging, National Cancer Center Research Institute (NCCRI), Tokyo, Japan.
| |
Collapse
|
5
|
Ren M, Yang L, He L, Wang J, Zhao W, Yang C, Yang S, Cheng H, Huang M, Gou M. Non-viral Gene Therapy for Melanoma Using Lysenin from Eisenia Foetida. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306076. [PMID: 38445883 PMCID: PMC11077637 DOI: 10.1002/advs.202306076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/01/2024] [Indexed: 03/07/2024]
Abstract
Earthworms, long utilized in traditional medicine, serve as a source of inspiration for modern therapeutics. Lysenin, a defensive factor in the coelom fluid of the earthworm Eisenia fetida, has multiple bioactivities. However, the inherent toxicity of Lysenin as a pore-forming protein (PFP) restricts its application in therapy. Here, a gene therapy strategy based on Lysenin for cancer treatment is presented. The formulation consists of polymeric nanoparticles complexed with the plasmid encoding Lysenin. After transfection in vitro, melanoma cells can express Lysenin, resulting in necrosis, autophagy, and immunogenic cell death. The secretory signal peptide alters the intracellular distribution of the expressed product of Lysenin, thereby potentiating its anticancer efficacy. The intratumor injection of Lysenin gene formulation can efficiently kill the transfected melanoma cells and activate the antitumor immune response. Notably, no obvious systemic toxicity is observed during the treatment. Non-viral gene therapy based on Lysenin derived from Eisenia foetida exhibits potential in cancer therapy, which can inspire future cancer therapeutics.
Collapse
Affiliation(s)
- Min Ren
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Ling Yang
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Liming He
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Jie Wang
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Wei Zhao
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Chunli Yang
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Shuai Yang
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Hao Cheng
- Huahang Microcreate Technology Co., LtdChengduSichuan610041China
| | - Meijuan Huang
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical OncologyCancer CenterWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Maling Gou
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| |
Collapse
|
6
|
Luo X, Zhao Y, Cai Y, Chen J, Zhao L, Lan T, Chen Y, Ruan XZ. Dual-monomer solvatochromic probe system (DSPS) for effectively differentiating lipid raft cholesterol and active membrane cholesterol in the inner-leaflet plasma membrane. J Mater Chem B 2024; 12:2547-2558. [PMID: 38358131 DOI: 10.1039/d3tb02857g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Monitoring active membrane cholesterol and lipid raft cholesterol in the inner leaflet of the plasma membrane is significant for understanding the membrane function and cellular physiopathological processes. Limited by existing methods, it is difficult to differentiate active membrane cholesterol and lipid raft cholesterol. A novel dual-monomer solvatochromic probe system (DSPS) that targets two types of cholesterol was developed. Acrylodan-BG/SNAP-D4 composed of SNAP-D4 cholesterol-recognizing monomers and solvatochromic acrylodan-BG-sensing monomers exhibits excellent cholesterol detecting properties in terms of selectivity, accuracy, convenience and economic benefits. Cell imaging revealed that lipid raft cholesterol emitted blue fluorescence, whereas active membrane cholesterol (which partially bobbed in aqueous cytosol) displayed green fluorescence; both the fluorescence emissions increased or decreased in a cholesterol-dependent manner. This system provides a new technology for the determination of two types of cholesterol, which is beneficial for the further study of membrane function, intracellular cholesterol trafficking, and cell signaling.
Collapse
Affiliation(s)
- Xuan Luo
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China.
| | - Yunfei Zhao
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, 400016, Chongqing, China
| | - Yang Cai
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, 400016, Chongqing, China
| | - Jun Chen
- Department of Pediatrics, Women and Children' Hospital of Chongging Medical University, 400016, Chongqing, China
| | - Lulu Zhao
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, 400016, Chongqing, China
| | - Tianlan Lan
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China.
| | - Yaxi Chen
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China.
| | - Xiong Z Ruan
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China.
- John Moorhead Research Laboratory, Centre for Nephrology, University College London Medical School, Royal Free Campus, University College London, London NW3 2PF, UK
| |
Collapse
|
7
|
Girik V, van Ek L, Dentand Quadri I, Azam M, Cruz Cobo M, Mandavit M, Riezman I, Riezman H, Gavin AC, Nunes-Hasler P. Development of Genetically Encoded Fluorescent KSR1-Based Probes to Track Ceramides during Phagocytosis. Int J Mol Sci 2024; 25:2996. [PMID: 38474242 DOI: 10.3390/ijms25052996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Ceramides regulate phagocytosis; however, their exact function remains poorly understood. Here, we sought (1) to develop genetically encoded fluorescent tools for imaging ceramides, and (2) to use them to examine ceramide dynamics during phagocytosis. Fourteen enhanced green fluorescent protein (EGFP) fusion constructs based on four known ceramide-binding domains were generated and screened. While most constructs localized to the nucleus or cytosol, three based on the CA3 ceramide-binding domain of kinase suppressor of ras 1 (KSR1) localized to the plasma membrane or autolysosomes. C-terminally tagged CA3 with a vector-based (C-KSR) or glycine-serine linker (C-KSR-GS) responded sensitively and similarly to ceramide depletion and accumulation using a panel of ceramide modifying drugs, whereas N-terminally tagged CA3 (N-KSR) responded differently to a subset of treatments. Lipidomic and liposome microarray analysis suggested that, instead, N-KSR may preferentially bind glucosyl-ceramide. Additionally, the three probes showed distinct dynamics during phagocytosis. Despite partial autolysosomal degradation, C-KSR and C-KSR-GS accumulated at the plasma membrane during phagocytosis, whereas N-KSR did not. Moreover, the weak recruitment of C-KSR-GS to the endoplasmic reticulum and phagosomes was enhanced through overexpression of the endoplasmic reticulum proteins stromal interaction molecule 1 (STIM1) and Sec22b, and was more salient in dendritic cells. The data suggest these novel probes can be used to analyze sphingolipid dynamics and function in living cells.
Collapse
Affiliation(s)
- Vladimir Girik
- Department of Pathology and Immunology, Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Larissa van Ek
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Isabelle Dentand Quadri
- Department of Pathology and Immunology, Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Maral Azam
- Department of Pathology and Immunology, Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - María Cruz Cobo
- Department of Pathology and Immunology, Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Marion Mandavit
- Department of Pathology and Immunology, Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Isabelle Riezman
- Department of Biochemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 1211 Geneva, Switzerland
| | - Howard Riezman
- Department of Biochemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 1211 Geneva, Switzerland
| | - Anne-Claude Gavin
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Department of Biochemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 1211 Geneva, Switzerland
| | - Paula Nunes-Hasler
- Department of Pathology and Immunology, Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
8
|
Tomishige N, Bin Nasim M, Murate M, Pollet B, Didier P, Godet J, Richert L, Sako Y, Mély Y, Kobayashi T. HIV-1 Gag targeting to the plasma membrane reorganizes sphingomyelin-rich and cholesterol-rich lipid domains. Nat Commun 2023; 14:7353. [PMID: 37990014 PMCID: PMC10663554 DOI: 10.1038/s41467-023-42994-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/26/2023] [Indexed: 11/23/2023] Open
Abstract
Although the human immunodeficiency virus type 1 lipid envelope has been reported to be enriched with host cell sphingomyelin and cholesterol, the molecular mechanism of the enrichment is not well understood. Viral Gag protein plays a central role in virus budding. Here, we report the interaction between Gag and host cell lipids using different quantitative and super-resolution microscopy techniques in combination with specific probes that bind endogenous sphingomyelin and cholesterol. Our results indicate that Gag in the inner leaflet of the plasma membrane colocalizes with the outer leaflet sphingomyelin-rich domains and cholesterol-rich domains, enlarges sphingomyelin-rich domains, and strongly restricts the mobility of sphingomyelin-rich domains. Moreover, Gag multimerization induces sphingomyelin-rich and cholesterol-rich lipid domains to be in close proximity in a curvature-dependent manner. Our study suggests that Gag binds, coalesces, and reorganizes pre-existing lipid domains during assembly.
Collapse
Affiliation(s)
- Nario Tomishige
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France.
- Cellular Informatics Laboratory, RIKEN CPR, Wako, Saitama, Japan.
| | - Maaz Bin Nasim
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Motohide Murate
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
- Cellular Informatics Laboratory, RIKEN CPR, Wako, Saitama, Japan
| | - Brigitte Pollet
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Julien Godet
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Ludovic Richert
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Yasushi Sako
- Cellular Informatics Laboratory, RIKEN CPR, Wako, Saitama, Japan
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France.
| | - Toshihide Kobayashi
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France.
- Cellular Informatics Laboratory, RIKEN CPR, Wako, Saitama, Japan.
| |
Collapse
|
9
|
Shin DY, Takagi H, Hiroshima M, Matsuoka S, Ueda M. Sphingomyelin metabolism underlies Ras excitability for efficient cell migration and chemotaxis. Cell Struct Funct 2023; 48:145-160. [PMID: 37438131 PMCID: PMC11496829 DOI: 10.1247/csf.23045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023] Open
Abstract
In eukaryotic motile cells, the active Ras (Ras-GTP)-enriched domain is generated in an asymmetric manner on the cell membrane through the excitable dynamics of an intracellular signaling network. This asymmetric Ras signaling regulates pseudopod formation for both spontaneous random migration and chemoattractant-induced directional migration. While membrane lipids, such as sphingomyelin and phosphatidylserine, contribute to Ras signaling in various cell types, whether they are involved in the Ras excitability for cell motility is unknown. Here we report that functional Ras excitability requires the normal metabolism of sphingomyelin for efficient cell motility and chemotaxis. The pharmacological blockade of sphingomyelin metabolism by an acid-sphingomyelinase inhibitor, fendiline, and other inhibitors suppressed the excitable generation of the stable Ras-GTP-enriched domain. The suppressed excitability failed to invoke enough basal motility to achieve directed migration under shallow chemoattractant gradients. The fendiline-induced defects in Ras excitability, motility and stimulation-elicited directionality were due to an accumulation of sphingomyelin on the membrane, which could be recovered by exogenous sphingomyelinase or phosphatidylserine without changing the expression of Ras. These results indicate a novel regulatory mechanism of the excitable system by membrane lipids, in which sphingomyelin metabolism provides a membrane environment to ensure Ras excitation for efficient cellular motility and chemotaxis.Key words: cell polarity, cell migration, Ras, excitability, sphingomyelin.
