1
|
Augusteyn RC. α‐crystallin: a review of its structure and function. Clin Exp Optom 2021; 87:356-66. [PMID: 15575808 DOI: 10.1111/j.1444-0938.2004.tb03095.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Revised: 06/23/2004] [Accepted: 07/18/2004] [Indexed: 11/28/2022] Open
Abstract
alpha-crystallin, the major protein of the mammalian lens in most species, is an aggregate assembled from two polypeptides, each with a molecular weight around 20,000 Da. It is polydisperse and can be isolated in a variety of forms, including spherical particles with molecular weights ranging upwards from about 200 kDa. Sequence comparisons reveal that it is a member of the small heat shock protein (shsp) family. These proteins are aggregates assembled from polypeptides of 10 to 25 kDa that share a common central domain of about 90 residues (the 'alpha-crystallin domain') with variable N- and C-terminal extensions. alpha-crystallin has been intensively studied for more than 50 years but its three-dimensional structure remains unknown because it has not been possible to obtain crystals for X-ray studies and it is too large for NMR measurements. Structural information has been derived from a variety of solution studies. Because of the protein's polydispersity, interpretation of data has been difficult. This led to different viewpoints and vigorous debate on its structure and properties. Recently, the crystal structures of two closely-related small heat shock proteins have been determined. These have provided some insight into the structure of a-crystallin and explanations of previous observations. Like many other heat shock proteins, alpha-crystallin exhibits chaperone-like properties, including the ability to prevent the precipitation of denatured proteins and to increase cellular tolerance to stress. It has been suggested that these functions are important for the maintenance of lens transparency and the prevention of cataract.
Collapse
Affiliation(s)
- Robert C Augusteyn
- Vision Cooperative Research Centre, University of NSW, Sydney, Australia
| |
Collapse
|
2
|
Exploring the pH-Induced Functional Phase Space of Human Serum Albumin by EPR Spectroscopy. MAGNETOCHEMISTRY 2018. [DOI: 10.3390/magnetochemistry4040047] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A systematic study on the self-assembled solution system of human serum albumin (HSA) and paramagnetic doxyl stearic acid (5-DSA and 16-DSA) ligands is reported covering the broad pH range 0.7–12.9, mainly using electron paramagnetic resonance (EPR) methods. It is tested to which extent the pH-induced conformational isomers of HSA reveal themselves in continuous wave (CW) EPR spectra from this spin probing approach in comparison to an established spin-labeling strategy utilizing 3-maleimido proxyl (5-MSL). Most analyses are conducted on empirical levels with robust strategies that allow for the detection of dynamic changes of ligand, as well as protein. Special emphasis has been placed on the EPR spectroscopic detection of a molten globule (MG) state of HSA that is typically found by the fluorescent probe 8-Anilino- naphthalene-1-sulfonic acid (ANS). Moreover, four-pulse double electron-electron resonance (DEER) experiments are conducted and substantiated with dynamic light scattering (DLS) data to determine changes in the solution shape of HSA with pH. All results are ultimately combined in a detailed scheme that describes the pH-induced functional phase space of HSA.
Collapse
|
3
|
Mishra S, Chandler SA, Williams D, Claxton DP, Koteiche HA, Stewart PL, Benesch JLP, Mchaourab HS. Engineering of a Polydisperse Small Heat-Shock Protein Reveals Conserved Motifs of Oligomer Plasticity. Structure 2018; 26:1116-1126.e4. [PMID: 29983375 DOI: 10.1016/j.str.2018.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/10/2018] [Accepted: 05/18/2018] [Indexed: 01/21/2023]
Abstract
Small heat-shock proteins (sHSPs) are molecular chaperones that bind partially and globally unfolded states of their client proteins. Previously, we discovered that the archaeal Hsp16.5, which forms ordered and symmetric 24-subunit oligomers, can be engineered to transition to an ordered and symmetric 48-subunit oligomer by insertion of a peptide from human HspB1 (Hsp27). Here, we uncovered the existence of an array of oligomeric states (30-38 subunits) that can be populated as a consequence of altering the sequence and length of the inserted peptide. Polydisperse Hsp16.5 oligomers displayed higher affinity to a model client protein consistent with a general mechanism for recognition and binding that involves increased access of the hydrophobic N-terminal region. Our findings, which integrate structural and functional analyses from evolutionarily distant sHSPs, support a model wherein the modular architecture of these proteins encodes motifs of oligomer polydispersity, dissociation, and expansion to achieve functional diversity and regulation.
Collapse
Affiliation(s)
- Sanjay Mishra
- Chemical & Physical Biology Program, Vanderbilt University, Nashville 37232, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville 37232, TN, USA
| | - Shane A Chandler
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Dewight Williams
- John M. Cowley Center for High Resolution Electron Microscopy, Arizona State University, Tempe 85287, AZ, USA
| | - Derek P Claxton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville 37232, TN, USA
| | - Hanane A Koteiche
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville 37232, TN, USA
| | - Phoebe L Stewart
- Department of Pharmacology Case Western Reserve University, Cleveland, OH 44106, USA
| | | | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville 37232, TN, USA.
| |
Collapse
|
4
|
Weeks SD, Muranova LK, Heirbaut M, Beelen S, Strelkov SV, Gusev NB. Characterization of human small heat shock protein HSPB1 α-crystallin domain localized mutants associated with hereditary motor neuron diseases. Sci Rep 2018; 8:688. [PMID: 29330367 PMCID: PMC5766566 DOI: 10.1038/s41598-017-18874-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 12/15/2017] [Indexed: 01/25/2023] Open
Abstract
Congenital mutations in human small heat shock protein HSPB1 (HSP27) have been linked to Charcot-Marie-Tooth disease, a commonly occurring peripheral neuropathy. Understanding the molecular mechanism of such mutations is indispensable towards developing future therapies for this currently incurable disorder. Here we describe the physico-chemical properties of the autosomal dominant HSPB1 mutants R127W, S135F and R136W. Despite having a nominal effect on thermal stability, the three mutations induce dramatic changes to quaternary structure. At high concentrations or under crowding conditions, the mutants form assemblies that are approximately two times larger than those formed by the wild-type protein. At low concentrations, the mutants have a higher propensity to dissociate into small oligomers, while the dissociation of R127W and R135F mutants is enhanced by MAPKAP kinase-2 mediated phosphorylation. Specific differences are observed in the ability to form hetero-oligomers with the homologue HSPB6 (HSP20). For wild-type HSPB1 this only occurs at or above physiological temperature, whereas the R127W and S135F mutants form hetero-oligomers with HSPB6 at 4 °C, and the R136W mutant fails to form hetero-oligomers. Combined, the results suggest that the disease-related mutations of HSPB1 modify its self-assembly and interaction with partner proteins thus affecting normal functioning of HSPB1 in the cell.
Collapse
Affiliation(s)
- Stephen D Weeks
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000, Leuven, Belgium.
| | - Lydia K Muranova
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, 119991, Russian Federation
| | - Michelle Heirbaut
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Steven Beelen
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Sergei V Strelkov
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000, Leuven, Belgium.
| | - Nikolai B Gusev
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, 119991, Russian Federation.
| |
Collapse
|
5
|
Preis W, Bestehorn A, Buchner J, Haslbeck M. An alternative splice variant of human αA-crystallin modulates the oligomer ensemble and the chaperone activity of α-crystallins. Cell Stress Chaperones 2017; 22:541-552. [PMID: 28214988 PMCID: PMC5465031 DOI: 10.1007/s12192-017-0772-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 01/26/2023] Open
Abstract
In humans, ten genes encode small heat shock proteins with lens αA-crystallin and αB-crystallin representing two of the most prominent members. The canonical isoforms of αA-crystallin and αB-crystallin collaborate in the eye lens to prevent irreversible protein aggregation and preserve visual acuity. α-Crystallins form large polydisperse homo-oligomers and hetero-oligomers and as part of the proteostasis system bind substrate proteins in non-native conformations, thereby stabilizing them. Here, we analyzed a previously uncharacterized, alternative splice variant (isoform 2) of human αA-crystallin with an exchanged N-terminal sequence. This variant shows the characteristic α-crystallin secondary structure, exists on its own predominantly in a monomer-dimer equilibrium, and displays only low chaperone activity. However, the variant is able to integrate into higher order oligomers of canonical αA-crystallin and αB-crystallin as well as their hetero-oligomer. The presence of the variant leads to the formation of new types of higher order hetero-oligomers with an overall decreased number of subunits and enhanced chaperone activity. Thus, alternative mRNA splicing of human αA-crystallin leads to an additional, formerly not characterized αA-crystallin species which is able to modulate the properties of the canonical ensemble of α-crystallin oligomers.
Collapse
Affiliation(s)
- Waldemar Preis
- Department Chemie, Center for Integrated Protein Science, Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Annika Bestehorn
- Department Chemie, Center for Integrated Protein Science, Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Johannes Buchner
- Department Chemie, Center for Integrated Protein Science, Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Martin Haslbeck
- Department Chemie, Center for Integrated Protein Science, Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany.
| |
Collapse
|
6
|
Le Breton N, Adrianaivomananjaona T, Gerbaud G, Etienne E, Bisetto E, Dautant A, Guigliarelli B, Haraux F, Martinho M, Belle V. Dimerization interface and dynamic properties of yeast IF1 revealed by Site-Directed Spin Labeling EPR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1857:89-97. [PMID: 26518384 DOI: 10.1016/j.bbabio.2015.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/21/2015] [Accepted: 10/25/2015] [Indexed: 11/21/2022]
Abstract
The mitochondrial ATPase inhibitor, IF1, regulates the activity of the mitochondrial ATP synthase. The oligomeric state of IF1 related to pH is crucial for its inhibitory activity. Although extensive structural studies have been performed to characterize the oligomeric states of bovine IF1, only little is known concerning those of yeast IF1. While bovine IF1 can be found as an inhibitory dimer at low pH and a non-inhibitory tetramer at high pH, a monomer/dimer equilibrium has been described for yeast IF1, high pH values favoring the monomeric state. Combining different strategies involving the grafting of nitroxide spin labels combined with Electron Paramagnetic Resonance (EPR) spectroscopy, the present study brings the first structural characterization, at the residue level, of yeast IF1 in its dimeric form. The results show that the dimerization interface involves the central region of the peptide revealing that the dimer corresponds to a non-inhibitory state. Moreover, we demonstrate that the C-terminal region of the peptide is highly dynamic and that this segment is probably folded back onto the central region. Finally, the pH-dependence of the inter-label distance distribution has been observed indicating a conformational change between two structural states in the dimer.