Collapse
Affiliation(s)
- Da Young Shin
- Laboratory of Single Molecule Biology, Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
- Laboratory for Cell Signaling Dynamics, Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka, Japan
| | - Hiroaki Takagi
- Laboratory for Cell Signaling Dynamics, Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka, Japan
- Department of Physics, School of Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Michio Hiroshima
- Laboratory for Cell Signaling Dynamics, Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka, Japan
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Satomi Matsuoka
- Laboratory of Single Molecule Biology, Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
- Laboratory for Cell Signaling Dynamics, Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka, Japan
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- PRESTO, JST
| | - Masahiro Ueda
- Laboratory of Single Molecule Biology, Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
- Laboratory for Cell Signaling Dynamics, Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka, Japan
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
10
|
Yilmaz N, Panevska A, Tomishige N, Richert L, Mély Y, Sepčić K, Greimel P, Kobayashi T. Assembly dynamics and structure of an aegerolysin, ostreolysin A6. J Biol Chem 2023; 299:104940. [PMID: 37343702 PMCID: PMC10366546 DOI: 10.1016/j.jbc.2023.104940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/08/2023] [Accepted: 06/09/2023] [Indexed: 06/23/2023] Open
Abstract
Ostreolysin A6 (OlyA6) is an oyster mushroom-derived membrane-binding protein that, upon recruitment of its partner protein, pleurotolysin B, forms a cytolytic membrane pore complex. OlyA6 itself is not cytolytic but has been reported to exhibit pro-apoptotic activities in cell culture. Here we report the formation dynamics and the structure of OlyA6 assembly on a lipid membrane containing an OlyA6 high-affinity receptor, ceramide phosphoethanolamine, and cholesterol. High-speed atomic force microscopy revealed the reorganization of OlyA6 dimers from initial random surface coverage to 2D protein crystals composed of hexameric OlyA6 repeat units. Crystal growth took place predominantly in the longitudinal direction by the association of OlyA6 dimers, forming a hexameric unit cell. Molecular-level examination of the OlyA6 crystal elucidated the arrangement of dimers within the unit cell and the structure of the dimer that recruits pleurotolysin B for pore formation.
Collapse
Affiliation(s)
- Neval Yilmaz
- Lipid Biology Laboratory, RIKEN, 2-1, Wako, Saitama, Japan; NanoLSI, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, Japan.
| | - Anastasija Panevska
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nario Tomishige
- Lipid Biology Laboratory, RIKEN, 2-1, Wako, Saitama, Japan; Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Ludovic Richert
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Greimel
- Lipid Biology Laboratory, RIKEN, 2-1, Wako, Saitama, Japan.
| | - Toshihide Kobayashi
- Lipid Biology Laboratory, RIKEN, 2-1, Wako, Saitama, Japan; Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France.
| |
Collapse
|
11
|
Kusumi A, Tsunoyama TA, Tang B, Hirosawa KM, Morone N, Fujiwara TK, Suzuki KGN. Cholesterol- and actin-centered view of the plasma membrane: updating the Singer-Nicolson fluid mosaic model to commemorate its 50th anniversary †. Mol Biol Cell 2023; 34:pl1. [PMID: 37039596 PMCID: PMC10162409 DOI: 10.1091/mbc.e20-12-0809] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/07/2022] [Accepted: 02/07/2023] [Indexed: 04/12/2023] Open
Abstract
Two very polarized views exist for understanding the cellular plasma membrane (PM). For some, it is the simple fluid described by the original Singer-Nicolson fluid mosaic model. For others, due to the presence of thousands of molecular species that extensively interact with each other, the PM forms various clusters and domains that are constantly changing and therefore, no simple rules exist that can explain the structure and molecular dynamics of the PM. In this article, we propose that viewing the PM from its two predominant components, cholesterol and actin filaments, provides an excellent and transparent perspective of PM organization, dynamics, and mechanisms for its functions. We focus on the actin-induced membrane compartmentalization and lipid raft domains coexisting in the PM and how they interact with each other to perform PM functions. This view provides an important update of the fluid mosaic model.
Collapse
Affiliation(s)
- Akihiro Kusumi
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa 904-0495, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Taka A. Tsunoyama
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa 904-0495, Japan
| | - Bo Tang
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa 904-0495, Japan
| | - Koichiro M. Hirosawa
- Institute for Glyco-Core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Nobuhiro Morone
- MRC Toxicology Unit, University of Cambridge, Cambridge CB2 1QR, UK
| | - Takahiro K. Fujiwara
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Kenichi G. N. Suzuki
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
- Institute for Glyco-Core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
12
|
Haram CS, Moitra S, Keane R, Kuhlmann FM, Frankfater C, Hsu FF, Beverley SM, Zhang K, Keyel PA. The sphingolipids ceramide and inositol phosphorylceramide protect the Leishmania major membrane from sterol-specific toxins. J Biol Chem 2023; 299:104745. [PMID: 37094699 PMCID: PMC10209034 DOI: 10.1016/j.jbc.2023.104745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023] Open
Abstract
The accessibility of sterols in mammalian cells to exogenous sterol-binding agents has been well-described previously, but sterol accessibility in distantly related protozoa is unclear. The human pathogen Leishmania major uses sterols and sphingolipids distinct from those used in mammals. Sterols in mammalian cells can be sheltered from sterol-binding agents by membrane components, including sphingolipids, but the surface exposure of ergosterol in Leishmania remains unknown. Here, we used flow cytometry to test the ability of the Leishmania major sphingolipids inositol phosphorylceramide (IPC), and ceramide to shelter ergosterol by preventing binding of the sterol-specific toxins streptolysin O and perfringolysin O and subsequent cytotoxicity. In contrast to mammalian systems, we found that Leishmania sphingolipids did not preclude toxin binding to sterols in the membrane. However, we show that IPC reduced cytotoxicity, and that ceramide reduced perfringolysin O-, but not streptolysin O-, mediated cytotoxicity in cells. Furthermore, we demonstrate ceramide sensing was controlled by the toxin L3 loop, and that ceramide was sufficient to protect L. major promastigotes from the anti-leishmaniasis drug amphotericin B. Based on these results, we propose a mechanism whereby pore-forming toxins engage additional lipids like ceramide to determine the optimal environment to sustain pore formation. Thus, L. major could serve as a genetically tractable protozoan model organism for understanding toxin-membrane interactions.
Collapse
Affiliation(s)
- Chaitanya S Haram
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409
| | - Samrat Moitra
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409
| | - Rilee Keane
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409
| | - F Matthew Kuhlmann
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Cheryl Frankfater
- Mass Spectrometry Resource, Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Fong-Fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Stephen M Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409
| | - Peter A Keyel
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409.
| |
Collapse
|
13
|
Pfrieger FW. The Niemann-Pick type diseases – A synopsis of inborn errors in sphingolipid and cholesterol metabolism. Prog Lipid Res 2023; 90:101225. [PMID: 37003582 DOI: 10.1016/j.plipres.2023.101225] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Disturbances of lipid homeostasis in cells provoke human diseases. The elucidation of the underlying mechanisms and the development of efficient therapies represent formidable challenges for biomedical research. Exemplary cases are two rare, autosomal recessive, and ultimately fatal lysosomal diseases historically named "Niemann-Pick" honoring the physicians, whose pioneering observations led to their discovery. Acid sphingomyelinase deficiency (ASMD) and Niemann-Pick type C disease (NPCD) are caused by specific variants of the sphingomyelin phosphodiesterase 1 (SMPD1) and NPC intracellular cholesterol transporter 1 (NPC1) or NPC intracellular cholesterol transporter 2 (NPC2) genes that perturb homeostasis of two key membrane components, sphingomyelin and cholesterol, respectively. Patients with severe forms of these diseases present visceral and neurologic symptoms and succumb to premature death. This synopsis traces the tortuous discovery of the Niemann-Pick diseases, highlights important advances with respect to genetic culprits and cellular mechanisms, and exposes efforts to improve diagnosis and to explore new therapeutic approaches.
Collapse
|
14
|
Barisch C, Holthuis JCM, Cosentino K. Membrane damage and repair: a thin line between life and death. Biol Chem 2023; 404:467-490. [PMID: 36810295 DOI: 10.1515/hsz-2022-0321] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/03/2023] [Indexed: 02/24/2023]
Abstract
Bilayered membranes separate cells from their surroundings and form boundaries between intracellular organelles and the cytosol. Gated transport of solutes across membranes enables cells to establish vital ion gradients and a sophisticated metabolic network. However, an advanced compartmentalization of biochemical reactions makes cells also particularly vulnerable to membrane damage inflicted by pathogens, chemicals, inflammatory responses or mechanical stress. To avoid potentially lethal consequences of membrane injuries, cells continuously monitor the structural integrity of their membranes and readily activate appropriate pathways to plug, patch, engulf or shed the damaged membrane area. Here, we review recent insights into the cellular mechanisms that underly an effective maintenance of membrane integrity. We discuss how cells respond to membrane lesions caused by bacterial toxins and endogenous pore-forming proteins, with a primary focus on the intimate crosstalk between membrane proteins and lipids during wound formation, detection and elimination. We also discuss how a delicate balance between membrane damage and repair determines cell fate upon bacterial infection or activation of pro-inflammatory cell death pathways.
Collapse
Affiliation(s)
- Caroline Barisch
- Molecular Infection Biology Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, D-49076 Osnabrück, Germany
| | - Joost C M Holthuis
- Molecular Cell Biology Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, D-49076 Osnabrück, Germany
| | - Katia Cosentino
- Molecular Cell Biophysics Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, D-49076 Osnabrück, Germany
| |
Collapse
|
15
|
Refinement of Singer-Nicolson fluid-mosaic model by microscopy imaging: Lipid rafts and actin-induced membrane compartmentalization. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184093. [PMID: 36423676 DOI: 10.1016/j.bbamem.2022.184093] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022]
Abstract
This year celebrates the 50th anniversary of the Singer-Nicolson fluid mosaic model for biological membranes. The next level of sophistication we have achieved for understanding plasma membrane (PM) structures, dynamics, and functions during these 50 years includes the PM interactions with cortical actin filaments and the partial demixing of membrane constituent molecules in the PM, particularly raft domains. Here, first, we summarize our current knowledge of these two structures and emphasize that they are interrelated. Second, we review the structure, molecular dynamics, and function of raft domains, with main focuses on raftophilic glycosylphosphatidylinositol-anchored proteins (GPI-APs) and their signal transduction mechanisms. We pay special attention to the results obtained by single-molecule imaging techniques and other advanced microscopy methods. We also clarify the limitations of present optical microscopy methods for visualizing raft domains, but emphasize that single-molecule imaging techniques can "detect" raft domains associated with molecules of interest in the PM.
Collapse
|
16
|
Mapping trasmembrane distribution of sphingomyelin. Emerg Top Life Sci 2023; 7:31-45. [PMID: 36692108 DOI: 10.1042/etls20220086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/23/2022] [Accepted: 01/10/2023] [Indexed: 01/25/2023]
Abstract
Our knowledge on the asymmetric distribution of sphingomyelin (SM) in the plasma membrane is largely based on the biochemical analysis of erythrocytes using sphingomyelinase (SMase). However, recent studies showed that the product of SMase, ceramide, disturbs transmembrane lipid distribution. This led to the development of the complimentary histochemical method, which combines electron microscopy and SM-binding proteins. This review discusses the advantages and caveats of published methods of measuring transbilayer distribution of SM. Recent finding of the proteins involved in the transbilayer movement of SM will also be summarized.
Collapse
|
17
|
Best HL, Williamson LJ, Lipka-Lloyd M, Waller-Evans H, Lloyd-Evans E, Rizkallah PJ, Berry C. The Crystal Structure of Bacillus thuringiensis Tpp80Aa1 and Its Interaction with Galactose-Containing Glycolipids. Toxins (Basel) 2022; 14:863. [PMID: 36548760 PMCID: PMC9784298 DOI: 10.3390/toxins14120863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Tpp80Aa1 from Bacillus thuringiensis is a Toxin_10 family protein (Tpp) with reported action against Culex mosquitoes. Here, we demonstrate an expanded target range, showing Tpp80Aa1 is also active against the larvae of Anopheles gambiae and Aedes aegypti mosquitoes. We report the first crystal structure of Tpp80Aa1 at a resolution of 1.8 Å, which shows Tpp80Aa1 consists of two domains: an N-terminal β-trefoil domain resembling a ricin B lectin and a C-terminal putative pore-forming domain sharing structural similarity with the aerolysin family. Similar to other Tpp family members, we observe Tpp80Aa1 binds to the mosquito midgut, specifically the posterior midgut and the gastric caecum. We also identify that Tpp80Aa1 can interact with galactose-containing glycolipids and galactose, and this interaction is critical for exerting full insecticidal action against mosquito target cell lines.
Collapse
Affiliation(s)
- Hannah L. Best
- School of Biosciences, Cardiff University, Park Place, Cardiff CF10 3AX, UK
| | | | | | - Helen Waller-Evans
- School of Pharmacy, Cardiff University, Park Place, Cardiff CF10 3AX, UK
| | - Emyr Lloyd-Evans
- School of Biosciences, Cardiff University, Park Place, Cardiff CF10 3AX, UK
| | | | - Colin Berry
- School of Biosciences, Cardiff University, Park Place, Cardiff CF10 3AX, UK
| |
Collapse
|
18
|
Mondal AK, Lata K, Singh M, Chatterjee S, Chauhan A, Puravankara S, Chattopadhyay K. Cryo-EM elucidates mechanism of action of bacterial pore-forming toxins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184013. [PMID: 35908609 DOI: 10.1016/j.bbamem.2022.184013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/05/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Pore-forming toxins (PFTs) rupture plasma membranes and kill target cells. PFTs are secreted as soluble monomers that undergo drastic structural rearrangements upon interacting with the target membrane and generate transmembrane oligomeric pores. A detailed understanding of the molecular mechanisms of the pore-formation process remains unclear due to limited structural insights regarding the transmembrane oligomeric pore states of the PFTs. However, recent advances in the field of cryo-electron microscopy (cryo-EM) have led to the high-resolution structure determination of the oligomeric pore forms of diverse PFTs. Here, we discuss the pore-forming mechanisms of various PFTs, specifically the mechanistic details contributed by the cryo-EM-based structural studies.
Collapse
Affiliation(s)
- Anish Kumar Mondal
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali 140306, Punjab, India
| | - Kusum Lata
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali 140306, Punjab, India
| | - Mahendra Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali 140306, Punjab, India
| | - Shamaita Chatterjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali 140306, Punjab, India
| | - Aakanksha Chauhan
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali 140306, Punjab, India
| | - Sindhoora Puravankara
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali 140306, Punjab, India
| | - Kausik Chattopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali 140306, Punjab, India.
| |
Collapse
|
19
|
Raghunath G, Chen YC, Marin M, Wu H, Melikyan GB. SERINC5-Mediated Restriction of HIV-1 Infectivity Correlates with Resistance to Cholesterol Extraction but Not with Lipid Order of Viral Membrane. Viruses 2022; 14:v14081636. [PMID: 35893701 PMCID: PMC9332783 DOI: 10.3390/v14081636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 12/13/2022] Open
Abstract
Serine incorporator 5 (SER5) is a protein that upon incorporation into virions inhibits HIV-1 infectivity by interfering with the ability of the Env glycoprotein to promote viral fusion. The mechanisms by which SER5 antagonizes HIV-1 fusion are not well understood. A recent study of SER5's structure revealed a lipid-binding pocket, suggesting the ability to sequester lipids. This finding, along with the well-documented modulation of HIV-1 infectivity by viral lipids, especially cholesterol, prompted our examination of SER5's effect on the general lipid order of the HIV-1 membrane. Pseudoviruses bearing the SER5-sensitive HXB2-Env and containing SER5 or SER2, a control protein that lacks antiviral activity, were analyzed using two distinct lipid-order probes. We show that SER5 incorporation does not noticeably affect the lipid order of pseudoviruses. Although viral cholesterol extraction reduces HIV-1 infectivity, SER5+ viruses are less sensitive to cholesterol extraction than the control samples. In contrast, the virus' sensitivity to cholesterol oxidation was not affected by SER5 incorporation. The hydrolytic release of sphingomyelin-sequestered cholesterol had a minimal impact on the apparent resistance to cholesterol extraction. Based on these results, we propose that a subpopulation of more stable Env glycoproteins responsible for the residual infectivity of SER5+ viruses is less sensitive to the cholesterol content of the viral membrane.
Collapse
Affiliation(s)
- Gokul Raghunath
- Department of Pediatrics, Division of Infectious Diseases, School of Medicine, Emory University, Atlanta, GA 30322, USA; (G.R.); (Y.-C.C.); (M.M.); (H.W.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Yen-Cheng Chen
- Department of Pediatrics, Division of Infectious Diseases, School of Medicine, Emory University, Atlanta, GA 30322, USA; (G.R.); (Y.-C.C.); (M.M.); (H.W.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Mariana Marin
- Department of Pediatrics, Division of Infectious Diseases, School of Medicine, Emory University, Atlanta, GA 30322, USA; (G.R.); (Y.-C.C.); (M.M.); (H.W.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Hui Wu
- Department of Pediatrics, Division of Infectious Diseases, School of Medicine, Emory University, Atlanta, GA 30322, USA; (G.R.); (Y.-C.C.); (M.M.); (H.W.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Gregory B. Melikyan
- Department of Pediatrics, Division of Infectious Diseases, School of Medicine, Emory University, Atlanta, GA 30322, USA; (G.R.); (Y.-C.C.); (M.M.); (H.W.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Correspondence:
| |
Collapse
|
20
|
Inimitable Impacts of Ceramides on Lipid Rafts Formed in Artificial and Natural Cell Membranes. MEMBRANES 2022; 12:membranes12080727. [PMID: 35893445 PMCID: PMC9330320 DOI: 10.3390/membranes12080727] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/02/2023]
Abstract
Ceramide is the simplest precursor of sphingolipids and is involved in a variety of biological functions ranging from apoptosis to the immune responses. Although ceramide is a minor constituent of plasma membranes, it drastically increases upon cellular stimulation. However, the mechanistic link between ceramide generation and signal transduction remains unknown. To address this issue, the effect of ceramide on phospholipid membranes has been examined in numerous studies. One of the most remarkable findings of these studies is that ceramide induces the coalescence of membrane domains termed lipid rafts. Thus, it has been hypothesised that ceramide exerts its biological activity through the structural alteration of lipid rafts. In the present article, we first discuss the characteristic hydrogen bond functionality of ceramides. Then, we showed the impact of ceramide on the structures of artificial and cell membranes, including the coalescence of the pre-existing lipid raft into a large patch called a signal platform. Moreover, we proposed a possible structure of the signal platform, in which sphingomyelin/cholesterol-rich and sphingomyelin/ceramide-rich domains coexist. This structure is considered to be beneficial because membrane proteins and their inhibitors are separately compartmentalised in those domains. Considering the fact that ceramide/cholesterol content regulates the miscibility of those two domains in model membranes, the association and dissociation of membrane proteins and their inhibitors might be controlled by the contents of ceramide and cholesterol in the signal platform.