Collapse
Affiliation(s)
- Nolwenn Le Breton
- Aix-Marseille Université, CNRS, BIP UMR 7281, 31 chemin J. Aiguier, F-13402 Marseille, France
| | - Tiona Adrianaivomananjaona
- Lifesearch, 72 rue du Fauboug St Honoré, F-75008 Paris, France; CEA, Institut de Biologie et de Technologies de Saclay IBITECS, SB2SM, F-91191 Gif sur Yvette, France; CEA, CNRS, Université Paris Sud, Institut de Biologie Intégrative de la Cellule I2BC, UMR 9198, F-91191 Gif sur Yvette, France
| | - Guillaume Gerbaud
- Aix-Marseille Université, CNRS, BIP UMR 7281, 31 chemin J. Aiguier, F-13402 Marseille, France
| | - Emilien Etienne
- Aix-Marseille Université, CNRS, BIP UMR 7281, 31 chemin J. Aiguier, F-13402 Marseille, France
| | - Elena Bisetto
- CEA, Institut de Biologie et de Technologies de Saclay IBITECS, SB2SM, F-91191 Gif sur Yvette, France; Department of Biomedical Sciences and Technologies, University of Udine, Piazzale Kolbe 4, I-33100 Udine, Italy
| | - Alain Dautant
- University Bordeaux-CNRS, IBGC, UMR 5095, 1 rue Camille Saint-Saëns, F-33000 Bordeaux, France
| | - Bruno Guigliarelli
- Aix-Marseille Université, CNRS, BIP UMR 7281, 31 chemin J. Aiguier, F-13402 Marseille, France
| | - Francis Haraux
- CEA, Institut de Biologie et de Technologies de Saclay IBITECS, SB2SM, F-91191 Gif sur Yvette, France; CEA, CNRS, Université Paris Sud, Institut de Biologie Intégrative de la Cellule I2BC, UMR 9198, F-91191 Gif sur Yvette, France.
| | - Marlène Martinho
- Aix-Marseille Université, CNRS, BIP UMR 7281, 31 chemin J. Aiguier, F-13402 Marseille, France
| | - Valérie Belle
- Aix-Marseille Université, CNRS, BIP UMR 7281, 31 chemin J. Aiguier, F-13402 Marseille, France.
| |
Collapse
|
7
|
Haslbeck M, Peschek J, Buchner J, Weinkauf S. Structure and function of α-crystallins: Traversing from in vitro to in vivo. Biochim Biophys Acta Gen Subj 2015; 1860:149-66. [PMID: 26116912 DOI: 10.1016/j.bbagen.2015.06.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/10/2015] [Accepted: 06/22/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND The two α-crystallins (αA- and αB-crystallin) are major components of our eye lenses. Their key function there is to preserve lens transparency which is a challenging task as the protein turnover in the lens is low necessitating the stability and longevity of the constituent proteins. α-Crystallins are members of the small heat shock protein family. αB-crystallin is also expressed in other cell types. SCOPE OF THE REVIEW The review summarizes the current concepts on the polydisperse structure of the α-crystallin oligomer and its chaperone function with a focus on the inherent complexity and highlighting gaps between in vitro and in vivo studies. MAJOR CONCLUSIONS Both α-crystallins protect proteins from irreversible aggregation in a promiscuous manner. In maintaining eye lens transparency, they reduce the formation of light scattering particles and balance the interactions between lens crystallins. Important for these functions is their structural dynamics and heterogeneity as well as the regulation of these processes which we are beginning to understand. However, currently, it still remains elusive to which extent the in vitro observed properties of α-crystallins reflect the highly crowded situation in the lens. GENERAL SIGNIFICANCE Since α-crystallins play an important role in preventing cataract in the eye lens and in the development of diverse diseases, understanding their mechanism and substrate spectra is of importance. To bridge the gap between the concepts established in vitro and the in vivo function of α-crystallins, the joining of forces between different scientific disciplines and the combination of diverse techniques in hybrid approaches are necessary. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
Affiliation(s)
- Martin Haslbeck
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany
| | - Jirka Peschek
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany.
| | - Sevil Weinkauf
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany.
| |
Collapse
|
8
|
Nandi SK, Panda AK, Chakraborty A, Ray SS, Biswas A. Role of Subunit Exchange and Electrostatic Interactions on the Chaperone Activity of Mycobacterium leprae HSP18. PLoS One 2015; 10:e0129734. [PMID: 26098662 PMCID: PMC4476693 DOI: 10.1371/journal.pone.0129734] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/12/2015] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium leprae HSP18, a major immunodominant antigen of M. leprae pathogen, is a small heat shock protein. Previously, we reported that HSP18 is a molecular chaperone that prevents aggregation of different chemically and thermally stressed client proteins and assists refolding of denatured enzyme at normal temperature. We also demonstrated that it can efficiently prevent the thermal killing of E. coli at higher temperature. However, molecular mechanism behind the chaperone function of HSP18 is still unclear. Therefore, we studied the structure and chaperone function of HSP18 at normal temperature (25°C) as well as at higher temperatures (31–43°C). Our study revealed that the chaperone function of HSP18 is enhanced significantly with increasing temperature. Far- and near-UV CD experiments suggested that its secondary and tertiary structure remain intact in this temperature range (25–43°C). Besides, temperature has no effect on the static oligomeric size of this protein. Subunit exchange study demonstrated that subunits of HSP18 exchange at 25°C with a rate constant of 0.018 min-1. Both rate of subunit exchange and chaperone activity of HSP18 is found to increase with rise in temperature. However, the surface hydrophobicity of HSP18 decreases markedly upon heating and has no correlation with its chaperone function in this temperature range. Furthermore, we observed that HSP18 exhibits diminished chaperone function in the presence of NaCl at 25°C. At elevated temperatures, weakening of interactions between HSP18 and stressed client proteins in the presence of NaCl results in greater reduction of its chaperone function. The oligomeric size, rate of subunit exchange and structural stability of HSP18 were also found to decrease when electrostatic interactions were weakened. These results clearly indicated that subunit exchange and electrostatic interactions play a major role in the chaperone function of HSP18.
Collapse
Affiliation(s)
- Sandip Kumar Nandi
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Alok Kumar Panda
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Ayon Chakraborty
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | | | - Ashis Biswas
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
- * E-mail:
| |
Collapse
|
9
|
Chui AJ, López CJ, Brooks EK, Chua KC, Doupey TG, Foltz GN, Kamel JG, Larrosa E, Sadiki A, Bridges MD. Multiple structural states exist throughout the helical nucleation sequence of the intrinsically disordered protein stathmin, as reported by electron paramagnetic resonance spectroscopy. Biochemistry 2015; 54:1717-28. [PMID: 25715079 DOI: 10.1021/bi500894q] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The intrinsically disordered protein (IDP) stathmin plays an important regulatory role in cytoskeletal maintenance through its helical binding to tubulin and microtubules. However, it lacks a stable fold in the absence of its binding partner. Although stathmin has been a focus of research over the past two decades, the solution-phase conformational dynamics of this IDP are poorly understood. It has been reported that stathmin is purely monomeric in solution and that it bears a short helical region of persistent foldedness, which may act to nucleate helical folding in the C-terminal direction. Here we report a comprehensive study of the structural equilibria local to this region in stathmin that contradicts these two claims. Using the technique of electron paramagnetic resonance (EPR) spectroscopy on spin-labeled stathmin mutants in the solution-phase and when immobilized on Sepharose solid support, we show that all sites in the helical nucleation region of stathmin exhibit multiple spectral components that correspond to dynamic states of differing mobilities and stabilities. Importantly, a state with relatively low mobility dominates each spectrum with an average population greater than 50%, which we suggest corresponds to an oligomerized state of the protein. This is in contrast to a less populated, more mobile state, which likely represents a helically folded monomeric state of stathmin, and a highly mobile state, which we propose is the random coil conformer of the protein. Our interpretation of the EPR data is confirmed by further characterization of the protein using the techniques of native and SDS PAGE, gel filtration chromatography, and multiangle and dynamic light scattering, all of which show the presence of oligomeric stathmin in solution. Collectively, these data suggest that stathmin exists in a diverse equilibrium of states throughout the purported helical nucleation region and that this IDP exhibits a propensity toward oligomerization.
Collapse
Affiliation(s)
- Ashley J Chui
- Department of Chemistry and Biochemistry, California State University Fullerton , Fullerton, California 92831-6866, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Bakthisaran R, Tangirala R, Rao CM. Small heat shock proteins: Role in cellular functions and pathology. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:291-319. [PMID: 25556000 DOI: 10.1016/j.bbapap.2014.12.019] [Citation(s) in RCA: 312] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 12/16/2014] [Accepted: 12/18/2014] [Indexed: 01/18/2023]
Abstract
Small heat shock proteins (sHsps) are conserved across species and are important in stress tolerance. Many sHsps exhibit chaperone-like activity in preventing aggregation of target proteins, keeping them in a folding-competent state and refolding them by themselves or in concert with other ATP-dependent chaperones. Mutations in human sHsps result in myopathies, neuropathies and cataract. Their expression is modulated in diseases such as Alzheimer's, Parkinson's and cancer. Their ability to bind Cu2+, and suppress generation of reactive oxygen species (ROS) may have implications in Cu2+-homeostasis and neurodegenerative diseases. Circulating αB-crystallin and Hsp27 in the plasma may exhibit immunomodulatory and anti-inflammatory functions. αB-crystallin and Hsp20 exhitbit anti-platelet aggregation: these beneficial effects indicate their use as potential therapeutic agents. sHsps have roles in differentiation, proteasomal degradation, autophagy and development. sHsps exhibit a robust anti-apoptotic property, involving several stages of mitochondrial-mediated, extrinsic apoptotic as well as pro-survival pathways. Dynamic N- and C-termini and oligomeric assemblies of αB-crystallin and Hsp27 are important factors for their functions. We propose a "dynamic partitioning hypothesis" for the promiscuous interactions and pleotropic functions exhibited by sHsps. Stress tolerance and anti-apoptotic properties of sHsps have both beneficial and deleterious consequences in human health and diseases. Conditional and targeted modulation of their expression and/or activity could be used as strategies in treating several human disorders. The review attempts to provide a critical overview of sHsps and their divergent roles in cellular processes particularly in the context of human health and disease.