Collapse
|
21
|
Goto A, Sakai S, Mizuike A, Yamaji T, Hanada K. Compartmentalization of casein kinase 1 γ CSNK1G controls the intracellular trafficking of ceramide. iScience 2022; 25:104624. [PMID: 35800758 PMCID: PMC9254030 DOI: 10.1016/j.isci.2022.104624] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 03/20/2022] [Accepted: 06/13/2022] [Indexed: 11/28/2022] Open
Abstract
Casein kinase 1 γ (CK1G) is involved in the regulation of various cellular functions. For instance, the ceramide transport protein (CERT), which delivers ceramide to the Golgi apparatus for the synthesis of sphingomyelin (SM), is inactivated when it receives multiple phosphorylation by CK1G. Using human genome-wide gene disruption screening with an SM-binding cytolysin, we found that loss of the C-terminal region of CK1G3 rendered the kinase hyperactive in cells. Deletion of the C-terminal 20 amino acids or mutation of cysteine residues expected to be palmitoylated sites redistributed CK1G3 from cytoplasmic punctate compartments to the nucleocytoplasm. Wild-type CK1G3 exhibited a similar redistribution in the presence of 2-bromopalmitate, a protein palmitoylation inhibitor. Expression of C-terminal mutated CK1G1/2/3 similarly induced the multiple phosphorylation of the CERT SRM, thereby down-regulating de novo SM synthesis. These findings revealed that CK1Gs are regulated by a compartmentalization-based mechanism to access substrates present in specific intracellular organelles.
C-terminal region of CSNK1Gs restricts their localization to punctate compartments Loss of the kinase compartmentalization causes hyperphosphorylation of CERT Compartmentalization of CSNK1G controls ceramide transport and de novo SM synthesis
Collapse
Affiliation(s)
- Asako Goto
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Shota Sakai
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Aya Mizuike
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Toshiyuki Yamaji
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Kentaro Hanada
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
- Corresponding author
| |
Collapse
|
22
|
Hammond GRV, Ricci MMC, Weckerly CC, Wills RC. An update on genetically encoded lipid biosensors. Mol Biol Cell 2022; 33:tp2. [PMID: 35420888 PMCID: PMC9282013 DOI: 10.1091/mbc.e21-07-0363] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 01/16/2023] Open
Abstract
Specific lipid species play central roles in cell biology. Their presence or enrichment in individual membranes can control properties or direct protein localization and/or activity. Therefore, probes to detect and observe these lipids in intact cells are essential tools in the cell biologist's freezer box. Herein, we discuss genetically encoded lipid biosensors, which can be expressed as fluorescent protein fusions to track lipids in living cells. We provide a state-of-the-art list of the most widely available and reliable biosensors and highlight new probes (circa 2018-2021). Notably, we focus on advances in biosensors for phosphatidylinositol, phosphatidic acid, and PI 3-kinase lipid products.
Collapse
Affiliation(s)
- Gerald R. V. Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Morgan M. C. Ricci
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Claire C. Weckerly
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Rachel C. Wills
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
23
|
Ca 2+-activated sphingomyelin scrambling and turnover mediate ESCRT-independent lysosomal repair. Nat Commun 2022; 13:1875. [PMID: 35388011 PMCID: PMC8986845 DOI: 10.1038/s41467-022-29481-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/11/2022] [Indexed: 12/14/2022] Open
Abstract
Lysosomes are vital organelles vulnerable to injuries from diverse materials. Failure to repair or sequester damaged lysosomes poses a threat to cell viability. Here we report that cells exploit a sphingomyelin-based lysosomal repair pathway that operates independently of ESCRT to reverse potentially lethal membrane damage. Various conditions perturbing organelle integrity trigger a rapid calcium-activated scrambling and cytosolic exposure of sphingomyelin. Subsequent metabolic conversion of sphingomyelin by neutral sphingomyelinases on the cytosolic surface of injured lysosomes promotes their repair, also when ESCRT function is compromised. Conversely, blocking turnover of cytosolic sphingomyelin renders cells more sensitive to lysosome-damaging drugs. Our data indicate that calcium-activated scramblases, sphingomyelin, and neutral sphingomyelinases are core components of a previously unrecognized membrane restoration pathway by which cells preserve the functional integrity of lysosomes.
Collapse
|
24
|
Ono Y, Matsuzawa K, Ikenouchi J. mTORC2 suppresses cell death induced by hypo-osmotic stress by promoting sphingomyelin transport. J Cell Biol 2022; 221:213090. [PMID: 35319770 PMCID: PMC8952684 DOI: 10.1083/jcb.202106160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/28/2021] [Accepted: 01/24/2022] [Indexed: 11/22/2022] Open
Abstract
Epithelial cells are constantly exposed to osmotic stress. The influx of water molecules into the cell in a hypo-osmotic environment increases plasma membrane tension as it rapidly expands. Therefore, the plasma membrane must be supplied with membrane lipids since expansion beyond its elastic limit will cause the cell to rupture. However, the molecular mechanism to maintain a constant plasma membrane tension is not known. In this study, we found that the apical membrane selectively expands when epithelial cells are exposed to hypo-osmotic stress. This requires the activation of mTORC2, which enhances the transport of secretory vesicles containing sphingomyelin, the major lipid of the apical membrane. We further show that the mTORC2–Rab35 axis plays an essential role in the defense against hypotonic stress by promoting the degradation of the actin cortex through the up-regulation of PI(4,5)P2 metabolism, which facilitates the apical tethering of sphingomyelin-loaded vesicles to relieve plasma membrane tension.
Collapse
Affiliation(s)
- Yumiko Ono
- Department of Biology, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Kenji Matsuzawa
- Department of Biology, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Junichi Ikenouchi
- Department of Biology, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka, Japan
| |
Collapse
|
25
|
Sphingolipids and Cholesterol. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:1-14. [DOI: 10.1007/978-981-19-0394-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Srinivasan S, Vanni S. Computational Approaches to Investigate and Design Lipid-binding Domains for Membrane Biosensing. Chimia (Aarau) 2021; 75:1031-1036. [PMID: 34920773 DOI: 10.2533/chimia.2021.1031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Association of proteins with cellular membranes is critical for signaling and membrane trafficking processes. Many peripheral lipid-binding domains have been identified in the last few decades and have been investigated for their specific lipid-sensing properties using traditional in vivo and in vitro studies. However, several knowledge gaps remain owing to intrinsic limitations of these methodologies. Thus, novel approaches are necessary to further our understanding in lipid-protein biology. This review briefly discusses lipid-binding domains that act as specific lipid biosensors and provides a broad perspective on the computational approaches such as molecular dynamics (MD) simulations and machine learning (ML)-based techniques that can be used to study protein-membrane interactions. We also highlight the need for de novo design of proteins that elicit specific lipid-binding properties.
Collapse
Affiliation(s)
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Switzerland;,
| |
Collapse
|
27
|
Wang XY, Cai DZ, Li X, Bai SF, Yan FM. Identification and Physicochemical Properties of the Novel Hemolysin(s) From Oral Secretions of Helicoverpa armigera (Lepidoptera: Noctuidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:12. [PMID: 34750634 PMCID: PMC8575691 DOI: 10.1093/jisesa/ieab082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Indexed: 06/13/2023]
Abstract
Hemolysins cause the lysis of invading organisms, representing major humoral immunity used by invertebrates. Hemolysins have been discovered in hemolymph of Helicoverpa armigera larvae as immune factors. As oral immunity is great important to clear general pathogens, we presumed that hemolysins may be present in oral secretions (OS). To confirm this hypothesis, we conducted four testing methods to identify hemolysin(s) in larval OS of H. armigera, and analyzed physicochemical properties of the hemolysin in comparison with hemolytic melittin of Apis mellifera (L.) (Hymenoptera: Apidae) venom. We found hemolysin(s) from OS of H. armigera for the first time, and further identified in other lepidopteran herbivores. It could be precipitated by ammonium sulfate, which demonstrates that the hemolytic factor is proteinaceous. Labial gland showed significantly higher hemolytic activity than gut tissues, suggesting that hemolysin of OS is mainly derived from saliva secreted by labial glands. Physicochemical properties of hemolysin in caterpillar's OS were different from bee venom. It was noteworthy that hemolytic activity of OS was only partially inhibited even at 100°C. Hemolytic activity of OS was not inhibited by nine tested carbohydrates contrary to bee venom melittin. Moreover, effects of metal ions on hemolytic activity were different between OS and bee venom. We conclude that there is at least a novel hemolysin in OS of herbivorous insects with proposed antibacterial function, and its hemolytic mechanism may be different from melittin. Our study enriches understanding of the potential role of hemolysins in insect immunity and provides useful data to the field of herbivorous insect-pathogen research.
Collapse
Affiliation(s)
- Xiong-Ya Wang
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Dong-Zhang Cai
- Department of Conservation of Natural Resources, National Nature Reserve Administration of Henan Jigongshan Mountain, Xinyang, Henan, 464000, China
| | - Xin Li
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Su-Fen Bai
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Feng-Ming Yan
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| |
Collapse
|
28
|
Tallima H, Azzazy HME, El Ridi R. Cell surface sphingomyelin: key role in cancer initiation, progression, and immune evasion. Lipids Health Dis 2021; 20:150. [PMID: 34717628 PMCID: PMC8557557 DOI: 10.1186/s12944-021-01581-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/15/2021] [Indexed: 12/16/2022] Open
Abstract
Cell surface biochemical changes, notably excessive increase in outer leaflet sphingomyelin (SM) content, are important in cancer initiation, growth, and immune evasion. Innumerable reports describe methods to initiate, promote, or enhance immunotherapy of clinically detected cancer, notwithstanding the challenges, if not impossibility, of identification of tumor-specific, or associated antigens, the lack of tumor cell surface membrane expression of major histocompatibility complex (MHC) class I alpha and β2 microglobulin chains, and lack of expression or accessibility of Fas and other natural killer cell immune checkpoint molecules. Conversely, SM synthesis and hydrolysis are increasingly implicated in initiation of carcinogenesis and promotion of metastasis. Surface membrane SM readily forms inter- and intra- molecular hydrogen bond network, which excessive tightness would impair cell-cell contact inhibition, inter- and intra-cellular signals, metabolic pathways, and susceptibility to host immune cells and mediators. The present review aims at clarifying the tumor immune escape mechanisms, which face common immunotherapeutic approaches, and attracting attention to an entirely different, neglected, key aspect of tumorigenesis associated with biochemical changes in the cell surface that lead to failure of contact inhibition, an instrumental tumorigenesis mechanism. Additionally, the review aims to provide evidence for surface membrane SM levels and roles in cells resistance to death, failure to respond to growth suppressor signals, and immune escape, and to suggest possible novel approaches to cancer control and cure.
Collapse
Affiliation(s)
- Hatem Tallima
- Department of Chemistry, School of Science and Engineering, The American University in Cairo, New Cairo, Cairo, 11835, Egypt. .,Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Hassan M E Azzazy
- Department of Chemistry, School of Science and Engineering, The American University in Cairo, New Cairo, Cairo, 11835, Egypt
| | - Rashika El Ridi
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
29
|
Scott-Fordsmand JJ, Amorim MJB. The Curious Case of Earthworms and COVID-19. BIOLOGY 2021; 10:biology10101043. [PMID: 34681142 PMCID: PMC8533077 DOI: 10.3390/biology10101043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary Earthworms have been used for centuries in traditional medicine, and more than a century ago were praised by Charles Darwin as one of the most important organisms in the history of the world. These worms are well-studied with a wealth of information available, for example on the genome, the gene expression, the immune system, the general biology, and ecology. These worms live in many habitats, and they had to find solutions for severe environmental challenges. The common compost worm, Eisenia fetida, has developed a unique mechanism to deal with intruding (nano)materials, bacteria, and viruses. It deals with the intruders by covering these with a defence toxin (lysenin) targeted to kill the intruder. We outline how this mechanism probably can be used as a therapeutic model for human COVID-19 (Severe Acute Respiratory Syndrome Coronavirus 2, SARS-CoV-2) and other corona viruses. Abstract Earthworms have been used for centuries in traditional medicine and are used globally as an ecotoxicological standard test species. Studies of the earthworm Eisenia fetida have shown that exposure to nanomaterials activates a primary corona-response, which is covering the nanomaterial with native proteins, the same response as to biological invaders such as a virus. We outline that the earthworm Eisenia fetida is possibly immune to COVID-19 (Severe Acute Respiratory Syndrome Coronavirus 2, SARS-CoV-2), and we describe the likely mechanisms of highly receptor-specific pore-forming proteins (PFPs). A non-toxic version of this protein is available, and we hypothesize that it is possible to use the earthworm’s PFPs based anti-viral mechanism as a therapeutic model for human SARS-CoV-2 and other corona viruses. The proteins can be used as a drug, for example, delivered with a nanoparticle in a similar way to the current COVID-19 vaccines. Obviously, careful consideration should be given to the potential risk of toxicity elicited by lysenin for in vivo usage. We aim to share this view to activate its exploration by the wider scientific community while promoting a potential therapeutic development.
Collapse
Affiliation(s)
- Janeck J. Scott-Fordsmand
- Department of Biosciences, Aarhus University, 8600 Silkeborg, Denmark
- Correspondence: ; Tel.: +45-4025-6803
| | - Monica J. B. Amorim
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
30
|
Canals D, Clarke CJ. Compartmentalization of Sphingolipid metabolism: Implications for signaling and therapy. Pharmacol Ther 2021; 232:108005. [PMID: 34582834 DOI: 10.1016/j.pharmthera.2021.108005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022]
Abstract
Sphingolipids (SLs) are a family of bioactive lipids implicated in a variety of cellular processes, and whose levels are controlled by an interlinked network of enzymes. While the spatial distribution of SL metabolism throughout the cell has been understood for some time, the implications of this for SL signaling and biological outcomes have only recently begun to be fully explored. In this review, we outline the compartmentalization of SL metabolism and describe advances in tools for investigating and probing compartment-specific SL functions. We also briefly discuss the implications of SL compartmentalization for cell signaling and therapeutic approaches to targeting the SL network.
Collapse
Affiliation(s)
- Daniel Canals
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA.
| | - Christopher J Clarke
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
31
|
Kulma M, Anderluh G. Beyond pore formation: reorganization of the plasma membrane induced by pore-forming proteins. Cell Mol Life Sci 2021; 78:6229-6249. [PMID: 34387717 PMCID: PMC11073440 DOI: 10.1007/s00018-021-03914-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/09/2021] [Accepted: 08/03/2021] [Indexed: 12/23/2022]
Abstract
Pore-forming proteins (PFPs) are a heterogeneous group of proteins that are expressed and secreted by a wide range of organisms. PFPs are produced as soluble monomers that bind to a receptor molecule in the host cell membrane. They then assemble into oligomers that are incorporated into the lipid membrane to form transmembrane pores. Such pore formation alters the permeability of the plasma membrane and is one of the most common mechanisms used by PFPs to destroy target cells. Interestingly, PFPs can also indirectly manipulate diverse cellular functions. In recent years, increasing evidence indicates that the interaction of PFPs with lipid membranes is not only limited to pore-induced membrane permeabilization but is also strongly associated with extensive plasma membrane reorganization. This includes lateral rearrangement and deformation of the lipid membrane, which can lead to the disruption of target cell function and finally death. Conversely, these modifications also constitute an essential component of the membrane repair system that protects cells from the lethal consequences of pore formation. Here, we provide an overview of the current knowledge on the changes in lipid membrane organization caused by PFPs from different organisms.
Collapse
Affiliation(s)
- Magdalena Kulma
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia.
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia
| |
Collapse
|
32
|
Mondal AK, Chattopadhyay K. Structures and functions of the membrane-damaging pore-forming proteins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 128:241-288. [PMID: 35034720 DOI: 10.1016/bs.apcsb.2021.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pore-forming proteins (PFPs) of the diverse life forms have emerged as the potent cell-killing entities owing to their specialized membrane-damaging properties. PFPs have the unique ability to perforate the plasma membranes of their target cells, and they exert this functionality by creating oligomeric pores in the membrane lipid bilayer. Pathogenic bacteria employ PFPs as toxins to execute their virulence mechanisms, whereas in the higher vertebrates PFPs are deployed as the part of the immune system and to generate inflammatory responses. PFPs are the unique dimorphic proteins that are generally synthesized as water-soluble molecules, and transform into membrane-inserted oligomeric pore assemblies upon interacting with the target membranes. In spite of sharing very little sequence similarity, PFPs from diverse organisms display incredible structural similarity. Yet, at the same time, structure-function mechanisms of the PFPs document remarkable versatility. Such notions establish PFPs as the fascinating model system to explore variety of unsolved issues pertaining to the structure-function paradigm of the proteins that interact and act in the membrane environment. In this article, we discuss our current understanding regarding the structural basis of the pore-forming functions of the diverse class of PFPs. We attempt to highlight the similarities and differences in their structures, membrane pore-formation mechanisms, and their implications for the various biological processes, ranging from the bacterial virulence mechanisms to the inflammatory immune response generation in the higher animals.
Collapse
Affiliation(s)
- Anish Kumar Mondal
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Kausik Chattopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India.
| |
Collapse
|
33
|
Bhattacharya A, Cho CJ, Brea RJ, Devaraj NK. Expression of Fatty Acyl-CoA Ligase Drives One-Pot De Novo Synthesis of Membrane-Bound Vesicles in a Cell-Free Transcription-Translation System. J Am Chem Soc 2021; 143:11235-11242. [PMID: 34260248 DOI: 10.1021/jacs.1c05394] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite the central importance of lipid membranes in cellular organization, it is challenging to reconstitute their formation de novo from minimal chemical and biological elements. Here, we describe a chemoenzymatic route to membrane-forming noncanonical phospholipids in which cysteine-modified lysolipids undergo spontaneous coupling with fatty acyl-CoA thioesters generated enzymatically by a fatty acyl-CoA ligase. Due to the high efficiency of the reaction, we were able to optimize phospholipid formation in a cell-free transcription-translation (TX-TL) system. Combining DNA encoding the fatty acyl-CoA ligase with suitable lipid precursors enabled one-pot de novo synthesis of membrane-bound vesicles. Noncanonical sphingolipid synthesis was also possible by using a cysteine-modified lysosphingomyelin as a precursor. When the sphingomyelin-interacting protein lysenin was coexpressed alongside the acyl-CoA ligase, the in situ assembled membranes were spontaneously decorated with protein. Our strategy of coupling gene expression with membrane lipid synthesis in a one-pot fashion could facilitate the generation of proteoliposomes and brings us closer to the bottom-up generation of synthetic cells using recombinant synthetic biology platforms.