Collapse
Affiliation(s)
- Raman Bakthisaran
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Ramakrishna Tangirala
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Ch Mohan Rao
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India.
| |
Collapse
|
11
|
Weeks SD, Baranova EV, Heirbaut M, Beelen S, Shkumatov AV, Gusev NB, Strelkov SV. Molecular structure and dynamics of the dimeric human small heat shock protein HSPB6. J Struct Biol 2014; 185:342-54. [DOI: 10.1016/j.jsb.2013.12.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/11/2013] [Accepted: 12/23/2013] [Indexed: 10/25/2022]
|
12
|
Nahomi RB, Huang R, Nandi SK, Wang B, Padmanabha S, Santhoshkumar P, Filipek S, Biswas A, Nagaraj RH. Acetylation of lysine 92 improves the chaperone and anti-apoptotic activities of human αB-crystallin. Biochemistry 2013; 52:8126-38. [PMID: 24128140 DOI: 10.1021/bi400638s] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
αB-Crystallin is a chaperone and an anti-apoptotic protein that is strongly expressed in many tissues, including the lens, retina, heart, and kidney. In the human lens, several lysine residues in αB-crystallin are acetylated. We have previously shown that such acetylation is predominant at lysine 92 (K92) and lysine 166 (K166). We have investigated the effect of lysine acetylation on the structure and functions of αB-crystallin by the specific introduction of an N(ε)-acetyllysine (AcK) mimic at K92. The introduction of AcK slightly altered the secondary and tertiary structures of the protein. The introduction of AcK also resulted in an increase in the molar mass and hydrodynamic radius of the protein, and the protein became structurally more open and more stable than the native protein. The acetyl protein acquired higher surface hydrophobicity and exhibited 25-55% higher chaperone activity than the native protein. The acetyl protein had more client protein binding per subunit of the protein and higher binding affinity relative to that of the native protein. The acetyl protein was at least 20% more effective in inhibiting chemically induced apoptosis than the native protein. Molecular modeling suggests that acetylation of K92 makes the "α-crystallin domain" more hydrophobic. Together, our results reveal that the acetylation of a single lysine residue in αB-crystallin makes the protein structurally more stable and improves its chaperone and anti-apoptotic activities. Our findings suggest that lysine acetylation of αB-crystallin is an important chemical modification for enhancing αB-crystallin's protective functions in the eye.
Collapse
Affiliation(s)
- Rooban B Nahomi
- Department of Ophthalmology and Visual Sciences and ‡Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine , Cleveland, Ohio 44106, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Nandi SK, Rehna EAA, Panda AK, Shiburaj S, Dharmalingam K, Biswas A. A S52P mutation in the ‘α-crystallin domain’ ofMycobacterium lepraeHSP18 reduces its oligomeric size and chaperone function. FEBS J 2013; 280:5994-6009. [DOI: 10.1111/febs.12519] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/28/2013] [Accepted: 09/04/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Sandip K. Nandi
- School of Basic Sciences; Indian Institute of Technology Bhubaneswar; Orissa India
| | - Elengikal A. A. Rehna
- Department of Genetic Engineering; School of Biotechnology; Madurai Kamraj University; Tamilnadu India
| | - Alok K. Panda
- School of Basic Sciences; Indian Institute of Technology Bhubaneswar; Orissa India
| | - Sugathan Shiburaj
- Jawaharlal Nehru Tropical Botanic Garden and Research Institute; Palode Thiruvananthapuram Kerala India
| | - Kuppamuthu Dharmalingam
- Department of Genetic Engineering; School of Biotechnology; Madurai Kamraj University; Tamilnadu India
| | - Ashis Biswas
- School of Basic Sciences; Indian Institute of Technology Bhubaneswar; Orissa India
| |
Collapse
|
14
|
Reichenwallner J, Hinderberger D. Using bound fatty acids to disclose the functional structure of serum albumin. Biochim Biophys Acta Gen Subj 2013; 1830:5382-93. [PMID: 23643928 DOI: 10.1016/j.bbagen.2013.04.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/23/2013] [Accepted: 04/24/2013] [Indexed: 11/16/2022]
Abstract
BACKGROUND Serum albumin is a major transport protein in mammals and is known to have at least seven binding sites for long-chain fatty acids (FAs). SCOPE OF REVIEW We have devised a new electron paramagnetic resonance (EPR) spectroscopic approach to gain information on the functional structure of serum albumin in solution in a "coarse-grained" manner from the ligands' point of view. Our approach is based on using spin labeled (paramagnetic) stearic acids self-assembled with albumin and subsequent nanoscale distance measurements between the FAs using double electron-electron resonance spectroscopy (DEER). Simple continuous wave (CW) EPR spectroscopy, which allows for quantification of bound ligands, complements our studies. MAJOR CONCLUSIONS Based on DEER nanoscale distance measurements, the functional solution structure of human serum albumin (HSA) has remarkably been found to have a much more symmetric distribution of entry points to the FA binding sites than expected from the crystal structure, indicating increased surface flexibility and plasticity for HSA in solution. In contrast, for bovine serum albumin (BSA), the entry point topology is in good agreement with that expected from the crystal structure of HSA. Changes in the solution structures between albumins can hence be revealed and extended to more albumins to detect functional differences at the nanoscale. Going beyond fundamental structural studies, our research platform is also excellently suited for general studies of protein-solvent interactions, temperature effects and ligand binding. GENERAL SIGNIFICANCE We discuss how our research platform helps illuminate protein dynamics and function and can be used to characterize albumin-based hybrid materials. This article is part of a Special Issue entitled Serum Albumin.
Collapse
Affiliation(s)
- Jörg Reichenwallner
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany; Institute for Pharmacy and Biochemistry, Johannes Gutenberg-Universität Mainz, Johann-Joachim-Becher-Weg 30, D-55128 Mainz, Germany
| | | |
Collapse
|
15
|
Immune-complex mimics as a molecular platform for adjuvant-free vaccine delivery. PLoS One 2013; 8:e60855. [PMID: 23637771 PMCID: PMC3634044 DOI: 10.1371/journal.pone.0060855] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 03/03/2013] [Indexed: 12/15/2022] Open
Abstract
Protein-based vaccine development faces the difficult challenge of finding robust yet non-toxic adjuvants suitable for humans. Here, using a molecular engineering approach, we have developed a molecular platform for generating self-adjuvanting immunogens that do not depend on exogenous adjuvants for induction of immune responses. These are based on the concept of Immune Complex Mimics (ICM), structures that are formed between an oligomeric antigen and a monoclonal antibody (mAb) to that antigen. In this way, the roles of antigens and antibodies within the structure of immune complexes are reversed, so that a single monoclonal antibody, rather than polyclonal sera or expensive mAb cocktails can be used. We tested this approach in the context of Mycobacterium tuberculosis (MTB) infection by linking the highly immunogenic and potentially protective Ag85B with the oligomeric Acr (alpha crystallin, HspX) antigen. When combined with an anti-Acr monoclonal antibody, the fusion protein formed ICM which bound to C1q component of the complement system and were readily taken up by antigen-presenting cells in vitro. ICM induced a strong Th1/Th2 mixed type antibody response, which was comparable to cholera toxin adjuvanted antigen, but only moderate levels of T cell proliferation and IFN-γ secretion. Unfortunately, the systemic administration of ICM did not confer statistically significant protection against intranasal MTB challenge, although a small BCG-boosting effect was observed. We conclude that ICM are capable of inducing strong humoral responses to incorporated antigens and may be a suitable vaccination approach for pathogens other than MTB, where antibody-based immunity may play a more protective role.
Collapse
|
16
|
Tsai YL, Chiang YR, Wu CF, Narberhaus F, Lai EM. One out of four: HspL but no other small heat shock protein of Agrobacterium tumefaciens acts as efficient virulence-promoting VirB8 chaperone. PLoS One 2012. [PMID: 23185409 PMCID: PMC3504140 DOI: 10.1371/journal.pone.0049685] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Alpha-crystallin-type small heat shock proteins (sHsps) are ubiquitously distributed in most eukaryotes and prokaryotes. Four sHsp genes named hspL, hspC, hspAT1, and hspAT2 were identified in Agrobacterium tumefaciens, a plant pathogenic bacterium capable of unique interkingdom DNA transfer via type IV secretion system (T4SS). HspL is highly expressed in virulence-induced growth condition and functions as a VirB8 chaperone to promote T4SS-mediated DNA transfer. Here, we used genetic and biochemical approaches to investigate the involvement of the other three sHsps in T4SS and discovered the molecular basis underlying the dominant function of HspL in promoting T4SS function. While single deletion of hspL but no other sHsp gene reduced T4SS-mediated DNA transfer and tumorigenesis efficiency, additional deletion of other sHsp genes in the hspL deletion background caused synergistic effects in the virulence phenotypes. This is correlated with the high induction of hspL and only modest increase of hspC, hspAT1, and hspAT2 at their mRNA and protein abundance in virulence-induced growth condition. Interestingly, overexpression of any single sHsp gene alone in the quadruple mutant caused increased T4SS-mediated DNA transfer and tumorigenesis. Thermal aggregation protecting assays in vitro indicated that all four sHsps exhibit chaperone activity for the model substrate citrate synthase but only HspL functions as efficient chaperone for VirB8. The higher VirB8 chaperone activity of HspL was also demonstrated in vivo, in which lower amounts of HspL than other sHsps were sufficient in maintaining VirB8 homeostasis in A. tumefaciens. Domain swapping between HspL and HspAT2 indicated that N-terminal, central alpha-crystallin, and C-terminal domains of HspL all contribute to HspL function as an efficient VirB8 chaperone. Taken together, we suggest that the dominant role of HspL in promoting T4SS function is based on its higher expression in virulence-induced condition and its more efficient VirB8 chaperone activity as compared to other sHsps.
Collapse
Affiliation(s)
- Yun-Long Tsai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yin-Ru Chiang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Chih-Feng Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Franz Narberhaus
- Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, Bochum, Germany
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
17
|
Abisambra JF, Jinwal UK, Jones JR, Blair LJ, Koren J, Dickey CA. Exploiting the diversity of the heat-shock protein family for primary and secondary tauopathy therapeutics. Curr Neuropharmacol 2012; 9:623-31. [PMID: 22654720 PMCID: PMC3263456 DOI: 10.2174/157015911798376226] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 11/01/2010] [Accepted: 12/06/2010] [Indexed: 12/17/2022] Open
Abstract
The heat shock protein (Hsp) family is an evolutionarily conserved system that is charged with preventing unfolded or misfolded proteins in the cell from aggregating. In Alzheimer’s disease, extracellular accumulation of the amyloid β peptide (Aβ) and intracellular aggregation of the microtubule associated protein tau may result from mechanisms involving chaperone proteins like the Hsps. Due to the ability of Hsps to regulate aberrantly accumulating proteins like Aβ and tau, therapeutic strategies are emerging that target this family of chaperones to modulate their pathobiology. This article focuses on the use of Hsp-based therapeutics for treating primary and secondary tauopathies like Alzheimer’s disease. It will particularly focus on the pharmacological targeting of the Hsp70/90 system and the value of manipulating Hsp27 for treating Alzheimer’s disease.