Collapse
Affiliation(s)
- Ahanjit Bhattacharya
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Christy J Cho
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Roberto J Brea
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
34
|
Liposomes Prevent In Vitro Hemolysis Induced by Streptolysin O and Lysenin. MEMBRANES 2021; 11:membranes11050364. [PMID: 34069894 PMCID: PMC8157566 DOI: 10.3390/membranes11050364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/08/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022]
Abstract
The need for alternatives to antibiotics in the fight against infectious diseases has inspired scientists to focus on antivirulence factors instead of the microorganisms themselves. In this respect, prior work indicates that tiny, enclosed bilayer lipid membranes (liposomes) have the potential to compete with cellular targets for toxin binding, hence preventing their biological attack and aiding with their clearance. The effectiveness of liposomes as decoy targets depends on their availability in the host and how rapidly they are cleared from the circulation. Although liposome PEGylation may improve their circulation time, little is known about how such a modification influences their interactions with antivirulence factors. To fill this gap in knowledge, we investigated regular and long-circulating liposomes for their ability to prevent in vitro red blood cell hemolysis induced by two potent lytic toxins, lysenin and streptolysin O. Our explorations indicate that both regular and long-circulating liposomes are capable of similarly preventing lysis induced by streptolysin O. In contrast, PEGylation reduced the effectiveness against lysenin-induced hemolysis and altered binding dynamics. These results suggest that toxin removal by long-circulating liposomes is feasible, yet dependent on the particular virulence factor under scrutiny.
Collapse
|
35
|
Kusumi A, Fujiwara TK, Tsunoyama TA, Kasai RS, Liu AA, Hirosawa KM, Kinoshita M, Matsumori N, Komura N, Ando H, Suzuki KGN. Defining raft domains in the plasma membrane. Traffic 2021; 21:106-137. [PMID: 31760668 DOI: 10.1111/tra.12718] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 01/03/2023]
Abstract
Many plasma membrane (PM) functions depend on the cholesterol concentration in the PM in strikingly nonlinear, cooperative ways: fully functional in the presence of physiological cholesterol levels (35~45 mol%), and nonfunctional below 25 mol% cholesterol; namely, still in the presence of high concentrations of cholesterol. This suggests the involvement of cholesterol-based complexes/domains formed cooperatively. In this review, by examining the results obtained by using fluorescent lipid analogs and avoiding the trap of circular logic, often found in the raft literature, we point out the fundamental similarities of liquid-ordered (Lo)-phase domains in giant unilamellar vesicles, Lo-phase-like domains formed at lower temperatures in giant PM vesicles, and detergent-resistant membranes: these domains are formed by cooperative interactions of cholesterol, saturated acyl chains, and unsaturated acyl chains, in the presence of >25 mol% cholesterol. The literature contains evidence, indicating that the domains formed by the same basic cooperative molecular interactions exist and play essential roles in signal transduction in the PM. Therefore, as a working definition, we propose that raft domains in the PM are liquid-like molecular complexes/domains formed by cooperative interactions of cholesterol with saturated acyl chains as well as unsaturated acyl chains, due to saturated acyl chains' weak multiple accommodating interactions with cholesterol and cholesterol's low miscibility with unsaturated acyl chains and TM proteins. Molecules move within raft domains and exchange with those in the bulk PM. We provide a logically established collection of fluorescent lipid probes that preferentially partition into raft and non-raft domains, as defined here, in the PM.
Collapse
Affiliation(s)
- Akihiro Kusumi
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan.,Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - Takahiro K Fujiwara
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - Taka A Tsunoyama
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
| | - Rinshi S Kasai
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - An-An Liu
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, P. R. China
| | - Koichiro M Hirosawa
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan
| | - Masanao Kinoshita
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Naoko Komura
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan
| | - Hiromune Ando
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan
| | - Kenichi G N Suzuki
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan
| |
Collapse
|
36
|
Branching out the aerolysin, ETX/MTX-2 and Toxin_10 family of pore forming proteins. J Invertebr Pathol 2021; 186:107570. [PMID: 33775676 DOI: 10.1016/j.jip.2021.107570] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/15/2020] [Accepted: 03/09/2021] [Indexed: 01/28/2023]
Abstract
Organisms have evolved mechanisms in which cellular membranes can both be targeted and punctured thereby killing the targeted cell. One such mechanism involves the deployment of pore forming proteins (PFPs) which function by oligomerizing on cell membranes and inserting a physical pore spanning the membrane. This pore can lead to cell death by either causing osmotic flux or allowing the delivery of a secondary toxin. Pore forming proteins can be broadly classified into different families depending on the structure of the final pore; either α-PFPs using channels made from α -helices or β-PFPs using channels made from β-barrels. There are many different β-PFPs and an emerging superfamily is the aerolysin-ETX/MTX-2 superfamily. A comparison between the members of this superfamily reveals the pore forming domain is a common module yet the receptor binding region is highly variable. These structural and architectural variations lead to differences in the target recognition and determine the site of activity. Closer investigation of the topology of the family also suggests that the Toxin_10 family of PFPs could be considered as part of the aerolysin-ETX/MTX-2 superfamily. Comparatively, far less is known about how Toxin_10 proteins assemble into the final pore structure than aerolysin-ETX/MTX-2 proteins. This review aims to collate the pore forming protein members and bridge the structural similarities between the aerolysin-ETX/MTX-2 superfamily and the insecticidal Toxin_10 subfamily.
Collapse
|
37
|
Tomishige N, Murate M, Didier P, Richert L, Mély Y, Kobayashi T. The use of pore-forming toxins to image lipids and lipid domains. Methods Enzymol 2021; 649:503-542. [PMID: 33712198 DOI: 10.1016/bs.mie.2021.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Very few proteins are reported to bind specific lipids. Because of the high selectivity and strong binding to specific lipids, lipid-targeting pore forming toxins (PFTs) have been employed to study the distribution of lipids in cell- and model-membranes. Non-toxic and monomeric PFT-derivatives are especially useful to study living cells. In this chapter we highlight sphingomyelin (SM)-binding PFT, lysenin (Lys), its derivatives, and newly identified SM/cholesterol binding protein, nakanori. We describe the preparation of non-toxic mutant of Lys (NT-Lys) and its application in optical and super resolution microscopy. We also discuss the observation of nanometer scale lipid domains labeled with nakanori and maltose-binding protein (MBP)-Lys in electron microscopy.
Collapse
Affiliation(s)
| | | | - Pascal Didier
- UMR 7021 CNRS, Université de Strasbourg, Illkirch, France
| | | | - Yves Mély
- UMR 7021 CNRS, Université de Strasbourg, Illkirch, France
| | | |
Collapse
|
38
|
Johnson KA, Radhakrishnan A. The use of anthrolysin O and ostreolysin A to study cholesterol in cell membranes. Methods Enzymol 2021; 649:543-566. [PMID: 33712199 DOI: 10.1016/bs.mie.2021.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cholesterol is a major component of the plasma membranes (PMs) of animal cells, comprising 35-40mol% of total PM lipids. Recent studies using cholesterol-binding bacterial toxins such as domain 4 of Anthrolysin O (ALOD4) and fungal toxins such as Ostreolysin A (OlyA) have revealed new insights into the organization of PM cholesterol. These studies have defined three distinct pools of PM cholesterol-a fixed pool that is essential for membrane integrity, a sphingomyelin (SM)-sequestered pool that can be detected by OlyA, and a third pool that is accessible and can be detected by ALOD4. Accessible cholesterol is available to interact with proteins and transport to the endoplasmic reticulum (ER), and controls many cellular signaling processes including cholesterol homeostasis, Hedgehog signaling, and bacterial and viral infection. Here, we provide detailed descriptions for the use of ALOD4 and OlyA, both of which are soluble and non-lytic proteins, to study cholesterol organization in the PMs of animal cells. Furthermore, we describe two new versions of ALOD4 that we have developed to increase the versatility of this probe in cellular studies. One is a dual His6 and FLAG epitope-tagged version and the other is a fluorescent version where ALOD4 is fused to Neon, a monomeric fluorescent protein. These new forms of ALOD4 together with previously described OlyA provide an expanded collection of tools to sense, visualize, and modulate levels of accessible and SM-sequestered cholesterol on PMs and study the role of these cholesterol pools in diverse membrane signaling events.
Collapse
Affiliation(s)
- Kristen A Johnson
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Arun Radhakrishnan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
39
|
Larpin Y, Besançon H, Babiychuk VS, Babiychuk EB, Köffel R. Small Pore-Forming Toxins Different Membrane Area Binding and Ca 2+ Permeability of Pores Determine Cellular Resistance of Monocytic Cells. Toxins (Basel) 2021; 13:toxins13020126. [PMID: 33572185 PMCID: PMC7914786 DOI: 10.3390/toxins13020126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 01/06/2023] Open
Abstract
Pore-forming toxins (PFTs) form multimeric trans-membrane pores in cell membranes that differ in pore channel diameter (PCD). Cellular resistance to large PFTs (>20 nm PCD) was shown to rely on Ca2+ influx activated membrane repair mechanisms. Small PFTs (<2 nm PCD) were shown to exhibit a high cytotoxic activity, but host cell response and membrane repair mechanisms are less well studied. We used monocytic immune cell lines to investigate the cellular resistance and host membrane repair mechanisms to small PFTs lysenin (Eisenia fetida) and aerolysin (Aeromonas hydrophila). Lysenin, but not aerolysin, is shown to induce Ca2+ influx from the extracellular space and to activate Ca2+ dependent membrane repair mechanisms. Moreover, lysenin binds to U937 cells with higher efficiency as compared to THP-1 cells, which is in line with a high sensitivity of U937 cells to lysenin. In contrast, aerolysin equally binds to U937 or THP-1 cells, but in different plasma membrane areas. Increased aerolysin induced cell death of U937 cells, as compared to THP-1 cells, is suggested to be a consequence of cap-like aerolysin binding. We conclude that host cell resistance to small PFTs attack comprises binding efficiency, pore localization, and capability to induce Ca2+ dependent membrane repair mechanisms.
Collapse
|
40
|
Abstract
Lipids, like phosphoinositides, can be visualized in living cells in real time using genetically encoded biosensors and fluorescence microscopy. Sensor localization can be quantified by determining the fluorescence intensity of each fluorophore. Enrichment of lipids at membranes can be determined by generating and applying an organelle-specific binary mask. In this chapter, we provide a detailed list of reagents and methods to visualize and quantify relative lipid levels. Applying this approach, changes in lipid levels can be assessed in cases when lipid metabolizing enzymes are mutated or otherwise altered.
Collapse
Affiliation(s)
- Rachel C Wills
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jonathan Pacheco
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Gerald R V Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
41
|
Kobayashi T, Tomishige N, Inaba T, Makino A, Murata M, Yamaji-Hasegawa A, Murate M. Impact of Intrinsic and Extrinsic Factors on Cellular Sphingomyelin Imaging with Specific Reporter Proteins. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2021; 4:25152564211042456. [PMID: 37366372 PMCID: PMC10259817 DOI: 10.1177/25152564211042456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Sphingomyelin (SM) is a major sphingolipid in mammalian cells. Although SM is enriched in the outer leaflet of the cell plasma membrane, lipids are also observed in the inner leaflet of the plasma membrane and intracellular organelles such as endolysosomes, the Golgi apparatus and nuclei. SM is postulated to form clusters with glycosphingolipids (GSLs), cholesterol (Chol), and other SM molecules through hydrophobic interactions and hydrogen bonding. Thus, different clusters composed of SM, SM/Chol, SM/GSL and SM/GSL/Chol with different stoichiometries may exist in biomembranes. In addition, SM monomers may be located in the glycerophospholipid-rich areas of membranes. Recently developed SM-binding proteins (SBPs) distinguish these different SM assemblies. Here, we summarize the effects of intrinsic factors regulating the lipid-binding specificity of SBPs and extrinsic factors, such as the lipid phase and lipid density, on SM recognition by SBPs. The combination of different SBPs revealed the heterogeneity of SM domains in biomembranes.
Collapse
Affiliation(s)
- Toshihide Kobayashi
- Lipid Biology Laboratory, RIKEN, Wako, Saitama, Japan
- Cellular Informatics Laboratory, RIKEN
CPR, Wako, Saitama, Japan
- Laboratoire de Bioimagerie et
Pathologies, Faculté de Pharmacie, UMR 7021 CNRS, Université de Strasbourg,
Illkirch, France
| | - Nario Tomishige
- Lipid Biology Laboratory, RIKEN, Wako, Saitama, Japan
- Cellular Informatics Laboratory, RIKEN
CPR, Wako, Saitama, Japan
- Laboratoire de Bioimagerie et
Pathologies, Faculté de Pharmacie, UMR 7021 CNRS, Université de Strasbourg,
Illkirch, France
| | | | - Asami Makino
- Lipid Biology Laboratory, RIKEN, Wako, Saitama, Japan
| | - Michio Murata
- Department of Chemistry, Graduate
School of Science, Osaka University, Toyonaka, Osaka, Japan
- ERATO, Lipid Active Structure Project,
Japan Science and Technology Agency, Graduate School of Science, Osaka University,
Osaka, Japan
| | | | - Motohide Murate
- Lipid Biology Laboratory, RIKEN, Wako, Saitama, Japan
- Cellular Informatics Laboratory, RIKEN
CPR, Wako, Saitama, Japan
- Laboratoire de Bioimagerie et
Pathologies, Faculté de Pharmacie, UMR 7021 CNRS, Université de Strasbourg,
Illkirch, France
| |
Collapse
|
42
|
Murakami H, Tamura N, Enomoto Y, Shimasaki K, Kurosawa K, Hanada K. Intellectual disability-associated gain-of-function mutations in CERT1 that encodes the ceramide transport protein CERT. PLoS One 2020; 15:e0243980. [PMID: 33347465 PMCID: PMC7751862 DOI: 10.1371/journal.pone.0243980] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/01/2020] [Indexed: 12/18/2022] Open
Abstract
Intellectual disability (ID) is a developmental disorder that includes both intellectual and adaptive functioning deficits in conceptual, social, and practical domains. Although evidence-based interventions for patients have long been desired, their progress has been hindered due to various determinants. One of these determinants is the complexity of the origins of ID. The ceramide transport protein (CERT) encoded by CERT1 mediates inter-organelle trafficking of ceramide for the synthesis of intracellular sphingomyelin. Utilizing whole exome sequencing analysis, we identified a novel CERT variant, which substitutes a serine at position 135 (S135) for a proline in a patient with severe ID. Biochemical analysis showed that S135 is essential for hyperphosphorylation of a serine-repeat motif of CERT, which is required for down-regulation of CERT activity. Amino acid replacements of S135 abnormally activated CERT and induced an intracellular punctate distribution pattern of this protein. These results identified specific ID-associated CERT1 mutations that induced gain-of-function effects on CERT activity. These findings provide a possible molecular basis for not only new diagnostics but also a conceivable pharmaceutical intervention for ID disorders caused by gain-of-function mutations in CERT1.
Collapse
Affiliation(s)
- Hiroaki Murakami
- Division of Medical Genetics, Kanagawa Children’s Medical Center, Yokohama, Kanagawa, Japan
| | - Norito Tamura
- Department of Biochemistry & Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yumi Enomoto
- Clinical Research Institute, Kanagawa Children’s Medical Center, Yokohama, Kanagawa, Japan
| | - Kentaro Shimasaki
- Department of Biochemistry & Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kenji Kurosawa
- Division of Medical Genetics, Kanagawa Children’s Medical Center, Yokohama, Kanagawa, Japan
- * E-mail: (KK); (KH)
| | - Kentaro Hanada
- Department of Biochemistry & Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
- * E-mail: (KK); (KH)
| |
Collapse
|
43
|
Tamura T, Fujisawa A, Tsuchiya M, Shen Y, Nagao K, Kawano S, Tamura Y, Endo T, Umeda M, Hamachi I. Organelle membrane-specific chemical labeling and dynamic imaging in living cells. Nat Chem Biol 2020; 16:1361-1367. [PMID: 32958953 DOI: 10.1038/s41589-020-00651-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 08/14/2020] [Indexed: 12/22/2022]
Abstract
Lipids play crucial roles as structural elements, signaling molecules and material transporters in cells. However, the functions and dynamics of lipids within cells remain unclear because of a lack of methods to selectively label lipids in specific organelles and trace their movement by live-cell imaging. We describe here a technology for the selective labeling and fluorescence imaging (microscopic or nanoscopic) of phosphatidylcholine in target organelles. This approach involves the metabolic incorporation of azido-choline, followed by a spatially limited bioorthogonal reaction that enables the visualization and quantitative analysis of interorganelle lipid transport in live cells. More importantly, with live-cell imaging, we obtained direct evidence that the autophagosomal membrane originates from the endoplasmic reticulum. This method is simple and robust and is thus powerful for real-time tracing of interorganelle lipid trafficking.
Collapse
Affiliation(s)
- Tomonori Tamura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Kyoto, Japan
| | - Alma Fujisawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Kyoto, Japan
| | - Masaki Tsuchiya
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Kyoto, Japan
| | - Yuying Shen
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kohjiro Nagao
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Shin Kawano
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
- Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, Japan
| | - Yasushi Tamura
- Faculty of Science, Yamagata University, Yamagata, Japan
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
- Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, Japan
| | - Masato Umeda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan.
- JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Kyoto, Japan.
| |
Collapse
|
44
|
Lysenin Channels as Sensors for Ions and Molecules. SENSORS 2020; 20:s20216099. [PMID: 33120957 PMCID: PMC7663491 DOI: 10.3390/s20216099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022]
Abstract
Lysenin is a pore-forming protein extracted from the earthworm Eisenia fetida, which inserts large conductance pores in artificial and natural lipid membranes containing sphingomyelin. Its cytolytic and hemolytic activity is rather indicative of a pore-forming toxin; however, lysenin channels present intricate regulatory features manifested as a reduction in conductance upon exposure to multivalent ions. Lysenin pores also present a large unobstructed channel, which enables the translocation of analytes, such as short DNA and peptide molecules, driven by electrochemical gradients. These important features of lysenin channels provide opportunities for using them as sensors for a large variety of applications. In this respect, this literature review is focused on investigations aimed at the potential use of lysenin channels as analytical tools. The described explorations include interactions with multivalent inorganic and organic cations, analyses on the reversibility of such interactions, insights into the regulation mechanisms of lysenin channels, interactions with purines, stochastic sensing of peptides and DNA molecules, and evidence of molecular translocation. Lysenin channels present themselves as versatile sensing platforms that exploit either intrinsic regulatory features or the changes in ionic currents elicited when molecules thread the conducting pathway, which may be further developed into analytical tools of high specificity and sensitivity or exploited for other scientific biotechnological applications.
Collapse
|
45
|
Transbilayer Movement of Sphingomyelin Precedes Catastrophic Breakage of Enterobacteria-Containing Vacuoles. Curr Biol 2020; 30:2974-2983.e6. [PMID: 32649908 PMCID: PMC7416114 DOI: 10.1016/j.cub.2020.05.083] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/11/2020] [Accepted: 05/27/2020] [Indexed: 01/01/2023]
Abstract
Pathogenic bacteria enter the cytosol of host cells through uptake into bacteria-containing vacuoles (BCVs) and subsequent rupture of the vacuolar membrane [1]. Bacterial invaders are sensed either directly, through cytosolic pattern-recognition receptors specific for bacterial ligands, or indirectly, through danger receptors that bind host molecules displayed in an abnormal context, for example, glycans on damaged BCVs [2, 3, 4]. In contrast to damage caused by Listeria monocytogenes, a Gram-positive bacterium, BCV rupture by Gram-negative pathogens such as Shigella flexneri or Salmonella Typhimurium remains incompletely understood [5, 6]. The latter may cause membrane damage directly, when inserting their Type Three Secretion needles into host membranes, or indirectly through translocated bacterial effector proteins [7, 8, 9]. Here, we report that sphingomyelin, an abundant lipid of the luminal leaflet of BCV membranes, and normally absent from the cytosol, becomes exposed to the cytosol as an early predictive marker of BCV rupture by Gram-negative bacteria. To monitor subcellular sphingomyelin distribution, we generated a live sphingomyelin reporter from Lysenin, a sphingomyelin-specific toxin from the earthworm Eisenia fetida [10, 11]. Using super resolution live imaging and correlative light and electron microscopy (CLEM), we discovered that BCV rupture proceeds through two distinct successive stages: first, sphingomyelin is gradually translocated into the cytosolic leaflet of the BCV, invariably followed by cytosolic exposure of glycans, which recruit galectin-8, indicating bacterial entry into the cytosol. Exposure of sphingomyelin on BCVs may therefore act as an early danger signal alerting the cell to imminent bacterial invasion.