Collapse
Affiliation(s)
- Jose F Abisambra
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Institute, Tampa, FL 33613, USA
| | | | | | | | | | | |
Collapse
|
18
|
Mchaourab HS, Lin YL, Spiller BW. Crystal structure of an activated variant of small heat shock protein Hsp16.5. Biochemistry 2012; 51:5105-12. [PMID: 22670769 PMCID: PMC3384710 DOI: 10.1021/bi300525x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
How does the sequence of a single small heat shock protein (sHSP) assemble into oligomers of different sizes? To gain insight into the underlying structural mechanism, we determined the crystal structure of an engineered variant of Methanocaldococcus jannaschii Hsp16.5 wherein a 14 amino acid peptide from human heat shock protein 27 (Hsp27) was inserted at the junction of the N-terminal region and the α-crystallin domain. In response to this insertion, the oligomer shell expands from 24 to 48 subunits while maintaining octahedral symmetry. Oligomer rearrangement does not alter the fold of the conserved α-crystallin domain nor does it disturb the interface holding the dimeric building block together. Rather, the flexible C-terminal tail of Hsp16.5 changes its orientation relative to the α-crystallin domain which enables alternative packing of dimers. This change in orientation preserves a peptide-in-groove interaction of the C-terminal tail with an adjacent β-sandwich, thereby holding the assembly together. The interior of the expanded oligomer, where substrates presumably bind, retains its predominantly nonpolar character relative to the outside surface. New large windows in the outer shell provide increased access to these substrate-binding regions, thus accounting for the higher affinity of this variant to substrates. Oligomer polydispersity regulates sHSPs chaperone activity in vitro and has been implicated in their physiological roles. The structural mechanism of Hsp16.5 oligomer flexibility revealed here, which is likely to be highly conserved across the sHSP superfamily, explains the relationship between oligomer expansion observed in disease-linked mutants and changes in chaperone activity.
Collapse
Affiliation(s)
- Hassane S. Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, TN 37232, USA
| | - Yi-Lun Lin
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, TN 37232, USA
| | - Benjamin W. Spiller
- Department of Pharmacology, Vanderbilt University Medical Center, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, TN 37232, USA
| |
Collapse
|
19
|
Kannan R, Sreekumar PG, Hinton DR. Novel roles for α-crystallins in retinal function and disease. Prog Retin Eye Res 2012; 31:576-604. [PMID: 22721717 DOI: 10.1016/j.preteyeres.2012.06.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 05/31/2012] [Accepted: 06/04/2012] [Indexed: 01/18/2023]
Abstract
α-Crystallins are key members of the superfamily of small heat shock proteins that have been studied in detail in the ocular lens. Recently, novel functions for α-crystallins have been identified in the retina and in the retinal pigmented epithelium (RPE). αB-Crystallin has been localized to multiple compartments and organelles including mitochondria, golgi apparatus, endoplasmic reticulum and nucleus. α-Crystallins are regulated by oxidative and endoplasmic reticulum stress, and inhibit apoptosis-induced cell death. α-Crystallins interact with a large number of proteins that include other crystallins, and apoptotic, cytoskeletal, inflammatory, signaling, angiogenic, and growth factor molecules. Studies with RPE from αB-crystallin deficient mice have shown that αB-crystallin supports retinal and choroidal angiogenesis through its interaction with vascular endothelial growth factor. αB-Crystallin has also been shown to have novel functions in the extracellular space. In RPE, αB-crystallin is released from the apical surface in exosomes where it accumulates in the interphotoreceptor matrix and may function to protect neighboring cells. In other systems administration of exogenous recombinant αB-crystallin has been shown to be anti-inflammatory. Another newly described function of αB-crystallin is its ability to inhibit β-amyloid fibril formation. α-Crystallin minichaperone peptides have been identified that elicit anti-apoptotic function in addition to being efficient chaperones. Generation of liposomal particles and other modes of nanoencapsulation of these minipeptides could offer great therapeutic advantage in ocular delivery for a wide variety of retinal degenerative, inflammatory and vascular diseases including age-related macular degeneration and diabetic retinopathy.
Collapse
Affiliation(s)
- Ram Kannan
- Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, CA 90033, United States
| | | | | |
Collapse
|
20
|
Mymrikov EV, Seit-Nebi AS, Gusev NB. Heterooligomeric complexes of human small heat shock proteins. Cell Stress Chaperones 2012; 17:157-69. [PMID: 22002549 PMCID: PMC3273557 DOI: 10.1007/s12192-011-0296-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 09/17/2011] [Accepted: 09/20/2011] [Indexed: 10/16/2022] Open
Abstract
Oligomeric association of human small heat shock proteins HspB1, HspB5, HspB6 and HspB8 was analyzed by means of size-exclusion chromatography, analytical ultracentrifugation and chemical cross-linking. Wild-type HspB1 and Cys mutants of HspB5, HspB6 and HspB8 containing a single Cys residue in position homologous to that of Cys137 of human HspB1 were able to generate heterodimers cross-linked by disulfide bond. Cross-linked heterodimers between HspB1/HspB5, HspB1/HspB6 and HspB5/HspB6 were easily produced upon mixing, whereas formation of any heterodimers with participation of HspB8 was significantly less efficient. The size of heterooligomers formed by HspB1/HspB6 and HspB5/HspB6 was different from the size of the corresponding homooligomers. Disulfide cross-linked homodimers of small heat shock proteins were unable to participate in heterooligomer formation. Thus, monomers can be involved in subunit exchange leading to heterooligomer formation and restriction of flexibility induced by disulfide cross-linking prevents subunit exchange.
Collapse
Affiliation(s)
- Evgeny V. Mymrikov
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, 119991 Russian Federation
| | - Alim S. Seit-Nebi
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, 119991 Russian Federation
| | - Nikolai B. Gusev
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, 119991 Russian Federation
| |
Collapse
|
21
|
McDonald ET, Bortolus M, Koteiche HA, Mchaourab HS. Sequence, structure, and dynamic determinants of Hsp27 (HspB1) equilibrium dissociation are encoded by the N-terminal domain. Biochemistry 2012; 51:1257-68. [PMID: 22264079 DOI: 10.1021/bi2017624] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human small heat shock protein 27 (Hsp27) undergoes concentration-dependent equilibrium dissociation from an ensemble of large oligomers to a dimer. This phenomenon plays a critical role in Hsp27 chaperone activity in vitro enabling high affinity binding to destabilized proteins. In vivo dissociation, which is regulated by phosphorylation, controls Hsp27 role in signaling pathways. In this study, we explore the sequence determinants of Hsp27 dissociation and define the structural basis underlying the increased affinity of Hsp27 dimers to client proteins. A systematic cysteine mutagenesis is carried out to identify residues in the N-terminal domain important for the equilibrium between Hsp27 oligomers and dimers. In addition, spin-labels were attached to the cysteine mutants to enable electron paramagnetic resonance (EPR) analysis of residue environment and solvent accessibility in the context of the large oligomers, upon dissociation to the dimer, and following complex formation with the model substrate T4 Lysozyme (T4L). The mutagenic analysis identifies residues that modulate the equilibrium dissociation in favor of the dimer. EPR analysis reveals that oligomer dissociation disrupts subunit contacts leading to the exposure of Hsp27 N-terminal domain to the aqueous solvent. Moreover, regions of this domain are highly dynamic with no evidence of a packed core. Interaction between T4L and sequences in this domain is inferred from transition of spin-labels to a buried environment in the substrate/Hsp27 complex. Together, the data provide the first structural analysis of sHSP dissociation and support a model of chaperone activity wherein unstructured and highly flexible regions in the N-terminal domain are critical for substrate binding.
Collapse
Affiliation(s)
- Ezelle T McDonald
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | | | | | | |
Collapse
|
22
|
Hilton GR, Lioe H, Stengel F, Baldwin AJ, Benesch JLP. Small heat-shock proteins: paramedics of the cell. Top Curr Chem (Cham) 2012; 328:69-98. [PMID: 22576357 DOI: 10.1007/128_2012_324] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The small heat-shock proteins (sHSPs) comprise a family of molecular chaperones which are widespread but poorly understood. Despite considerable effort, comparatively few high-resolution structures have been determined for the sHSPs, a likely consequence of their tendency to populate ensembles of inter-converting conformational and oligomeric states at equilibrium. This dynamic structure appears to underpin the sHSPs' ability to bind and sequester target proteins rapidly, and renders them the first line of defence against protein aggregation during disease and cellular stress. Here we describe recent studies on the sHSPs, with a particular focus on those which have provided insight into the structure and dynamics of these proteins. The combined literature reveals a picture of a remarkable family of molecular chaperones whose thermodynamic and kinetic properties are exquisitely balanced to allow functional regulation by subtle changes in cellular conditions.
Collapse
|
23
|
Abstract
Hsp27 oligomer is reported to interact with F-actin as a barbed-end-capping protein. The present study determined the binding strength and stoichiometry of the interaction using fluorescence of probes attached to Hsp27 cysteine-137. The fluorescence of acrylodan attached to Hsp27 increased 4-5-fold upon interaction with F-actin. Titration of the fluorescence with F-actin yielded a weak binding constant (KDapp = 5.3 μM) with an actin/Hsp27 stoichiometry between < 1 and 6. This stoichiometry is inconsistent with an F-actin end-capping protein. Pyrene attached to Hsp27 exhibited a large excimer fluorescence, in agreement with the known proximity of the cysteine-137's in the Hsp27 oligomer. Upon interaction with F-actin the pyrene-Hsp27 excimer fluorescence was largely lost, suggesting that Hsp27 interacts with F-actin as a monomer, consistent with the acrylodan-Hsp27 results. EM images of F-actin-Hsp27 demonstrated that Hsp27 is not a strong G-actin sequester. Thus, Hsp27, in vitro, is a weak F-actin side-binding protein.