Lysenin serves as a reporter of sphingomyelin exposure in the mammalian cytosol Chemical-, toxin-, or pathogen-induced membrane damage exposes sphingomyelin Sphingomyelin exposure precedes catastrophic breakage of bacteria-containing vacuoles Cytosolic sphingomyelin is indicative of membrane stress and imminent pathogen entry
Collapse
|
46
|
Ramírez-Carreto S, Miranda-Zaragoza B, Rodríguez-Almazán C. Actinoporins: From the Structure and Function to the Generation of Biotechnological and Therapeutic Tools. Biomolecules 2020; 10:E539. [PMID: 32252469 PMCID: PMC7226409 DOI: 10.3390/biom10040539] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 12/22/2022] Open
Abstract
Actinoporins (APs) are a family of pore-forming toxins (PFTs) from sea anemones. These biomolecules exhibit the ability to exist as soluble monomers within an aqueous medium or as constitutively open oligomers in biological membranes. Through their conformational plasticity, actinoporins are considered good candidate molecules to be included for the rational design of molecular tools, such as immunotoxins directed against tumor cells and stochastic biosensors based on nanopores to analyze unique DNA or protein molecules. Additionally, the ability of these proteins to bind to sphingomyelin (SM) facilitates their use for the design of molecular probes to identify SM in the cells. The immunomodulatory activity of actinoporins in liposomal formulations for vaccine development has also been evaluated. In this review, we describe the potential of actinoporins for use in the development of molecular tools that could be used for possible medical and biotechnological applications.
Collapse
Affiliation(s)
| | | | - Claudia Rodríguez-Almazán
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos 62210, Mexico; (S.R.-C.); (B.M.-Z.)
| |
Collapse
|
47
|
Toshima K, Nagafuku M, Okazaki T, Kobayashi T, Inokuchi JI. Plasma membrane sphingomyelin modulates thymocyte development by inhibiting TCR-induced apoptosis. Int Immunol 2020; 31:211-223. [PMID: 30561621 DOI: 10.1093/intimm/dxy082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/12/2019] [Indexed: 12/18/2022] Open
Abstract
Sphingomyelin (SM) in combination with cholesterol forms specialized membrane lipid microdomains in which specific receptors and signaling molecules are localized or recruited to mediate intracellular signaling. SM-microdomain levels in mouse thymus were low in the early CD4+CD8+ double-positive (DP) stage prior to thymic selection and increased >10-fold during late selection. T-cell receptor (TCR) signal strength is a key factor determining whether DP thymocytes undergo positive or negative selection. We examined the role of SM-microdomains in thymocyte development and related TCR signaling, using SM synthase 1 (SMS1)-deficient (SMS1-/-) mice which display low SM expression in all thymocyte populations. SMS1 deficiency caused reduced cell numbers after late DP stages in TCR transgenic models. TCR-dependent apoptosis induced by anti-CD3 treatment was enhanced in SMS1-/- DP thymocytes both in vivo and in vitro. SMS1-/- DP thymocytes, relative to controls, showed increased phosphorylation of TCR-proximal kinase ZAP-70 and increased expression of Bim and Nur77 proteins involved in negative selection following TCR stimulation. Addition of SM to cultured normal DP thymocytes led to greatly increased surface expression of SM-microdomains, with associated reduction of TCR signaling and TCR-induced apoptosis. Our findings indicate that SM-microdomains are increased in late DP stages, function as negative regulators of TCR signaling and modulate the efficiency of TCR-proximal signaling to promote thymic selection events leading to subsequent developmental stages.
Collapse
Affiliation(s)
- Kaoru Toshima
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai, Miyagi, Japan
| | - Masakazu Nagafuku
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai, Miyagi, Japan
| | - Toshiro Okazaki
- Department of Hematology and Immunology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | | | - Jin-Ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai, Miyagi, Japan
| |
Collapse
|
48
|
Prochazkova P, Roubalova R, Dvorak J, Navarro Pacheco NI, Bilej M. Pattern recognition receptors in annelids. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 102:103493. [PMID: 31499098 DOI: 10.1016/j.dci.2019.103493] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
The existence of pattern recognition receptors (PRRs) on immune cells was discussed in 1989 by Charles Janeway, Jr., who proposed a general concept of the ability of PRRs to recognize and bind conserved molecular structures of microorganisms known as pathogen-associated molecular patterns (PAMPs). Upon PAMP engagement, PRRs trigger intracellular signaling cascades resulting in the expression of various proinflammatory molecules. These recognition molecules represent an important and efficient innate immunity tool of all organisms. As invertebrates lack the instruments of the adaptive immune system, based on "true" lymphocytes and functional antibodies, the importance of PRRs are even more fundamental. In the present review, the structure, specificity, and expression profiles of PRRs characterized in annelids are discussed, and their role in innate defense is suggested.
Collapse
Affiliation(s)
- P Prochazkova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, v. v. i., Prague, Czech Republic.
| | - R Roubalova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, v. v. i., Prague, Czech Republic
| | - J Dvorak
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, v. v. i., Prague, Czech Republic
| | - N I Navarro Pacheco
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, v. v. i., Prague, Czech Republic
| | - M Bilej
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, v. v. i., Prague, Czech Republic
| |
Collapse
|
49
|
Abstract
The coelomic cavity is part of the main body plan of annelids. This fluid filled space takes up a considerable volume of the body and serves as an important site of exchange of both metabolites and proteins. In addition to low molecular substances such as amino acids and glucose and lactate, the coelomic fluid contains different proteins that can arise through release from adjacent tissues (intestine) or from secretion by coelomic cells. In this chapter, we will review the current knowledge about the proteins in the annelid coelomic fluid. Given the number of more than 20,000 extant annelid species, existing studies are confined to a relatively few species. Most studies on the oligochaetes are confined to the earthworms-clearly because of their important role in soil biology. In the polychaetes (which might represent a paraphyletic group) on the other hand, studies have focused on a few species of the Nereidid family. The proteins present in the coelomic fluid serve different functions and these have been studied in different taxonomic groups. In oligochaetes, proteins involved antibacterial defense such as lysenin and fetidin have received much attention in past and ongoing studies. In polychaetes, in contrast, proteins involved in vitellogenesis and reproduction, and the vitellogenic function of coelomic cells have been investigated in more detail. The metal binding metallothioneins as well as antimicrobial peptides, have been investigated in both oligochaetes and polychaetes. In the light of the literature available, this review will focus on lipoproteins, especially vitellogenin, and proteins involved in defense reactions. Other annelid groups such as the Pogonophora, Echiura, and Sipuncula (now considered polychaetes), have not received much attention and therefore, this overview is far from being complete.
Collapse
|
50
|
Zhao Y, Liu X, Xi B, Zhang Q, Li A, Zhang J. Transcriptomic analysis of oligochaete immune responses to myxosporeans infection: Branchiura sowerbyi infected with Myxobolus cultus. J Invertebr Pathol 2019; 169:107283. [PMID: 31765651 DOI: 10.1016/j.jip.2019.107283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 02/08/2023]
Abstract
The Myxozoa are endoparasites characterized by a two-host life cycle that typically involves invertebrates and vertebrates as definitive and intermediate hosts, respectively. However, little is known about invertebrate-myxosporean interactions, particularly about patterns of host immune defense. We used RNA-sequencing to identify genes that are possibly involved in the immune responses of the oligochaete Branchiura sowerbyi naturally infected with Myxobolus cultus. De novo assembly of the B. sowerbyi transcriptome yielded 119,031 unigenes, with an average length of 896 bp and an N50 length of 1754 bp. Comparative transcriptome analysis revealed 4059 differentially expressed genes (DEGs) between M. cultus-infected and uninfected B. sowerbyi groups, including 3802 upregulated genes and 257 downregulated genes. Among the B. sowerbyi immune factors implicated in the responses to M. cultus infection, DEGs related to lectins, ubiquitin-mediated proteolysis, phagocytosis, oxidative-antioxidative responses, proteases, and protease inhibitors were upregulated. The expression of some immune-related molecules such as calmodulin, heat shock proteins, antimicrobial peptides, lysenin, and serum amyoid A protein were also significantly upregulated. The expression patterns of 14 immune-related DEGs identified by RNA-seq were validated by quantitative real-time polymerase chain reaction. This study is the first attempt to characterize the B. sowerbyi transcriptome and identify immune-related molecules possibly associated with M. cultus infection. It is also the first report of invertebrate host-myxosporean interactions at the transcriptomic level. Our results will facilitate the elucidation of adaptive evolution mechanisms of myxosporean parasites in the definitive host and the genetic basis for differences in resistance of invertebrate hosts of different genotypes to a myxosporean species.
Collapse
Affiliation(s)
- Yuanli Zhao
- Key Laboratory of Aquaculture Diseases Control, Ministry of Agriculture and State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinhua Liu
- Key Laboratory of Aquaculture Diseases Control, Ministry of Agriculture and State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingwen Xi
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, China
| | - Qianqian Zhang
- Key Laboratory of Aquaculture Diseases Control, Ministry of Agriculture and State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aihua Li
- Key Laboratory of Aquaculture Diseases Control, Ministry of Agriculture and State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinyong Zhang
- Key Laboratory of Aquaculture Diseases Control, Ministry of Agriculture and State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|