Collapse
|
24
|
Baranova E, Weeks S, Beelen S, Bukach O, Gusev N, Strelkov S. Three-Dimensional Structure of α-Crystallin Domain Dimers of Human Small Heat Shock Proteins HSPB1 and HSPB6. J Mol Biol 2011; 411:110-22. [DOI: 10.1016/j.jmb.2011.05.024] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/11/2011] [Accepted: 05/17/2011] [Indexed: 01/08/2023]
|
25
|
Laganowsky A, Eisenberg D. Non-3D domain swapped crystal structure of truncated zebrafish alphaA crystallin. Protein Sci 2011; 19:1978-84. [PMID: 20669149 DOI: 10.1002/pro.471] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In previous work on truncated alpha crystallins (Laganowsky et al., Protein Sci 2010; 19:1031-1043), we determined crystal structures of the alpha crystallin core, a seven beta-stranded immunoglobulin-like domain, with its conserved C-terminal extension. These extensions swap into neighboring cores forming oligomeric assemblies. The extension is palindromic in sequence, binding in either of two directions. Here, we report the crystal structure of a truncated alphaA crystallin (AAC) from zebrafish (Danio rerio) revealing C-terminal extensions in a non three-dimensional (3D) domain swapped, "closed" state. The extension is quasi-palindromic, bound within its own zebrafish core domain, lying in the opposite direction to that of bovine AAC, which is bound within an adjacent core domain (Laganowsky et al., Protein Sci 2010; 19:1031-1043). Our findings establish that the C-terminal extension of alpha crystallin proteins can be either 3D domain swapped or non-3D domain swapped. This duality provides another molecular mechanism for alpha crystallin proteins to maintain the polydispersity that is crucial for eye lens transparency.
Collapse
Affiliation(s)
- A Laganowsky
- UCLA-DOE, Institute for Genomics and Proteomics, Los Angeles, California 90095-1570, USA
| | | |
Collapse
|
26
|
Laganowsky A, Benesch JLP, Landau M, Ding L, Sawaya MR, Cascio D, Huang Q, Robinson CV, Horwitz J, Eisenberg D. Crystal structures of truncated alphaA and alphaB crystallins reveal structural mechanisms of polydispersity important for eye lens function. Protein Sci 2010; 19:1031-43. [PMID: 20440841 DOI: 10.1002/pro.380] [Citation(s) in RCA: 234] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Small heat shock proteins alphaA and alphaB crystallin form highly polydisperse oligomers that frustrate protein aggregation, crystallization, and amyloid formation. Here, we present the crystal structures of truncated forms of bovine alphaA crystallin (AAC(59-163)) and human alphaB crystallin (ABC(68-162)), both containing the C-terminal extension that functions in chaperone action and oligomeric assembly. In both structures, the C-terminal extensions swap into neighboring molecules, creating runaway domain swaps. This interface, termed DS, enables crystallin polydispersity because the C-terminal extension is palindromic and thereby allows the formation of equivalent residue interactions in both directions. That is, we observe that the extension binds in opposite directions at the DS interfaces of AAC(59-163) and ABC(68-162). A second dimeric interface, termed AP, also enables polydispersity by forming an antiparallel beta sheet with three distinct registration shifts. These two polymorphic interfaces enforce polydispersity of alpha crystallin. This evolved polydispersity suggests molecular mechanisms for chaperone action and for prevention of crystallization, both necessary for transparency of eye lenses.
Collapse
Affiliation(s)
- Arthur Laganowsky
- Howard Hughes Medical Institute, UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Mymrikov EV, Bukach OV, Seit-Nebi AS, Gusev NB. The pivotal role of the beta 7 strand in the intersubunit contacts of different human small heat shock proteins. Cell Stress Chaperones 2010; 15:365-77. [PMID: 19856132 PMCID: PMC3082641 DOI: 10.1007/s12192-009-0151-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 10/01/2009] [Accepted: 10/12/2009] [Indexed: 11/30/2022] Open
Abstract
Human alpha B-crystallin and small heat shock proteins HspB6 and HspB8 were mutated so that all endogenous Cys residues were replaced by Ser and the single Cys residue was inserted in a position homologous to that of Cys137 of human HspB1, i.e. in a position presumably located in the central part of beta 7 strand of the alpha-crystallin domain. The secondary, tertiary, and quaternary structures of thus obtained Cys-mutants as well as their chaperone-like activity were similar to those of their wild-type counterparts. Mild oxidation of Cys-mutants leads to formation of disulfide bond crosslinking neighboring monomers thus indicating participation of the beta 7 strand in intersubunit interaction. Oxidation weakly affects the secondary and tertiary structure, does not affect the quaternary structure of alpha B-crystallin and HspB6, and shifts equilibrium between monomer and dimer of HspB8 towards dimer formation. It is concluded that the beta 7 strand participates in the intersubunit interaction of four human small heat shock proteins (alpha B-crystallin, HspB1, HspB6, HspB8) having different structure of beta2 strand of alpha-crystallin domain and different length and composition of variable N- and C-terminal tails.
Collapse
Affiliation(s)
- Evgeny V. Mymrikov
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, 119991 Russian Federation
| | - Olesya V. Bukach
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, 119991 Russian Federation
| | - Alim S. Seit-Nebi
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, 119991 Russian Federation
| | - Nikolai B. Gusev
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, 119991 Russian Federation
| |
Collapse
|
28
|
Almeida-Souza L, Goethals S, de Winter V, Dierick I, Gallardo R, Van Durme J, Irobi J, Gettemans J, Rousseau F, Schymkowitz J, Timmerman V, Janssens S. Increased monomerization of mutant HSPB1 leads to protein hyperactivity in Charcot-Marie-Tooth neuropathy. J Biol Chem 2010; 285:12778-86. [PMID: 20178975 PMCID: PMC2857091 DOI: 10.1074/jbc.m109.082644] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Small heat shock proteins are molecular chaperones capable of maintaining denatured proteins in a folding-competent state. We have previously shown that missense mutations in the small heat shock protein HSPB1 (HSP27) cause distal hereditary motor neuropathy and axonal Charcot-Marie-Tooth disease. Here we investigated the biochemical consequences of HSPB1 mutations that are known to cause peripheral neuropathy. In contrast to other chaperonopathies, our results revealed that particular HSPB1 mutations presented higher chaperone activity compared with wild type. Hyperactivation of HSPB1 was accompanied by a change from its wild-type dimeric state to a monomer without dissociation of the 24-meric state. Purification of protein complexes from wild-type and HSPB1 mutants showed that the hyperactive isoforms also presented enhanced binding to client proteins. Furthermore, we show that the wild-type HSPB1 protein undergoes monomerization during heat-shock activation, strongly suggesting that the monomer is the active form of the HSPB1 protein.
Collapse
Affiliation(s)
- Leonardo Almeida-Souza
- Peripheral Neuropathy Group, VIB Department of Molecular Genetics and University of Antwerp, 2610 Antwerp, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Santhoshkumar P, Murugesan R, Sharma KK. Deletion of (54)FLRAPSWF(61) residues decreases the oligomeric size and enhances the chaperone function of alphaB-crystallin. Biochemistry 2009; 48:5066-73. [PMID: 19388699 DOI: 10.1021/bi900085v] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AlphaB-crystallin is a member of the small heat shock protein family and is known to have chaperone activity. Using a peptide scan approach, we previously determined that regions 42-57, 60-71, and 88-123 in alphaB-crystallin interact with alphaA-crystallin during heterooligomer formation. To further characterize the significance of the N-terminal domain of alphaB-crystallin, we prepared a deletion mutant that lacks residues (54)FLRAPSWF(61) (alphaBDelta54-61) and found that the absence of residues 54-61 in alphaB-crystallin significantly decreased the homooligomeric mass of alphaB-crystallin. The average oligomeric mass of wild-type alphaB-crystallin and of alphaBDelta54-61, calculated using multiangle light scattering, was 624 and 382 kDa, respectively. The mutant subunits aggregate to form smaller, less-compact oligomers with a 4-fold increase in subunit exchange rate. Deletion of the 54-61 region resulted in a 50% decrease in intrinsic tryptophan fluorescence. The alphaBDelta54-61 mutant showed a 2-fold increase in 1,1'-bi(4-anilino)naphthalene-5,5'-disulfonic acid (bis-ANS) binding as compared to the wild-type protein, suggesting increased hydrophobicity of the mutant protein. Accompanying the evidence of increased hydrophobicity in the deletion mutant was a 10-fold increase in antiaggregation activity. Homooligomers of 6HalphaA (750 kDa) readily exchanged subunits with alphaBDelta54-61 homooligomers at 37 degrees C, forming heterooligomers with an intermediate mass of 625 kDa. Our data suggest that residues (54)FLRAPSWF(61) contribute to the higher order assembly of alphaB-crystallin oligomers. Residues (54)FLRAPSWF(61) in alphaB-crystallin are not essential for target protein binding during chaperone action, but this region apparently has a role in the chaperone activity of native alphaB-crystallin.
Collapse
Affiliation(s)
- Puttur Santhoshkumar
- Department of Ophthalmology, University of Missouri, Columbia, Missouri 65212, USA
| | | | | |
Collapse
|
30
|
McHaourab HS, Godar JA, Stewart PL. Structure and mechanism of protein stability sensors: chaperone activity of small heat shock proteins. Biochemistry 2009; 48:3828-37. [PMID: 19323523 DOI: 10.1021/bi900212j] [Citation(s) in RCA: 205] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Small heat shock proteins (sHSP) make up a remarkably diverse group of molecular chaperones possessing a degree of structural plasticity unparalleled in other protein superfamilies. In the absence of chemical energy input, these stability sensors can sensitively recognize and bind destabilized proteins, even in the absence of gross misfolding. Cellular conditions regulate affinity toward client proteins, allowing tightly controlled switching and tuning of sHSP chaperone capacity. Perturbations of this regulation, through chemical modification or mutation, directly lead to a variety of disease states. This review explores the structural basis of sHSP oligomeric flexibility and the corresponding functional consequences in the context of a model describing sHSP activity with a set of three coupled thermodynamic equilibria. As current research illuminates many novel physiological roles for sHSP outside of their traditional duties as molecular chaperones, such a conceptual framework provides a sound foundation for describing these emerging functions in physiological and pathological processes.
Collapse
Affiliation(s)
- Hassane S McHaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232-0615, USA.
| | | | | |
Collapse
|
31
|
Hayes D, Napoli V, Mazurkie A, Stafford WF, Graceffa P. Phosphorylation dependence of hsp27 multimeric size and molecular chaperone function. J Biol Chem 2009; 284:18801-7. [PMID: 19411251 DOI: 10.1074/jbc.m109.011353] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The molecular chaperone Hsp27 exists as a distribution of large oligomers that are disassembled by phosphorylation at Ser-15, -78, and -82. It is controversial whether the unphosphorylated Hsp27 or the widely used triple Ser-to-Asp phospho-mimic mutant is the more active molecular chaperone in vitro. This question was investigated here by correlating chaperone activity, as measured by the aggregation of reduced insulin or alpha-lactalbumin, with Hsp27 self-association as monitored by analytical ultracentrifugation. Furthermore, because the phospho-mimic is generally assumed to reproduce the phosphorylated molecule, the size and chaperone activity of phosphorylated Hsp27 were compared with that of the phospho-mimic. Hsp27 was triply phosphorylated by MAPKAP-2 kinase, and phosphorylation was tracked by urea-PAGE. An increasing degree of suppression of insulin or alpha-lactalbumin aggregation correlated with a decreasing Hsp27 self-association, which was the least for phosphorylated Hsp27 followed by the mimic followed by the unphosphorylated protein. It was also found that Hsp27 added to pre-aggregated insulin did not reverse aggregation but did inhibit these aggregates from assembling into even larger aggregates. This chaperone activity appears to be independent of Hsp27 phosphorylation. In conclusion, the most active chaperone of insulin and alpha-lactalbumin was the Hsp27 (elongated) dimer, the smallest Hsp27 subunit observed under physiological conditions. Next, the Hsp27 phospho-mimic is only a partial mimic of phosphorylated Hsp27, both in self-association and in chaperone function. Finally, the efficient inhibition of insulin aggregation by Hsp27 dimer led to the proposal of two models for this chaperone activity.
Collapse
Affiliation(s)
- David Hayes
- Boston Biomedical Research Institute, Watertown, Massachusetts 02472, USA
| | | | | | | | | |
Collapse
|
32
|
ORF-C4 from the early branching eukaryote Giardia lamblia displays characteristics of alpha-crystallin small heat-shock proteins. Biosci Rep 2009; 29:25-34. [PMID: 18680481 DOI: 10.1042/bsr20080101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Giardia lamblia is a medically important protozoan parasite with a basal position in the eukaryotic lineage and is an interesting model to explain the evolution of biochemical events in eukaryotic cells. G. lamblia trophozoites undergo significant changes in order to survive outside the intestine of their host by differentiating into infective cysts. In the present study, we characterize the previously identified Orf-C4 (G. lamblia open reading frame C4) gene, which is considered to be specific to G. lamblia. It encodes a 22 kDa protein that assembles into high-molecular-mass complexes during the entire life cycle of the parasite. ORF-C4 localizes to the cytoplasm of trophozoites and cysts, and forms large spherical aggregates when overexpressed. ORF-C4 overexpression and down-regulation do not affect trophozoite viability; however, differentiation into cysts is slightly delayed when the expression of ORF-C4 is down-regulated. In addition, ORF-C4 protein expression is modified under specific stress-inducing conditions. Neither orthologous proteins nor conserved domains are found in databases by conventional sequence analysis of the predicted protein. However, ORF-C4 contains a region which is similar structurally to the alpha-crystallin domain of sHsps (small heat-shock proteins). In the present study, we show the potential role of ORF-C4 as a small chaperone which is involved in the response to stress (including encystation) in G. lamblia.
Collapse
|
33
|
Latham JC, Stein R, Bornhop DJ, Mchaourab HS. Free-solution label-free detection of alpha-crystallin chaperone interactions by back-scattering interferometry. Anal Chem 2009; 81:1865-71. [PMID: 19178288 PMCID: PMC2787765 DOI: 10.1021/ac802327h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the quantitative, label-free analysis of protein-protein interactions in free solution within picoliter volumes using backscatter interferometry (BSI). Changes in the refractive index are measured for solutions introduced on a PDMS microchip allowing determination of forward and reverse rate constants for two-mode binding. Time-dependent BSI traces are directly fit using a global analysis approach to characterize the interaction of the small heat-shock protein alpha-Crystallin with two substrates: destabilized mutants of T4 lysozyme and the in vivo target betaB1-Crystallin. The results recapitulate the selectivity of alphaB-Crystallin differentially binding T4L mutants according to their free energies of unfolding. Furthermore, we demonstrate that an alphaA-Crystallin mutant linked to hereditary cataract has activated binding to betaB1-Crystallin. Binding isotherms obtained from steady-state values of the BSI signal yielded meaningful dissociation constants and establishes BSI as a novel tool for the rapid identification of molecular partners using exceedingly small sample quantities under physiological conditions. This work demonstrates that BSI can be extended to screen libraries of disease-related mutants to quantify changes in affinity and/or kinetics of binding.
Collapse
Affiliation(s)
- Joey C. Latham
- Department of Chemistry and The Vanderbilt Institute for Chemical Biology, Vanderbilt University, VU Station B 351822 Nashville, TN 37235-1822, , fax (615) 343-1234
| | - Richard Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Ave., 741 Light Hall, Nashville, TN 37232, , fax (615) 343-1234
| | - Darryl J. Bornhop
- Department of Chemistry and The Vanderbilt Institute for Chemical Biology, Vanderbilt University, VU Station B 351822 Nashville, TN 37235-1822, , fax (615) 343-1234
| | - Hassane S. Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Ave., 741 Light Hall, Nashville, TN 37232, , fax (615) 343-1234
| |
Collapse
|
34
|
Huang Q, Ding L, Phan KB, Cheng C, Xia CH, Gong X, Horwitz J. Mechanism of cataract formation in alphaA-crystallin Y118D mutation. Invest Ophthalmol Vis Sci 2009; 50:2919-26. [PMID: 19151380 DOI: 10.1167/iovs.08-3070] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The aim of this study was to elucidate the molecular mechanisms that lead to a dominant nuclear cataract in a mouse harboring the Y118D mutation in the alphaA-crystallin gene. METHODS The physicochemical properties of alpha-crystallin obtained from mouse lenses with the Y118D mutation as well as a recombinant Y118D alphaA-crystallin were studied using gel filtration, two-dimensional (2D) gel electrophoresis, multi-angle light scattering, circular dichroism, fluorescence, and chaperone activities. RESULTS Both native alpha-crystallin from mutant lens and recombinant alphaA-Y118D displayed higher molecular mass distribution than the wild-type. Circular dichroism spectra indicated changes in the secondary structures of alphaA-Y118D. The alphaA-Y118D protein prevented nonspecific protein aggregation more effectively than wild-type alphaA-crystallin. The gel filtration and 2D gel electrophoresis analysis showed a significant reduction of Y118D mutant protein in comparison with wild-type alphaA protein of heterozygous mutant lenses. Quantitative RT-PCR results confirmed a decrease in alphaA and alphaB transcripts in the homozygous mutant alpha A(Y118D/Y118D) lenses. CONCLUSIONS The alphaA-Y118D mutant protein itself displays an increased chaperone-like activity. However, the dominant nuclear cataract is associated with a significant decrease in the amount of alphaA-crystallin, leading to a reduction in total chaperone capacity needed for maintaining lens transparency.
Collapse
Affiliation(s)
- Qingling Huang
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Jehle S, van Rossum B, Stout JR, Noguchi SM, Falber K, Rehbein K, Oschkinat H, Klevit RE, Rajagopal P. alphaB-crystallin: a hybrid solid-state/solution-state NMR investigation reveals structural aspects of the heterogeneous oligomer. J Mol Biol 2008; 385:1481-97. [PMID: 19041879 DOI: 10.1016/j.jmb.2008.10.097] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 09/24/2008] [Accepted: 10/29/2008] [Indexed: 10/21/2022]
Abstract
Atomic-level structural information on alphaB-Crystallin (alphaB), a prominent member of the small heat-shock protein family, has been a challenge to obtain due its polydisperse oligomeric nature. We show that magic-angle spinning solid-state NMR can be used to obtain high-resolution information on an approximately 580-kDa human alphaB assembled from 175-residue 20-kDa subunits. An approximately 100-residue alpha-crystallin domain is common to all small heat-shock proteins, and solution-state NMR was performed on two different alpha-crystallin domain constructs isolated from alphaB. In vitro, the chaperone-like activities of full-length alphaB and the isolated alpha-crystallin domain are identical. Chemical shifts of the backbone and C(beta) resonances have been obtained for residues 64-162 (alpha-crystallin domain plus part of the C-terminus) in alphaB and the isolated alpha-crystallin domain by solid-state and solution-state NMR, respectively. Both sets of data strongly predict six beta-strands in the alpha-crystallin domain. A majority of residues in the alpha-crystallin domain have similar chemical shifts in both solid-state and solution-state, indicating similar structures for the domain in its isolated and oligomeric forms. Sites of intersubunit interaction are identified from chemical shift differences that cluster to specific regions of the alpha-crystallin domain. Multiple signals are observed for the resonances of M68 in the oligomer, identifying the region containing this residue as existing in heterogeneous environments within alphaB. Evidence for a novel dimerization motif in the human alpha-crystallin domain is obtained by a comparison of (i) solid-state and solution-state chemical shift data and (ii) (1)H-(15)N heteronuclear single quantum coherence spectra as a function of pH. The isolated alpha-crystallin domain undergoes a dimer-monomer transition over the pH range 7.5-6.8. This steep pH-dependent switch may be important for alphaB to function optimally (e.g., to preserve the filament integrity of cardiac muscle proteins such as actin and desmin during cardiac ischemia, which is accompanied by acidosis).
Collapse
|
36
|
Andley UP, Hamilton PD, Ravi N. Mechanism of insolubilization by a single-point mutation in alphaA-crystallin linked with hereditary human cataracts. Biochemistry 2008; 47:9697-706. [PMID: 18700785 DOI: 10.1021/bi800594t] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AlphaA-crystallin is a small heat shock protein that functions as a molecular chaperone and a lens structural protein. The R49C single-point mutation in alphaA-crystallin causes hereditary human cataracts. We have previously investigated the in vivo properties of this mutant in a gene knock-in mouse model. Remarkably, homozygous mice carrying the alphaA-R49C mutant exhibit nearly complete lens opacity concurrent with small lenses and small eyes. Here we have investigated the 90 degrees light scattering, viscosity, refractive index, and bis-ANS fluorescence of lens proteins isolated from the alphaA-R49C mouse lenses and found that the concentration of total water-soluble proteins showed a pronounced decrease in alphaA-R49C homozygous lenses. Light scattering measurements on proteins separated by gel permeation chromatography showed a small amount of high-molecular mass aggregated material in the void volume which still remains soluble in alphaA-R49C homozygous lens homogenates. An increased level of binding of beta- and gamma-crystallin to the alpha-crystallin fraction was observed in alphaA-R49C heterozygous and homozygous lenses but not in wild-type lenses. Quantitative analysis with the hydrophobic fluorescence probe bis-ANS showed a pronounced increase in fluorescence yield upon binding to alpha-crystallin from mutant as compared with the wild-type lenses. These results suggest that the decrease in the solubility of the alphaA-R49C mutant protein was due to an increase in its hydrophobicity and supra-aggregation of alphaA-crystallin that leads to cataract formation. Our study further shows that analysis of mutant proteins from the mouse model is an effective way to understand the mechanism of protein insolubilization in hereditary cataracts.
Collapse
Affiliation(s)
- Usha P Andley
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | |
Collapse
|
37
|
Klug CS, Feix JB. Methods and Applications of Site-Directed Spin Labeling EPR Spectroscopy. Methods Cell Biol 2008; 84:617-58. [DOI: 10.1016/s0091-679x(07)84020-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Shi J, Koteiche HA, McHaourab HS, Stewart PL. Cryoelectron Microscopy and EPR Analysis of Engineered Symmetric and Polydisperse Hsp16.5 Assemblies Reveals Determinants of Polydispersity and Substrate Binding. J Biol Chem 2006; 281:40420-8. [PMID: 17079234 DOI: 10.1074/jbc.m608322200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified sequence and structural determinants of oligomer size, symmetry, and polydispersity in the small heat shock protein super family. Using an insertion mutagenesis strategy that mimics evolutionary sequence divergence, we induced the ordered oligomer of Methanococcus jannaschii Hsp16.5 to transition to either expanded symmetric or polydisperse assemblies. A hybrid approach combining spin labeling EPR and cryoelectron microscopy imaging at 10A resolution reveals that the underlying plasticity is mediated by a packing interface with minimal contacts and a flexible C-terminal tether between dimers. Twenty-four dimeric building blocks related by octahedral symmetry assemble into the expanded symmetric oligomer. In contrast, the polydisperse variant has an ordered dimeric building block that heterogeneously packs to yield oligomers of various sizes. Increased exposure of the N-terminal region in the Hsp16.5 variants correlates with enhanced binding to destabilized mutants of T4 lysozyme, whereas deletion of this region reduces binding. Transition to larger intermediates with enhanced substrate binding capacity has been observed in other small heat shock proteins including lens alpha-crystallin mutants linked to congenital cataract. Together, these results provide a mechanistic perspective on substrate recognition and binding by the small heat shock protein superfamily.
Collapse
Affiliation(s)
- Jian Shi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
39
|
Stopar D, Strancar J, Spruijt RB, Hemminga MA. Exploring the local conformational space of a membrane protein by site-directed spin labeling. J Chem Inf Model 2006; 45:1621-7. [PMID: 16309264 DOI: 10.1021/ci0501490] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular modeling based on a hybrid evolutionary optimization and an information condensation algorithm, called GHOST, of spin label ESR spectra was applied to study the structure and dynamics of membrane proteins. The new method is capable of providing detailed molecular information about the conformational space of the spin-labeled segment of the protein in a membrane system. The method is applied to spin-labeled bacteriophage M13 major coat protein, which is used as a model membrane protein. Single cysteine mutants of the coat protein were labeled with nitroxide spin labels and incorporated in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayers. The new computational method allows us to monitor distributions of local spatial constraints and molecular mobility, in addition to information about the location of the protein in a membrane. Furthermore, the results suggest that different local conformations may coexist in the membrane protein. The knowledge of different local conformations may help us to better understand the function-structure relationship of membrane proteins.
Collapse
Affiliation(s)
- David Stopar
- Biotechnical Faculty, University of Ljubljana, Vecna pot 111, SI-1000 Ljubljana, Slovenia
| | | | | | | |
Collapse
|
40
|
Abstract
We present a novel hypothesis for the molecular mechanism of autosomal dominant cataract linked to two mutations in the alphaA-crystallin gene of the ocular lens. AlphaA-crystallin is a molecular chaperone that plays a critical role in the suppression of protein aggregation and hence in the long term maintenance of lens optical properties. Using a steady state binding assay in which the chaperone-substrate complex is directly detected, we demonstrate that the mutations result in a substantial increase in the level of binding to non-native states of the model substrate T4 lysozyme. The structural basis of the enhanced binding is investigated through equivalent substitutions in the homologous heat shock protein 27. The mutations shift the oligomeric equilibrium toward a dissociated multimeric form previously shown to be the binding-competent state. In the context of a recent thermodynamic model of chaperone function that proposes the coupling of small heat shock protein activation to the substrate folding equilibrium (Shashidharamurthy, R., Koteiche, H. A., Dong, J., and McHaourab, H. S. (2005) J. Biol. Chem. 280, 5281-5289), the enhanced binding by the alphaA-crystallin mutants is predicted to shift the substrate folding equilibrium toward non-native intermediates, i.e. the mutants promote substrate unfolding. Given the high concentration of alphaA-crystallin in the lens, the molecular basis of pathogenesis implied by our results is a gain of function that leads to the binding of undamaged proteins and subsequent precipitation of the saturated alpha-crystallin complexes in the developing lens of affected individuals.
Collapse
Affiliation(s)
- Hanane A Koteiche
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
41
|
Murzyn K, Róg T, Blicharski W, Dutka M, Pyka J, Szytula S, Froncisz W. Influence of the disulfide bond configuration on the dynamics of the spin label attached to cytochrome c. Proteins 2006; 62:1088-100. [PMID: 16395663 DOI: 10.1002/prot.20838] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A series of multi-nanosecond molecular dynamics (MD) simulations of wild-type cytochrome c and its spin-labeled variants with the methanethiosulfonate moiety attached at position C102 were performed (1) to elucidate the effect of the spin probe presence on the protein structure and (2) to describe the structure and dynamics of the spin-label moiety. Comparisons with the reference crystal structure of cytochrome c (PDB entry: 1YCC) indicate that the protein secondary structure is well preserved during simulations of the wild-type cytochrome c but slightly changed in simulations of the cytochrome c labeled at position C102. At the time scale covered in our simulations, the spin label exhibits highly dynamical behavior. The number of observed distinct conformations of the spin label moiety is between 3 and 13. The spin probe was found to form short-lived hydrogen bonds with the protein. Temporary hydrophobic interactions between the probe and the protein were also detected. The MD simulations directly show that the disulfide bond in the tether linking a spin probe with a protein strongly influence the behavior of the nitroxide group. The conformational flexibility and interaction with the protein are different for each of the two low energy conformations of the disulfide bond.
Collapse
Affiliation(s)
- Krzysztof Murzyn
- Department of Biophysics, Faculty of Biotechnology, Jagiellonian University, Krakow, Poland.
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Because of the enormous size of amyloid fibrils and their low tendency to form crystal lattices, it has been difficult to obtain high-resolution structural information on these aggregates. Magnetic resonance methods, such as solid-state nuclear magnetic resonance spectroscopy and electron paramagnetic resonance (EPR) spectroscopy, are promising new technologies by which to obtain molecular models. This chapter will focus on the application of EPR spectroscopy to amyloids and other protein aggregates. Site-directed spin labeling (SDSL), in combination with EPR spectroscopy, has been successfully used to study protein structure and the dynamics of soluble as well as membrane proteins. Recent studies indicate that this strategy is also well suited for studying amyloid fibrils. For example, an important outcome of the SDSL studies performed in our laboratory is that fibrils of amyloid beta, islet amyloid polypeptide, alpha-synuclein, and tau have their beta-strands aligned in an in-register, parallel fashion. Future studies promise to yield molecular information about fibril topography and protofilament arrangement and can be extended to include oligomeric structures.
Collapse
Affiliation(s)
- Martin Margittai
- University of Southern California, Department of Biochemistry and Molecular Biology, Los Angeles, CA, USA
| | | |
Collapse
|
43
|
Chen X, Fu X, Ma Y, Chang Z. Chaperone-Like Activity of Mycobacterium tuberculosis Hsp16.3 Does Not Require Its Intact (Native) Structures. BIOCHEMISTRY (MOSCOW) 2005; 70:913-9. [PMID: 16212548 DOI: 10.1007/s10541-005-0202-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Small heat shock proteins (sHsps) were found to exhibit efficient chaperone-like activities under stress conditions although their native structures are severely disturbed. Here, using an alternative approach (site-directed mutagenesis), we obtained two structurally and functionally distinct Mycobacterium tuberculosis Hsp16.3 single-site mutant proteins. The G59W mutant protein (with Gly59 substituted by Trp) is capable of exhibiting efficient chaperone-like activity even under non-stress conditions although its secondary, tertiary, and quaternary structures are very different from that of the wild type protein. By contrast, the G59A mutant protein (with Gly59 substituted by Ala) resembles with the wild type protein in structure and function. These observations suggest that the Gly59 of the Hsp16.3 protein is critical for its folding and assembly. In particular, we propose that the exhibition of chaperone-like activity for Hsp16.3 does not require its intact (native) structures but requires the disturbance of its native structures (i.e., the native structure-disturbed Hsp16.3 retains its chaperone-like activity or even becomes more active). In addition, the behavior of such an active mutant protein (G59W) also strongly supports our previous suggestion that Hsp16.3 exhibits chaperone-like activity via oligomeric dissociation.
Collapse
Affiliation(s)
- Xiaoyou Chen
- Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, 101149, China
| | | | | | | |
Collapse
|
44
|
Chen X, Zhang HY, Pavlish K, Benoit JN. Effects of chronic portal hypertension on small heat-shock proteins in mesenteric arteries. Am J Physiol Gastrointest Liver Physiol 2005; 288:G616-20. [PMID: 15513950 DOI: 10.1152/ajpgi.00439.2004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Previous studies have shown that impaired vasoconstrictor function in chronic portal hypertension is mediated via cAMP-dependent events. Recent data have implicated two small heat-shock proteins (HSP), namely HSP20 and HSP27, in the regulation of vascular tone. Phosphorylation of HSP20 is associated with vasorelaxation, whereas phosphorylation of HSP27 is associated with vasoconstriction. We hypothesized that alterations in the expression and/or phosphorylation of small HSPs may play a role in impaired vasoconstriction in portal hypertension. A rat model of prehepatic chronic portal hypertension was used. Studies were conducted in small mesenteric arteries isolated from normal and portal hypertensive rats. Protein levels of HSP20 and HSP27 were detected by Western blot analysis. Protein phosphorylation was analyzed by isoelectric focusing. HSP20 mRNA expression was determined by RT-PCR. To examine the role of cAMP in the regulation of small HSP phosphorylation and expression, we treated both normal and portal hypertensive vessels with a PKA inhibitor Rp-cAMPS. We found both an increased HSP20 phosphorylation and a decreased HPS20 protein level in portal hypertension, both of which were restored to normal by PKA inhibition. However, PKA did not change HSP20 mRNA expression. We conclude that decreased HSP20 protein level is mediated by cAMP-dependent pathway and that impaired vasoconstrictor function in portal hypertension may be partially explained by decreased expression of HSP20. We also suggest that the phosphorylation of HSP20 by PKA may alter HSP20 turnover.
Collapse
Affiliation(s)
- Xuesong Chen
- Dean, Graduate School and Professor of Pharmacology, Physiology & Therapeutics, Univ. of North Dakota, Grand Forks, USA
| | | | | | | |
Collapse
|
45
|
Lentze N, Narberhaus F. Detection of oligomerisation and substrate recognition sites of small heat shock proteins by peptide arrays. Biochem Biophys Res Commun 2005; 325:401-7. [PMID: 15530406 DOI: 10.1016/j.bbrc.2004.10.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Indexed: 11/22/2022]
Abstract
Small heat shock proteins (sHsps) form large oligomers that are characterised by their dynamic behaviour, e.g., complex disassembly/reassembly and extensive subunit exchange. These processes are interrelated with sHsp/substrate interaction. sHsps bind a broad spectrum of unrelated substrate proteins under denaturing conditions. Detailed knowledge about the binding process and regions critical for sHsp/substrate interaction is missing. In this study, we screened cellulose-bound peptide spot libraries derived from a bacterial sHsp and the model-substrate citrate synthase to detect oligomerisation and substrate interaction sites, respectively. In line with previous results, it was demonstrated that multiple contacts involving the N- and C-terminal extensions and the central alpha-crystallin domain are required for oligomerisation. Incubation of the citrate synthase membrane with sHsps revealed a putative substrate interaction site. A soluble peptide with the sequence RTKYWELIYEDCMDL (CS(191-205)) corresponding to that site inhibited chaperone activity of sHsps, presumably by blocking their substrate-binding sites.
Collapse
Affiliation(s)
- Nicolas Lentze
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule, CH-8092 Zürich, Switzerland
| | | |
Collapse
|
46
|
Shashidharamurthy R, Koteiche HA, Dong J, McHaourab HS. Mechanism of Chaperone Function in Small Heat Shock Proteins. J Biol Chem 2005; 280:5281-9. [PMID: 15542604 DOI: 10.1074/jbc.m407236200] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian small heat shock proteins (sHSP) form polydisperse and dynamic oligomers that undergo equilibrium subunit exchange. Current models of their chaperone activity hypothesize that recognition and binding of protein non-native states involve changes in the oligomeric state. The equivalent thermodynamic representation is a set of three coupled equilibria that includes the sHSP oligomeric equilibrium, the substrate folding equilibrium, and the equilibrium binding between the sHSP and the substrate non-native states. To test this hypothesis and define the binding-competent oligomeric state of human Hsp27, we have perturbed the two former equilibria and quantitatively determined the consequences on binding. The substrate is a set of T4 lysozyme (T4L) mutants that bind under conditions that favor the folded state over the unfolded state by 10(2)-10(4)-fold. The concentration-dependent oligomer equilibrium of Hsp27 was perturbed by mutations that alter the relative stability of two major oligomeric states including phosphorylation-mimicking mutations that result in the dissociation to a small multimer over a wide range of concentrations. Correlation of binding isotherms with size exclusion chromatography analysis of the Hsp27 oligomer equilibrium demonstrates that the multimer is the binding-competent state. Binding occurs through two modes, each characterized by different affinity and number of binding sites, and results in T4L.Hsp27 complexes of different hydrodynamic properties. Mutants of the Hsp27 phosphorylation mimic that reverse the reduction in oligomer size also reduce the extent of T4L binding. Taken together, these results suggest a central role for the oligomeric equilibrium in regulating the chaperone activity of sHSP. The mutants identify sequence features important for modulating this equilibrium.
Collapse
Affiliation(s)
- R Shashidharamurthy
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 741 Light Hall, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
47
|
Fu X, Zhang H, Zhang X, Cao Y, Jiao W, Liu C, Song Y, Abulimiti A, Chang Z. A dual role for the N-terminal region of Mycobacterium tuberculosis Hsp16.3 in self-oligomerization and binding denaturing substrate proteins. J Biol Chem 2004; 280:6337-48. [PMID: 15545279 DOI: 10.1074/jbc.m406319200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The N-terminal regions, which are highly variable in small heat-shock proteins, were found to be structurally disordered in all the 24 subunits of Methanococcus jannaschii Hsp16.5 oligomer and half of the 12 subunits of wheat Hsp16.9 oligomer. The structural and functional roles of the corresponding region (potentially disordered) in Mycobacterium tuberculosis Hsp16.3, existing as nonamers, were investigated in this work. The data demonstrate that the mutant Hsp16.3 protein with 35 N-terminal residues removed (DeltaN35) existed as trimers/dimers rather than as nonamers, failing to bind the hydrophobic probe (1,1'-bi(4-anilino)naphthalene-5,5'-disulfonic acid) and exhibiting no chaperone-like activity. Nevertheless, another mutant protein with the C-terminal extension (of nine residues) removed, although existing predominantly as dimers, exhibited efficient chaperone-like activity even at room temperatures, indicating that pre-existence as nonamers is not a prerequisite for its chaperone-like activity. Meanwhile, the mutant protein with both the N- and C-terminal ends removed fully exists as a dimer lacking any chaperone-like activity. Furthermore, the N-terminal region alone, either as a synthesized peptide or in fusion protein with glutathione S-transferase, was capable of interacting with denaturing proteins. These observations strongly suggest that the N-terminal region of Hsp16.3 is not only involved in self-oligomerization but also contains the critical site for substrate binding. Such a dual role for the N-terminal region would provide an effective mechanism for the small heat-shock protein to modulate its chaperone-like activity through oligomeric dissociation/reassociation. In addition, this study demonstrated that the wild-type protein was able to form heterononamers with DeltaN35 via subunit exchange at a subunit ratio of 2:1. This implies that the 35 N-terminal residues in three of the nine subunits in the wild-type nonamer are not needed for the assembly of nonamers from trimers and are thus probably structurally disordered.
Collapse
Affiliation(s)
- Xinmiao Fu
- State Key Laboratory of Protein Engineering and Plant Genetic Engineering, and College of Life Science, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Margittai M, Langen R. Template-assisted filament growth by parallel stacking of tau. Proc Natl Acad Sci U S A 2004; 101:10278-83. [PMID: 15240881 PMCID: PMC478563 DOI: 10.1073/pnas.0401911101] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tau filaments are found in >20 neurodegenerative diseases. Yet, because of their enormous molecular weights and poor tendency to form highly ordered 3D crystal lattices, they have evaded high-resolution structure determination. Here, we studied 25 derivatized tau mutants by using electron paramagnetic resonance and fluorescence spectroscopy to report structural details of tau filaments. Based on strong spin exchange and pyrene excimer formation of core residues, we find that individual tau proteins form single molecule layers along the fiber axis that perfectly stack on top of each other by in-register, parallel alignment of beta-strands. We suggest a model of filament growth wherein the existing filament serves as a template for the incoming, unfolded tau molecule, resulting in a new structured layer with maximized hydrogen-bonded contact surface and side-chain stacking.
Collapse
Affiliation(s)
- Martin Margittai
- Department of Biochemistry and Molecular Biology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089-2821, USA
| | | |
Collapse
|
49
|
Lentze N, Studer S, Narberhaus F. Structural and functional defects caused by point mutations in the alpha-crystallin domain of a bacterial alpha-heat shock protein. J Mol Biol 2003; 328:927-37. [PMID: 12729765 DOI: 10.1016/s0022-2836(03)00356-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The diverse family of alpha-crystallin-type small heat shock proteins (alpha-Hsps or sHsps) is characterised by a central, moderately conserved alpha-crystallin domain. Oligomerisation followed by dissociation of subparticles is thought to be a prerequisite for chaperone function. We demonstrate that HspH, a bacterial alpha-Hsp from the soybean-symbiont Bradyrhizobium japonicum, assembles into dynamic complexes freely exchanging subunits with homologous and heterologous complexes. The importance of the alpha-crystallin domain for oligomerisation and chaperone activity was tested by site-directed mutagenesis of 12 different residues. In contrast to mammalian alpha-Hsps, the majority of these mutations elicited severe structural and functional defects in HspH. The individual exchange of five amino acid residues throughout the alpha-crystallin domain was found to compromise oligomerisation to various degrees. Assembly defects resulting in complexes of reduced size correlated with greatly decreased or abolished chaperone activity, reinforcing that complete oligomerisation is required for functionality. Mutation of a highly conserved glycine (G114) at the C-terminal end of the alpha-crystallin domain specifically impaired chaperone activity without interfering with oligomerisation properties, indicating that this residue is critical for substrate interaction. The structural and functional importance of this and other residues is discussed in the context of a modeled three-dimensional structure of HspH.
Collapse
Affiliation(s)
- Nicolas Lentze
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule, Schmelzbergstrasse 7, CH-8092 Zürich, Switzerland
| | | | | |
Collapse
|
50
|
Abulimiti A, Fu X, Gu L, Feng X, Chang Z. Mycobacterium tuberculosis Hsp16.3 nonamers are assembled and re-assembled via trimer and hexamer intermediates. J Mol Biol 2003; 326:1013-23. [PMID: 12589750 DOI: 10.1016/s0022-2836(03)00018-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Hsp16.3, a small heat shock protein from Mycobacterium tuberculosis proposed to form specific trimer-of-trimers structures, acts as a molecular chaperone in vitro. The assembly and re-assembly mechanisms of this oligomeric protein were studied and compared using in vitro transcription/translation and denaturization/renaturization systems. Analysis using a combination of non-denaturing pore gradient polyacrylamide gel electrophoresis, chemical cross-linking, and size-exclusion chromatography demonstrate that the predominant form of Hsp16.3 produced in the in vitro transcription/translation system is the trimer, which can be further assembled into a nonameric structure via a hexamer intermediate in the presence of purified exogenous Hsp16.3 proteins. Meanwhile, an "inert" Hsp16.3 dimer, which does not seem to participate in nonamer assembly but may be involved in forming other forms of Hsp16.3, was also detected in the in vitro expression system. On the other hand, our current data clearly show that the re-assembly of Hsp16.3 nonamers also occurs via a very similar mechanism, with the formation of trimers and hexamers. The presence of high levels of macromolecular crowding protein agent in the in vitro expression system promoted the formation of the nonamers to a very limited degree, indicating that the assembly of proteins like Hsp16.3 may depend mainly on its own concentration instead of those of the macromolecules in the environment.
Collapse
Affiliation(s)
- Abuduaini Abulimiti
- Department of Biological Science and Biotechnology, School of Life Science, Tsinghua University, Beijing 100084, People's Republic of China
| | | | | | | | | |
Collapse
|